Science.gov

Sample records for accurate thermal properties

  1. Properties of Solar Thermal Fuels by Accurate Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Saritas, Kayahan; Ataca, Can; Grossman, Jeffrey C.

    2014-03-01

    Efficient utilization of the sun as a renewable and clean energy source is one of the major goals of this century due to increasing energy demand and environmental impact. Solar thermal fuels are materials that capture and store the sun's energy in the form of chemical bonds, which can then be released as heat on demand and charged again. Previous work on solar thermal fuels faced challenges related to the cyclability of the fuel over time, as well as the need for higher energy densities. Recently, it was shown that by templating photoswitches onto carbon nanostructures, both high energy density as well as high stability can be achieved. In this work, we explore alternative molecules to azobenzene in such a nano-templated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict the energy storage potential for each molecule. Our calculations show that in many cases the level of accuracy provided by density functional theory (DFT) is sufficient. However, in some cases, such as dihydroazulene, the drastic change in conjugation upon light absorption causes the DFT predictions to be inconsistent and incorrect. For this case, we compare our QMC results for the geometric structure, band gap and reaction enthalpy with different DFT functionals.

  2. Predict amine solution properties accurately

    SciTech Connect

    Cheng, S.; Meisen, A.; Chakma, A.

    1996-02-01

    Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.

  3. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  4. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  5. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  6. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  7. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  8. Thermal Properties Measurement Report

    SciTech Connect

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  9. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them. PMID:19113946

  10. Accurate measurements of thermal radiation from a tungsten photonic lattice

    SciTech Connect

    Seager, C.H.; Sinclair, M.B.; Fleming, J.G.

    2005-06-13

    Recently, photonic lattice structures have become available that are fabricated from refractory materials such as tungsten and thus stable in vacuo at high temperatures. Such structures can be tailored to exhibit optical properties that are not achievable with ordinary optical materials. In particular, photonic lattices can be designed to suppress thermal emission in undesired spectral regions, and can thereby enhance the overall energy efficiency of emission at useful wavelengths. We report measurements of the thermal emission spectra of tungsten photonic lattices in the wavelength range 3 to 24 {mu}m. Suppression of thermal emission at wavelengths longer than the photonic bandedge ({approx}6 {mu}m) is observed, along with significant emission at shorter wavelengths. We show that from 404 to 546 K the spectral emissivity E({lambda}) is temperature independent and approaches [1-R({lambda})], where R({lambda}) is the measured specular reflectance spectrum. These results are in accord with Kirchhoff's law.

  11. Thermal Property Parameter Estimation of TPS Materials

    NASA Technical Reports Server (NTRS)

    Maddren, Jesse

    1998-01-01

    Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.

  12. Thermal Properties of oil sand

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  13. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  14. Accurately simulating anisotropic thermal conduction on a moving mesh

    NASA Astrophysics Data System (ADS)

    Kannan, Rahul; Springel, Volker; Pakmor, Rüdiger; Marinacci, Federico; Vogelsberger, Mark

    2016-05-01

    We present a novel implementation of an extremum preserving anisotropic diffusion solver for thermal conduction on the unstructured moving Voronoi mesh of the AREPO code. The method relies on splitting the one-sided facet fluxes into normal and oblique components, with the oblique fluxes being limited such that the total flux is both locally conservative and extremum preserving. The approach makes use of harmonic averaging points and a simple, robust interpolation scheme that works well for strong heterogeneous and anisotropic diffusion problems. Moreover, the required discretization stencil is small. Efficient fully implicit and semi-implicit time integration schemes are also implemented. We perform several numerical tests that evaluate the stability and accuracy of the scheme, including applications such as point explosions with heat conduction and calculations of convective instabilities in conducting plasmas. The new implementation is suitable for studying important astrophysical phenomena, such as the conductive heat transport in galaxy clusters, the evolution of supernova remnants, or the distribution of heat from black hole-driven jets into the intracluster medium.

  15. Thermal properties for vegetation cover

    NASA Astrophysics Data System (ADS)

    Aleksyutina, D.; Motenko, R.

    2011-12-01

    Different samples of undisturbed vegetation cover were studied under laboratory conditions. Samples were collected from New Chara city, north of the Chita region. Vegetation cover in this area is represented by moss, lichen and tussock growth. Thermal properties were investigated by the I-st type regular mode method (a-calorimeter), the freezing temperature was studied by cryoscopic methods. The dry density of sampled specimens varies from 0.04 to 0.24 g/cm3, and humidity varies from 250 to 375 percent. The freezing temperature depends on moisture content and varies from -0.2 to 0 degrees centigrade. The vegetation cover had low thermal conductivities which varies from 0.05 to 0.46 W/(m*K) in unfrozen conditions, and from 0.07 to 1.14 W/(m*K) in frozen conditions, according to density and moisture content. Diffusivity of samples varies from 0.073*10-6 to 0.114*10-6 m2/s in thawed conditions, and from 0.174*10-6 to 0.584*10-6 m2/s in frozen conditions. The sod (bottom of vegetation cover) had relatively high thermal properties. Thermal properties of vegetation cover and peat (turf) were compared. The thermal conductivity of peat was much higher than thermal conductivity of vegetation cover. This data may be used for modeling of the thickness of the seasonally thawed layer and ground temperature variation. The knowledge of thermal properties of these samples allows us to view vegetation cover as a separate layer of geological section.

  16. Simple, accurate, and precise measurements of thermal diffusivity in liquids using a thermal-wave cavity

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, A.

    2001-06-01

    A simple methodology for the direct measurement of the thermal wavelength using a thermal-wave cavity, and its application to the evaluation of the thermal diffusivity of liquids is described. The simplicity and robustness of this technique lie in its relative measurement features for both the thermal-wave phase and cavity length, thus eliminating the need for taking into account difficult-to-quantify and time-consuming instrumental phase shifts. Two liquid samples were used: distilled water and ethylene glycol. Excellent agreement was found with reported results in the literature. The accuracy of the thermal diffusivity measurements using the new methodology originates in the use of only difference measurements in the thermal-wave phase and cavity length. Measurement precision is directly related to the corresponding precision on the measurement of the thermal wavelength.

  17. Thermal Properties of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-03-30

    Much effort has been devoted to an ongoing search for more powerful, safer and environmentally friendly explosives. Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. Preliminary results on the physical and chemical characterization of FOX-7 have shown that it possesses good thermal and chemical stability. It is expected that FOX-7 will be a new important explosive ingredient in high performance, insensitive munition (IM) explosives. One of the major focuses in research on this novel energetic material is a study of its thermal properties. Oestmark et al have reported that DSC curves exhibit two minor endothermic peaks as well as two major exothermic peaks. Two endothermic peaks at {approx}116 and {approx}158 C suggest the presence of two solid-solid phase transitions. A third phase change below 100 C has also been reported based on a X-ray powder diffraction (XPD) study. The shapes, areas and observed temperatures of the two decomposition peaks at {approx}235 C and {approx}280 C vary with different batches and sources of the sample, and occasionally these two peaks are merged into one. The factors leading to this variation and a more complete investigation are in progress. Our laboratories have been interested in the thermal properties of energetic materials characterized by means of various thermal analysis techniques. This paper will present our results for the thermal behavior of FOX-7 including the phase changes, decomposition, kinetic analysis and the decomposition products using DSC, TG, ARC (Accelerating Rate Calorimetry), HFC (Heat Flow Calorimetry) and simultaneous TGDTA-FTIR (Fourier Transform Infrared Spectroscopy) Spectroscopy-MS (Mass) measurements.

  18. Thermal properties of heterogeneous grains

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1988-01-01

    Cometary dust is not spherical nor homogeneous, yet these are the assumptions used to model its thermal, optical, and dynamical properties. To better understand the effects of heterogeneity on the thermal and optical properties of dust grains, the effective dielectric constant for an admixture of magnetite and a silicate were calculated using two different effective medium theories: the Maxwell-Garnett theory and the Bruggeman theory. In concept, the MG theory describes the effective dielectric constant of a matrix material into which is embedded a large number of very small inclusions of a second material. The Bruggeman theory describes the dielectric constant of a well mixed aggregate of two or more types of materials. Both theories assume that the individual particles are much smaller than the wavelength of the incident radiation. The refractivity for a heterogeneous grain using the MG theory is very similar to the refractivity of the matrix material, even for large volume fractions of the inclusion. The equilibrium grain temperature for spherical particles sized from .001 to 100 microns in radius at 1 astronomical unit from the sun was calculated. Further explanation is given.

  19. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

    PubMed

    Shvab, I; Sadus, Richard J

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K. PMID:24320337

  20. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2013-11-01

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  1. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  2. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments. PMID:26851474

  3. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E

    2009-01-01

    We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease. PMID:19965026

  4. Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models

    NASA Astrophysics Data System (ADS)

    Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel

    2016-02-01

    The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.

  5. Thermal Properties of Bazhen fm. Sediments from Thermal Core Logging

    NASA Astrophysics Data System (ADS)

    Spasennykh, Mikhail; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Romushkevich, Raisa; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Zhukov, Vladislav; Karpov, Igor; Saveliev, Egor; Gabova, Anastasia

    2016-04-01

    The Bazhen formation (B. fm.) is the hugest self-contained source-and-reservoir continuous petroleum system covering by more than 1 mln. km2 (West Siberia, Russia). High lithological differentiation in Bazhen deposits dominated by silicic shales and carbonates accompanied by extremely high total organic carbon values (of up to 35%), pyrite content and brittle mineralogical composition deteriorate standard thermal properties assessment for low permeable rocks. Reliable information of unconventional system thermal characteristics is the necessary part of works such as modelling of different processes in reservoir under thermal EOR for accessing their efficiency, developing and optimizing design of the oil recovery methods, interpretation of the well temperature logging data and for the basin petroleum modelling. A unique set of data including thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy for the B.fm. rocks was obtained from thermal core logging (high resolution continuous thermal profiling) on more than 4680 core samples (2000 of B.fm. samples are among) along seven wells for four oil fields. Some systematic peculiarities of the relation between thermal properties of the B.fm. rocks and their mineralogical composition, structural and texture properties were obtained. The high-resolution data are processed jointly with the standard petrophysical logging that allowed us to provide better separation of the formation. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  6. Accurate thermal expansivity measurements in the range 1500 2000 K are needed for minerals

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1991-07-01

    It is shown that the future high-temperature thermodynamic computations for minerals now hinge on the extension of the measurement of the volume thermal expansivity, β up to 2000 K. At present many measurements of β end at about 1200 1500 K, but the extrapolations to 2000 K are fraught with large errors. A few years ago, the missing thermodynamic parameter at high temperatures was the bulk modulus (or its reciprocal compressibility). Now that measurements of the bulk modulus are being accurately measured at 1800 K, attention is focused on improving measurements of β at higher temperatures.

  7. Shale: Measurement of thermal properties

    SciTech Connect

    Gilliam, T.M.; Morgan, I.L.

    1987-07-01

    Thermal conductivity and heat capacity measurements were made on samples of Devonian shale, Pierre shale, and oil shale from the Green River Formation. Thermal expansion measurements were made on selected samples of Devonian shale. Measurements were obtained over the temperature range of ambient to 473 K. Average values for thermal conductivity and heat capacity for the samples studied were within two standard deviations of all data over this temperature range. 15 refs., 12 figs., 4 tabs.

  8. Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-06-01

    Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.

  9. Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-03-01

    Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.

  10. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  11. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well-determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  12. Equilibrium gas flow computations. I - Accurate and efficient calculation of equilibrium gas properties

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1989-01-01

    This paper treats the accurate and efficient calculation of thermodynamic properties of arbitrary gas mixtures for equilibrium flow computations. New improvements in the Stupochenko-Jaffe model for the calculation of thermodynamic properties of diatomic molecules are presented. A unified formulation of equilibrium calculations for gas mixtures in terms of irreversible entropy is given. Using a highly accurate thermo-chemical data base, a new, efficient and vectorizable search algorithm is used to construct piecewise interpolation procedures with generate accurate thermodynamic variable and their derivatives required by modern computational algorithms. Results are presented for equilibrium air, and compared with those given by the Srinivasan program.

  13. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  14. Thermal properties of 433 Eros

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Rieke, G. H.

    1979-01-01

    Radiometric and reflected light observations of 433 Eros at high time resolution, high accuracy, and broad spectral coverage are reported. A thermal inertia model is used to estimate the thermal inertia, albedo, and size of Eros. An albedo of 0.125 plus or minus 0.025 with axes of 39.3 plus or minus 2.0 x 16.1 plus or minus 0.8 km is found. The estimate of the albedo is about 30% lower than previous estimates.

  15. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  16. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447

  17. High temperature thermal properties for metals used in LWR vessels

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.

    2008-01-01

    Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 °C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.

  18. Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities

    NASA Astrophysics Data System (ADS)

    Turner, S. Fiona; Metcalfe, Stuart F.; Mellor, Andrew; Willmott, Jon; Drögmöller, Peter

    2012-06-01

    Remote temperature sensing and thermal imaging can be invaluable tools for process control and optimization. Their utilization is limited within the metal processing industries, however, as bright metal surfaces are highly reflective, with low emissivity that can vary critically with oxide thickness and alloy composition. Any infrared temperature measurement is vulnerable to background reflection and limited to the uncertainty in the emissivity. An enclosure or cavity made of any material offers an approximation to blackbody radiation, as both emitted and reflected radiation are collected within the cavity, and background radiation is excluded by the geometry. By exploiting natural cavities formed during processing, emissivity-independent measurements can be made. This paper presents thermal imaging data from an aluminum rolling application. Data was gathered using Land's FTI-E imaging system. Based on an uncooled amorphous silicon array, the system provides measurement in the range 200°C to 600°C to an accuracy of +/-1°C. The 320 x 240 pixels each have field of view 570:1, providing a total viewing angle of 32° by 24°. Data was processed by Land's LIPS ASPS software, which features a patented algorithm for identifying the area of true temperature measurement within the cavity. The software automatically locates the wedge as the strip is coiled, and tracks its position as the coil increases in size. Successive profile graphs are collated to form a '2D map' of the whole strip. The results demonstrate that accurate, emissivity-independent temperature measurements can be obtained from the wedge-shaped cavity formed where the sheet aluminum joins the roll.

  19. Enhanced thermal properties of nanodiamond nanofluids

    NASA Astrophysics Data System (ADS)

    Sundar, L. Syam; Singh, Manoj K.; Sousa, Antonio C. M.

    2016-01-01

    Nanodiamond (ND) particles dispersed in ethylene glycol/water mixtures have been reported for their thermal properties and potential heat transfer applications. Commercially available ultra-dispersed diamond soot was treated with sulfuric acid-nitric acids to form single ND particles - characterized by various techniques - then prepared ND nanofluids and then measured thermal conductivity and viscosity by experimentally. The enhanced thermal conductivity for 1.0% of ND/20:80, ND/40:60 and ND/60:40 nanofluids is 17.8%, 14.2% and 11.4%; enhanced viscosity is 2.74-times, 1.73-times and 1.92-times at temperature of 60 °C, respectively. The heat transfer benefits of ND nanofluids in laminar to turbulent flow have been analyzed theoretically by using thermal properties.

  20. Pressure dependence of thermal transport properties

    PubMed Central

    Hofmeister, Anne M.

    2007-01-01

    Pressure (P) derivatives of thermal conductivity (k) and thermal diffusivity (D) are important to geophysics but are difficult to measure accurately because minerals, being hard and partially transparent, likely incur systematic errors through thermal losses at interfaces and spurious radiative transfer. To evaluate accuracy, repeat experiments for olivine [(Mg0.9Fe0.1)2SiO4], quartz (SiO2), and NaCl are examined in detail: these and other data on electrical insulators are compared with theory. At ambient conditions, D is underestimated in proportion to the number of contacts. As temperature (T) increases, spurious radiative transfer more than offsets contact loss. Compression of pore space and contact losses affect pressure derivatives, but these seem independent of T. Accurate (±2%) values of D(T) at 1 atm are obtained with the contact-free, laser-flash method. Other optical techniques do not pinpoint D but provide useful pressure derivatives. Published data on ∂(lnk)/∂P at ambient conditions agree roughly with all available models, the simplest of which predicts ∂(lnk)/∂P ∼ ∂(lnKT)/∂P, where KT is the bulk modulus. However, derivatives verified by multiple measurements are reproduced accurately only by the damped harmonic oscillator model. An improved database is needed to refine this model and to confidently extrapolate these difficult measurements to geophysically relevant conditions. PMID:17299046

  1. Thermal radiation properties and thermal conductivity of lunar material.

    PubMed

    Birkebak, R C; Cremers, C J; Dawson, J P

    1970-01-30

    The thermal radiation properties were measured for lunar fines and chips from three different lunar rocks. Measurements for the fines were made at atmospheric pressure and at a pressure of 10(-5) torr or lower. The directional reflectance was obtained over a wavelength range of 0.5 to 2.0 microns for angles of incidence up to 60 degrees. The bidirectional reflectance-the distribution of reflected light-was measured for white light angles of illumination up to 60 degrees. The thermal conductivity was measured over a temperature range 200 to 400 degrees K under vacuum conditions. PMID:17781563

  2. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  3. Thermal and thermoelectric properties of graphene.

    PubMed

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. PMID:24610791

  4. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  5. Thermal properties of food and pharmaceutical powders

    NASA Astrophysics Data System (ADS)

    Abiad, Mohamad Ghassan

    Foods and pharmaceuticals are complex systems usually exposed to various environmental conditions during processing and thus storage, stability, functionality and quality are key attributes that deserve careful attention. The quality and stability of foods and pharmaceuticals are mainly affected by environmental conditions such as temperature, humidity, time, and processing conditions (e.g. shear, pressure) under which they may undergo physical and/or chemical transformations. Glass transition as well as other thermal properties is a key to understand how external conditions affect physical changes of such materials. Development of new materials and understanding the physico-chemical behavior of existing ones require a scientific foundation that translates into safe and high quality foods, improved quality of pharmaceuticals and nutraceuticals with lower risk to patients and functional efficacy of polymers used in food and medicinal products. This research provides an overview of the glass transition and other thermal properties and introduces novel methods developed to characterize such properties.

  6. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  7. Thermal property measurement for thermal barrier coatings using pulsed thermal imaging - multilayer analysis method

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Tao, N.

    2016-02-01

    Thermal barrier coatings (TBCs) are extensively used on hot gas-path components in gas turbines to improve engine performance and extend component life. TBC thermal properties, specifically the thermal conductivity and heat capacity (the product of density and specific heat), are important parameters in these applications. These TBC properties are usually measured by destructive methods with specially prepared TBC samples. Nondestructive evaluation (NDE) methods have been developed in recently years that can measure TBC properties on natural TBC samples. However, many have limitations when examining TBCs on engine components. One exception is the pulsed thermal imaging - multilayer analysis (PTI-MLA) method, which can be applied to essentially any TBC samples with one or more coating layers and can determine TBC property distributions over the entire TBC surface. This paper describes its basic theories and implementations and discusses its potential applications to all areas of TBC studies.

  8. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  9. Acoustic and thermal properties of tissue

    NASA Astrophysics Data System (ADS)

    Retat, L.; Rivens, I.; ter Haar, G. R.

    2012-10-01

    Differences in ultrasound (US) and thermal properties of abdominal soft tissues may affect the delivery of thermal therapies such as high intensity focused ultrasound and may provide a basis for US monitoring of such therapies. 21 rat livers were obtained, within one hour of surgical removal. For a single liver, 3 lobes were selected and each treated in one of 3 ways: maintained at room temperature, water bath heated to 50°C ± 1°C for 10 ± 0.5 minutes, or water bath heated to 60°C ± 1°C for 10 ± 0.6 minutes. The attenuation coefficient, speed of sound and thermal conductivity of fresh rat liver was measured. The attenuation coefficients and speed of sound were measured using the finite-amplitude insertion-substitution (FAIS) method. For each rat liver, the control and treated lobes were scanned using a pair of weakly focused 2.5 MHz Imasonic transducers over the range 1.8 to 3 MHz. The conductivity measurement apparatus was designed to provide one-dimensional heat flow through each specimen using a combination of insulation, heat source and heat sink. Using 35 MHz US images to determine the volume of air trapped in the system, the thermal conductivity was corrected using a simulation based on the Helmhotz bio-heat equation. The process of correlating these results with biological properties is discussed.

  10. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models

    SciTech Connect

    Fu, Q.; Sun, W.B.; Yang, P.

    1998-09-01

    An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (D{sub ge}). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is {approximately}2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.

  11. Computation of Thermally Perfect Compressible Flow Properties

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake

    1996-01-01

    A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.

  12. Thermal properties of an erythritol derivative

    NASA Astrophysics Data System (ADS)

    Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich

    2016-06-01

    Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.

  13. The thermal radiative properties of metals at high temperature

    SciTech Connect

    Self, S.A. . Dept. of Mechanical Engineering)

    1990-01-01

    A knowledge of the optical radiative properties of the surfaces of various metals at high temperatures, up to and above the melting point, is of considerable technical importance for a number of applications. These include smelting and casting, welding by TIG, E-beam and laser methods, and thermal and E-beam evaporative sources for thin film and composite deposition. The optical/radiative properties are important in modeling the energy balance in such applications. Accurate information is required on the surface absorptivity, reflectivity and emissivity as a function of wavelength, temperature and angle relative to the surface normal. These parameters are known to be sensitive functions of the state of the surface, including crystalline state and surface roughness for the solid phase, and the oxidation state of the surface for both solid and liquid metals. The principal thrust of this work is to obtain detailed and accurate data on the optical/radiative properties of pure aluminum and uranium at temperatures up through their melting points. However, it should be added that with the development of apparatus techniques and expertise completed, the facility will be available for optical/radiative property measurements on a variety of materials of interest to various programs at LLNL.

  14. Determining the Thermal Properties of Space Lubricants

    NASA Technical Reports Server (NTRS)

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  15. Functional properties of thermally treated legume flours.

    PubMed

    Nagmani, B; Prakash, J

    1997-05-01

    Functional properties of four thermally treated decorticated legume flours namely, bengal gram (Cicer arietinum), black gram (Phaseolus f1p4o Roxb.), green gram (Phaseolus aureus Roxb.) and lentils (Lens esculenta) were studied. Samples with moisture levels of 3.2, 3.3, 1.3 and 5.0% for all four were subjected to dry heat treatment in a covered vessel in pressure cooker. (Untreated flours served as controls. Thermal treatment lowered nitrogen solubility profiles of all flours and increased water absorption capacities in bengal gram (146) black gram (451) and lentil (206) over control values of 138, 441 and 180 ml/100 g of flour respectively. Fat absorption capacities decreased in thermally treated bengal gram and black gram (242 and 292) as against 298 and 303 ml/100 g for untreated samples respectively. Foaming capacity also showed a decrease in thermally treated bengal gram and black gram by 28 and 53% respectively over controls. Two deep fat fried Indian products namely, 'Seviya' and 'Chakli' were prepared using two of the legumes. Proximate compositional analysis revealed that products prepared with thermally treated flours absorbed less fat. The sensory scores for appearance, texture, flavour and overall quality obtained by Seviya were 6.04, 6.20, 5.98 and 6.40 for products prepared with untreated flour and 5.74, 5.78, 5.70 and 5.68 for product prepared with treated flour respectively. Chakli prepared with thermally treated flour obtained significantly lower scores of 6.08, 5.2, 5.42, and 5.88 as against 6.78, 6.68, 6.68 and 6.88 obtained by products prepared with untreated flour for similar attributes. PMID:9205596

  16. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    PubMed

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  17. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  18. Accurate transport properties for H–CO and H–CO{sub 2}

    SciTech Connect

    Dagdigian, Paul J.

    2015-08-07

    Transport properties for collisions of hydrogen atoms with CO and CO{sub 2} have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES’s) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H–CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H–CO{sub 2} was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were found to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.

  19. Accurate transport properties for H-CO and H-CO2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2015-08-01

    Transport properties for collisions of hydrogen atoms with CO and CO2 have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES's) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H-CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H-CO2 was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were found to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.

  20. The thermal properties of beeswaxes: unexpected findings.

    PubMed

    Buchwald, Robert; Breed, Michael D; Greenberg, Alan R

    2008-01-01

    Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials. PMID:18083740

  1. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  2. Comprehensive characterization of thermophysical properties in solids using thermal impedance

    NASA Astrophysics Data System (ADS)

    Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.

    2012-11-01

    Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.

  3. Determination of Thermal Spray Coating Property with Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Nakamura, Toshio; Sampath, Sanjay

    2013-12-01

    Real-time curvature measurement of a coating-substrate system during deposition has facilitated the monitoring of coating stresses and provided additional insights into thermal spray deposition mechanisms. However, the non-equilibrium state of coating formation along with harsh spray booth environment introduces complexity not only in data interpretation but also in the coating properties estimation. In this paper, a new procedure is proposed to estimate the elastic modulus of thermal sprayed ceramic coatings using in situ curvature and temperature measurements. In order to correlate the measurable parameters to coating elastic modulus, a systematic study is conducted to develop a suitable methodology. First, various finite element model analyses are carried out to formulate suitable relations between the measurements and elastic modulus. Subsequently, experiments are conducted to validate the procedure to estimate coating moduli. The results are compared with more accurate measurements obtained from post-deposition characterization technique under low temperature thermal cycles. The comparison suggests that the moduli estimated using the proposed procedure are in good agreements with those obtained from the post-deposition technique. Further, the nonlinear response of coatings are evaluated from the estimated moduli during deposition and cool down, which offer additional information on the characteristics of thermal spray coatings.

  4. Thermal property measurement of thin fibers by complementary methods

    NASA Astrophysics Data System (ADS)

    Munro, Troy Robert

    To improve measurement reliability and repeatability and resolve the orders of magnitude discrepancy between the two different measurements (via reduced model transient electrothermal and lock-in IR thermography), this dissertation details the development of three complementary methods to accurately measure the thermal properties of the natural and synthetic Nephila (N.) clavipes spider dragline fibers. The thermal conductivity and diffusivity of the dragline silk of the (N.) clavipes spider has been characterized by one research group to be 151-416 W m-1 K-1 and 6.4-12.3 x 10-5 m2 s -1, respectively, for samples with low to high strains (zero to 19.7%). Thermal diffusivity of the dragline silk of a different spider species, Araneus diadematus, has been determined by another research group as 2 x 10-7 m2 s-1 for un-stretched silk. This dissertation seeks to resolve this discrepancy by three complementary methods. The methods detailed are the transient electrothermal technique (in both reduced and full model versions), the 3o method (for both current and voltage sources), and the non-contact, photothermal, quantum-dot spectral shape-based fluorescence thermometry method. These methods were also validated with electrically conductive and non-conductive fibers. The resulting thermal conductivity of the dragline silk is 1.2 W m-1 K-1, the thermal diffusivity is 6 x 10-7 m2 s -1 and the volumetric heat capacity is 2000 kJ m-3 K-1, with an uncertainty of about 12% for each property.

  5. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  6. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGESBeta

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  7. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  8. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  9. Measurement of Thermal Radiation Properties of Solids

    NASA Technical Reports Server (NTRS)

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  10. Thermal properties of degraded lowland peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg‑1.K‑1 in the humic moorsh soil to 1944 J.kg‑1.K‑1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of

  11. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models

    SciTech Connect

    Hu, Y.X.; Stamnes, K. )

    1993-04-01

    A new parameterization of the radiative Properties of water clouds is presented. Cloud optical properties for valent radius throughout the solar and both solar and terrestrial spectra and for cloud equivalent radii in the range 2.5-60 [mu]m are calculated from Mie theory. It is found that cloud optical properties depend mainly on equivalent radius throughout the solar and terrestrial spectrum and are insensitive to the details of the droplet size distribution, such as shape, skewness, width, and modality (single or bimodal). This suggests that in cloud models, aimed at predicting the evolution of cloud microphysics with climate change, it is sufficient to determine the third and the second moments of the size distribution (the ratio of which determines the equivalent radius). It also implies that measurements of the cloud liquid water content and the extinction coefficient are sufficient to determine cloud optical properties experimentally (i.e., measuring the complete droplet size distribution is not required). Based on the detailed calculations, the optical properties are parameterized as a function of cloud liquid water path and equivalent cloud droplet radius by using a nonlinear least-square fitting. The parameterization is performed separately for the range of radii 2.5-12 [mu]m, 12-30,[mu]m, and 30-60 [mu]m. Cloud heating and cooling rates are computed from this parameterization by using a comprehensive radiation model. Comparison with similar results obtained from exact Mie scattering calculations shows that this parameterization yields very accurate results and that it is several thousand times faster. This parameterization separates the dependence of cloud optical properties on droplet size and liquid water content, and is suitable for inclusion into climate models. 22 refs., 7 figs., 6 tabs.

  12. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    NASA Astrophysics Data System (ADS)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  13. Accurate reconstruction of the thermal conductivity depth profile in case hardened steel

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Mandelis, Andreas

    2010-04-01

    The problem of retrieving a nonhomogeneous thermal conductivity profile from photothermal radiometry data is addressed from the perspective of a stabilized least square fitting algorithm. We have implemented an inversion method with several improvements: (a) a renormalization of the experimental data which removes not only the instrumental factor, but the constants affecting the amplitude and the phase as well, (b) the introduction of a frequency weighting factor in order to balance the contribution of high and low frequencies in the inversion algorithm, (c) the simultaneous fitting of amplitude and phase data, balanced according to their experimental noises, (d) a modified Tikhonov regularization procedure has been introduced to stabilize the inversion, and (e) the Morozov discrepancy principle has been used to stop the iterative process automatically, according to the experimental noise, to avoid "overfitting" of the experimental data. We have tested this improved method by fitting theoretical data generated from a known conductivity profile. Finally, we have applied our method to real data obtained in a hardened stainless steel plate. The reconstructed in-depth thermal conductivity profile exhibits low dispersion, even at the deepest locations, and is in good anticorrelation with the hardness indentation test.

  14. Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow.

    PubMed

    Li, Chunyan; Wu, Pei-ming; Wu, Zhizhen; Limnuson, Kanokwan; Mehan, Neal; Mozayan, Cameron; Golanov, Eugene V; Ahn, Chong H; Hartings, Jed A; Narayan, Raj K

    2015-10-01

    Cerebral blood flow (CBF) plays a critical role in the exchange of nutrients and metabolites at the capillary level and is tightly regulated to meet the metabolic demands of the brain. After major brain injuries, CBF normally decreases and supporting the injured brain with adequate CBF is a mainstay of therapy after traumatic brain injury. Quantitative and localized measurement of CBF is therefore critically important for evaluation of treatment efficacy and also for understanding of cerebral pathophysiology. We present here an improved thermal flow microsensor and its operation which provides higher accuracy compared to existing devices. The flow microsensor consists of three components, two stacked-up thin film resistive elements serving as composite heater/temperature sensor and one remote resistive element for environmental temperature compensation. It operates in constant-temperature mode (~2 °C above the medium temperature) providing 20 ms temporal resolution. Compared to previous thermal flow microsensor based on self-heating and self-sensing design, the sensor presented provides at least two-fold improvement in accuracy in the range from 0 to 200 ml/100 g/min. This is mainly achieved by using the stacked-up structure, where the heating and sensing are separated to improve the temperature measurement accuracy by minimization of errors introduced by self-heating. PMID:26256480

  15. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations.

    PubMed

    Harb, Moussab

    2015-10-14

    Using accurate first-principles quantum calculations based on DFT (including the DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we can predict the essential fundamental properties (such as bandgap, optical absorption co-efficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit a relatively high absorption efficiency in the visible range, high dielectric constant, high charge carrier mobility and much lower exciton binding energy than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties were found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices such as Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications. PMID:26351755

  16. Accurate determination of the temperature dependent thermalization coefficient (Q) in InAs/AlAsSb quantum wells

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Tang, Jinfeng; Whiteside, Vincent R.; Vijeyaragunathan, Sangeetha; Mishima, Tetsuya D.; Santos, Michael B.; Sellers, Ian R.

    2015-03-01

    We present an investigation of hot carriers in InAs/AlAsSb quantum wells as a practical candidate for a hot carrier solar cell absorber. The thermalization coefficient (Q) of the sample is investigated using continuous wave photoluminescence (PL). The Q is accurately determined through transfer matrix calculations of the absorption, analysis of the power density, penetration depth, diffusion, and recombination rates using a combination of simulation and empirical methods. A precise measurement of laser spot size is important in order to determine the absorbed power density. Simulations were performed based on our PL geometry in order to calculate the excitation spot size, which was compared with experiment by measurements using variable diameter pinholes to determine beam radius. Here, these techniques are described, in addition to, the temperature dependent hot carrier dynamics and phonon mediated thermalization coefficient for the InAs/AlAsSb quantum well structure.

  17. Accurate computation and interpretation of spin-dependent properties in metalloproteins

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge

    2006-03-01

    Nature uses the properties of open-shell transition metal ions to carry out a variety of functions associated with vital life processes. Mononuclear and binuclear iron centers, in particular, are intriguing structural motifs present in many heme and non-heme proteins. Hemerythrin and methane monooxigenase, for example, are members of the latter class whose diiron active sites display magnetic ordering. We have developed a computational protocol based on spin density functional theory (SDFT) to accurately predict physico-chemical parameters of metal sites in proteins and bioinorganic complexes which traditionally had only been determined from experiment. We have used this new methodology to perform a comprehensive study of the electronic structure and magnetic properties of heme and non-heme iron proteins and related model compounds. We have been able to predict with a high degree of accuracy spectroscopic (Mössbauer, EPR, UV-vis, Raman) and magnetization parameters of iron proteins and, at the same time, gained unprecedented microscopic understanding of their physico-chemical properties. Our results have allowed us to establish important correlations between the electronic structure, geometry, spectroscopic data, and biochemical function of heme and non- heme iron proteins.

  18. Rhea and Dione: Variations in Surface Thermal Properties

    NASA Astrophysics Data System (ADS)

    Howett, Carly; Spencer, J.; Anne, V.

    2013-10-01

    Thermal inertia variations have been observed on icy satellite surfaces throughout the Saturnian system, resulting in night and daytime temperature variations across the satellites. The most notable are the two ‘Pac-Man’ anomalies on Mimas and Tethys (Howett et al., 2011, 2012): distinct regions of high thermal inertia at low latitudes on the leading hemisphere of both satellites, resulting in warmer nighttime and cooler daytime temperatures (by ~15 K) than their surroundings. High-energy electrons are the likely cause of this surface alteration, which preferentially bombard low latitudes of the leading hemisphere of Mimas and Tethys, effectively gluing the grains together and thus increasing their thermal inertia. Cassini’s CIRS (Composite Infrared Spectrometer) has returned a plethora of night- and day-time data for both Dione and Rhea. Using these data, with the same analysis techniques that discovered the ‘Pac-Men’, the spatial variations in thermophysical properties across Rhea and Dione have been mapped. The results are intriguing: for the first time we see a decrease in the thermal inertia across Rhea’s Inktomi crater ejecta blanket and hints at a high thermal inertia region at low latitudes on Dione’s leading hemisphere. If Dione’s high thermal inertia region is formed by the same mechanism as the ‘Pac-Men’ on Mimas and Tethys (and nothing similar is observed on Rhea), then this sets an important bound in the electron energy able to produce this type of surface alteration. Rhea’s Inktomi crater (14 S/112 W, diameter 48 km) is a bright young ray crater. A similar crater (i.e. young, morphologically fresh) exists on Dione: Creusa (49 N/76 W, diameter 40 km). Preliminary results show that no significant change in the thermal inertia is observed over Creusa. Why should thermal inertia vary over Inktomi, but not Creusa? Rhea and Dione’s subsurface may be different enough to explain this inconsistency (Schenk et al., 2011), or maybe the

  19. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  20. A high-dynamic and accurate electromagnetic radiation and thermal energy detector for planetary studies

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Karatekin, O.; Noel, J.-P.; van Ruymbeke, M.; Dehant, V.

    2012-04-01

    The radio meter has been broadly applied for the study of the Total Solar Irradiance (TSI). As the electromagnetic radiation is the main external climate driving force of our planet: Earth, the Imbalance of the Earth's Radiation Budget (IERB) is a key to better understanding our climate system. The PICARD mission is to study the Sun-Earth's climate connections. With the opportunity of the PICARD mission, we have developed a Bolometric Oscillation Sensor (BOS), which are currently flying side by side with the radiometer SOlar Variability for Picard (SOVAP-an updated instrument of DIARAD/VIRGO on SOHO) to study the solar constant as well as the radiation of the Earth. The BOS sensor is composed with two detectors, the light mass detector (m1), which is rapidly response to the thermal-flux change, and the heavy mass detector (m2), which is slowly modulated by the electromagnetic energy. In addition, the m1 detector can stand alone to precisely monitor the ambient temperature. The original goal of the BOS-PICARD is to study the irradiance of the Sun's and the Earth's. After nearly two year's observations, the variations of Long-Wave radiation of the Earth can be well determined from the BOS measurements. It confirms that the BOS can be applied to measure the electromagnetic radiation near the infrared. Encouraged by these results, we are now working on a second generation of the BOS sensor for the nano-satellite project and future planetary missions. The new sensor will be able to determine the albedo (visible), infrared radiation as well as to detect the thermal initial of objective target either by the remote sensing on-board satellite or by the in-situ measurement setting up in the Lander.

  1. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  2. Influence of thermal treatment on thermal properties of adamantane derivatives

    NASA Astrophysics Data System (ADS)

    Szewczyk, D.; JeŻowski, A.; Krivchikov, A. I.; Tamarit, J. Ll.

    2015-06-01

    Heat transport mechanisms present in 2-adamantanone and 1-cyanoadamantane crystals were investigated in a broad temperature range. To characterize scattering processes, thermal conductivity and heat capacity measurements were carried out. A particular care was paid to the cooling rate of specimen which influenced the thermal history of the samples. The experimental results led to a conclusion that under slow cooling the thermal conductivity reaches the highest values and resembles the behavior of ordered molecular crystals. As for fast cooling, the "quenching" resulted in changes in both the structure and the temperature dependence of the thermal conductivity, the latter resembling that of amorphous solids. In heat capacity measurements the thermal history made on samples did not reflect the preliminary findings known from thermal conductivity results, which could imply that the observed mechanisms are more complex.

  3. Thermal properties measurements in biodiesel oils using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.

    2005-08-01

    In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.

  4. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    PubMed

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. PMID:22940042

  5. Thermal Imaging of Earth for Accurate Pointing of Deep-Space Antennas

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo; Lee, Shinhak

    2005-01-01

    A report discusses a proposal to use thermal (long-wavelength infrared) images of the Earth, as seen from spacecraft at interplanetary distances, for pointing antennas and telescopes toward the Earth for Ka-band and optical communications. The purpose is to overcome two limitations of using visible images: (1) at large Earth phase angles, the light from the Earth is too faint; and (2) performance is degraded by large albedo variations associated with weather changes. In particular, it is proposed to use images in the wavelength band of 8 to 13 m, wherein the appearance of the Earth is substantially independent of the Earth phase angle and emissivity variations are small. The report addresses tracking requirements for optical and Ka-band communications, selection of the wavelength band, available signal level versus phase angle, background noise, and signal-to-noise ratio. Tracking errors are estimated for several conceptual systems employing currently available infrared image sensors. It is found that at Mars range, it should be possible to locate the centroid of the Earth image within a noise equivalent angle (a random angular error) between 10 and 150 nanoradians at a bias error of no more than 80 nanoradians

  6. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  7. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films. PMID:27475589

  8. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-01

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor-liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields Tc = 1.3128 ± 0.0016, ρc = 0.316 ± 0.004, and pc = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρt ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using rcut = 3.5σ yield Tc and pc that are higher by 0.2% and 1.4% than simulations with rcut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that rcut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various ranges of the

  9. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    SciTech Connect

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-21

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T{sub c} = 1.3128 ± 0.0016, ρ{sub c} = 0.316 ± 0.004, and p{sub c} = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ{sub t} ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r{sub cut} = 3.5σ yield T{sub c} and p{sub c} that are higher by 0.2% and 1.4% than simulations with r{sub cut} = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r{sub cut} = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard

  10. Photothermal model fitting in the complex plane for thermal properties determination in solids.

    PubMed

    Zambrano-Arjona, M A; Peñuñuri, F; Acosta, M; Riech, I; Medina-Esquivel, R A; Martínez-Torres, P; Alvarado-Gil, J J

    2013-02-01

    Thermal properties of solids are obtained by fitting the exact complex photothermal model to the normalized photoacoustic (PA) signal in the front configuration. Simple closed-form expressions for the amplitude and phase are presented in all frequency ranges. In photoacoustic it has been common practice to assume that all the absorptions of radiation take place in the sample. However, in order to obtain the accurate thermal properties it is necessary to consider the PA signal contributions produced at the cell walls. Such contributions were considered in our study. To demonstrate the usefulness of the proposed methodology, commercial stainless steel layers AISI 302 were analyzed. It is shown that using our approach the obtained thermal diffusivity and effusivity were in good agreement with those reported in the literature. Also, a detailed procedure for the calculation of the standard error in the thermal properties is discussed. PMID:23464238

  11. Photothermal model fitting in the complex plane for thermal properties determination in solids

    NASA Astrophysics Data System (ADS)

    Zambrano-Arjona, M. A.; Peñuñuri, F.; Acosta, M.; Riech, I.; Medina-Esquivel, R. A.; Martínez-Torres, P.; Alvarado-Gil, J. J.

    2013-02-01

    Thermal properties of solids are obtained by fitting the exact complex photothermal model to the normalized photoacoustic (PA) signal in the front configuration. Simple closed-form expressions for the amplitude and phase are presented in all frequency ranges. In photoacoustic it has been common practice to assume that all the absorptions of radiation take place in the sample. However, in order to obtain the accurate thermal properties it is necessary to consider the PA signal contributions produced at the cell walls. Such contributions were considered in our study. To demonstrate the usefulness of the proposed methodology, commercial stainless steel layers AISI 302 were analyzed. It is shown that using our approach the obtained thermal diffusivity and effusivity were in good agreement with those reported in the literature. Also, a detailed procedure for the calculation of the standard error in the thermal properties is discussed.

  12. Thermal properties of size-selective nanoparticles: Effect of the particle size on Einstein temperature

    NASA Astrophysics Data System (ADS)

    Li, Y.; Anderson, R. M.; Duan, Z.; Chill, S.; Crooks, R. M.; Henkelman, G.; Frenkel, A. I.

    2016-05-01

    Characterizing size related thermal properties of nanoclusters is challenging due to the requirement to accurately control both their average sizes and the size distributions. In this work, temperature-dependent Extended X-ray Absorption Fine Structure spectroscopy and the phenomenological bond-order-length-strength (BOLS) model were employed to investigate the size-dependent Einstein temperature of Au nanoclusters. Theoretical calculations of Einstein temperature and average bond distance for clusters with different sizes agree quantitatively with experiment. The BOLS model is thus useful for predictive understanding of structure and thermal properties in well-defined metal clusters.

  13. THERMAL AND RHEOLOGICAL PROPERTIES OF LUPINUS ALBUS FLOUR MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is very little research done in the area of structure and function relationships of lupin meal or lupin native protein. The scope of this work is to study lupin's native proteins thermal and rheological properties in whole meal. The effect of pH and heat treatment on the thermal properties o...

  14. THERMAL AND RHEOLOGICAL PROPERTIES OF LUPINUS ALBUS FLOUR MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the structure and function relationships of lupin meal or lupin native protein is limited. The scope of this work is to study lupin's native proteins' thermal and rheological properties in whole meal. The effect of pH and heat treatment on the thermal properties of lupin meal was studi...

  15. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.

    PubMed

    Chen, Yu-Wen; Tseng, Sheng-Hao

    2015-03-01

    In general, diffuse reflectance spectroscopy (DRS) systems work with photon diffusion models to determine the absorption coefficient μa and reduced scattering coefficient μs' of turbid samples. However, in some DRS measurement scenarios, such as using short source-detector separations to investigate superficial tissues with comparable μa and μs', photon diffusion models might be invalid or might not have analytical solutions. In this study, a systematic workflow of constructing a rapid, accurate photon transport model that is valid at short source-detector separations (SDSs) and at a wide range of sample albedo is revealed. To create such a model, we first employed a GPU (Graphic Processing Unit) based Monte Carlo model to calculate the reflectance at various sample optical property combinations and established a database at high speed. The database was then utilized to train an artificial neural network (ANN) for determining the sample absorption and reduced scattering coefficients from the reflectance measured at several SDSs without applying spectral constraints. The robustness of the produced ANN model was rigorously validated. We evaluated the performance of a successfully trained ANN using tissue simulating phantoms. We also determined the 500-1000 nm absorption and reduced scattering spectra of in-vivo skin using our ANN model and found that the values agree well with those reported in several independent studies. PMID:25798300

  16. Comparisons of Accurate Electronic, Transport, and Bulk Properties of XP (X = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Malozovsky, Yuriy; Ejembi, John; Saliev, Azizjon; Franklin, Lashounda; Bagayoko, Diola

    We present comparisons of results from ab-initio,self-consistent local density approximation (LDA) calculations of accurate, electronic and related properties of zinc blende XP (X =B, Al, Ga, In) phosphides. We implemented the linear combination of atomic orbitals following the Bagayoko, Zhao, and Williams (BZW) method as enhanced by Ekuma and Franklin (BZW-EF). Consequently, our results have the full physical content of DFT and agree very well with corresponding experimental ones [AIP Advances, 4, 127104 (2014)]. Our calculated, indirect band gap of 2.02 eV for BP, 2.56 eV for AlP, and of 2.29 eV for GaP, from Γ to X-point, are in excellent agreement with experimental values. Our calculated direct band gap of 1.43 eV, at Γ, for InP is also in an excellent agreement with experimental value. We discuss calculated electron and hole effective masses, total (DOS) and partial (pDOS) densities of states, and the bulk modulus of these phosphides. Acknowledgments: NSF and the Louisiana Board of Regents, LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, DOE - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  17. Carbon fiber reinforced composites: their structural and thermal properties

    NASA Astrophysics Data System (ADS)

    Cheng, Jingquan; Yang, Dehua

    2010-07-01

    More and more astronomical telescopes use carbon fiber reinforced composites (CFRP). CFRP has high stiffness, high strength, and low thermal expansion. However, they are not isotropic in performance. Their properties are direction dependent. This paper discusses, in detail, the structural and thermal properties of carbon fiber structure members, such as tubes, plates, and honeycomb sandwich structures. Comparisons are provided both from the structural point of view and from the thermal point of view.

  18. Thermal Coatings Seminar Series Training Part 1: Properties of Thermal Coatings

    NASA Technical Reports Server (NTRS)

    Triolo, Jack

    2015-01-01

    This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.

  19. Development of Methodologies for the Estimation of Thermal Properties Associated with Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.

  20. A Simple Dewar/Cryostat for Thermally Equilibrating Samples at Known Temperatures for Accurate Cryogenic Luminescence Measurements.

    PubMed

    Weaver, Phoebe G; Jagow, Devin M; Portune, Cameron M; Kenney, John W

    2016-01-01

    The design and operation of a simple liquid nitrogen Dewar/cryostat apparatus based upon a small fused silica optical Dewar, a thermocouple assembly, and a CCD spectrograph are described. The experiments for which this Dewar/cryostat is designed require fast sample loading, fast sample freezing, fast alignment of the sample, accurate and stable sample temperatures, and small size and portability of the Dewar/cryostat cryogenic unit. When coupled with the fast data acquisition rates of the CCD spectrograph, this Dewar/cryostat is capable of supporting cryogenic luminescence spectroscopic measurements on luminescent samples at a series of known, stable temperatures in the 77-300 K range. A temperature-dependent study of the oxygen quenching of luminescence in a rhodium(III) transition metal complex is presented as an example of the type of investigation possible with this Dewar/cryostat. In the context of this apparatus, a stable temperature for cryogenic spectroscopy means a luminescent sample that is thermally equilibrated with either liquid nitrogen or gaseous nitrogen at a known measureable temperature that does not vary (ΔT < 0.1 K) during the short time scale (~1-10 sec) of the spectroscopic measurement by the CCD. The Dewar/cryostat works by taking advantage of the positive thermal gradient dT/dh that develops above liquid nitrogen level in the Dewar where h is the height of the sample above the liquid nitrogen level. The slow evaporation of the liquid nitrogen results in a slow increase in h over several hours and a consequent slow increase in the sample temperature T over this time period. A quickly acquired luminescence spectrum effectively catches the sample at a constant, thermally equilibrated temperature. PMID:27501355

  1. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  2. Tissue Thermal Property Reconstruction by Stopping Heating And Perfusion

    NASA Astrophysics Data System (ADS)

    Sumi, C.; Uchida, T.; Ooba, T.; Inoue, K.

    In this paper, we report robust noninvasive techniques for reconstructing the thermal properties of living tissues, such as thermal conductivity, thermal capacity and thermal diffusivity, for the diagnosis, monitoring and planning of thermal treatments such as high-intensity focus ultrasound (HIFU). Internal tissue temperature distributions can be measured using ultrasonic imaging or magnetic resonance imaging. Provided that the reference thermal properties of living tissues are given in the region of interest (ROI) as initial conditions, we can determine thermal property distributions by solving bioheat transfer equations as simultaneous first-order partial differential equations having temperature distributions as inhomogeneous coefficients. By using the reported technique, the perfusion by blood flow and thermal sources or sinks can also be reconstructed. However, in this study, we perform reconstruction after stopping heating and perfusion; only the thermal properties of living tissues can be reconstructed under such conditions. Simulations were conducted to verify the feasibility of the reconstruction. A minimally invasive thermal treatment will be realized by using our proposed reconstruction technique.

  3. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOEpatents

    Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  4. Thermal properties of nonstoichiometry uranium dioxide

    NASA Astrophysics Data System (ADS)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  5. Observing Volcanic Thermal Anomalies from Space: How Accurate is the Estimation of the Hotspot's Size and Temperature?

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Pick, L.; Lombardo, V.; Hort, M. K.

    2015-12-01

    Measuring the heat emission from active volcanic features on the basis of infrared satellite images contributes to the volcano's hazard assessment. Because these thermal anomalies only occupy a small fraction (< 1 %) of a typically resolved target pixel (e.g. from Landsat 7, MODIS) the accurate determination of the hotspot's size and temperature is however problematic. Conventionally this is overcome by comparing observations in at least two separate infrared spectral wavebands (Dual-Band method). We investigate the resolution limits of this thermal un-mixing technique by means of a uniquely designed indoor analog experiment. Therein the volcanic feature is simulated by an electrical heating alloy of 0.5 mm diameter installed on a plywood panel of high emissivity. Two thermographic cameras (VarioCam high resolution and ImageIR 8300 by Infratec) record images of the artificial heat source in wavebands comparable to those available from satellite data. These range from the short-wave infrared (1.4-3 µm) over the mid-wave infrared (3-8 µm) to the thermal infrared (8-15 µm). In the conducted experiment the pixel fraction of the hotspot was successively reduced by increasing the camera-to-target distance from 3 m to 35 m. On the basis of an individual target pixel the expected decrease of the hotspot pixel area with distance at a relatively constant wire temperature of around 600 °C was confirmed. The deviation of the hotspot's pixel fraction yielded by the Dual-Band method from the theoretically calculated one was found to be within 20 % up until a target distance of 25 m. This means that a reliable estimation of the hotspot size is only possible if the hotspot is larger than about 3 % of the pixel area, a resolution boundary most remotely sensed volcanic hotspots fall below. Future efforts will focus on the investigation of a resolution limit for the hotspot's temperature by varying the alloy's amperage. Moreover, the un-mixing results for more realistic multi

  6. Determines the Thermal and Optical Properties of Fenestration Systems

    1995-01-27

    WINDOW4.1 computes the thermal properties of windows and other fenestration elements used in typical residential and commercial buildings. Manufactures, specifiers, architects, consumers, and the energy code specialists all need to know these properties (U-values, Solar Heat Gain Coefficients, optical properties). The use of this program to calculate these properties is typically much more cost effective than laboratory test procedures. Properties of complete window systems are based on libraries (or user input) component data.

  7. Measurement of Thermal Properties of Biosourced Building Materials

    NASA Astrophysics Data System (ADS)

    Pierre, Thomas; Colinart, Thibaut; Glouannec, Patrick

    2014-10-01

    This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from 3 to 30 and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.

  8. Thermal transport properties of grey cast irons

    SciTech Connect

    Hecht, R.L.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin

    1996-10-01

    Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

  9. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Markocsan, Nicolaie; Nylén, Per; Joshi, Shrikant; Vilemova, Monika; Pala, Zdenek

    2016-01-01

    Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.

  10. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  11. Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance

    NASA Astrophysics Data System (ADS)

    Yazji, S.; Swinkels, M. Y.; De Luca, M.; Hoffmann, E. A.; Ercolani, D.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Bakkers, E. P. A. M.; Zardo, I.

    2016-06-01

    The peculiar shape and dimensions of nanowires (NWs) have opened the way to their exploitation in thermoelectric applications. In general, the parameters entering into the thermoelectric figure of merit are strongly interdependent, which makes it difficult to realize an optimal thermoelectric material. In NWs, instead, the power factor can be increased and the thermal conductivity reduced, thus boosting the thermoelectric efficiency compared to bulk materials. However, the assessment of all the thermoelectric properties of a NW is experimentally very challenging. Here, we focus on InSb NWs, which have proved to be promising thermoelectric materials. The figure of merit is accurately determined by using a novel method based on a combination of Raman spectroscopy and electrical measurements. Remarkably, this type of experiment provides a powerful approach allowing us to neglect the role played by thermal contact resistance. Furthermore, we compare the thermal conductivity determined by this novel method to the one determined on the same sample by the thermal bridge method. In this latter approach, the thermal contact resistance is a non-negligible parameter, especially in NWs with large diameters. We provide experimental evidence of the crucial role played by thermal contact resistance in the assessment of the thermal properties of nanostructures, using two different measurement methods of the thermal conductivity.

  12. Effects of nanosized constriction on thermal transport properties of graphene

    PubMed Central

    2014-01-01

    Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 107 to 109 K/W at 150 K, which reduces the thermal conductivity by 7.7% to 90.4%. It is also found that the constriction resistance is inversely proportional to the width of the constriction and independent of the heat current. Moreover, we developed an analytical model for the ballistic thermal resistance of the nanosized constrictions in two-dimensional nanosystems. The theoretical prediction agrees well with the simulation results in this paper, which suggests that the thermal transport across the nanosized constrictions in two-dimensional nanosystems is ballistic in nature. PACS 65.80.CK; 61.48.Gh; 63.20.kp; 31.15.xv PMID:25232292

  13. First-principles study of thermal properties of borophene.

    PubMed

    Sun, Hongyi; Li, Qingfang; Wan, X G

    2016-06-01

    Very recently, a new single-element two-dimensional (2D) material borophene was successfully grown on a silver surface under pristine ultrahigh vacuum conditions which attracts tremendous interest. In this paper, the lattice thermal conductivity, phonon lifetimes, thermal expansion and temperature dependent elastic moduli of borophene are systematically studied by using first-principles. Our simulations show that borophene possesses unique thermal properties. Strong phonon-phonon scattering is found in borophene, which results in its unexpectedly low lattice thermal conductivity. Thermal expansion coefficients along both the armchair and zigzag directions of borophene show impressive negative values. More strikingly, the elastic moduli are sizably strengthened as temperature increases, and the negative in-plane Poisson's ratios are found along both the armchair and zigzag directions at around 120 K. The mechanisms of these unique thermal properties are also discussed in this paper. PMID:27188523

  14. Novel applications exploiting the thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  15. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  16. Optical measurements of the thermal properties of nanofluids

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Rodari, Erica; Piazza, Roberto

    2006-12-01

    The authors show that the thermal conductivity and diffusivity of colloidal particle dispersions can be rapidly obtained with high accuracy and reproducibility by exploiting a noninvasive, all-optical thermal lensing method. Applications of this technique to model suspensions of spherical monodisperse particles suggest that classical models for the effective properties of composite media hold up to rather high volume fractions, while no "anomalous" thermal conductivity effects are found.

  17. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  18. Thermal properties of organic and modified inorganic aerogels

    SciTech Connect

    Pekala, R.W.; Hrubesh, L.W.

    1992-08-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. Improvements in the thermal insulating properties of aerogels are possible by synthesizing new organic varieties, by using additives within existing aerogel matrix, and by optimizing their nanostructures. We discuss these approaches and give some examples of aerogels which demonstrate the improvements.

  19. Water absorbance and thermal properties of sulfated wheat gluten films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten films of varying thicknesses formed at 30C to 70C were treated with cold sulfuric acid to produce sulfated gluten films. Chemical, thermal, thermal stability, and water uptake properties were characterized for neat and sulfated films. The sulfated gluten films were able ...

  20. Insights into Asteroid Thermal Properties from Lunar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Lucey, Paul G.; Paige, David A.

    2015-08-01

    Surface temperatures on airless planetary bodies are controlled primarily by insolation and the thermophysical properties of the subsurface layer probed by the diurnal and seasonal thermal waves. Observations of asteroid thermal emission are used to constrain the physical structure of this surface layer. However, the thermal skin depth probed by this technique depends on rotation period, and the derived thermal inertia is a weighted average over a finite depth, which varies from one asteroid to another. If the properties of the surface layer are depth-dependent, then physically identical bodies with different rotation periods will have different apparent thermal inertia values. The Moon provides an opportunity to investigate this phenomenon, using thermal infrared emission curves on both the diurnal and eclipse timescales.We used multi-spectral thermal infrared observations of the Moon from two instruments: The Maui Space Surveillance System’s Longwave-IR (LWIR) imager, and the Lunar Reconnaissance Orbiter’s Diviner Lunar Radiometer. Diviner’s near-complete characterization of the lunar diurnal temperature cycles are used to constrain the properties of the uppermost √κt ~ 30 cm, where κ is thermal diffusivity and t is the rotation period. Eclipse cooling data from both LWIR and Diviner reveal the properties of the uppermost ~ 1 cm. Here, we focus on results from the October, 2014, and April, 2015 total lunar eclipses.Using a 1-d thermal model with depth-dependent thermal properties, we fit both the diurnal and eclipse brightness temperature data. Results show that the regolith thermal inertia increases exponentially with depth, from ~10 J m-2 K-1 s-1/2 at the surface to ~90 J m-2 K-1 s-1/2 at > 30 cm depth. This range brackets values derived from thermal light curves of many asteroids. Surface thermal inertia values derived from eclipse data are ~25 - 50% lower than previous models based on diurnal temperatures alone, and are similar to the lower end of

  1. Phase of thermal emission spectroscopy for properties measurements of delaminating thermal barrier coatings

    SciTech Connect

    Yu Fengling; Bennett, Ted D.

    2005-11-15

    Phase of thermal emission spectroscopy is developed for determining the thermal properties of thermal barrier coating (TBC) in the presence of thermal contact resistance between the coating and the substrate. In this method, a TBC sample is heated using a periodically modulated laser and the thermal emission from the coating is collected using an infrared detector. The phase difference between the heating signal and the emission signal is measured experimentally. A mathematical model is developed to predict the phase difference between the laser and the measured emission, which considers the coating properties and the thermal contact resistance of the interface. An electron-beam physical vapor deposition thermal barrier coating with local regions delaminated by laser shock is characterized using this technique. The measurements are made on two regions of the coating, one where good thermal contact between the coating and substrate exists and the other where the interface has been damaged by laser shock. The results for the thermal properties and thermal contact resistance of the interface are presented and compared.

  2. Phase of thermal emission spectroscopy for properties measurements of delaminating thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yu, Fengling; Bennett, Ted D.

    2005-11-01

    Phase of thermal emission spectroscopy is developed for determining the thermal properties of thermal barrier coating (TBC) in the presence of thermal contact resistance between the coating and the substrate. In this method, a TBC sample is heated using a periodically modulated laser and the thermal emission from the coating is collected using an infrared detector. The phase difference between the heating signal and the emission signal is measured experimentally. A mathematical model is developed to predict the phase difference between the laser and the measured emission, which considers the coating properties and the thermal contact resistance of the interface. An electron-beam physical vapor deposition thermal barrier coating with local regions delaminated by laser shock is characterized using this technique. The measurements are made on two regions of the coating, one where good thermal contact between the coating and substrate exists and the other where the interface has been damaged by laser shock. The results for the thermal properties and thermal contact resistance of the interface are presented and compared.

  3. Structure and Thermal Properties of Porous Geological Materials

    NASA Astrophysics Data System (ADS)

    Kirk, Simon; Williamson, David

    2011-06-01

    Understanding the behaviour of porous geological materials is important for developing models of the explosive loading of rock in mining applications. To this end it is essential to first characterise its complex internal structure. Knowing the structure shows how the properties of the component materials relate to the overall properties of rock. The structure and mineralogy of Gosford sandstone was investigated and this information was used to predict its thermal properties. The thermal properties of the material were measured experimentally and compared against these predictions.

  4. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  5. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461

  6. A method for measuring non-linear elastic properties of thermal barrier coatings

    SciTech Connect

    Johnson, C.A.; Ruud, J.A.; Kaya, A.C.; deLorenzi, H.G.

    1995-06-01

    Accurate characterization of the elastic properties of thermal barrier coatings (TBC`s) is important for failure prediction. Thermally sprayed coatings often exhibit anisotropic and nonlinear elastic properties due to the coating microstructure that results from the thermal spray process. A method was developed for determining the elastic behavior of TBC`s on substrates by measuring the in-plane modulus as a function of residual coating stress. The in-plane modulus was determined by resonant frequency measurement, and the residual stress was measured from the substrate curvature. The residual stress was varied both by increasing the temperature of the TBC and substrate and by applying compressive plastic strain to the metal substrate. The stress-strain behavior of the TBC was derived from the data for modulus versus residual stress, and significant nonlinear elastic behavior was observed.

  7. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  8. Review of thermal properties of graphite composite materials

    SciTech Connect

    Kourtides, D.A.

    1987-12-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  9. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  10. Cross-plane thermal properties of transition metal dichalcogenides

    SciTech Connect

    Muratore, C.; Varshney, V.; Gengler, J. J.; Hu, J. J.; Bultman, J. E.; Smith, T. M.; Shamberger, P. J.; Roy, A. K.; Voevodin, A. A.; Qiu, B.; Ruan, X.

    2013-02-25

    In this work, we explore the thermal properties of hexagonal transition metal dichalcogenide compounds with different average atomic masses but equivalent microstructures. Thermal conductivity values of sputtered thin films were compared to bulk crystals. The comparison revealed a >10 fold reduction in thin film thermal conductivity. Structural analysis of the films revealed a turbostratic structure with domain sizes on the order of 5-10 nm. Estimates of phonon scattering lengths at domain boundaries based on computationally derived group velocities were consistent with the observed film microstructure, and accounted for the reduction in thermal conductivity compared to values for bulk crystals.

  11. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  12. Thermal conductivity and other properties of cementitious grouts

    SciTech Connect

    Allan, M.

    1998-08-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  13. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    SciTech Connect

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  14. Predicting thermal conductivity of rocks from the Los Azufres geothermal field, Mexico, from easily measurable properties

    SciTech Connect

    Garcia, Alfonso; Contreras, Enrique; Dominquez, Bernardo A.

    1988-01-01

    A correlation is developed to predict thermal conductivity of drill cores from the Los Azufres geothermal field. Only andesites are included as they are predominant. Thermal conductivity of geothermal rocks is in general scarce and its determination is not simple. Almost all published correlations were developed for sedimentary rocks. Typically, for igneous rocks, chemical or mineral analyses are used for estimating conductivity by using some type of additive rule. This requires specialized analytical techniques and the procedure may not be sufficiently accurate if, for instance, a chemical analysis is to be changed into a mineral analysis. Thus a simple and accurate estimation method would be useful for engineering purposes. The present correlation predicts thermal conductivity from a knowledge of bulk density and total porosity, properties which provide basic rock characterization and are easy to measure. They may be determined from drill cores or cuttings, and the procedures represent a real advantage given the cost and low availability of cores. The multivariate correlation proposed is a quadratic polynomial and represents a useful tool to estimate thermal conductivity of igneous rocks since data on this property is very limited. For porosities between 0% and 25%, thermal conductivity is estimated with a maximum deviation of 22% and a residual mean square deviation of 4.62E-3 n terms of the log{sub 10}(k{rho}{sub b}) variable. The data were determined as part of a project which includes physical, thermal and mechanical properties of drill cores from Los Azufres. For the correlation, sixteen determinations of thermal conductivity, bulk density and total porosity are included. The conductivity data represent the first determinations ever made on these rocks.

  15. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-01-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  16. Thermal properties of amorphous/crystalline silicon superlattices.

    PubMed

    France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos

    2014-09-01

    Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883

  17. Thermal characterization and properties of a copper-diamond composite

    SciTech Connect

    Yang, Pin; Chavez, Thomas P.; DiAntonio, Christopher Brian; Coker, Eric Nicholas

    2014-09-01

    The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.

  18. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  19. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  20. Micromechanics of intraply hybrid composites: Elastic and thermal properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Composite micromechanics are used to derive equations for predicting the elastic and thermal properties of unidirectional intraply hybrid composites. The results predicted using these equations are compared with those predicted using approximate equations based on the rule of mixtures, linear laminate theory, finite element analysis and limited experimental data. The comparisons for three different intraply hybrids indicate that all four methods predict approximately the same elastic properties and are in good agreement with measured data. The micromechanics equations and linear laminate theory predict about the same values for thermal expansion coefficients. The micromechanics equations predict through-the-thickness properties which are in good agreement with the finite element results.

  1. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Parashar, Avinash

    2015-12-01

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  2. Measurement of Thermal Properties of Saltstone

    SciTech Connect

    Steimke, J.L.; Fowley, M.D.

    1998-05-01

    Radioactive liquid effluent from the In Tank Precipitation Process is mixed with Portland cement, flyash and furnace alag to form Saltstone. The Saltstone is poured into vaults at Z Area for long term disposal. A transient heat transfer model of the Saltstone pouring process was previously written to determine whether the Saltstone temperature would exceed the Technical Specification Limit of 95 degrees C. The present work was performed to provide Saltstone density, heat capacity, heat of hydration and thermal conductivity for inclusion in the model.

  3. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  4. Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.

    2016-04-01

    Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.

  5. Soil thermal resistivity and thermal stability measuring instrument. Volume 1. Determination of soil thermal stability and other soil thermal properties. Final report

    SciTech Connect

    Boggs, S.A.; Radhakrishna, H.S.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: (1) development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; (2) recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and (3) development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. This volume discussed methods for determining the thermal properties of soils. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  6. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Soydugan, F.; Soydugan, E.; Bilir, S.; Yaz Gökçe, E.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2015-04-01

    The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-{{T}eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to ≤slant 3% and luminosities accurate to ≤slant 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 {{M}⊙ } within the studied mass range of 0.38-32 {{M}⊙ }. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L\\propto {{M}α }), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly evident on the M-R diagram, but it is not clear on the M-{{T}eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly visible on the M-{{T}eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of ˜6%, as long as its observed radius error is adequately small (\\lt 1%) and its observed mass error is reasonably small (\\lt 6%).

  7. Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Levine, P. J.; Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system.

  8. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium

    SciTech Connect

    Goldberg, A

    2006-02-01

    This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.

  9. Ab initio theory of thermal properties of germanane

    NASA Astrophysics Data System (ADS)

    Heine, Matthew; Lindsay, Lucas; Carrete, Jesús; Mingo, Natalio; Hellman, Olle; Broido, David

    Germanane(GeH) is a germanium based hydrogen-terminated multi-layered graphane analogue semiconductor, which may be a promising thermoelectric due to its high electron mobility and the capability to tune its transport properties. We have performed first principles calculations of the thermal properties of germanane. Harmonic and anharmonic interatomic force constants are calculated within the framework of density functional theory, from which phonon dispersions, specific heat, thermal expansion are obtained. The phonon Boltzmann equation is solved to obtain the lattice thermal conductivity. The disparity in constituent masses in GeH gives phonon modes that are distinctly Ge or H in character and causes the specific heat not to saturate until much higher temperatures than in bulk Ge. Weak interlayer bonding and strong phonon-phonon scattering result in highly anisotropic and quite low intrinsic lattice thermal conductivity compared to Ge.

  10. Tensile-property characterization of thermally aged cast stainless steels.

    SciTech Connect

    Michaud, W. F.; Toben, P. T.; Soppet, W. K.; Chopra, O. K.; Energy Technology

    1994-03-03

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  11. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  12. Thermal Influence on Mechanical Properties of Granite: A Microcracking Perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihong

    2016-03-01

    The particle mechanics method is used to simulate the process of thermally induced micro- and macrocracks in granite, to elucidate the mechanisms responsible for temperature-dependent mechanical properties. The numerical results are quantified and compared with existing results from other experimental data in the literature. The results indicate that heating generally reduces the compressive and tensile strengths of granites, first because of increasing thermal stresses, and second because of the generation of tensile microcracks. Rock mechanical properties are reduced in specimens subjected to heating-cooling cycles, solely because of the increase in density of thermally induced tensile microcracks. The presence of a thermal gradient induces the formation of macrocracks, which propagate from relatively cool to relatively warm areas. It is also observed that the boundary condition of the specimen can also affect the development of microcracks.

  13. Theoretical models on prediction of thermal property of nanofluids

    NASA Astrophysics Data System (ADS)

    Shalimba, Veikko; Skočilasová, Blanka

    2014-08-01

    This paper deals with theoretical models on prediction of thermo physical properties of iron nanoparticles in base fluid. A high performance of heat transfer fluid has a great influence on the size, weight and cost of heat transfer systems, therefore a high performance heat transfer fluid is very important in many industries. Over the last decades nanofluids have been developed. According to many researchers and publications on nanofluids it is evident that nanofluids are found to exhibit enhanced thermal properties i.e. thermal conductivity etc. Theoretical models for predicting enhanced thermal conductivity have been established. The underlying mechanisms for the enhancement are still debated and not fully understood. In this paper, theoretical analytical models on prediction of thermal conductivity of iron nano particle in base Jatropha oil are discussed. The work arises from the projects which were realized at UJEP, FPTM, department of Machines and Mechanics with cooperation with Polytechnic of Namibia, department of Mechanical Engineering.

  14. High pressure elasticity and thermal properties of depleted uranium

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  15. Thermal properties of dielectric solids below 4 K. I - Polycarbonate

    NASA Technical Reports Server (NTRS)

    Cieloszyk, G. S.; Cruz, M. T.; Salinger, G. L.

    1973-01-01

    Polymers and other dielectric materials are frequently used for many purposes in the construction of cryogenic apparatus. Yet very few values of the thermal properties of these materials below 4 K have been reported. It is, however, known that one can not use the Debye theory to extrapolate to lower temperatures the measurements of the specific heat capacity above 1 K. The thermal conductivity also follows no theoretically predictable temperature dependence. As a by-product of our studies of the thermal properties of amorphous and partly crystalline materials below 4 K, we wish to report values for the thermal conductivity, specific heat capacity, and velocity of sound below 4 K in materials useful for the construction of cryogenic apparatus. In this article we will describe our measurement techniques and report values for polycarbonate (Lexan). In subsequent notes we will give values for other materials of interest.

  16. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  17. Using Dielectric Properties to Design Nonempirical Hybrid Functionals for Accurate Electronic Structure

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    2015-03-01

    Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.

  18. The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks.

    PubMed

    Cancilla, John C; Díaz-Rodríguez, Pablo; Matute, Gemma; Torrecilla, José S

    2015-02-14

    The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model. PMID:25583241

  19. Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.

    PubMed

    Schebarchov, Dmitri; Auguié, Baptiste; Le Ru, Eric C

    2013-03-28

    This work aims to provide simple and accurate closed-form approximations to predict the scattering and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon resonances. Particular attention is given to the validity and accuracy of these expressions in the range of nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-wavelength polarizability approximations for both nanospheres and nanoshells. The improvement offered by these expressions is demonstrated with direct comparisons to other approximations previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory. PMID:23358525

  20. The anomalous thermal properties of glasses at low temperatures

    NASA Technical Reports Server (NTRS)

    Pohl, R. O.; Salinger, G. L.

    1976-01-01

    While experimentally there is great regularity below 1 deg K in the behavior of a particular thermal property for all amorphous dielectrics it is not understood why these properties should differ from those of crystalline dielectrics, since it would seem that at low temperatures long-wavelength elastic waves, similar in both cases, would determine the thermal properties. A model involving systems having very few levels is used in the present study, although the relation between the model's systems and the nature of the glassy state is not known. It is shown, among other effects, that: specific heat measurements above 0.1 K indicate a distribution of local modes independent of energy; ultrasonic velocity measurements give information about phonon-local mode coupling parameters; and thermal expansion and far infrared experiments indicate a phonon-assisted tunneling model.

  1. Electronic, Thermal and Structural Properties of Graphene Oxide Frameworks

    SciTech Connect

    Zhu, Pan; Sumpter, Bobby G; Meunier, V.

    2013-01-01

    We report a theoretical study of the electronic, thermal, and structural properties of a series of graphene oxide frameworks (GOFs) using first-principles calculations based on density functional theory. The molecular structure of GOFs is systematically studied by varying the nature and concentration of linear boronic acid pillars and the thermal stability is assessed using ab initio molecular dynamics. The results demonstrate that GOFs are thermally stable up to 550 K and that electronic properties, such as their band gap, can be modified controllably by an appropriate choice of pillaring unit and pillar concentration. The tunability of the electronic structure using non-chemical means, e.g., mechanical strain, is also quantified. Overall, this class of materials is predicted to offer highly tunable materials electronic properties ranging from metallic to semiconducting.

  2. Electronic, Thermal, and Structural Properties of Graphene Oxide Frameworks

    SciTech Connect

    Zhu, Pan; Sumpter, Bobby G; Meunier, V.

    2013-01-01

    We report a theoretical study of the electronic, thermal, and structural properties of a series of graphene oxide frameworks (GOFs) using first-principles calculations based on density functional theory. The molecular structure of GOFs is systematically studied by varying the nature and concentration of linear boronic acid pillars, and the thermal stability is assessed using ab initio molecular dynamics. The results demonstrate that GOFs are thermally stable up to 550 K and that electronic properties, such as their band gap, can be modified controllably by an appropriate choice of pillaring unit and pillar concentration. The tunability of the electronic structure using nonchemical means, e.g., mechanical strain, is also quantified. Overall, this class of materials is predicted to offer highly tunable materials electronic properties ranging from metallic to semiconducting.

  3. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  4. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    SciTech Connect

    Dionne, B.; Kim, Y. S.; Hofman, G. L.

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.

  5. Thermal volatilization properties of atmospheric nanoparticles.

    PubMed

    Haboub, Abdelmoula; Hallett, John; Lowenthal, Douglas

    2007-11-01

    Thermal volatilization is explored as a means of inferring the chemical composition of atmospheric aerosol particles with diameters smaller than 10 nm (nanoparticles). Such particles contain too little mass for quantitative chemical determination by traditional analytical methods. Aerosols were subjected to increasing temperature in an oven and particle loss was measured as a function of temperature with the TSI model 3025 ultrafine condensation particle counter (UCPC), which is capable of counting particles with diameters as small as 3 nm. Particle nucleation was observed down stream of the oven when it was heated above about 400 degrees C. To reduce this artifact, the sample air down stream of the oven was cooled to condense the hot gases and/or the freshly nucleated particles before they reached the UCPC. Controlled experiments were done with pure ammonium sulfate (NH4)2SO4 particles. The experimental design was optimized based on the known concentration of pure (NH4)2SO4 particles vaporized in the oven and the diffusion of this material to the walls of the sampling tube before the particle counter. PMID:17458514

  6. Fatigue properties of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Cooper, P. A.

    1980-01-01

    Static and cyclic load tests were conducted to determine the static and fatigue strength of the RIS tile/SIP thermal protection system used on the orbiter of the space shuttle. The material systems investigated include the densified and undensified LI-900 tile system on the .40 cm thick SIP and the densified and undensified LI-2200 tile system on the .23 cm (.090 inch) thick SIP. The tests were conducted at room temperature with a fully reversed uniform cyclic loading at 1 Hertz. Cyclic loading causes a relatively large reduction in the stress level that each of the SIP/tile systems can withstand for a small number of cycles. For example, the average static strength of the .40 cm thick SIP/LI-900 tile system is reduced from 86 kPa to 62 kPa for a thousand cycles. Although the .23 cm thick SIP/LI-2200 tile system has a higher static strength, similar reductions in the fatigue strength are noted. Densifying the faying surface of the RSI tile changes the failure mode from the SIP/tile interface to the parent RSI or the SIP and thus greatly increases the static strength of the system. Fatigue failure for the densified tile system, however, occurs due to complete separation or excessive elongation of the SIP and the fatigue strength is only slightly greater than that for the undensified tile system.

  7. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids.

    PubMed

    Sprenger, K G; Jaeger, Vance W; Pfaendtner, Jim

    2015-05-01

    We have applied molecular dynamics to calculate thermodynamic and transport properties of a set of 19 room-temperature ionic liquids. Since accurately simulating the thermophysical properties of solvents strongly depends upon the force field of choice, we tested the accuracy of the general AMBER force field, without refinement, for the case of ionic liquids. Electrostatic point charges were developed using ab initio calculations and a charge scaling factor of 0.8 to more accurately predict dynamic properties. The density, heat capacity, molar enthalpy of vaporization, self-diffusivity, and shear viscosity of the ionic liquids were computed and compared to experimentally available data, and good agreement across a wide range of cation and anion types was observed. Results show that, for a wide range of ionic liquids, the general AMBER force field, with no tuning of parameters, can reproduce a variety of thermodynamic and transport properties with similar accuracy to that of other published, often IL-specific, force fields. PMID:25853313

  8. Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia

    SciTech Connect

    Ghosh, S.; Teweldebrhan, D.; Morales, J. R.; Garay, J. E.; Balandin, A. A.

    2009-12-01

    The authors report results of investigation of thermal conductivity of nanocrystalline yttria-stabilized zirconia. The optically transparent pore-free bulk samples were prepared via the spark plasma sintering process to ensure homogeneity. Thermal conductivity K was measured by two different techniques. It was found that the pore-free nanostructured bulk zirconia is an excellent thermal insulator with the room-temperature Kapprox1.7-2.0 W/m K. It was also shown that the 'phonon-hopping' model can accurately describe specifics of K dependence on temperature and the grain size. The obtained results are important for optimization of zirconia properties for specific applications in advanced electronics and coatings.

  9. Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution.

    PubMed

    Ge, Xiaochuan; Timrov, Iurii; Binnie, Simon; Biancardi, Alessandro; Calzolari, Arrigo; Baroni, Stefano

    2015-04-23

    The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluated by combining ab initio Car-Parrinello molecular dynamics and time-dependent density functional theory calculations. The inclusion of hybrid exchange-correlation functionals, necessary for the prediction of the correct transition frequencies, prevents one from using these techniques for the simulation of the optical properties of large realistic systems. Here we present an alternative approach for the prediction of the color of natural dyes in solution with a low computational cost. We applied this approach to representative anthocyanin dyes: the excellent agreement between the simulated and the experimental colors makes this method a straightforward and inexpensive tool for the high-throughput prediction of colors of molecules in liquid solvents. PMID:25830823

  10. Fixing a rigorous formalism for the accurate analytic derivation of halo properties

    NASA Astrophysics Data System (ADS)

    Juan, Enric; Salvador-Solé, Eduard; Domènech, Guillem; Manrique, Alberto

    2014-03-01

    We establish a one-to-one correspondence between virialized haloes and their seeds, namely peaks with a given density contrast at appropriate Gaussian-filtering radii, in the initial Gaussian random density field. This fixes a rigorous formalism for the analytic derivation of halo properties from the linear power spectrum of density perturbations in any hierarchical cosmology. The typical spherically averaged density profile and mass function of haloes so obtained match those found in numerical simulations.

  11. OBSERVING SIMULATED PROTOSTARS WITH OUTFLOWS: HOW ACCURATE ARE PROTOSTELLAR PROPERTIES INFERRED FROM SEDs?

    SciTech Connect

    Offner, Stella S. R.; Robitaille, Thomas P.; Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.

    2012-07-10

    The properties of unresolved protostars and their local environment are frequently inferred from spectral energy distributions (SEDs) using radiative transfer modeling. In this paper, we use synthetic observations of realistic star formation simulations to evaluate the accuracy of properties inferred from fitting model SEDs to observations. We use ORION, an adaptive mesh refinement (AMR) three-dimensional gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud including the effects of protostellar outflows. To obtain the dust temperature distribution and SEDs of the forming protostars, we post-process the simulations using HYPERION, a state-of-the-art Monte Carlo radiative transfer code. We find that the ORION and HYPERION dust temperatures typically agree within a factor of two. We compare synthetic SEDs of embedded protostars for a range of evolutionary times, simulation resolutions, aperture sizes, and viewing angles. We demonstrate that complex, asymmetric gas morphology leads to a variety of classifications for individual objects as a function of viewing angle. We derive best-fit source parameters for each SED through comparison with a pre-computed grid of radiative transfer models. While the SED models correctly identify the evolutionary stage of the synthetic sources as embedded protostars, we show that the disk and stellar parameters can be very discrepant from the simulated values, which is expected since the disk and central source are obscured by the protostellar envelope. Parameters such as the stellar accretion rate, stellar mass, and disk mass show better agreement, but can still deviate significantly, and the agreement may in some cases be artificially good due to the limited range of parameters in the set of model SEDs. Lack of correlation between the model and simulation properties in many individual instances cautions against overinterpreting properties inferred from SEDs for unresolved protostellar

  12. Thermal Properties of Lunar Regolith Simulants

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass

  13. Mesoporous polyurethane aerogels for thermal superinsulation: Textural properties and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Diascorn, N.; Sallee, H.; Calas, S.; Rigacci, A.; Achard, P.

    2015-07-01

    Organic aerogels based on polyurethane were elaborated via sol-gel synthesis and dried with supercritical carbon dioxide (CO2). The influence of the catalyst concentration was investigated, first in order to decrease the reaction kinetics, then to study its impact on the obtained materials properties. It was shown that this parameter also influences the global shrinkage and the bulk density of the resulting materials. Its effect on the dry materials was studied in terms of morphological, textural and thermal properties in order to determine the main correlations thanks to scanning electron microscopy (SEM), nitrogen adsorption, non-intrusive mercury porosimetry and thermal conductivity measurements. Results allowed us to demonstrate a correlation between the bulk density, the texture and the thermal conductivity of this family of polyurethane aerogels and to determine an optimal density range for thermal performance associated with a fine internal mesoporous texture.

  14. Electronic and thermal properties of Biphenyl molecules

    NASA Astrophysics Data System (ADS)

    Medina, F. G.; Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2015-11-01

    Transport properties of a single Biphenyl molecule coupled to two contacts are studied. We characterise this system by a tight-binding Hamiltonian. Based on the non-equilibrium Green's functions technique with a Landauer-Büttiker formalism the transmission probability, current and thermoelectrical power are obtained. We show that the Biphenyl molecule may have semiconductor behavior for certain values of the electrode-molecule-electrode junctions and different values of the angle between the two rings of the molecule. In addition, the density of states (DOS) is calculated to compare the bandwidths with the profile of the transmission probability. DOS allows us to explain the asymmetric shape with respect to the molecule's Fermi energy.

  15. Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation.

    PubMed

    Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A

    2015-12-21

    In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482

  16. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Bekyarova, Elena B.; Haddon, Robert C.

    2013-01-01

    Thermal interface materials (TIMs) are crucial components of high density electronics and the high thermal conductivity of graphite makes this material an attractive candidate for such applications. We report an investigation of the in-plane and through-plane electrical and thermal conductivities of thin thermal interface layers of graphite nanoplatelet (GNP) based composites. The in-plane electrical conductivity exceeds its through-plane counterpart by three orders of magnitude, whereas the ratio of the thermal conductivities is about 5. Scanning electron microscopy reveals that the anisotropy in the transport properties is due to the in-plane alignment of the GNPs which occurs during the formation of the thermal interface layer. Because the alignment in the thermal interface layer suppresses the through-plane component of the thermal conductivity, the anisotropy strongly degrades the performance of GNP-based composites in the geometry required for typical thermal management applications and must be taken into account in the development of GNP-based TIMs.

  17. Thermal Properties of Lunar Regolith Simulants

    NASA Technical Reports Server (NTRS)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH(-), the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification

  18. Thermal Properties of Lunar Regolith Simulants

    NASA Technical Reports Server (NTRS)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  19. Variable thermal properties and thermal relaxation time in hyperbolic heat conduction

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Mcrae, D. Scott

    1989-01-01

    Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.

  20. Thermal properties of soils: effect of biochar application

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy

    2014-05-01

    Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity

  1. Predicted influence of materials' thermal properties on disc brake roughness due to thermoelastic instability

    SciTech Connect

    Hecht, R.L.; Hartsock, D.L.; Dinwiddie, R.B.; Porter, W.D.

    1999-07-01

    Passenger car disc brakes occasionally exhibit objectionable vibration during operation. Low frequency vibration (< 100 Hz) that occurs when the brakes are applied is called brake roughness or judder and is caused by a variation in torque at the friction interface. Brale torque variation can result from disc thickness variation and/or thermal distortions. Thermal distortions or hot spots may occur during a long brake drag such as a mountain descent due to the onset of a phenomenon known as frictionally excited thermoelastic instability (TEI). Models of TEI can be used to predict the propensity of a brake system to generate torque variation or roughness during long brake drags. TEI modeling requires accurate materials properties such as Young's modulus, Poisson's ratio, specific heat, thermal diffusivity, thermal conductivity, density and thermal expansion of both the disc and the brake pad materials. The authors have measured the thermal transport properties of a series of disc materials, gray cast irons and aluminum metal matrix composites, and commercially available brake pad friction materials. For example, room temperature thermal diffusivity measured by the laser flash technique was found to vary from 0.002--0.009 cm{sup 2}/sec for friction materials, 0.15--0.21 cm{sup 2}/sec for gray cast irons, and 0.43--0.89 cm{sup 2}/sec for aluminum metal matrix composites (Al MMCs). This paper will consider the behavior of Al MMC rotors versus traditional gray cast iron rotors coupled with a non-asbestos organic brake pad. The relevant materials properties were used in a TEI analytical model of a mid-sized passenger car disc brake. The analysis shows that Al MMC rotors have a lower critical speed at which TEI is predicted to occur than gray cast iron rotors.

  2. Foldable dome climate measurements and thermal properties

    NASA Astrophysics Data System (ADS)

    Sliepen, Guus; Jägers, Aswin P. L.; Hammerschlag, Robert H.; Bettonvil, Felix C. M.

    2010-07-01

    As part of a larger project for measuring various aspects of foldable domes in the context of EST and with support of the Dutch Technology Foundation STW, we have collected over a year of continuous temperature and humidity measurements, both inside and outside the domes of the Dutch Open Telescope (DOT) on La Palma5 and the GREGOR telescope on Tenerife.6 In addition, we have measured the wind field around each dome. Although the structure of both domes is similar, the DOT dome has a single layer of cloth, and is situated on top of an open tower. In contrast, the GREGOR dome has a double layer of cloth, and is situated on top of a tower-shaped building. These differences result in large differences in temperature and humidity insulation when the dome is closed. We will present the changes in temperature and humidity one can expect for each dome within one day, and the statistics for the variations throughout a year. In addition, we will show that the main advantage of a foldable dome is the near instantaneous equilibration of the air inside the volume originally enclosed by the dome and that of the environment outside the dome. This property allows one to operate a telescope without needing expensive air conditioning and dome skin temperature control in order to limit dome and shell seeing effects. The measurements give also information about the weather fluctuations at the sites of the domes. It was observed that on small time scales the temperature fluctuations are significantly greater during the day than during the night.

  3. Associated with aerospace vehicles development of methodologies for the estimation of thermal properties

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1994-01-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles at NASA-LaRC. These analyses require knowledge of the temperature distributions within the vehicle structures which consequently necessitates the need for accurate thermal property data. The overall goal of this ongoing research effort is to develop methodologies for the estimation of the thermal property data needed to describe the temperature responses of these complex structures. The research strategy undertaken utilizes a building block approach. The idea here is to first focus on the development of property estimation methodologies for relatively simple conditions, such as isotropic materials at constant temperatures, and then systematically modify the technique for the analysis of more and more complex systems, such as anisotropic multi-component systems. The estimation methodology utilized is a statistically based method which incorporates experimental data and a mathematical model of the system. Several aspects of this overall research effort were investigated during the time of the ASEE summer program. One important aspect involved the calibration of the estimation procedure for the estimation of the thermal properties through the thickness of a standard material. Transient experiments were conducted using a Pyrex standard at various temperatures, and then the thermal properties (thermal conductivity and volumetric heat capacity) were estimated at each temperature. Confidence regions for the estimated values were also determined. These results were then compared to documented values. Another set of experimental tests were conducted on carbon composite samples at different temperatures. Again, the thermal properties were estimated for each temperature, and the results were compared with values obtained using another technique. In both sets of experiments, a 10-15 percent off-set between the estimated values and the previously determined values was found. Another effort

  4. Investigation of thermal conductivity and tribological properties of nanofluids

    NASA Astrophysics Data System (ADS)

    Gara, Luan

    Nanofluids are engineered by dispersing and stably suspending nanoparticles with typical length on the order of 1--50 nm in traditional fluids. In the past decade, scientists and engineers have made great progresses in finding that a very small amount (< 1 vol %) of dispersed nanoparticles can provide dramatic improvement in the thermal properties of the base fluids. Therefore, numerous mechanisms and models have been proposed to account for the thermal enhancement of nanofluids. The molecular dynamics (MD) simulation has become an important tool in the study of dynamic properties of liquids, molecular solutions, and macromolecules. Therefore, MD simulation is a very helpful tool to model the enhanced thermal conduction and predict thermal conductivities of nanofluids. In recent years, investigations on the tribological properties of nanofluids have also been carried out. Some papers have reported that nanofluids are effective in reducing wear and friction. The mechanisms of friction reduction and anti-wear of nanoparticles in lubricants have been reported as colloidal effect, rolling effect, protective film, and third body. The objective of this research is to study the thermal conductivity and tribological properties of nanofluids. The thermal conductivity of nanofluids was investigated theoretically through MD simulation. Nanodiamond was selected as the nanoparticle and octane as the base oil. The Large-scale Atomic-Molecular Massively Parallel Simulator (LAMMPS) was used. The effects of the particle size, shape and concentration on the thermal conductivity of nanofluids was investigated. The thermal conductivity of oil based nanofluids with nanodiamond particles was also measured experimentally using transient hot-wire method. The tribological properties of nanofluids were studied through experimental investigation using commercially available nanopowders and nanofluids. Both water based and oil based nanofluids were investigated. A Universal Micro

  5. Experimental determination of thermal properties of alluvial soil

    NASA Astrophysics Data System (ADS)

    Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.

    2016-02-01

    In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.

  6. Oats Protein Isolate: Thermal, Rheological, Surface & Functional Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat protein isolate (OPI) was extracted in 0.015 N NaOH in a 10:1 ratio solvent:flour and was precipitated by adjusting the pH to 4.5 and freeze-dried. The thermal properties of OPI were determined using Differential Scanning Calorimetry (DSC). OPI with 6% moisture content exhibited a glass transi...

  7. BARLEY PROTEIN ISOLATE: THERMAL, FUNCTIONAL, RHEOLOGICAL AND SURFACE PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley protein isolate (BPI) was prepared using hexane-defatted commercial barley flour. BPI was extracted in 0.05 N NaOH in a 10:1 ratio solvent:flour. The BPI was precipitated by adjusting the pH to 4.5 and freeze-dried. The thermal properties of the BPI were determined by Modulated Differentia...

  8. Thermal properties of supernova matter: The bulk homogeneous phase

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.

    2014-06-01

    We investigate the thermal properties of the potential model equation of state of Akmal, Pandharipande, and Ravenhall. This equation of state approximates the microscopic model calculations of Akmal and Pandharipande, which feature a neutral pion condensate. We treat the bulk homogeneous phase for isospin asymmetries ranging from symmetric nuclear matter to pure neutron matter and for temperatures and densities relevant for simulations of core-collapse supernovae, protoneutron stars, and neutron star mergers. Numerical results of the state variables are compared with those of a typical Skyrme energy density functional with similar properties at nuclear densities but which differ substantially at supranuclear densities. Analytical formulas, which are applicable to nonrelativistic potential models such as the equations of state we are considering, are derived for all state variables and their thermodynamic derivatives. A highlight of our work is its focus on thermal response functions in the degenerate and nondegenerate situations, which allow checks of the numerical calculations for arbitrary degeneracy. These functions are sensitive to the density-dependent effective masses of neutrons and protons, which determine the thermal properties in all regimes of degeneracy. We develop the "thermal asymmetry free energy" and establish its relation to the more commonly used nuclear symmetry energy. We also explore the role of the pion condensate at supranuclear densities and temperatures. Tables of matter properties as functions of baryon density, composition (i.e., proton fraction), and temperature are being produced which are suitable for use in astrophysical simulations of supernovae and neutron stars.

  9. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  10. Phase diagram and thermal properties of strong-interaction matter

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin; Qin, Si-Xue; Roberts, Craig D.; Schmidt, Sebastian M.

    2016-05-01

    We introduce a novel method for computing the (μ , T )-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  11. A non-empirical, parameter-free, hybrid functional for accurate calculations of optoelectronic properties of finite systems

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia

    The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.

  12. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  13. Accurate Electronic, Transport, and Bulk Properties of Wurtzite Beryllium Oxide (BeO)

    NASA Astrophysics Data System (ADS)

    Bamba, Cheick Oumar; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We present ab-initio, self-consistent density functional theory (DFT) description of electronic, transport, and bulk properties of wurtzite Beryllium oxide (w-BeO). We used a local density approximation potential (LDA) and the linear combination of atomic orbitals (LCOA) formalism. Our implementation of the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), ensures the full, physical content of our local density approximation (LDA) calculations - as per the derivation of DFT [AIP Advances, 4, 127104 (2014) We report the band gap, density of states, partial density of state, effective masses, and the bulk modulus. Our calculated band gap of 10.29 eV, using an experimental, room temperature lattice constant of 2.6979 A at room temperature is in agreement with the experimental value of 10.6 eV. Acknowledgments:This work was funded in part the US National Science Foundation [NSF, Award Nos. EPS-1003897, NSF (2010-2015)-RII-SUBR, and HRD-1002541], the US Department of Energy, National Nuclear Security Administration (NNSA, Award No. DE-NA0002630), LaSPACE, and LONI-SUBR.

  14. Ab-initio Calculations of Accurate Electronic Properties of ZnS

    NASA Astrophysics Data System (ADS)

    Khamala, Bethuel; Franklin, Loushanda; Malozovski, Yuriy; Stewart, Anthony; Bagayoko, Diola; Bagayoko Research Group Team

    2014-03-01

    We present the results from ab-initio, self consistent, local density approximation (LDA) calculations of the electronic and related properties of zinc-blende zinc sulphide (zb-ZnS). We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism in our non-relativistic computations. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method includes a methodical search for the optimal basis set that yields the minima of the occupied energies. This search entails increasing the size of the basis set and related modifications of angular symmetry and of radial orbitals. Our calculated, direct gap of 3.725 eV, at the Γ point, is in excellent agreement with experiment. We have also calculated the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses and total energies that agree very well with available, corresponding experimental results. Acknowledgement: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.

  15. Ab-initio Calculations of Accurate Electronic Properties of Wurzite AlN

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi; Malozovsky, Yuriy; Bagayoko, Diola; Bagayoko Research Group Team

    2014-03-01

    We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of wurtzite Aluminum Nitride (w-AlN). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams' method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method verifiably obtains the minima of the occupied energies; these minima provide the most variationally and physically valid density functional theory (DFT) description of the ground states of materials under study. Our preliminary results for w-AlN show that w-AlN has a direct band gap of 5.82 eV at the Γ point. The preliminary energy bands were obtained with a basis set comprising 48 functions. None of the several, larger basis sets tested to date led to occupied energies lower than those obtained with the above 48. While most previous LDA calculations are 2 eV smaller or more than the experimental value of 5.9 eV that is in excellent agreement with our finding, considering the typical experimental uncertainty of 0.2 eV for absorption measurements on AlN. We also discuss our calculated density of states (DOS) and partial densities of states (pDOS).

  16. Molecular Simulation of the Free Energy for the Accurate Determination of Phase Transition Properties of Molecular Solids

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Lisal, Martin; Brennan, John

    2015-06-01

    Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.

  17. Mechanical and thermal properties of the Czech marbles

    NASA Astrophysics Data System (ADS)

    Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Keppert, Martin; Černý, Robert

    2016-06-01

    The paper is dealing with selected parameters of four marbles with respect to their utilization as building materials. Stones from four function quarries in the Czech Republic were chosen and scopes of physical properties were determined. Basic physical, mechanical and thermal properties belong among studied characteristics. Bulk density of studied marbles is in average 2750 kg/m3, matrix density 2770 kg/m3, open porosity 0.7%. Pore structure show similar distributions. Mechanical properties show more differences; however minimal value of compressive strength was 66.5 MPa, while maximum was 174 MPa. Thermal conductivity of studied marbles was about 2.955 W/mK. Last measured characteristic was specific heat capacity; its average value was 609 J/kgK.

  18. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  19. Thermal Properties of Prominence Motions as Observed in the UV

    NASA Technical Reports Server (NTRS)

    Kucera, T.; Landi, E.

    2003-01-01

    The mechanisms by which solar prominences are filled with plasma are still undetermined. In this study we perform a quantitative analysis of the thermal properties of moving features in prominences in order to put constraints on models of prominence formation and dynamics. In order to make such measurements of quickly moving features seen in prominences in the UV we use the SOHO instruments SUMER and CDS to take a time series of exposures at a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in spectral lines in a range of 'transition region' temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  20. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    NASA Technical Reports Server (NTRS)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  1. Characterization of thermal properties of municipal solid waste landfills.

    PubMed

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. PMID:25464944

  2. Computer code for determination of thermally perfect gas properties

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Tatum, Kenneth E.

    1994-01-01

    A set of one-dimensional compressible flow relations for a thermally perfect, calorically imperfect gas is derived for the specific heat c(sub p), expressed as a polynomial function of temperature, and developed into the thermally perfect gas (TPG) computer code. The code produces tables of compressible flow properties similar to those of NACA Rep. 1135. Unlike the tables of NACA Rep. 1135 which are valid only in the calorically perfect temperature regime, the TPG code results are also valid in the thermally perfect calorically imperfect temperature regime which considerably extends the range of temperature application. Accuracy of the TPG code in the calorically perfect temperature regime is verified by comparisons with the tables of NACA Rep. 1135. In the thermally perfect, calorically imperfect temperature regime, the TPG code is validated by comparisons with results obtained from the method of NACA Rep. 1135 for calculating the thermally perfect calorically imperfect compressible flow properties. The temperature limits for application of the TPG code are also examined. The advantage of the TPG code is its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture thereof, whereas the method of NACA Rep. 1135 is restricted to only diatomic gases.

  3. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  4. Optical characterization of thermal properties of biological tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez-Arroyo, A.; Sánchez Pérez, C.; Alemán-García, N.; Piña-Barba, C.

    2013-11-01

    In this work we utilize heat conduction measurements trough the photothermal beam deflection technique to characterize thermal properties of biological tissue. We design a heat flux sensor based on the phenomenon of photothermal laser beam deflection within a thermo-optic slab (acrylic), where the deflection is quantified by an optical fiber angle sensor. We analytically model the heat flux sensor response based on heat wave propagation theory that well agree with experimental data. We present heat conduction measurements on different tissues applying a heat pulse. Hence we obtain the thermal effusivity coefficient of bovine tendon and chicken liver and heart. It has been shown that thermal conduction depends on the tissués chemical composition as well on their structural arrangements, so any modification in tissue will affect on heat conduction rendering this method potentially useful as an auxiliary in biomedical studies. Nowadays there are several thermal effusivity and diffusivity measurement techniques with classic calorimetry (using thermistors) for research and industrial applications. However there are only few integrated optical devices already proposed, turning this optical technique in an innovative and alternative sensing system for thermal properties characterization.

  5. Accurate spectroscopic calculations of 21 electronic states of ClO radical including transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-08-01

    The potential energy curves were calculated for the 21 states (X2Π, A2Π, 32Π, 42Π, 52Π, 12Σ+, 22Σ+, 32Σ+, 12Σ-, 22Σ-, 32Σ-, 12Δ, 22Δ, 32Δ, 12Φ, 14Σ+, a4Σ-, 24Σ-, 14Π, 24Π and 14Δ), which originated from the two lowest dissociation channels of ClO radical. The calculations were done for internuclear separations approximately from 0.08 to 1.10 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV5Z basis set. Of these 21 states, the 14Π, 24Π, 32Δ, 42Π, 52Π, 12Φ, 32Σ+, 14Δ and 24Σ- states are repulsive. The 12Δ, 12Σ-, 14Σ+, 22Σ-, 12Σ+, 22Σ+, 22Δ and 32Σ- states are very weakly bound. Only the A2Π state has one barrier. The avoided crossing exists between the A2Π and the 32Π state. However, the avoided crossing does not generate any double wells. Core- valence correlation correction was accounted for at the level of an aug-cc-pCVQZ basis set. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pVQZ basis set. All the potential energy curves were extrapolated to the complete basis set limit. The spectroscopic parameters were determined. The 12Σ-, 22Σ-, 32Σ- and 14Σ+ states may be very difficult to be detected in an experiment, since each of these Λ-S states has only one or two vibrational states. The Franck-Condon factors and radiative lifetimes were calculated for several low vibrational levels of the A2Π - X2Π, 32Π - a4Σ-, 22Δ - a4Σ- and 32Σ- - 12Σ- transitions. The spin-orbit coupling effect on the spectroscopic parameters of the X2Π, A2Π, 32Π, a4Σ- and 22Σ+ states were discussed. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  6. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  7. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  8. Fabrication, characterization, and thermal property evaluation of silver nanofluids.

    PubMed

    Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh

    2014-01-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293

  9. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    NASA Astrophysics Data System (ADS)

    Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh

    2014-11-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.

  10. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    PubMed Central

    2014-01-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293

  11. Physical Origins of Thermal Properties of Cement Paste

    NASA Astrophysics Data System (ADS)

    Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-06-01

    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (<2 THz ) compared to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.

  12. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    NASA Astrophysics Data System (ADS)

    Kany, A. M. I.; El-Gohary, M. I.; Kamal, S. M.

    1994-07-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barries of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure.

  13. Accurate spectroscopic calculations of 21 electronic states of ClO radical including transition properties.

    PubMed

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-08-01

    The potential energy curves were calculated for the 21 states (X(2)Π, A(2)Π, 3(2)Π, 4(2)Π, 5(2)Π, 1(2)Σ(+), 2(2)Σ(+), 3(2)Σ(+), 1(2)Σ(-), 2(2)Σ(-), 3(2)Σ(-), 1(2)Δ, 2(2)Δ, 3(2)Δ, 1(2)Φ, 1(4)Σ(+), a(4)Σ(-), 2(4)Σ(-), 1(4)Π, 2(4)Π and 1(4)Δ), which originated from the two lowest dissociation channels of ClO radical. The calculations were done for internuclear separations approximately from 0.08 to 1.10nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV5Z basis set. Of these 21 states, the 1(4)Π, 2(4)Π, 3(2)Δ, 4(2)Π, 5(2)Π, 1(2)Φ, 3(2)Σ(+), 1(4)Δ and 2(4)Σ(-) states are repulsive. The 1(2)Δ, 1(2)Σ(-), 1(4)Σ(+), 2(2)Σ(-), 1(2)Σ(+), 2(2)Σ(+), 2(2)Δ and 3(2)Σ(-) states are very weakly bound. Only the A(2)Π state has one barrier. The avoided crossing exists between the A(2)Π and the 3(2)Π state. However, the avoided crossing does not generate any double wells. Core- valence correlation correction was accounted for at the level of an aug-cc-pCVQZ basis set. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pVQZ basis set. All the potential energy curves were extrapolated to the complete basis set limit. The spectroscopic parameters were determined. The 1(2)Σ(-), 2(2)Σ(-), 3(2)Σ(-) and 1(4)Σ(+) states may be very difficult to be detected in an experiment, since each of these Λ-S states has only one or two vibrational states. The Franck-Condon factors and radiative lifetimes were calculated for several low vibrational levels of the A(2)Π - X(2)Π, 3(2)Π - a(4)Σ(-), 2(2)Δ - a(4)Σ(-) and 3(2)Σ(-) - 1(2)Σ(-) transitions. The spin-orbit coupling effect on the spectroscopic parameters of the X(2)Π, A(2)Π, 3(2)Π, a(4)Σ(-) and 2(2)Σ(+) states were discussed. The spectroscopic properties reported here can be expected to be reliably predicted ones. PMID:27111157

  14. Local thermal properties of the surface of Vesta

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Tosi, F.; Capaccioni, F.; De Sanctis, M. C.; Palomba, E.; Ammannito, E.; Carraro, F.; Fonte, S.; Titus, T. N.; Combe, J.-P.; Toplis, M.; Sunshine, J.; Fulchignoni, M.; Russel, C. T.; Raymond, C. A.

    2012-04-01

    Temperature information has been obtained from the Dawn/VIR (Visible InfraRed imaging spectrometer) spectra acquired during the Vesta campaign. When combined with a thermophysical model, these temperatures can be used to derive surface thermal properties. Thermal properties are sensitive to several physical characteristics of the surface that are not all spatially resolved. Thus, the derivation of surface temperatures and thermal inertia can lead to the characterization of surface and sub-surface properties of Vesta and the determination of regolith properties. The model we are using solves the heat conduction equation and provide the temperature as a function of thermal conductivity, albedo, emissivity, density and specific heat. The model is applied to the actual shape of Vesta: for any given location, characterized by a well-defined illumination condition and a given UTC time to compute the thermal inertia that results in model temperatures providing a best-fit to surface temperatures as retrieved by VIR. The model has been already applied to the first Vesta full-disk data to derive the global average thermal inertia of Vesta. The values obtained are typical of fine-grained, unconsolidated materials (i.e. dust) and suggest a surface in which a dust layer is wide-spread on coarser regolith. The model is now being applied on small regions of the surface of Vesta. Specific regions are selected because they are interesting for some reason or appear different from the surroundings, such as, for example, dark and bright spots and other peculiar features. Given a location, the thermophysical code is applied until the obtained temperatures are matching (best-fit techniques are used) the temperatures derived from the VIR spectra. The thermal inertia, thermal conductivity, albedo and roughness values are then assumed to be characterizing the location under analysis. The results of the model must be carefully checked and interpreted by taking into account the context (from

  15. Spectroscopic and thermal properties of minerals from density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Refson, K.

    2003-12-01

    Ab-initio calculations based on density-functional theory have provento give a highly accurate description of structural and elastic properties of minerals under pressure. To evaluate spectroscopic, dielectric and thermal properties it is necessary to compute the second derivatives of the energy with respect to a displacement or electric field perturbation. While the Hellman-Feynmann theorem makes the computation of forces (first derivatives of the energy) straightforward, second derivatives depend on the linear response of the orbitals and density to the perturbation. I will sketch the variational formulation of density-function perturbation theory, and it's implementation in the CASTEP plane-wave code. The capabilities will be illustrated with calculation of the full phonon dispersion spectra and dielectric properties of a-quartz, ZrO2 and NaHF2.

  16. Computation of Thermally Perfect Oblique Shock Wave Properties

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1997-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon the specific heat expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  17. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  18. Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.

  19. Evaluation of optical and chromatic properties under electrical and thermal coupling in solid state lighting systems

    NASA Astrophysics Data System (ADS)

    Fu, Han-Kuei; Peng, Yi-Ping; Wang, Chien-Ping; Chiang, Hsin-Chien; Chen, Tzung-Te; Chen, Chiu-Ling; Chou, Pei-Ting

    2013-09-01

    For energy-saving, high efficiency and low pollution, the lighting of LED systems is important for the future of green energy technology industry. The solid state lighting becomes the replacement of traditional lighting, such as, light bulbs and compact fluorescent lamps. Because of the semiconductor characteristics, the luminous efficiency of LEDs is sensitive to the operating temperature. Besides increasing the luminous efficiency, effective controlling electricity and thermal characteristics in the design of LED lighting products is the key point to achieve the best results. LED modules can be combined with multi-grain process or through a combination of multiple LED chips. Accurate analysis of this LED module for the electrical, thermal characteristics and high reliability is the critical knowledge of modular design. In this report, we studied the electrical and thermal coupling phenomenon in solid state lighting systems to analyze their reliability. By experiments and simulations, we obtained the apparent variation of temperature distribution of LED system due to differences of their forward voltages and thermal resistances. These events may reduce their reliability. Besides, the evaluation of optical and chromatic properties was based on the variation of temperature distribution and current of LED system. This is the key technology to predict the optical and chromatic properties of LED system in use.

  20. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek; Balandin, Alexander A.

    2012-02-01

    The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ˜500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials, and the large range of the length-scale—from nanometers to micrometers—of the graphene and silver particle fillers. The obtained results are important for the thermal management of advanced electronics and optoelectronics.

  1. Accurate spectroscopic properties of 19 low-lying states of PCl radical including the electronic transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2015-02-01

    The spectroscopic properties are in detail studied for the 11Σ-, 21Σ-, b1Σ+, c1Π, 21Π, 31Π, a1Δ, 21Δ, X3Σ-, C3Σ-, 33Σ-, 13Σ+, A3Π, B3Π, 33Π, 13Δ, 23Δ, 15Σ- and 15Π states, which are yielded from the first two dissociation limits, P(4Su) + Cl(2Pu) and P(2Du) + Cl(2Pu), of the PCl radical. Of the nineteen states, the 33Σ-, 13Σ+, 13Δ, 23Δ and 15Π states are the repulsive ones. The 21Σ-, 21Δ and 15Σ- states and the second well of A3Π state are very weakly-bound ones. The A3Π and B3Π states, the B3Π and 33Π states, and the 21Π and 31Π states have the avoided crossings. The A3Π state is found to possess the double well. The potential energy curves (PECs) are calculated with the CASSCF method followed by the internally contracted MRCI approach with Davidson correction together with the Dunning's correlation-consistent basis sets, aug-cc-pV6Z. To improve the quality of PECs, core-valence correlation and scalar relativistic correction calculations are included simultaneously. The PECs are extrapolated to the complete basis set limit. The vibrational properties are evaluated for several weakly-bound states. The spectroscopic parameters are determined, and compared with those available in the literature. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Π, B3Π and 33Π states to the X3Σ- state and from the c1Π, 21Π and 31Π states to the a1Δ state are calculated for several low vibrational states. And some necessary discussion is performed. Analyses demonstrate that the spectroscopic properties of PCl radical reported in this paper can be expected to be reliably predicted ones.

  2. Another Demo of the Unusual Thermal Properties of Rubber

    NASA Astrophysics Data System (ADS)

    Liff, Mark I.

    2010-10-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect.1-4 Joule in the 1850s studied the thermal behavior of rubbers that was initially explored by Gough in 1805. Properties of rubbers such as contraction upon heating, or the related phenomenon of heating upon fast expansion, did not make much sense at that time. Joule's work validated Gough's results, but the molecular basis of the unusual thermal behavior of rubbers remained unexplained for another 70 years. The physical ideas, taking into account gigantic conformational entropy of elastic polymers that explain their contraction on heating, were developed by Staudinger, Kuhn, and others only in the 1920s and 1930s.5

  3. The "Guarded Torus" approach for MUPUS thermal properties measurements

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Knollenberg, J.; Kargl, G.; Kömle, N. I.

    2012-09-01

    In the past few years scientists developed an increasing interest in the structure and behaviour of extraterrestrial surfaces. Comets are playing a main role as targets of these investigations. They are composed of ice, dust and organics and it is assumed that comets consist of the basic material out of which the solar system was formed. The properties at the surface and the upper layers of comets as well as their change during the approach to the sun are therefore of special interest. The thermal and mechanical properties of the comet 67P/Churyumov- Gerasimenko and their changes should be measured with the MUPUS-probe, one of the instruments on the Rosetta lander Philae. The "Guarded Torus" approach is a possible way of optimizing the scientific results of the thermal conductivity measurements with MUPUS like sensors.

  4. Rheological and thermal properties of PP-based WPC

    NASA Astrophysics Data System (ADS)

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  5. Transport properties and microstructural characteristics of a thermally cracked mylonite

    NASA Astrophysics Data System (ADS)

    Le Ravalec, M.; Darot, M.; Reuschlé, T.; Guéguen, Y.

    1996-03-01

    An experimental study was carried out on a granitic mylonite (La Bresse, France) to analyze the influence of pore microstructure on transport properties. Different crack networks were obtained by a controlled thermal treatment. Microstructures were analyzed by means of gas adsorption and mercury porosimetry. Transport properties have been investigated by measuring gas permeability and electrical conductivity. The dependence of permeability on confining pressure shows an exponential decrease, characteristic of a porosity made of cracks. Correlations between measured parameters have been analyzed by comparing them with relations deduced from theoretical models. Linking the formation factor to the porosity leads to a rather low tortuosity value (about 2.4), characterizing a medium with a well connected porosity. Correlation between permeability k and formation factor F leads to a power-law relation k ∝ F -n where n≈2.9, which is consistent with a crack model describing the behavior of the thermally treated rock.

  6. Effect of thermal modification on rheological properties of polyethylene blends

    SciTech Connect

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.

  7. Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Scheidt, E.-W.; Scherer, W.; Benson, D. E.; Wu, Y.; Eklöf, D.; Häussermann, U.

    2015-06-01

    The intermetallic compound ZnSb is an interesting thermoelectric material largely due to its low lattice thermal conductivity. The origin of the low thermal conductivity has so far been speculative. Using multitemperature single crystal x-ray diffraction (9-400 K) and powder x-ray diffraction (300-725 K) measurements, we characterized the volume expansion and the evolution of structural properties with temperature and identified an increasingly anharmonic behavior of the Zn atoms. From a combination of Raman spectroscopy and first principles calculations of phonons, we consolidate the presence of low-energy optic modes with wave numbers below 60 cm-1 . Heat capacity measurements between 2 and 400 K can be well described by a Debye-Einstein model containing one Debye and two Einstein contributions with temperatures ΘD=195 K , ΘE 1=78 K , and ΘE 2=277 K as well as a significant contribution due to anharmonicity above 150 K. The presence of a multitude of weakly dispersed low-energy optical modes (which couple with the acoustic, heat carrying phonons) combined with anharmonic thermal behavior provides an effective mechanism for low lattice thermal conductivity. The peculiar vibrational properties of ZnSb are attributed to its chemical bonding properties, which are characterized by multicenter bonded structural entities. We argue that the proposed mechanism to explain the low lattice thermal conductivity of ZnSb might also control the thermoelectric properties of other electron poor semiconductors, such as Zn4Sb3 , CdSb, Cd4Sb3 , Cd13 -xInyZn10 , and Zn5Sb4In2 -δ .

  8. Thermal stresses in a spherical pressure vessel having temperature-dependent, transversely isotropic, elastic properties

    NASA Technical Reports Server (NTRS)

    Tauchert, T. R.

    1976-01-01

    Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct approximate solutions for the response of a thick-walled sphere to uniform pressure loads and an arbitrary radial temperature distribution. The thermoelastic properties of the sphere are assumed to be transversely isotropic and nonhomogeneous; variations in the elastic stiffness and thermal expansion coefficients are taken to be an arbitrary function of the radial coordinate and temperature. Numerical examples are presented which illustrate the effect of the temperature-dependence upon the thermal stress field. A comparison of the approximate solutions with a finite element analysis indicates that Ritz methods offer a simple, efficient, and relatively accurate approach to the problem.

  9. Characterizing Thermal Properties of Melting Te Semiconductor: Thermal Diffusivity Measurements and Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Li, C.; Su, Ching-Hua; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devices. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed.

  10. Characterizing Thermal Properties of Melting Te Semiconductor: Thermal Diffusivity Measurements and Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.

  11. Effects of nonframework metal cations and phonon scattering mechanisms on the thermal transport properties of polycrystalline zeolite LTA films

    NASA Astrophysics Data System (ADS)

    Greenstein, Abraham; Hudiono, Yeny; Graham, Samuel; Nair, Sankar

    2010-03-01

    We present a systematic study to investigate the effects of nonframework cations and the role of phonon scattering mechanisms on the thermal transport properties of zeolite LTA, via experiment and semiempirical lattice dynamics calculations. Our study is motivated by the increasing interest in accurate measurements and mechanistic understanding of the thermal transport properties of zeolite materials. The presence of a nanostructured pore network, extra-framework cations, and tunable framework structure and composition confer interesting thermophysical properties to these materials, making them a good model system to investigate thermal transport in complex materials. Continuous films of zeolite LTA with different nonframework cations (Na+, K+, and Ca+2) were synthesized and characterized. The thermal conductivity was measured using the three-omega method over a wide range of temperature (150-450 K). These are the first thermal conductivity measurements performed on bulk LTA, so they are more accurate than previous measurements, which involved the use of compacted zeolite powders. Our data showed significant dependence of the thermal conductivity on the extra-framework cations as well the temperature. The thermal conductivities of the zeolite LTA samples were modeled with the relaxation time approximation to the Boltzmann transport equation. The full phonon spectra for each type of LTA zeolite were calculated and used in conjunction with semiempirical relaxation time expressions to calculate the thermal conductivity. The results both validated, and suggested the limitations of, this modeling approach. Optical phonons dominated the thermal conductivity and boundarylike scattering was found to be the strongest phonon scattering mechanism, as also observed in MFI zeolite.

  12. Epoxide composites with thermally reduced graphite oxide and their properties

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. A.; Muradyan, V. E.; Tarasov, B. P.; Sokolov, E. A.; Babenko, S. D.

    2016-05-01

    The properties of epoxide composites modified by thermal reduced graphite oxide are studied. The dielectric permittivities of epoxide composites with additives of up to 1.5 wt % of reduced graphite oxide are studied at a frequency of 9.8 GHz. It is shown that despite its low electrical conductivity, the large specific surface area of reduced graphite oxide allows us to create epoxide composites with high complex dielectric permittivities and dielectric loss tangents.

  13. Simplified composite micromechanics equations for hygral, thermal and mechanical properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    A unified set of composite micromechanics equations of simple form is summarized and described. This unified set can be used to predict unidirectional composite (ply) geometric, mechanical, thermal and hygral properties using constituent material (fiber/matrix) properties. This unified set also includes approximate equations for predicting (1) moisture absorption; (2) glass transition temperature of wet resins; and (3) hygrothermal degradation effects. Several numerical examples are worked-out to illustrate ease of use and versatility of these equations. These numerical examples also demonstrate the interrelationship of the various factors (geometric to environmental) and help provide insight into composite behavior at the micromechanistic level.

  14. Simplified composite micromechanics equations of hygral, thermal, and mechanical properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1984-01-01

    A unified set of composite micromechanics equations of simple form is summarized and described. This unified set can be used to predict unidirectional composite (ply) geometric, mechanical, thermal and hygral properties using constituent material (fiber/matrix) properties. This unified set also includes approximate equations for predicting (1) moisture absorption; (2) glass transition temperature of wet resins; and (3) hygrothermal degradation effects. Several numerical examples are worked-out to illustrate ease of use and versatility of these equations. These numerical examples also demonstrate the interrelationship of the various factors (geometric to environmental) and help provide insight into composite behavior at the micromechanistic level.

  15. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  16. Thermal transport and thermoelectric properties of beta-graphyne nanostructures.

    PubMed

    Ouyang, Tao; Hu, Ming

    2014-06-20

    Graphyne, an allotrope of graphene, is currently a hot topic in the carbon-based nanomaterials research community. Taking beta-graphyne as an example, we performed a comprehensive study of thermal transport and related thermoelectric properties by means of nonequilibrium Green's function (NEGF). Our simulation demonstrated that thermal conductance of beta-graphyne is only approximately 26% of that of the graphene counterpart and also shows evident anisotropy. Meanwhile, thermal conductance of armchair beta-graphyne nanoribbons (A-BGYNRs) presents abnormal stepwise width dependence. As for the thermoelectric property, we found that zigzag beta-graphyne nanoribbons (Z-BGYNRs) possess superior thermoelectric performance with figure of merit value achieving 0.5 at room temperature, as compared with graphene nanoribbons (~0.05). Aiming at obtaining a better thermoelectric coefficient, we also investigated Z-BGYNRs with geometric modulations. The results show that the thermoelectric performance can be enhanced dramatically (figure of merit exceeding 1.5 at room temperature), and such enhancement strongly depends on the width of the nanoribbons and location and quantity of geometric modulation. Our findings shed light on transport properties of beta-graphyne as high efficiency thermoelectrics. We anticipate that our simulation results could offer useful guidance for the design and fabrication of future thermoelectric devices. PMID:24859889

  17. Mechanical and thermal properties of bulk ZrB2

    NASA Astrophysics Data System (ADS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-12-01

    ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.

  18. Low-rank coal thermal properties and diffusivity: Final report

    SciTech Connect

    Ramirez, W.F.

    1987-06-01

    This project developed techniques for measuring thermal properties and mass diffusivities of low-rank coals and coal powders. Using the concept of volume averaging, predictive models have been developed for these porous media properties. The Hot Wire Method was used for simultaneously measuring the thermal conductivity and thermal diffusivity of both consolidated and unconsolidated low-rank coals. A new computer-interfaced experiment is presented and sample container designs developed for both coal powders and consolidated coals. A new mathematical model, based upon volume averaging, is presented for the prediction of these porous media properties. Velocity and temperature effects on liquid-phase dispersion through unconsolidated coal were determined. Radioactive tracer data were used to determine mass diffusivities. A new predictive mathematical model is presented based upon volume averaging. Vapor-phase diffusivity measurements of organic solvents in consolidated lignite coal are reported. An unsteady-state pressure response experiment with microcomputed-based data acquisition was developed to estimate dispersion coefficients through consolidated lignite coals. The mathematical analysis of the pressure response data provides the dispersion coefficient and the adsorption coefficient. 48 refs., 59 figs., 17 tabs.

  19. Electrical and thermal properties of graphite/polyaniline composites

    SciTech Connect

    Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  20. Thermal Properties of Moving UV Features in Prominences

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.

    2003-01-01

    Multi-thermal features with speeds of 5-70 kilometers per second perpendicular to the line of sight are common in the prominences which showed traceable motions. These speeds are noticeably higher than the typical speeds of 5-20 kilometers per second observed in H-alpha data from "quiet" prominences and are more typical of "activated" prominences in which H-alpha blob speeds of up to 40 kilometers per second have been reported. In order to make a more quantitative determination of the thermal properties of the moving features seen in the UV, we use the SOHO instruments SUMER and CDS to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in lines spectral lines in a range of "transition region" temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  1. Thermal stability, optical property, and morphology of flexible organoclay films.

    PubMed

    Shin, Jieun; Chang, Jin-Hae

    2011-07-01

    Novel organo-saponite (organo-SPT) films with excellent thermal stability and optical property were synthesized by solution casting. Na ion-exchanged saponite (pristine SPT), hexadecylammonium ion-exchanged SPT (C16-SPT), hexadecyltriphenyl phosphonium ion-exchanged SPT (C16PPh3-SPT), and tetraphenyl phosphonium ion-exchanged SPT (PPh4-SPT) were used to prepare clay films. We examined the relationship between the structures and properties of the various SPT films. SPT films were examined by means of wide-angle X-ray diffraction (XRD), electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis.) spectrometer. On the basis of these analyses, we sought to improve both the thermal stability and the optical properties. Clay films composed of C16PPh3-SPT and PPh4-SPT were found to be more thermally stable than those composed of pristine SPT or C16-SPT. On the other hand, the transmittance was not significantly affected by variations in the organo-SPT material. PMID:22121657

  2. A modified method for accurate correlation between the craze density and the optomechanical properties of fibers using pluta microscope.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; El-Bakary, M A; Omar, E Z; Hamza, A A

    2016-05-01

    A modified method was suggested to improve the performance of the Pluta microscope in its nonduplicated mode in the calculation of the areal craze density especially, for relatively low draw ratio (low areal craze density). This method decreases the error that is resulted from the similarity between the formed crazes and the dark fringes of the interference pattern. Furthermore, an accurate method to calculate the birefringence and the orientation function of the drawn fibers via nonduplicated Pluta polarizing interference microscope for high areal craze density (high draw ratio) was suggested. The advantage of the suggested method is to relate the optomechanical properties of the tested fiber with the areal craze density, for the same region of the fiber material. Microsc. Res. Tech. 79:422-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920339

  3. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data

    NASA Astrophysics Data System (ADS)

    Dillon, C. R.; Borasi, G.; Payne, A.

    2016-01-01

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.

  4. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data.

    PubMed

    Dillon, C R; Borasi, G; Payne, A

    2016-01-21

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344

  5. Thermal properties of lithium-ion battery and components

    SciTech Connect

    Maleki, H.; Hallaj, S.A.; Selman, J.R.; Dinwiddie, R.B.; Wang, H.

    1999-03-01

    Experimental thermal property data of the Sony US-18650 lithium-ion battery and components are presented, as well as thermal property measuring techniques. The properties in question are specific heat capacity (C{sub p}), thermal diffusivity ({alpha}), and thermal conductivity ({kappa}), in the presence and absence of electrolyte [1 M LiPF{sub 6} in ethylene carbonate-dimethyl carbonate (EC:DMC, 1:1 wt %)]. The heat capacity of the battery, C{sub p}, is 0.96 {+-} 0.02 J/g K at an open-circuit voltage (OCV) of 2.75 V, and 1.04 {+-} 0.02 J/g K at 3.75 V. The thermal conductivity, {kappa}, was calculated from {kappa} {identical_to} {alpha}{rho}C{sub p} where {alpha} was measured by a xenon-flash technique. In the absence of electrolyte, {kappa} increases with OCV, for both the negative electrode (NE) and the positive electrode (PE). For the NE, the increase is 26% as the OCV increases from 2.75 to 3.75 V, whereas for the PE the increase is only 5 to 6%. The dependence of both C{sub p} and {kappa} on OCV is explained qualitatively by considering the effect of lithiation and delithiation on the electron carrier density, which leads to n-type semiconduction in the graphitic NE material, but a change from semiconducting to metallic character in Li{sub x}CoO{sub 2} PE material. The overall effect is an increase of C{sub p} and {kappa} with OCV. For {kappa} this dependence is eliminated by electrolyte addition, which, however, greatly increases the effective {kappa} of the layered battery components by lowering the thermal contact resistance. For both NE and PE, the in-plane {kappa} value (measured along layers) is nearly one order of magnitude higher than the cross-plane {kappa}. This is ascribed mostly to the high thermal conductivity of the current collectors and to a lesser extent to the orientation of particles in the layers of electrodes.

  6. Composition, structure and properties of sediment thermal springs of Kamchatka

    NASA Astrophysics Data System (ADS)

    Shanina, Violetta; Smolyakov, Pavel; Parfenov, Oleg

    2016-04-01

    The paper deals with the physical and mechanical properties sediment thermal fields Mutnovsky, Lower Koshelevo and Bannyh (Kamchatka). This multi-component soils, mineral and chemical composition of which depends on the formation factors (pH, temperature, salinity of water, composition and structure of the host volcanic rocks). Samples Lower Koshelevo sediment thermal sources differ in the following composition: smectite, kaolinite, kaolinite-smectite mixed-mineral. Samples of sediment thermal springs Mutnovsky volcano in accordance with the X-ray analysis has the following composition: volcanic glass, crystalline sulfur, plagioclase, smectite, illite-smectite mixed, illite, chlorite, quartz, cristobalite, pyrite, melanterite, kaolinite. Natural moisture content samples of sediment thermal springs from 45 to 121%, hygroscopic moisture content of 1.3 to 3.7%. A large amount of native sulfur (up to 92%) and the presence of amorphous material gives low values of density of solid particles (up to 2.1 g/cm3) samples Mutnovskii thermal field. The values of the density of solids sediment Koshelevo and Bannyh hot springs close to those of the main components of mineral densities (up to 2.6-3.0 g/cm3). The results of the particle size distribution and microaggregate analysis of sediment thermal springs Lower Koshelevo field shows that the predominance observed of particles with a diameter from 0.05 mm to 0.25 mm, the coefficient of soil heterogeneity heterogeneous. In the bottom sediments of the thermal springs of the volcano Mutnovsky poorly traced predominance of one faction. Most prevalent fraction with particle size 0.01 - 0.05 mm. When analyzing the content in the soil microaggregates their content is shifted towards particles with a diameter of 0.25 mm. The contents of a large number of large (1-10 mm), porous rock fragments, due to the deposition of pyroclastic material from the eruptions of the last century. Present in large amounts rounded crystals of native sulfur

  7. Thermal properties of andesite from Popocatepetl and Volcán de Colima, México.

    NASA Astrophysics Data System (ADS)

    Cardenas-Sanchez, Enrique; De la Cruz-Reina, Servando; Varley, Nick

    2015-04-01

    The thermal conductivity (K), specific heat (Cp) and the coefficient of heat transfer surface (H) are the basic parameters to describe the process of cooling a volcanic rock fragment released in an explosive event. The analysis of the cooling process by conduction, convection and radiation of heat in volcanic rock fragments, has been limited to basalts, and various minerals such as olivine, pyroxene, quartz, etc. (Miao & Chen, 2014; Branlund & Hofmeister, 2012; Romine et al, 2012;. Schön, 2011; Stroberg et al, 2010;. Schatz & Simmons, 1972). There are no detailed studies on the thermal properties of the andesites, abundant in continental stratovolcanoes, and particularly susceptible from lava domes with frequent destruction processes, such as Popocatepetl and Volcan de Colima. Previously, we developed an algorithm for calculation of the grain-size distribution, degree of fragmentation, the thermal energy released and its possible correlation with Volcanic Explosive Index (VEI) from the cooling curves of fragments from vulcanian and strombolian explosions. These curves were obtained from sequences of time over incandescent deposits recorded at selected pixel thermal images of vulcanian activity in the Popocatepetl and Volcan de Colima, Mexico. However, the model was limited by the lack of thermal parameters of the andesites, forcing a first approximation using basalts data. We present a simple model for the cooling process using andesites samples from Popocatépetl and Volcan de Colima. First, the samples were subjected to a rounding process to minimize surface effects. Then, heated to 800 ° C were extracted from the muffle and cooling rate is measured. The thermal conductivity and coefficient of surface heat are determined using a thermal camera and three thermocouples embedded at various depths within the sample. An inversion method was implemented to determine the thermal properties parameters , by comparing the observed data regarding cooling model for a solid

  8. Thermal properties of bulk polyimides: insights from computer modeling versus experiment.

    PubMed

    Lyulin, Sergey V; Larin, Sergey V; Gurtovenko, Andrey A; Nazarychev, Victor M; Falkovich, Stanislav G; Yudin, Vladimir E; Svetlichnyi, Valentin M; Gofman, Iosif V; Lyulin, Alexey V

    2014-02-28

    Due to the great importance for many industrial applications it is crucial from the point of view of theoretical description to reproduce thermal properties of thermoplastic polyimides as accurate as possible in order to establish "chemical structure-physical properties" relationships of new materials. In this paper we employ differential scanning calorimetry, dilatometry, and atomistic molecular dynamics (MD) simulations to explore whether the state-of-the-art computer modeling can serve as a precise tool for probing thermal properties of polyimides with highly polar groups. For this purpose the polyimide R-BAPS based on dianhydride 1,3-bis(3',4-dicarboxyphenoxy)benzene (dianhydride R) and diamine 4,4'-bis(4''-aminophenoxy)biphenyl sulphone) (diamine BAPS) was synthesized and extensively studied. Overall, our findings show that the widely used glass-transition temperature Tg evaluated from MD simulations should be employed with great caution for verification of the polyimide computational models against experimental data: in addition to the well-known impact of the cooling rate on the glass-transition temperature, correct definition of Tg requires cooling that starts from very high temperatures (no less than 800 K for considered polyimides) and accurate evaluation of the appropriate cooling rate, otherwise the errors in the measured values of Tg become undefined. In contrast to the glass-transition temperature, the volumetric coefficient of thermal expansion (CTE) does not depend on the cooling rate in the low-temperature domain (T < Tg) so that comparison of computational and experimental values of CTE provides a much safer way for proper validation of the theoretical model when electrostatic interactions are taken into account explicitly. Remarkably, this conclusion is most likely of generic nature: we show that it also holds for the commercial polyimide EXTEM, another polyimide with a similar chemical structure. PMID:24652462

  9. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    SciTech Connect

    Braase, Lori; Papesch, Cynthia; Hurley, David

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  10. Thermal, Morphological and Rheological Properties of Rigid Polyurethane Foams as Thermal Insulating Materials

    SciTech Connect

    Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon

    2008-07-07

    The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.

  11. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  12. Computer program for thermal and transport properties of parahydrogen from 20 to 10,000 K

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1993-01-01

    A computer program was recently developed to provide thermal and transport properties for parahydrogen across a wide temperature and pressure range. The program, NBS+/-pH2, matches the most recent parahydrogen property data from the National Bureau of Standards up to 3000 K and property data from the NASA Lewis Research Center's Chemical Equilibrium Computer Program up to 10,000 K. The pressure range of NBS+/-pH2 is from 1 x 10(exp 4) to 1.6 x 10(exp 7) Pa. The program was developed to meet the need for accurate parahydrogen properties from liquid to dissociated conditions as required by propulsion simulation programs being developed under the Space Exploration Initiative. NBS+/-pH2 is a machine-independent, standard Fortran 77 program which provides density, thermal conductivity, viscosity, Prandtl number, entropy, specific heats, and speed of sound given pressure and either temperature or enthalpy. This program is described and a comparison to programs previously available is provided.

  13. Crystal dynamics and thermal properties of neptunium dioxide

    NASA Astrophysics Data System (ADS)

    Maldonado, P.; Paolasini, L.; Oppeneer, P. M.; Forrest, T. R.; Prodi, A.; Magnani, N.; Bosak, A.; Lander, G. H.; Caciuffo, R.

    2016-04-01

    We report an experimental and theoretical investigation of the lattice dynamics and thermal properties of the actinide dioxide NpO2. The energy-wave-vector dispersion relation for normal modes of vibration propagating along the [001 ] , [110 ] , and [111 ] high-symmetry lines in NpO2 at room temperature has been determined by measuring the coherent one-phonon scattering of x rays from an ˜1.2 -mg single-crystal specimen, the largest available single crystal for this compound. The results are compared against ab initio phonon dispersions computed within the first-principles density functional theory in the generalized gradient approximation plus Hubbard U correlation (GGA+U ) approach, taking into account third-order anharmonicity effects in the quasiharmonic approximation. Good agreement with the experiment is obtained for calculations with an on-site Coulomb parameter U =4 eV and Hund's exchange J =0.6 eV in line with previous electronic structure calculations. We further compute the thermal expansion, heat capacity, thermal conductivity, phonon linewidth, and thermal phonon softening, and compare with available experiments. The theoretical and measured heat capacities are in close agreement with another. About 27% of the calculated thermal conductivity is due to phonons with energy higher than 25 meV (˜6 THz ), suggesting an important role of high-energy optical phonons in the heat transport. The simulated thermal expansion reproduces well the experimental data up to about 1000 K, indicating a failure of the quasiharmonic approximation above this limit.

  14. Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings

    NASA Astrophysics Data System (ADS)

    Oberste Berghaus, Jörg; Legoux, Jean-Gabriel; Moreau, Christian; Tarasi, Fariba; Chráska, Tomas

    2008-03-01

    Micro-laminates and nanocomposites of Al2O3 and ZrO2 can potentially exhibit higher hardness and fracture toughness and lower thermal conductivity than alumina or zirconia alone. The potential of these improvements for abrasion protection and thermal barrier coatings is generating considerable interest in developing techniques for producing these functional coatings with optimized microstructures. Al2O3-ZrO2 composite coatings were deposited by suspension thermal spraying (APS and HVOF) of submicron feedstock powders. The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to unique and novel fine-scaled microstructures. The suspensions were injected internally using a Mettech Axial III plasma torch and a Sulzer-Metco DJ-2700 HVOF gun. The different spray processes induced a variety of structures ranging from finely segregated ceramic laminates to highly alloyed amorphous composites. Mechanisms leading to these structures are related to the feedstock size and in-flight particle states upon their impact. Mechanical and thermal transport properties of the coatings were compared. Compositionally segregated crystalline coatings, obtained by plasma spraying, showed the highest hardness of up to 1125 VHN3 N, as well as the highest abrasion wear resistance (following ASTM G65). The HVOF coating exhibited the highest erosion wear resistance (following ASTM G75), which was related to the toughening effect of small dispersed zirconia particles in the alumina-zirconia-alloyed matrix. This microstructure also exhibited the lowest thermal diffusivity, which is explained by the amorphous phase content and limited particle bonding, generating local thermal resistances within the structure.

  15. Study on Thermal and Mechanical Properties of EPDM Insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing

    As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.

  16. Thermal properties of polyolefin composites with copper silicate

    NASA Astrophysics Data System (ADS)

    Klozinski, Arkadiusz; Jakubowska, Paulina; Ambrozewicz, Damian; Jesionowski, Teofil

    2015-05-01

    The aim of this work was to specify thermal properties of polyolefin composites with copper silicate. Low density polyethylene (LDPE) and polypropylene (PP) composites with 2, 4 and 8 wt % of the filler (CuO.SiO2) were analyzed. Characteristic temperatures of the polymer compositions, i.e. the melting (Tm) and crystallization temperatures (Tc), obtained by means of Differential Scanning Calorimetry (DSC), were determined. The impact of the applied additives on composites thermal stability was established using thermogravimetry measurements (TGA). Afterwards, the flammability test was performed. The measurement was complemented with the establishment of the maximum combustion temperature using infrared recording techniques and image analysis (infrared camera). One of the most important parameter of thermoplastics is the softening point which was also determined. The measurement was carried out using a Vicat apparatus. Thermal characteristic was also supplemented with an assessment of the thermal diffusivity (the parameter determining the cooling time in an injection mold). The tests were conducted using the modified Angstrom method and an infrared camera.

  17. MAPTIP experiment, marine aerosol properties and thermal imager performance

    SciTech Connect

    Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.

    1994-12-31

    During the fall of 1993, a field experimental study on Marine Aerosol Properties and Thermal Imager Performance (MAPTIP) was conducted in the Dutch coastal waters. The objectives of the MAPTIP trial were: (1) to improve and validate vertical marine aerosol models by providing an extensive set of aerosol and meteorological measurements, within a coastal environment, at different altitudes and for a range of meteorological conditions; (2) to make aerosol and meteorological observations in the first 10 m above the ocean surface with a view to extending existing aerosol models to incorporate near-surface effects; (3) to assess marine boundary layer effects on thermal imaging systems. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were used at several platforms and locations. Measurements have been made of atmospheric turbulence and refractivity effects at wavelengths in the IR and visible, to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed to the maximum observable range under a wide variety of conditions in both the 3--5 and 8--12 gm bands, These data will be used for the development and validation of IRST models and IR ship signature models with the view of determining the effects of marine-generated aerosols, turbulence and meteorological profiles on their performance.

  18. High-field thermal transport properties of REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bonura, Marco; Senatore, Carmine

    2015-02-01

    The use of REBCO coated conductors (CCs) is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (κ) of REBCO CCs in magnetic fields up to 19 T applied both parallel and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field κ of CCs can be calculated with an accuracy of +/- 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field κ in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the thermal stability analysis of high-temperature superconductor-based magnets.

  19. Constraints on Spin Axis and Thermal Properties of Asteroids in the WISE Catalog

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Emery, J. P.

    2013-10-01

    It has widely been accepted that dynamical state of asteroids can strongly be influenced by radiation forces (e.g., Yarkovsky and YORP). Determination of an object’s thermal properties and spin state are a critical step towards understanding the effects of these forces. In this respect, observations of thermal flux emitted from the surfaces of asteroids are a powerful tool. The emission of flux is determined by the temperature distribution which is controlled by the thermal inertia, rotation rate, and spin axis orientation. By gathering data at multiple viewing geometries, the temperature distribution can be modeled accurately enough to separate the effects attributed to (some of) these parameters. Over the length of its mission, the Wide-Field Infrared Survey Explorer (WISE) observed many asteroids in two epochs (i.e., on either side of opposition) such that data for both morning and afternoon times were gathered. We have begun a project that employs a Thermophysical Model (TPM) in order to analyze these multi-epoch thermal observations with the goal of deriving the thermal properties and spin axis of a large number of asteroids. Here, we first investigate the validity and limits of our method on objects with a previously determined spin axis. Asteroid (413) Edburga has a published spin axis of λ = 202o, β = - 45o (ecliptic longitude and latitude, respectively) using the lightcurve inversion method. With our technique, we estimate a solution consistent with the previous estimate. Applying our TPM to WISE multi-epoch thermal observations of (155) Scylla (no known spin axis estimate), we also place estimates for the ecliptic longitude and latitude of its spin axis. Analysis of multi-epoch thermal data enables determination of spin axis orientation without knowing the rotation period, in contrast to the lightcurve inversion method. This is due to the coupling of thermal inertia and rotation rate in determining the longitudinal distribution of temperature. Their

  20. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.

    PubMed

    Ji, Zhen; Brace, Christopher L

    2011-08-21

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time-temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic-thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature-time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature-time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model. PMID:21791728

  1. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties

    PubMed Central

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  2. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    PubMed

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  3. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  4. Size effects on mechanical and thermal properties of thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Tarekul

    Materials, from electronic to structural, exhibit properties that are sensitive to their composition and internal microstructures such as grain and precipitate sizes, crystalline phases, defects and dopants. Therefore, the research trend has been to obtain fundamental understanding in processing-structure-properties to develop new materials or new functionalities for engineering applications. The advent of nanotechnology has opened a new dimension to this research area because when material size is reduced to nanoscale, properties change significantly from the bulk values. This phenomenon expands the problem to 'size-processing-structure-propertiesfunctionalities'. The reinvigorated research for the last few decades has established size dependency of the material properties such as thermal conductivity, Young's modulus and yield strength, electrical resistivity, photo-conductance etc. It is generally accepted that classical physical laws can be used to scale down the properties up to 25-50 nm length-scale, below which their significant deviation or even breakdown occur. This dissertation probes the size effect from a different perspective by asking the question, if nanoscale size influences one physical domain, why it would not influence the coupling between two or more domains? Or in other words, if both mechanical and thermal properties are different at the nanoscale, can mechanical strain influence thermal conductivity? The hypothesis of size induced multi-domain coupling is therefore the foundation of this dissertation. It is catalyzed by the only few computational studies available in the literature while experimental validations have been non-existent owing to experimental challenges. The objective of this research is to validate this hypothesis, which will open a novel avenue to tune properties and functionalities of materials with the size induced multi-domain coupling. Single domain characterization itself is difficult at the nanoscale due to specimen

  5. Spectrophotometric Properties of Thermally Anomalous Terrain on Mimas

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Helfenstein, Paul; Howett, Carly; Annex, Andrew; Schenk, Paul

    2014-11-01

    Cassini’s Composite InfraRed Spectrometer (CIRS) maps of thermal emission from Mimas reveal a V-shaped boundary, centered at 0° N and 180° W, which divides relatively warm daytime temperatures from an anomalously cooler region at low to mid-latitudes on the moon’s leading hemisphere (Howett et al. 2011, Icarus 216, 221-226). This cooler region is also warmer at night, indicating that it has high thermal inertia, and also coincides in shape and location with that of high-energy electron deposition from Saturn’s magnetosphere (Roussos et al. 2007, JGRA 112, A06214; Schenk et al. 2011, Icarus 211, 740-757). Global IR/UV color ratio maps assembled from Cassini Imaging Science Subsystem (ISS) images show a lens-shaped region of relatively blue terrain also centered on Mimas’ leading hemisphere (Schenk et al. 2011), coinciding in shape and location with the region of high thermal inertia. We present results of our analysis of Cassini ISS CL1 UV3 and IR3 filter (centered at 338 and 930 nm, respectively) images using the Hapke (2008, Icarus 195, 918-926) photometric model. We investigate whether the photometric properties of surface particles are consistent with the conclusion by Howett et al. (2011) that their high thermal inertia is produced by sintering processes due to bombardment by high energy electrons. The non-thermally anomalous surface on Mimas' trailing hemisphere exhibits a strong opposition effect, consistent with the presence of a more complex microtexture due to preferential bombardment by E ring particles. This work is supported by the NASA Cassini Data Analysis and Participating Scientists Program.

  6. HIGH TEMPERATURE THERMAL AND STRUCTURAL MATERIAL PROPERTIES FOR METALS USED IN LWR VESSELS

    SciTech Connect

    J.L. Rempe; D.L. Knudson; J. E. Daw; J. C. Crepeau

    2008-06-01

    Because of the impact that melt relocation and vessel failure may have on subsequent progression and associated consequences of a Light Water Reactor (LWR) accident, it is important to accurately predict heating and relocation of materials within the reactor vessel, heat transfer to and from the reactor vessel, and the potential for failure of the vessel and structures within it. Accurate predictions of such phenomena require high temperature thermal and structural properties. However, a review of vessel and structural steel material properties used in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 1000 K. To reduce uncertainties in predictions relying upon extrapolated high temperature data, Idaho National Laboratory (INL) obtained high data for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, and compares it to existing data.

  7. The thermal infrared radiance properties of dust aerosol over ocean

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu

    2015-10-01

    Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.

  8. Rheological and thermal properties of polylactide/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal

    2010-03-01

    Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. PMID:20492249

  9. Assessment of the Impact of the Measurement Precision of Thermal Properties of Materials on the Prediction of Their Thermal Behaviour

    NASA Astrophysics Data System (ADS)

    Khatun, Ayesha

    The thermal properties of the sidewall lining materials are capturing attention since the last two decades. Good prediction of the dynamic thermal behaviour of Hall Heroult cells, including precise estimation of energy losses and location of the side ledge formed by the solidification of electrolytic bath, is made possible when the sidelining materials are well characterized in function of temperature. The present work aim at measuring the thermal diffusivity, heat capacity and thermal conductivity of silicon carbide (SiC), graphitic and graphitized carbon materials and cryolite (Na3AlF 6) based on transient characterization techniques. The thermal diffusivity and the heat capacity are measured by using state-of-the-art transient laser flash analyzer and differential scanning calorimeter respectively. The thermal conductivity is calculated by assuming a constant density. The range of precision error for each thermal property is also calculated for a finite number of data sets. Empirical correlation has been drawn for each of the properties to describe the relation with temperature in mathematical terms. Thermal characterization of the latent heat evolved during the melting of ledge is also carried out. Finally, based on the calculations conducted with a 2-D numerical model, the effect of the precision errors of temperature varying thermal properties of the sidewall materials and ledge on the dynamic behaviour of a laboratory scale phase change reactor is also presented. The results, so obtained, encourage further studies on the thermal properties of materials used in the aluminium reduction cell to find out the thermal environment inside the cell, heat loss estimation and effect of the additives on the location of ledge. Key words: Thermal conductivity, thermal diffusivity, heat capacity, temperature varying properties, precision error, phase change profile, latent heat.

  10. Mechanical properties testing and results for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Cruse, T. A.; Johnsen, B. P.; Nagy, A.

    1997-03-01

    Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  11. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  12. Morphology and thermal properties of PLA-cellulose nanofibers composites.

    PubMed

    Frone, Adriana N; Berlioz, Sophie; Chailan, Jean-François; Panaitescu, Denis M

    2013-01-01

    Biodegradable nanocomposites were obtained from polylactic acid (PLA) and cellulose nanofibers with diameters ranging from 11 nm to 44 nm. The influence of treated (with 3-aminopropyltriethoxysilane) and untreated nanofibers on the thermal properties of PLA was investigated in detail using multiple session Differential Scanning Calorimetry (DSC) analysis. The nucleating effect of the cellulose nanofibers was confirmed by all the DSC runs (two melting and two crystallization steps). The morphology of both neat PLA and nanocomposites was explored for the first time using a new powerful AFM technique, Peak Force QNM (Quantitative Mechanical Property Mapping at the Nanoscale), which emphasized the nanolevel characteristics by elastic modulus mapping. QNM analyses showed a better dispersion of the silane treated nanofibers in the matrix as compared to the untreated ones. Moreover, a higher degree of crystallinity was detected in the PLA composites containing untreated nanofibers compared to the composites with treated ones. PMID:23044146

  13. Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling.

    PubMed

    Sethurajan, Athinthra Krishnaswamy; Krachkovskiy, Sergey A; Halalay, Ion C; Goward, Gillian R; Protas, Bartosz

    2015-09-17

    We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data. PMID:26247105

  14. Nonlinear Optical Properties of Fluorescent Dyes Allow for Accurate Determination of Their Molecular Orientations in Phospholipid Membranes.

    PubMed

    Timr, Štěpán; Brabec, Jiří; Bondar, Alexey; Ryba, Tomáš; Železný, Miloš; Lazar, Josef; Jungwirth, Pavel

    2015-07-30

    Several methods based on single- and two-photon fluorescence detected linear dichroism have recently been used to determine the orientational distributions of fluorescent dyes in lipid membranes. However, these determinations relied on simplified descriptions of nonlinear anisotropic properties of the dye molecules, using a transition dipole-moment-like vector instead of an absorptivity tensor. To investigate the validity of the vector approximation, we have now carried out a combination of computer simulations and polarization microscopy experiments on two representative fluorescent dyes (DiI and F2N12S) embedded in aqueous phosphatidylcholine bilayers. Our results indicate that a simplified vector-like treatment of the two-photon transition tensor is applicable for molecular geometries sampled in the membrane at ambient conditions. Furthermore, our results allow evaluation of several distinct polarization microscopy techniques. In combination, our results point to a robust and accurate experimental and computational treatment of orientational distributions of DiI, F2N12S, and related dyes (including Cy3, Cy5, and others), with implications to monitoring physiologically relevant processes in cellular membranes in a novel way. PMID:26146848

  15. First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Jiawei; Liao, Bolin; Chen, Gang

    2016-04-01

    The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). An understanding of the transport details can lead to material designs with better performances. In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials (such as band structure and phonon dispersion) accurately. Accordingly, methods have been developed to calculate the transport properties based on an ab initio approach. In this review we focus on the thermal, electrical, and thermoelectric transport properties of semiconductors, which represent the basic transport characteristics of the two degrees of freedom in solids—electronic and lattice degrees of freedom. Starting from the coupled electron-phonon Boltzmann transport equations, we illustrate different scattering mechanisms that change the transport features and review the first-principles approaches that solve the transport equations. We then present the first-principles results on the thermal and electrical transport properties of semiconductors. The discussions are grouped based on different scattering mechanisms including phonon-phonon scattering, phonon scattering by equilibrium electrons, carrier scattering by equilibrium phonons, carrier scattering by polar optical phonons, scatterings due to impurities, alloying and doping, and the phonon drag effect. We show how the first-principles methods allow one to investigate transport properties with unprecedented detail and also offer new insights into the electron and phonon transport. The current status of the simulation is mentioned when appropriate and some of the future directions are also discussed.

  16. Non-contact imaging of thermal properties of the skin.

    PubMed

    Togawa, T; Saito, H

    1994-08-01

    Non-contact measurement of thermal properties of the skin was performed by using a thermovision camera and a mechanical system that provides a step change in ambient radiation temperature. A hood maintained at 20 degrees C was initially placed so as to cover the object surface towards which a thermovision camera was directed. Then the hood was quickly replaced by another hood maintained at 40 degrees C. Thermograms before, immediately after and 20 s after switching the hoods were taken. Then the image of emissivity was computed from thermograms taken before and immediately after hood switching, and the emissivity-corrected thermograms were computed by using the emissivity value obtained at each pixel. The images of the square root of the product of thermal conductivity, density and specific heat were computed from thermograms taken immediately after and 20 s after hood switching. While images of the emissivity obtained and the thermal parameter defined above contained significant noise, differences in these quantities between sites could be clearly demonstrated. PMID:7994207

  17. Adjustment of Sensor Locations During Thermal Property Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The temperature dependent thermal properties of a material may be evaluated from transient temperature histories using nonlinear parameter estimation techniques. The usual approach is to minimize the sum of the squared errors between measured and calculated temperatures at specific locations in the body. Temperature measurements are usually made with thermocouples and it is customary to take thermocouple locations as known and fixed during parameter estimation computations. In fact, thermocouple locations are never known exactly. Location errors on the order of the thermocouple wire diameter are intrinsic to most common instrumentation procedures (e.g., inserting a thermocouple into a drilled hole) and additional errors can be expected for delicate materials, difficult installations, large thermocouple beads, etc.. Thermocouple location errors are especially significant when estimating thermal properties of low diffusively materials which can sustain large temperature gradients during testing. In the present work, a parameter estimation formulation is presented which allows for the direct inclusion of thermocouple positions into the primary parameter estimation procedure. It is straightforward to set bounds on thermocouple locations which exclude non-physical locations and are consistent with installation tolerances. Furthermore, bounds may be tightened to an extent consistent with any independent verification of thermocouple location, such as x-raying, and so the procedure is entirely consonant with experimental information. A mathematical outline of the procedure is given and its implementation is illustrated through numerical examples characteristic of light-weight, high-temperature ceramic insulation during transient heating. The efficacy and the errors associated with the procedure are discussed.

  18. Thermal Properties of Unusual Local-Scale Features on Vesta

    NASA Technical Reports Server (NTRS)

    Capria, M.; DeSanctis, M.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; Sunshine, J. M.; Titus, T. N.; Mittlefehldt, D. W.; Li, J.; Russell, C. T.; Raymond, C. A.

    2012-01-01

    On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.

  19. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  20. Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Romao, Carl P.; Miller, Kimberly J.; Johnson, Michel B.; Zwanziger, J. W.; Marinkovic, Bojan A.; White, Mary Anne

    2014-07-01

    Y2Mo3O12, a material that exhibits negative thermal expansion (NTE) from 10 to 1173 K, offers an excellent opportunity to examine relationships between NTE and other physical properties over a wide temperature range. We report experimental heat capacity, thermal conductivity, and elastic properties of Y2Mo3O12, as well as results of an ab initio study of the lattice dynamics, and show how the anomalously high heat capacity and low thermal conductivity are correlated with NTE. We also report the ab initio elastic tensor and experimental velocity of sound of Y2Mo3O12 and use it to calculate the thermal stresses in a simulated polycrystal using finite-element analysis, showing that elastic anisotropy and thermal expansion anisotropy couple to influence the properties of the bulk solid.

  1. Determination of Viral Capsid Elastic Properties from Equilibrium Thermal Fluctuations

    NASA Astrophysics Data System (ADS)

    May, Eric R.; Brooks, Charles L., III

    2011-05-01

    We apply two-dimensional elasticity theory to viral capsids to develop a framework for calculating elastic properties of viruses from equilibrium thermal fluctuations of the capsid surface in molecular dynamics and elastic network model trajectories. We show that the magnitudes of the long wavelength modes of motion available in a simulation with all atomic degrees of freedom are recapitulated by an elastic network model. For the mode spectra to match, the elastic network model must be scaled appropriately by a factor which can be determined from an icosahedrally constrained all-atom simulation. With this method we calculate the two-dimensional Young’s modulus Y, bending modulus κ, and Föppl-von Kármán number γ, for the T=1 mutant of the Sesbania mosaic virus. The values determined are in the range of previous theoretical estimates.

  2. Room temperature mechanical properties of shuttle thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Rummler, D. R.

    1980-01-01

    Tests were conducted at room temperature to determine the mechanical properties and behavior of materials used for the thermal protection system of the space shuttle. The materials investigated include the LI-900 RSI tiles, the RTV-560 adhesive and the .41 cm (.16 thick) strain isolator pad (SIP). Tensile and compression cyclic loading tests were conducted on the SIP material and stress-strain curves obtained for various proof loads and load cyclic conditioning. Ultimate tensile and shear tests were conducted on the RSI, RTV, and SIP materials. The SIP material exhibits highly nonlinear stress-strain behavior, increased tangent modulus and ultimate tensile strength with increased loading rate, and large short time load relaxation and moderate creep behavior. Proof and cyclic load conditioning of the SIP results in permanent deformation of the material, hysteresis effects, and much higher tensile tangent modulus values at large strains.

  3. Water retention curves and thermal insulating properties of Thermosand

    NASA Astrophysics Data System (ADS)

    Leibniz, Otto; Winkler, Gerfried; Birk, Steffen

    2010-05-01

    The heat loss and the efficiency of isolating material surrounding heat supply pipes are essential issues for the energy budget of heat supply pipe lines. Until now heat loss from the pipe is minimized by enlarging the polyurethane (PU) - insulation thickness around the pipe. As a new approach to minimize the heat loss a thermally insulating bedding material was developed and investigated. Conventional bedding sands cover all necessary soil mechanical properties, but have a high thermal conductivity from λ =1,5 to 1,7 W/(m K). A newly developed embedding material 'Thermosand' shows thermal properties from λ=0,18 W/(m K) (dry) up to 0,88 W/(m K) (wet). The raw material originates from the waste rock stockpiles of a coal mine near Fohnsdorf, Austria. With high temperatures up to nearly 1000 ° C and a special mineral mixture, a natural burned reddish material resembling clinker arises. The soilmechanical properties of Thermosand has been thoroughly investigated with laboratory testing and in situ investigations to determine compaction-, permeability- and shear-behaviour, stiffness and corresponding physical parameters. Test trenches along operational heat pipes with temperature-measurement along several cross-sections were constructed to compare conventional embedding materials with 'Thermosand'. To investigate the influence of varying moisture content on thermal conductivity a 1:1 large scale model test in the laboratory to simulate real insitu-conditions was established. Based on this model it is planned to develop numerical simulations concerning varying moisture contents and unsaturated soil mechanics with heat propagation, including the drying out of the soil during heat input. These simulations require the knowledge about the water retention properties of the material. Thus, water retention curves were measured using both steady-state tension and pressure techniques and the simplified evaporation method. The steady-state method employs a tension table (sand

  4. Surface and Electrical Properties of Electro-Coagulated Thermal Waste

    NASA Astrophysics Data System (ADS)

    Yesilkaya, S. S.; Okutan, M.; Içelli, O.; Yalçın, Z.

    2015-05-01

    The Electro-Coagulated Thermal Waste (ECTW) sample of the impedance spectroscopy investigation for electrical modulus and conductivity are presented. Electrical properties via temperature and frequency dependent impedance spectroscopy were investigated. Real and imaginary parts of electrical modulus were measured at various frequencies and a related Cole-Cole plot was acquired as well. The surface resistivity of the ECTW was measured by the four-point probe measurement technique, yielding a relatively high surface resistivity. As a result of this study, an effective building shielding material, which is a cost effective alternative, is proposed. The activation energy values were calculated from the Arrhenius plots at different frequencies. The transition region in this plot may be attributed to activation of ionic conductivity at lower temperatures.

  5. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    NASA Astrophysics Data System (ADS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  6. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    SciTech Connect

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  7. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  8. Optical-Fiber Thermal-Wave-Cavity Technique to Study Thermal Properties of Silver/Clay Nanofliuds

    NASA Astrophysics Data System (ADS)

    Noroozi, M.; Radiman, S.; Zakaria, A.; Shameli, K.; Deraman, M.; Soltaninejad, S.; Abedini, A.

    2014-10-01

    Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10-3 to 1.789×10-3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques.

  9. A molecular dynamics simulation to investigate the thermal properties of SWCNT/poly(phenylenesulfone) nanocomposites

    NASA Astrophysics Data System (ADS)

    Taheri, Siavash; Shadman, Muhammad; Ahadi, Zohreh; Asgari, Farid; Mighani, Hossein

    2014-07-01

    An equilibrium molecular dynamics simulation is applied to investigate the thermal properties of a single-walled carbon nanotube/poly(phenylenesulfone) as nanocomposite material. Cohesive energy density and the Hildebrand solubility parameter of pure poly(phenylenesulfone) and nanocomposite are calculated to compare the thermal analysis of them. The results indicate that carbon nanotube/poly(phenylenesulfone) nanocomposites are thermally stable than pure poly(phenylenesulfone); however, poly(phenylenesulfone) is a thermally stable polymer. This means carbon nanotube can further improve thermal properties of thermally stable polymer.

  10. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-04-01

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approximately}13 y at {approximately}281 C (538 F) for the hot-leg components and {approximately}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of {approximately} 15 y and the KRB reactor pump cover plate (CF-8) after {approximately} 8 y of service.

  11. Mechanical properties of thermally aged cast stainless steels from shippingport reactor components.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.; Energy Technology

    1995-06-07

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approx}13 y at {approx}281 C (538 F) for the hot-leg components and {approx}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y and the KRB reactor pump cover plate (CF-8) after {approx}8 y of service.

  12. Thermally induced changes in dynamic mechanical properties of native silks.

    PubMed

    Guan, Juan; Porter, David; Vollrath, Fritz

    2013-03-11

    Dynamic mechanical thermal analysis (DMTA) on individual native silk fibers demonstrates changes in the dynamic mechanical properties of storage modulus and loss tangent as a function of temperature and temperature history ranging from -100 to 250 °C. These property changes are linked quantitatively to two main types of change in the silk structure. First, the evaporation of water with increasing temperature up to 100 °C increases the storage modulus and removes two characteristic loss tangent peaks at -60 and +60 °C. Second, various discrete loss tangent peaks in the range 150-220 °C are associated with specific disordered silk structures that are removed or converted to a limiting high-temperature relaxed structure by the combination of increasing temperature and static load in the DMTA tests. The results identify important origins of silk filament quality based on the analysis of measurements that can be traced back to differences in production and processing history. PMID:23405856

  13. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  14. Montmorillonite-levan nanocomposites with improved thermal and mechanical properties.

    PubMed

    Chen, Xiaoming; Gao, Hongsheng; Ploehn, Harry J

    2014-01-30

    This work reports on the structure and properties of novel nanocomposites composed of exfoliated montmorillonite clay blended with levan, a polysaccharide produced by Bacillus sp. Dry levan is very brittle, making it difficult to obtain stand-alone films. MMT-levan composites were prepared by solution blending in water, coating on plastic surfaces, partial drying at 50°C, and conditioning in air at 50-60% relative humidity. This process results in freestanding, transparent, and flexible films of pure levan and MMT-levan composites plasticized by 10-15 wt% water. XRD patterns from levan-MMT composites indicate an MMT interlayer spacing 0.62 nm greater than that of the starting MMT, suggesting re-stacking of MMT platelets coated by adsorbed, uncoiled levan molecules. FTIR results suggest that levan adheres to MMT via water-mediated hydrogen bonding between the levan's hydroxyl groups and MMT surface oxygens. MMT-levan composites have improved thermal stability and a well-defined glass transition temperature that increases with MMT loading. The tensile moduli of levan-MMT composites increase by as much as 480% relative to pure levan. The XRD and mechanical property results suggest that MMT reinforces levan through a filler network structure composed of MMT platelets bridged by adsorbed levan molecules, enhanced when the MMT loading becomes high enough (5-10wt% MMT) to induce an isotropic-nematic transition in MMT platelet orientation. PMID:24299812

  15. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  16. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    NASA Technical Reports Server (NTRS)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  17. Study of Thermal properties of VO2 and multilayer VO2 thin films for application in Thermal Switches

    NASA Astrophysics Data System (ADS)

    Zhu, Gaohua

    Ultrafast nature of the phase transition near room temperature in VO2 makes it attractive material for applications in electronics and optical devices however utilization of corresponding drastic change in thermo-physical properties are rarely reported. In this study we investigate thermal and electronic properties of VO2 thin films on various substrates across the transition temperature to seek possibility of utilizing VO2 based thermal switches for applications in thermal devices. In addition, the interfacial heat transfer in VO2/metal multilayer thin film is mediated by phonons at low temperature, and when temperature is elevated beyond phase transition temperature, the interface thermal conductance is mediated mainly by both phons and electrons. VO2-multilayers approach is studied to utilize the switching interface thermal conductance in order to obtain higher thermal conductivity switch ratio than what can be achieved in intrinsic VO2. Thermal conductivities and interface thermal conductance of VO2 and VO2 multilayer thin films are measured using the time-domain thermoreflectance (TDTR) method. We will discuss interplay of phononic and electronic component to thermal conductivity in the light of Wiedemann-Franz law across the metal to insulator state of VO2 films.

  18. Thermal dose dependent optical property changes of ex vivo chicken breast tissues between 500 and 1100 nm

    NASA Astrophysics Data System (ADS)

    Adams, Matthew T.; Wang, Qi; Cleveland, Robin O.; Roy, Ronald A.

    2014-07-01

    This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, \\mu _s^\\prime, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and \\mu _s^\\prime are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.

  19. Physicochemical, thermal, and pasting properties of starches separated from different potato cultivars grown at different locations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The starch separated from 21 different Indian potato cultivars from four locations was evaluated for physicochemical, thermal, and pasting properties. The relationships between the different properties of starches were determined using Pearson’s correlation analysis. Amylose content was positively...

  20. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  1. Database for thermal and mechanical properties of REBaCuO bulks

    NASA Astrophysics Data System (ADS)

    Fujishiro, Hiroyuki; Katagiri, Kazumune; Murakami, Akira; Yoshino, Yasuhiro; Noto, Koshichi

    2005-10-01

    The thermal properties (thermal conductivity, thermal diffusivity, thermoelectric power, thermal dilatation, etc.) and the mechanical properties (Young’s modulus, strength, hardness, fracture toughness, etc.) have been measured at low temperatures (4-300 K) and under a high magnetic field (0-10 T) for about 50 REBaCuO bulks (RE = Y, Gd, Nd, Sm, Dy, etc.). We have constructed the database of these properties and opened it on the Web site (thermal properties: http://ikebehp.mat.iwate-u.ac.jp/database.html and mechanical properties: http://paris.mech.iwate-u.ac.jp/sc-bulk/database.html). The influence of the species of RE ions, the content, size and dispersion of the RE211 (or Nd422) phase and Ag particles and the defects distribution on these properties is characterized.

  2. Physical properties of transneptunian objects, Centaurs, and Trojans from thermal observations

    NASA Astrophysics Data System (ADS)

    Mueller, M.

    2014-07-01

    The most productive way to measure the size and albedo of small bodies throughout the Solar System is through studies of their thermal emission. This is complicated for the cold bodies in the outer Solar System, whose thermal emission peaks at wavelengths for which the Earth's atmosphere is opaque. While the relatively warm Trojans are marginally accessible from the ground in the Q band, the sizes of only a handful of transneptunian objects (TNOs) and Centaurs were known before Spitzer was launched in 2003. Spitzer/MIPS photometry at wavelengths of 24 and 70 microns allowed size and albedo of tens of TNOs and Centaurs to be measured. Herschel (operational in 2009--2013) allowed photometry of a total of ˜140 TNOs at wavelengths between 70 and 500 microns using PACS and SPIRE, chiefly in the framework of the Key Programme ``TNOs are Cool!''. I will present selected results from these surveys and discuss their implications on our knowledge of the origin and evolution of the Solar System, as evidenced by its coldest members. Of particular interest are the sizes of binary systems. Where their masses are known from spatially resolved observations, diameter measurements allow the bulk mass density to be determined, providing a unique probe of the object's interior. In the past few years, we have witnessed a remarkable increase in the number of successfully observed stellar occultations by TNOs and other small bodies. They provide an elegant, model-independent, and accurate way of measuring projected TNO dimensions at the time of the event and at the location of the observer(s). Even satellites or ring systems can be detected this way. However, predictable occultations are rare events and will likely stay infrequent, even in the post-Gaia era. Studies of the ensemble properties of the transneptunian populations will continue to rely on thermal observations. Reliable thermal modeling requires some knowledge of the target's temperature. Optimally, this is obtained through

  3. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  4. Thermal Properties of Holmium-Implanted Gold Films

    NASA Astrophysics Data System (ADS)

    Prasai, K.; Alves, E.; Bagliani, D.; Yanardag, S. Basak; Biasotti, M.; Galeazzi, M.; Gatti, F.; Gomes, M. Ribeiro; Rocha, J.; Uprety, Y.

    2014-09-01

    The effective mass of the electron neutrino can be probed by studying the Ho electron capture decay with cryogenic microcalorimeters. The goal is to perform a calorimetric experiment, where all the energy released in the decay is measured except for the kinetic energy of the neutrino. To achieve such a goal, multiple approaches are being investigated to enclose the radioactive source in a microcalorimeter absorber without affecting the thermal properties of the absorber material. One such approach is to implant the radioactive isotope into a gold absorber, as gold is successfully used in similar applications. We measured the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the Ho fabrication), in the temperature range 70-300 mK. Our results show that the specific heat capacity of the films is not affected by the implant, making this a viable option for a future experiment. We also verified that the implant does not affect the crystal structure of the gold film.

  5. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  6. Molecular structure, photophysical and thermal properties of samarium (III) complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Singh, Udai P.

    2008-03-01

    Some 8-coordinated samarium (III) complexes ( 1- 4) having bipy (2,2'-bipyridine), terpy (2,2':6',2″-terpyridine), phen (1,10-phenanthroline) and tp [hydrotris (pyrazol-1-yl) borate] as supporting ligands have been synthesized and structurally characterized by different techniques including X-ray crystallography. The X-ray studies demonstrated that the complexes 1, 2 and 4 crystallized in triclinic space group P1¯ with cell dimensions a = 8.5640(2) Å, b = 8.8696(2) Å, c = 15.8608(4) Å for 1; a = 7.2113(9) Å, b = 11.0737(14) Å, c = 13.6289(18) Å for 2; a = 12.440(3) Å, b = 12.874(3) Å, c = 17.822(4) Å for 4, whereas the complex 3 crystallized in the monoclinic space group P2 1/ c with cell dimensions a = 9.472(3) Å, b = 17.092(5) Å, c = 14.516(5) Å. The IR study suggested that the azide is coordinated in 1, 3-bridging mode in complex 4. The photophysical properties of above complexes have been studied with ultraviolet absorption and emission spectral studies. Thermogravimetric analyses suggested that all these complexes undergo the complete decomposition to form the thermally stable samarium oxide (Sm 2O 3).

  7. Sulfone-Containing Methacrylate Homopolymers: Wetting and Thermal Properties.

    PubMed

    Fujii, Shota; McCarthy, Thomas J

    2016-01-26

    Although the sulfonyl functional group has a large dipole moment and compounds containing them (sulfones) have correspondingly high dielectric constants, this chemical structure has been neglected for use as a functional group to render surfaces hydrophilic. We have prepared three methacrylate polymers containing side chains capped with sulfolane, methylsulfone, and ethylsulfone functionality. The sulfolane-containing polymer exhibits an unusually high glass transition temperature (Tg = 188°C) for a methacrylate polymer and slightly different thermal degradation behavior than the other two sulfone-containing polymers, likely due to the bulky structure of the sulfolane group in the polymer side chain. At macroscopic polymer film/water interfaces, the sulfone-containing side chains exposed to the interface impart hydrophilic properties as assessed by contact angle analysis. The hydrophilicities of sulfolane and methylsulfone surfaces are similar, and greater than the ethylsulfone surface. Although the chemical compositions of the sulfolane and ethylsulfone polymers are almost identical, the five-membered ring structure of sulfolane allows the sulfonyl moiety to be exposed at the interface in a manner similar to that of the methylsulfone polymer. The sulfonyl group at the ethylsulfone polymer/water interface is slightly masked by the ethyl group. Interestingly, the sulfolane surface displays a higher affinity to methylene iodide and n-hexadecane probe fluids compared to the other sulfone surfaces, suggesting that the five-membered ring structure of the sulfolane moiety can orient in a manner that shelters the sulfonyl group at hydrophobic interfaces. PMID:26716766

  8. Thermal Properties of Trogamid by Conventional and Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Merfeld, John; Mao, Bin; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We use conventional slow scan rate differential scanning calorimetry, and fast scanning chip-based calorimetry (FSC), to investigate the crystallization and melting behavior of Trogamid, a chemical relative of nylon. Fundamental thermal properties of Trogamid were studied, including the melt crystallization kinetics, heat of fusion, and the solid and liquid state heat capacities. Using slow scan DSC (at 5 K/min), Trogamid displays a glass transition relaxation process at ~133 C, melting endotherm peak at 250 C, and is stable upon repeated heating to 310 C. When using slow scan DSC, the isothermal melt crystallization temperatures were restricted to 225 C or above. Trogamid crystallizes rapidly from the melt and conventional calorimetry is unable to cool sufficiently fast to prevent nucleation and crystal growth prior to stabilization at lower crystallization temperatures. Using FSC we were able to cool nano-gram sizes samples at 2000 K/s to investigate a much lower range of melt crystallization temperatures, from 205-225 C. The experimental protocol for performing FSC on semicrystalline polymers to obtain liquid state heat capacity data will be presented. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  9. Dynamic Boundary Layer Properties in Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao

    2004-11-01

    We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.

  10. The effect of kernel maturity on the thermal properties of sorghum starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is a widely used component in both food and industrial applications. Critical components in the functionality of starch in a food or industrial system are its thermal properties. The objective of this study was to determine if the thermal properties of starch change as sorghum develops. Tw...

  11. Waxy soft white wheat: extrusion characteristics and thermal and rheological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waxy wheat flour was analyzed for its thermal and rheological properties and extruded to understand its processing characteristics. Comparisons were made with normal soft white wheat flour to identify extrusion differences under the same conditions. The thermal and rheological properties through Rap...

  12. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    PubMed Central

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  13. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-11-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes.

  14. A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests

    SciTech Connect

    Shonder, J.A.

    2000-05-02

    -term variations in heat input. Also, since the model is accurate even for short times, there is no need to discard initial data. The parameter estimation technique used to determine the properties is based on statistical principles that provide quantitative estimates of measurement accuracy. The parameter estimation method has now been tested with a laboratory test rig at Oklahoma State University and in field tests at two elementary schools in Lincoln, Nebraska. Using our estimation algorithms, and building on the validation achieved during testing, we have developed a computer program, the Geothermal Properties Measurement (GPM) model, that allows users to determine thermal properties from short-term in situ field tests. This program is currently available free of charge.

  15. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  16. Accurate dipole moment curve and non-adiabatic effects on the high resolution spectroscopic properties of the LiH molecule

    NASA Astrophysics Data System (ADS)

    Diniz, Leonardo G.; Kirnosov, Nikita; Alijah, Alexander; Mohallem, José R.; Adamowicz, Ludwik

    2016-04-01

    A very accurate dipole moment curve (DMC) for the ground X1Σ+ electronic state of the 7LiH molecule is reported. It is calculated with the use of all-particle explicitly correlated Gaussian functions with shifted centers. The DMC - the most accurate to our knowledge - and the corresponding highly accurate potential energy curve are used to calculate the transition energies, the transition dipole moments, and the Einstein coefficients for the rovibrational transitions with ΔJ = - 1 and Δv ⩽ 5 . The importance of the non-adiabatic effects in determining these properties is evaluated using the model of a vibrational R-dependent effective reduced mass in the rovibrational calculations introduced earlier (Diniz et al., 2015). The results of the present calculations are used to assess the quality of the two complete linelists of 7LiH available in the literature.

  17. Accurate blackbodies

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Watson, Mike; Topham, Shane; Scott, Deron; Wojcik, Mike; Bingham, Gail

    2010-07-01

    Infrared radiometers and spectrometers generally use blackbodies for calibration, and with the high accuracy needs of upcoming missions, blackbodies capable of meeting strict accuracy requirements are needed. One such mission, the NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which will measure Earth's emitted spectral radiance from orbit, has an absolute accuracy requirement of 0.1 K (3σ) at 220 K over most of the thermal infrared. Space Dynamics Laboratory (SDL) has a blackbody design capable of meeting strict modern accuracy requirements. This design is relatively simple to build, was developed for use on the ground or onorbit, and is readily scalable for aperture size and required performance. These-high accuracy blackbodies are currently in use as a ground calibration unit and with a high-altitude balloon instrument. SDL is currently building a prototype blackbody to demonstrate the ability to achieve very high accuracy, and we expect it to have emissivity of ~0.9999 from 1.5 to 50 μm, temperature uncertainties of ~25 mK, and radiance uncertainties of ~10 mK due to temperature gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the low temperature uncertainty is attained by including phase change materials such as mercury, gallium, and water in the blackbody. Blackbody temperature sensors are calibrated at the melt points of these materials, which are determined by heating through their melt point. This allows absolute temperature calibration traceable to the SI temperature scale.

  18. The effects of thermally reversible agents on PVC stability properties

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yao, J.; Xiong, X. H.; Jia, C. X.; Ren, R.; Chen, P.; Liu, X. M.

    2016-07-01

    One kind of thermally reversible cross-linking agents for improving PVC thermally stability was synthesized. The chemical structure and thermally reversible characteristics of cross-linking agents were investigated by FTIR and DSC analysis, respectively. FTIR results confirmed that the cyclopentadienyl barium mercaptides ((CPD-C2H4S)2Ba) were successfully synthesized. DSC results showed it has thermally reversible characteristics and the depolymerization temperature was between 170 °C and 205 °C. The effects of cross-linking reaction time on gel content of Poly(vinyl chloride) compounds was evaluated. The gel content value arrived at 42% after being cross-linked for 25 min at 180 C. The static thermally stability measurement proved that the thermally stability of PVC compounds was improved.

  19. Study of mechanical and thermal properties of soy flour elastomers

    NASA Astrophysics Data System (ADS)

    Allen, Kendra Alicia

    Bio-based plastics are becoming viable alternatives to petroleum-based plastics because they decrease dependence on petroleum derivatives and are more environmentally friendly. Raw materials such as soy flour are widely available, low cost, lightweight, stiffness and have high strength characteristics, but weak interfacial adhesion between the soy flour and the polymer poses a challenge. In this study, soy flour was utilized as a filler in thermoplastic elastomer composites. A surface modification called acetylation was investigated at soy flour concentrations of 10 wt%, 15 wt% and 20 wt%. The mechanical properties of the composites were then compared to that of elastomers without a filler. Chemical characterization of the acetylated soy flour was attempted in order to understand what occurs during the reaction and after completion. In the range of tests, soy flour loadings were observed to be inversely proportional to tensile strength for both the untreated and treated soy flour. However, the acetylated soy flour at 10 wt% concentration performed comparable to that of the neat rubber and resulted in an increase in tensile strength. Unexpectedly, the acetylation reaction increased elongation, which reduced stress within the composite and is believed to increase the adhesion of the soy flour to that of the elastomer. In the nuclear magnetic resonance (SS-NMR), the intensity for the treated soy flour was larger than that of the untreated soy flour for the acetyl groups that were attached to the soy flour, particularly, the carbonyl function group next to the deprotonated oxygen and the methyl group next to the carbonyl. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicated that the acetylated soy flour is slightly more thermally stable than the untreated soy flour. The treated soy flour also increased the decomposition temperature of the composite.

  20. Thermal properties of {sup 4}He surfaces and interfaces

    SciTech Connect

    Clements, B.E.; Krotscheck, E. |; Tymczak, C.J.

    1997-05-01

    A first-principle quantum statistical mechanical theory is used to study the properties of thick liquid {sup 4}He films absorbed to the weakly binding substrates: Li, Na, and Cs. Values for the liquid-gas and solid-liquid surface energies are determined. By fitting, at long wavelengths, the film`s lowest energy mode with the standard expression for the ripplon energy, which depends on the liquid-gas surface energy, the authors obtain excellent agreement with the liquid-vacuum surface energy from recent experiments and also the one previously extracted from quantum liquid droplet calculations. The full spectrum of excitations for wave vectors less than 0.50 {Angstrom}{sup {minus}1} is calculated using a dynamical correlated basis function theory developed in earlier work, which includes multi-phonon scattering processes. Particle currents and transition densities are used to elucidate the nature of the excitations. At a coverage of 0.40 {Angstrom}{sup {minus}2}, the lowest mode shows no significant substrate dependence, and is recognized as being a ripplon propagating in the liquid film at the liquid-gas surface. A new effect is observed for the Cs substrate; the second lowest mode is qualitatively different than found on the other substrates and is identified as interfacial ripplon. In the other substrates the second mode is a volume mode altered somewhat by the high density inner liquid layers. The linewidths of these modes are also calculated. The dynamic excitations provide the input for the thermodynamic theory and the effects on the free energy, heat capacity, and thermal surface broadening of these films are studied as function of the nature of the excitations, the number of modes, and variations in the substrate potentials.

  1. Thermophysical properties of thermal sprayed coatings on carbon steel substrates by photothermal radiometry

    SciTech Connect

    Garcia, J.A.; Mandelis, A.; Farahbakhsh, B.; Lebowitz, C.; Harris, I.

    1999-09-01

    Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermal physical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.

  2. Effects of Carbon Allotropic Forms on Microstructure and Thermal Properties of Cu-C Composites Produced by SPS

    NASA Astrophysics Data System (ADS)

    Pietrzak, K.; Sobczak, N.; Chmielewski, M.; Homa, M.; Gazda, A.; Zybała, R.; Strojny-Nędza, A.

    2016-02-01

    Combination of extreme service conditions and complex thermomechanical loadings, e.g., in electronics or power industry, requires using advanced materials with unique properties. Dissipation of heat generated during the operation of high-power electronic elements is crucial from the point of view of their efficiency. Good cooling conditions can be guaranteed, for instance, with materials of very high thermal conductivity and low thermal expansion coefficient, and by designing the heat dissipation system in an accurate manner. Conventional materials such as silver, copper, or their alloys, often fail to meet such severe requirements. This paper discusses the results of investigations connected with Cu-C (multiwall carbon nanotubes (MWNTs), graphene nanopowder (GNP), or thermally reduced graphene oxide (RGO)) composites, produced using the spark plasma sintering technique. The obtained composites are characterized by uniform distribution of a carbon phase and high relative density. Compared with pure copper, developed materials are characterized by similar thermal conductivity and much lower values of thermal expansion coefficient. The most promising materials to use as heat dissipation elements seems to be copper-based composites reinforced by carbon nanotubes (CNTs) and GNP.

  3. Thermal properties of carbon nanowall layers measured by a pulsed photothermal technique

    NASA Astrophysics Data System (ADS)

    Achour, A.; Belkerk, B. E.; Ait Aissa, K.; Vizireanu, S.; Gautron, E.; Carette, M.; Jouan, P.-Y.; Dinescu, G.; Brizoual, L. Le; Scudeller, Y.; Djouadi, M.-A.

    2013-02-01

    We report the thermal properties of carbon nanowall layers produced by expanding beam radio-frequency plasma. The thermal properties of carbon nanowalls, grown at 600 °C on aluminium nitride thin-film sputtered on fused silica, were measured with a pulsed photo-thermal technique. The apparent thermal conductivity of the carbon at room temperature was found to increase from 20 to 80 Wm-1 K-1 while the thickness varied from 700 to 4300 nm, respectively. The intrinsic thermal conductivity of the carbon nanowalls attained 300 Wm-1 K-1 while the boundary thermal resistance with the aluminium nitride was 3.6 × 10-8 Km2 W-1. These results identify carbon nanowalls as promising material for thermal management applications.

  4. Soil thermal properties at Kalpakkam in coastal South India

    NASA Astrophysics Data System (ADS)

    Anandakumar, K.; Venkatesan, R.; Prabha, Thara V.

    2001-09-01

    Time series of soil surface and subsurface temperatures, soil heat flux, net radiation, air temperature and wind speed were measured at two locations in Kalpakkam, coastal southeast India. The data were analysed to estimate soil thermal diffusivity, thermal conductivity, volumetric heat capacity and soil heat flux. This paper describes the results and discusses their implications.

  5. Another Demo of the Unusual Thermal Properties of Rubber

    ERIC Educational Resources Information Center

    Liff, Mark I.

    2010-01-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect. Joule in the 1850s studied the thermal behavior…

  6. MODELING DYNAMIC THERMAL PROPERTIES OF IMPORTED FIRE ANT MOUNDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based thermal infrared imagery, 3-dimensional modeling, and spatial analyses were used to model daily fluctuation in the temperature of imported fire ant mounds and their surroundings. The thermal center of the mound moved in a predictable fashion from east-southeast to west-southwest during...

  7. Optimal experimental designs for the estimation of thermal properties of composite materials

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  8. Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)

    NASA Astrophysics Data System (ADS)

    Popov, Yu.; Romushkevich, R.; Korobkov, D.; Mayr, S.; Bayuk, I.; Burkhardt, H.; Wilhelm, H.

    2011-02-01

    The results of thermal property measurements on cores from the scientific well Yaxcopoil-1 (1511 m in depth) drilled in the Chicxulub impact structure (Mexico) are described. The thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy coefficient, thermal heterogeneity factor, and, in addition, porosity and density were measured on 451 dry and water-saturated cores from the depth interval of 404-1511 m. The acoustic velocities were determined on a subgroup of representative samples. Significant vertical short- and long-scale variations of physical properties related to the grade of shock-thermal metamorphism and correlations between thermal and other physical properties are established. Rocks of the post-impact and impact complexes differ significantly in heterogeneity demonstrating that the impact complex has larger micro- heterogeneity on sample scale. The pre-impact rocks differ essentially from the impact and post-impact rocks in the thermal conductivity, thermal diffusivity, density and porosity. The thermal anisotropy of rocks of all structural-lithological complexes is very low (K = 1.02 … 1.08), which is similar to the situation in the Puchezh-Katunk and Ries impact structures. Correlations are established between the thermal conductivity and elastic wave velocities measured in laboratory. For limestone-calcarenites, the thermal conductivity (λ) can be calculated from the compressional wave velocity (Vp) using the formula λ= 0.346 Vp + 0.844, and for dolomite-anhydrites this relation has the form λ= 0.998 Vp + 1.163 [for λ in W (m K)-1 and Vp in km s-1]. These correlations are used for downscaling of the sonic velocities to the decimetre scale. The effective medium theory is applied to invert the matrix thermal conductivity and pore/crack geometry from the thermal conductivity measured on the studied samples. Representative experimental data on the thermal properties for all lithological groups encountered by the

  9. The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch.

    PubMed

    Tong, Chuan; Liu, Lei; Waters, Daniel L E; Huang, Yan; Bao, Jinsong

    2015-11-20

    It is known that lysophospholipids (LPLs) may affect rice starch pasting and thermal properties possibly through the formation of an amylose-lipid complex. However, whether these effects of rice LPLs are independent of amylose are still not understood. Here, the diversity of rice flour pasting and thermal properties and their relationship with individual LPL components in native rice endosperm were studied. Several significant correlations between LPLs and pasting properties, such as cool paste viscosity (CPV), breakdown (BD) and consistency (CS) were clearly evident. Thermal properties generally had no relationship with LPLs except for gelatinization enthalpy. Using partial correlation analysis we found that, irrespective of apparent amylose content, CPV and individual LPLs were positively correlated, while BD, CS and other individual LPLs were negatively correlated. This study suggests naturally occurring individual LPLs can contribute to rice flour pasting and thermal properties, either independently or in combination with amylose. PMID:26344271

  10. Analysis of Dielectric and Thermal Properties of Polyamide Enamel Filled with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Selvaraj, D. Edison; Sugumaran, C. Pugazhendhi; Ganesan, Lieutenant J.; Ramathilagam, J.

    2013-06-01

    In recent days, there was a significant development in the area of nanoparticles and nanoscale fillers on dielectric, thermal and mechanical properties of polymeric materials. The dielectric and thermal properties of standard polyamide and nanoscale-filled samples were detailed and analyzed. Carbon nanotubes were used as nanofillers. Carbon nanotubes were synthesized by chemical vapor deposition (CVD). The basic properties such as dielectric loss tangent (tan δ), dielectric constant (ɛ), dielectric strength, partial discharge inception voltage, surface resistivity, quality factor, phase angle, dielectric conductivity, dielectric power loss and thermal withstand strength of the polyamide enamel filled with carbon nanotubes were analyzed and compared with the properties of the standard enamel. The experimental results show that carbon nanotubes mixed with polyamide enamel had better thermal properties when compared to that of standard enamel.

  11. Full analytical evaluation of thermal transport properties of nanomaterials

    NASA Astrophysics Data System (ADS)

    Mamedov, B. A.

    2016-02-01

    New approaches for the analytical evaluation of the heat capacities and thermal conductivity of nanowires are presented. The most significant result of our calculation is an explicit closed form in terms of elementary functions. This allows the specific heat and thermal conductivity of nanowires to be easily evaluated within the arbitrary values of parameters. The proposed method is applied successfully to the evaluation of the heat capacities and thermal conductivity of Ni nanowire and can be used as a universal heat capacity evaluation scheme for all nanowires and other nanostructures. The theoretical model has been verified by comparing the predicted results with those obtained from the available analytical and literature data.

  12. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2007-01-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  13. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2008-03-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  14. A composite photothermal technique for the measurement of thermal properties of solids

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Shen, J.; Zhou, J.; Baesso, M. L.

    2008-09-01

    In this work, a composite photothermal technique combining open photoacoustic cell and photothermal deflection methods for thermal characterization of opaque solids was developed. An excitation laser was employed to concurrently generate both photoacoustic and mirage effects. Thermal diffusivity and thermal effusivity of carbon-based samples were measured, and the values of thermal conductivities and specific heat were then deduced. The experimental results were found to be in good agreement with the literature values. The photothermal technique developed in this work permits a convenient and precise measurement of thermal properties of solids.

  15. Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics.

    SciTech Connect

    DiAntonio, Christopher Brian; Rae, David F.; Corelis, David J.; Yang, Pin; Burns, George Robert

    2006-11-01

    Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials.

  16. Statistical properties of thermal Sunyaev-Zel'dovich maps

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak; Joudaki, Shahab; Smidt, Joseph; Coles, Peter; Kay, Scott T.

    2013-02-01

    On small angular scales, i.e. at high angular frequencies, beyond the damping tail of the primary power spectrum, the dominant contribution to the power spectrum of cosmic microwave background temperature fluctuations is the thermal Sunyaev-Zel'dovich (tSZ) effect. We investigate various important statistical properties of the Sunyaev-Zel'dovich maps, using well-motivated models for dark matter clustering to construct statistical descriptions of the tSZ effect to all orders enabling us to determine the entire probability distribution function (PDF). Any generic deterministic biasing scheme can be incorporated in our analysis and the effects of projection, biasing and the underlying density distribution can be analysed separately and transparently in this approach. We introduce the cumulant correlators as tools to analyse tSZ catalogues and relate them to corresponding statistical descriptors of the underlying density distribution. The statistics of hot spots in frequency-cleaned tSZ maps are also developed in a self-consistent way to an arbitrary order, to obtain results complementary to those found using the halo model. We also consider different beam sizes to check the extent to which the PDF can be extracted from various observational configurations. The formalism is presented with two specific models for underlying matter clustering, the hierarchical ansatz and the lognormal distribution. We find both models to be in very good agreement with the simulation results, though the extension of the hierarchical model has an edge over the lognormal model. In addition to testing against simulations made using semi-analytical techniques, we have also used the maps made using Millennium Gas Simulations to prove that the PDF and bias can indeed be predicted with very high accuracy using these models. The presence of significant non-gravitational effects such as preheating, however, cannot be modelled using an analytical approach which is based on the modelling of

  17. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Yu; Wu, Xuewang; Song, Helun; Zhang, Yaohui; Wang, Xiaojia

    2016-06-01

    Quantitative characterization of thermal properties of nanorod (NR) arrays appears to be challenging due to the complex combination of high volume of air voids, anisotropy, and structural non-uniformity. This work investigates the structure-thermal property correlation of arrays consisting of either vertically aligned or slanted silicon dioxide (SiO2) NRs, fabricated by the dynamic shadowing growth technique. We apply the frequency-dependent time-domain thermoreflectance method to quantify the thermal properties of SiO2 NR arrays that may possess inhomogeneity along the depth direction. The effective thermal conductivities of four SiO2 NR array films and one reference capping layer for the SiO2 NR array are obtained. The impact of the structure on the effective thermal conductivities of the SiO2 NR array is discussed. The lowest effective thermal conductivity among all samples in this work is found to be 0.13 W m-1 K-1 for the slanted NR array. We attribute the reduction in the effective thermal conductivity of the NR array to the discontinuous nature of SiO2 NRs, which reduces the density of the thermal transport channels and thus prevents heat flux from propagating downwards along the through-plane direction. The results from this work facilitate the potential applications of NR-array-based thermal insulators for micro-thermal devices.

  18. Thermal properties of plasma-sprayed tungsten deposits

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ki

    2004-10-01

    Tungsten powder was plasma-sprayed onto a graphite substrate in order to examine the microstructures, porosities, and thermal conductivities of tungsten deposits. Tungsten was partially oxidized to tungsten oxide (WO 3) after plasma spraying. Most pores were found in the vicinity of lamellar layers in association with oxidation. It was revealed that both tungsten oxide and the lamellar structure with pores have a significant influence on the electrical and thermal conductivity.

  19. Development of Thermal Barrier Coating System with Superior Thermal Cyclic Properties with an Intermediate Layer Containing MoSi2

    NASA Astrophysics Data System (ADS)

    Sonoya, Keiji; Tobe, Shogo

    The authors have developed a method of improving the thermal cyclic resistance of the thermal barrier coating system that is deposited on gas turbine components. A conventional thermal barrier coating consists of a duplex system: a top coating and a bond coating. The developed system has a protective intermediate layer of MoSi2 which prevents oxidation of the bond coating. The conventional duplex plasma -sprayed coating was delaminated after 20 thermal cycles. On the other hand, the developed triple-layered coating system was not delaminated after 60 cycles. The reason for the enhanced resistance to thermal cycles of the developed triple-layered coating system is that the MoSi2 layer between the top coating and the bond coating has a self-repairing property. MoSi2 oxidizes to form SiO2, which seals the cracks and pores formed between the top coating and the bond coating. Thus, the formation of a thermally grown oxide(TGO), which causes the delamination of the coating, is prevented and the thermal cyclic resistance is improved.

  20. Low temperature thermal properties of composite insulation systems

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Bauer-McDaniel, T. S.; Reed, R. P.

    The thermal contraction and thermal conductivity of candidate composite insulation systems for the International Thermonuclear Experimental Reactor toroidal field coils were measured from 295 to 4 K. Matrix materials consisted of a diglycidyl ether of bisphenol-A epoxy suitable for vacuum impregnation, a tetrafunctional epoxy suitable for pre-impregnation, a polyimide system produced by a high-pressure laminating process, and a bismaleimide system. These matrix materials were combined with S-2 glass fabric and various barrier systems, such as ceramic and organic coatings, polyimide film and mica/glass. Thermal contraction was measured by the strain gauge method in which strain gauges are attached directly to the specimen. The thermal contraction in the through-thickness direction was different at 4 K for each resin system and changed slightly with the addition of electrical barriers. The thermal conductivity of the materials, with and without the electrical barriers, was similar at 4 K, but more distinctive at higher temperatures. The systems with the ceramic coatings exhibited the highest thermal conductivities at all temperatures.

  1. Thermal properties of composite materials with a complex fractal structure

    NASA Astrophysics Data System (ADS)

    Cervantes-Álvarez, F.; Reyes-Salgado, J. J.; Dossetti, V.; Carrillo, J. L.

    2014-06-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell-Garnett effective media approximation for composite materials.

  2. Photometric Properties of Thermally Anomalous Terrain on Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Annex, Andrew; Verbiscer, A. J.; Helfenstein, P.; Howett, C.; Schenk, P.

    2013-10-01

    Spectral maps of thermal emission from Mimas obtained by Cassini’s Composite InfraRed Spectrometer (CIRS) show that a V-shaped boundary, centered at 0° N and 180° W, divides relatively warm daytime temperatures from an anomalously cooler region at low to mid-latitudes on the leading hemisphere (Howett et al. 2011 Icarus 216, 211). This cooler region is also warmer at night, indicating that it has high thermal inertia, and also coincides in shape and location with that of high-energy electron deposition from Saturn’s magnetosphere (Roussos et al. 2007 JGR 112, A06214; Schenk et al. 2011 Icarus 211, 740). Global IR/UV color ratio maps assembled from Cassini Imaging Science Subsystem (ISS) images revealed a lens-shaped region of relatively blue terrain centered on the leading hemisphere (Schenk et al. 2011, Icarus). The area with low IR/UV ratio also coincides in shape and location with the region of high thermal inertia. A preliminary photometric analysis of Cassini ISS CL1 CL2 filter (centered at 611 nm) images using the Hapke (2008) model suggests that the high thermal inertia region on Mimas is rougher and more strongly backscattering than terrain with lower thermal inertia. Particles on the surface of the thermally anomalous terrain may have a more complex microtexture due to the high-energy electron bombardment. This work is supported by the NASA Cassini Data Analysis Program.

  3. Comparative study of exchange-correlation functionals for accurate predictions of structural and magnetic properties of multiferroic oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-05-01

    We systematically compare predictions of various exchange correlation functionals for the structural and magnetic properties of perovskite Sr1 -xBaxMnO3 (0 ≤x ≤1 )—a representative class of multiferroic oxides. The local spin density approximation (LSDA) and spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization (sPBE) make substantial different predictions for ferroelectric atomic distortions, tetragonality, and ground state magnetic ordering. Neither approximation quantitatively reproduces all the measured structural and magnetic properties of perovskite Sr0.5Ba0.5MnO3 . The spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof revised for solids parametrization (sPBEsol) and the charge-only Perdew-Burke-Ernzerhof parametrized generalized gradient approximation with Hubbard U and Hund's J extensions both provide overall better agreement with measured structural and magnetic properties of Sr0.5Ba0.5MnO3 , compared to LSDA and sPBE. Using these two methods, we find that different from previous predictions, perovskite BaMnO3 has large Mn off-center displacements and is close to a ferromagnetic-to-antiferromagnetic phase boundary, making it a promising candidate to induce effective giant magnetoelectric effects and to achieve cross-field control of polarization and magnetism.

  4. Thermophysical Properties of a Hot-Work Tool-Steel with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.; Hofer, P.; Funk, W.

    2013-05-01

    In the highly productive permanent mold-casting process, the released enthalpy of the solidifying metal has to be transported through the surrounding hot-work tool-steel to the cooling system. For that reason, the thermal conductivity is a key property of the employed tool-steel. Recently, a new type of steel (Rovalma HTCS 130) has been developed and superior thermal properties have been claimed. In this study, measurements of the thermal diffusivity, heat capacity, and thermal expansion as a function of temperature are described for this steel and results of the computed thermal conductivity are reported. There is quite a discrepancy between the specification of the steel supplier and the results of this study; however, an improvement of the thermal conductivity for this type of steel can be confirmed.

  5. The effect of material properties on the thermal efficiency of the Minto solar wheel

    NASA Astrophysics Data System (ADS)

    Lin, S.; Bhardwaj, R.

    1980-04-01

    The characteristic of the thermal performance of the Minto solar wheel is that its thermal efficiency is strongly dependent on the material properties of the working fluid. For a specified working fluid, the thermal efficiency of the ideal cycle of the Minto solar wheel is dependent only on the mean diameter of the wheel. To study the effect of the material properties of the working fluid on the ideal thermal efficiency, 14 working fluids are selected, and their thermal efficiencies as functions of the mean diameter of the wheel are calculated and compared with each other. Among these fluids, R-12, R-115, R-500, R-22 and R-13B1 achieve better thermal performance than the others.

  6. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  7. Effect of tuber skin on the thermal properties of whole tubers of potato and sweet potato

    NASA Astrophysics Data System (ADS)

    Oluwo, A. A.; Khan, R. M.; Salami, M. J. E.

    2013-12-01

    Temperature-dependent thermal coefficients of mathematical models of the postharvest storage process play an important role in determining the models accuracy. Thermal properties of tubers under storage available in literature are generally of those in semi processed form (skinless) such as those having undergone peeling, dicing and cutting actions. This study investigates the effect of tuber skin on the thermal properties of whole tubers of potato and sweet potato. A direct approach was used to measure the tubers' density and thermal conductivity and thermal diffusivity by the transient heat transfer method. Indirect approach was used to measure the tubers' specific heat. Experimental data were used to develop empirical models of the thermal coefficients as a function of temperature. Results of the study should find great use in the modeling of potato and sweet potato storage process.

  8. Modeling of the Effective Elastic and Thermal Properties of Glass-Ceramic Solid Oxide Fuel Cell Seal Materials

    SciTech Connect

    Milhans, Jacqueline; Ahzi, Said; Garmestani, Hamid; Khaleel, Mohammad A.; Sun, Xin; Koeppel, Brian J.

    2009-05-01

    In this study, the effective elastic properties and coefficients of thermal expansion (CTE) of a glass-ceramic were predicted using homogenization techniques. Using G18, a glass-ceramic solid oxide fuel cell (SOFC) sealant as an initial reference material, the effectiveness of different homogenization models was investigated for a two-phase glass-ceramic. The elastic properties and CTEs of the G18 amorphous phase are currently unknown. Thus, estimated values were used as an input to the models. The predictive model offers accurate macroscopic values on both the elastic modulus and the CTE of glass-ceramic materials, providing the estimated amorphous values are reasonable. This model can be used in designing glass-ceramic SOFC seal materials for its specific operation conditions.

  9. THERMAL PROPERTIES OF FIBERBOARD OVERPACK MATERIALS IN THE 9975 SHIPPING PACKAGE

    SciTech Connect

    VORMELKER, PHILLIP; DAUGHERTY, W. L.

    2005-06-10

    The 9975 shipping package incorporates a cane fiberboard overpack for thermal insulation and impact resistance. Thermal properties (thermal conductivity and specific heat capacity) have been measured on cane fiberboard and a similar wood fiber-based product at several temperatures representing potential storage conditions. While the two products exhibit similar behavior, the measured specific heat capacity varies significantly from prior data. The current data are being developed as the basis to verify that this material remains acceptable over the extended storage time period.

  10. Soil thermal resistivity and thermal stability measuring instrument. Volume 2. Manual for operation and use of the thermal property analyzer and statistical weather analysis program to determine thermal design parameters. Final report

    SciTech Connect

    Boggs, S.A.; Radhakrishna, H.S.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  11. Prediction of Geomechanical Properties from Thermal Conductivity of Low-Permeable Reservoirs

    NASA Astrophysics Data System (ADS)

    Chekhonin, Evgeny; Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Ovcharenko, Yury; Zhukov, Vladislav; Martemyanov, Andrey

    2016-04-01

    A key to assessing a sedimentary basin's hydrocarbon prospect is correct reconstruction of thermal and structural evolution. It is impossible without adequate theory and reliable input data including among other factors thermal and geomechanical rock properties. Both these factors are also important in geothermal reservoirs evaluation and carbon sequestration problem. Geomechanical parameters are usually estimated from sonic logging and rare laboratory measurements, but sometimes it is not possible technically (low quality of the acoustic signal, inappropriate borehole and mud conditions, low core quality). No wonder that there are attempts to correlate the thermal and geomechanical properties of rock, but no one before did it with large amount of high quality thermal conductivity data. Coupling results of sonic logging and non-destructive non-contact thermal core logging opens wide perspectives for studying a relationship between the thermal and geomechanical properties. More than 150 m of full size cores have been measured at core storage with optical scanning technique. Along with results of sonic logging performed with Sonic Scanner in different wells drilled in low permeable formations in West Siberia (Russia) it provided us with unique data set. It was established a strong correlation between components of thermal conductivity (measured perpendicular and parallel to bedding) and compressional and shear acoustic velocities in Bazhen formation. As a result, prediction of geomechanical properties via thermal conductivity data becomes possible, corresponding results was demonstrated. The work was supported by the Russian Ministry of Education and Science, project No. RFMEFI58114X0008.

  12. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  13. Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields.

    PubMed

    Hellen, Adam; Matvienko, Anna; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2010-12-20

    Noninvasive dental diagnostics is a growing discipline since it has been established that early detection and quantification of tooth mineral loss can reverse caries lesions in their incipient state. A theoretical coupled diffuse photon density and thermal-wave model was developed and applied to photothermal radiometric frequency responses, fitted to experimental data using a multiparameter simplex downhill minimization algorithm for the extraction of optothermophysical properties from artificially demineralized human enamel. The aim of this study was to evaluate the reliability and robustness of the advanced fitting algorithm. The results showed a select group of optical and thermal transport parameters and thicknesses were reliably extracted from the computational fitting algorithm. Theoretically derived thicknesses were accurately predicted, within about 20% error, while the estimated error in the optical and thermal property evaluation was within the values determined from early studies using destructive analyses. The high fidelity of the theoretical model illustrates its efficacy, reliability, and applicability toward the nondestructive characterization of depthwise inhomogeneous sound enamel and complex enamel caries lesions. PMID:21173829

  14. Comet 67P: Thermal Maps and Local Properties as Derived from Rosetta/VIRTIS data

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Leyrat, Cédric; Bockelée-Morvan, Dominique; De Sanctis, Maria Cristina; Raponi, Andrea; Ciarniello, Mauro; Schmitt, Bernard; Arnold, Gabriele; Mottola, Stefano; Fonti, Sergio; Palomba, Ernesto; Longobardo, Andrea; Cerroni, Priscilla; Piccioni, Giuseppe; Drossart, Pierre; Kuehrt, Ekkehard

    2015-04-01

    Comet 67P is shown to be everywhere rich in organic materials with little to no water ice visible on the surface. In the range of heliocentric distances from 3.59 to 2.74 AU, daytime observed surface temperatures retrieved from VIRTIS data are overall comprised in the range between 180 and 220 K, which is incompatible with large exposures of water ice and is consistent with a low-albedo, organics-rich surface. The accuracy of temperature retrieval is as good as a few K in regions of the comet unaffected by shadowing or limb proximity. Maximum temperature values as high as 230 K have been recorded in very few places. The highest values of surface temperature in the early Mapping phase were obtained in August 2014, during observations at small phase angles implying that the observed surface has a large predominance of small incidence angles, and local solar times (LST) centered around the maximum daily insolation. In all cases, direct correlation with topographic features is observed, i.e. largest temperature values are generally associated with the smallest values of illumination angles. So far, there is no evidence of thermal anomalies, i.e. places of the surface that are intrinsically warmer or cooler than surrounding terrains observed at the same local solar time and under similar solar illumination. For a given LST, the maximum temperature mainly depends on the solar incidence angle and on surface properties such as thermal inertia and albedo. Since VIRTIS is able to observe the same point of the surface on various occasions under different conditions of solar illumination and LST, it is possible to reconstruct the temperature of that point at different times of the comet's day, thus building diurnal profiles of temperature that are useful to constrain thermal inertia. The availability of spatially-resolved, accurate temperature observations, significantly spaced out in local solar time, provides clues to the physical structure local features, which complements

  15. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths. PMID:27398592

  16. Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds

    SciTech Connect

    Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

    2012-06-14

    N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

  17. The effects of thermal cycling on the physical and mechanical properties of [NZP] ceramics

    SciTech Connect

    Jackson, T.B.; Limaye, S.Y.; Porter, W.D.

    1994-12-31

    The [NZP] ceramics, sodium zirconium phosphate and its crystal structure analogs, are noted for their very low thermal expansion characteristics. What has not been widely studied is the effect of thermal cycling on physical and mechanical properties. Two [NZP] compositional series were selected (Ba{sub 1+x}Zr{sub 4}P{sub 6{minus}2x}Si{sub 2x}O{sub 24} and Ca{sub 1{minus}x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) that exhibit varying bulk thermal expansion from positive to negative and varying degrees of thermal expansion anisotropy. The effect of thermal cycling, to 1,250 C, on the bulk thermal expansion and flexural strength of these ceramics is discussed in relationship to changes in density, thermal expansion anisotropy and microstructure.

  18. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  19. Thermal properties of quaternary ammonium and pyridinium compounds

    SciTech Connect

    Aksenova, V.P.; Khar'kov, S.N.; Logovotovskaya, V.D.; Belotserkovets, N.I.; Chegolya, A.S.

    1982-12-10

    In the present work an attempt was made at a comprehensive investigation of the influence of the chemical structure of a whole series of cation-active surfactants on the stability to temperature influences, and the general directions of the irreversible transformations at high temperature were established. As a result of a study of processes of thermal decomposition of quaternary ammonium and syridinium salts, quantitative correlations were established according to the influence of the chemical structure of the salts on the limits of thermal stability. On the basis of a detailed analysis of volatile pyrolysis products, concrete schemes of the conversions in the objects studied were proposed.

  20. Tabulated In-Drift Geometric and Thermal Properties Used In Drift-Scale Models for TSPA-SR

    SciTech Connect

    N.D. Francis

    2000-06-16

    The objective of this calculation is to provide in-drift physical properties required by the drift-scale models (both two- and three-dimensional) used in total system performance assessments (TSPA). The physical properties include waste package geometry, waste package thermal properties, emplacement drift geometry including backfill and invert geometry and properties (both thermal and hydrologic), drip shield geometry and thermal properties, all tabulated in a single source.

  1. Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage

    NASA Astrophysics Data System (ADS)

    El-Leathy, Abdelrahman; Jeter, Sheldon; Al-Ansary, Hany; Abdel-Khalik, Said; Golob, Matthew; Danish, Syed Noman; Saeed, Rageh; Djajadiwinata, Eldwin; Al-Suhaibani, Zeyad

    2016-05-01

    This paper builds on studies conducted on thermal energy storage (TES) systems that were built as a part of the work performed for a DOE-funded SunShot project titled "High Temperature Falling Particle Receiver". In previous studies, two small-scale TES systems were constructed for measuring heat loss at high temperatures that are compatible with the falling particle receiver concept, both of which had shown very limited heat loss. Through the course of those studies, it became evident that there was a lack of information about the thermal performance of some of the insulating refractory materials used in the experiments at high temperatures, especially insulating firebrick and perlite concrete. This work focuses on determining the thermal conductivities of those materials at high temperatures. The apparatus consists of a prototype cylindrical TES bin built with the same wall construction used in previous studies. An electric heater is placed along the centerline of the bin, and thermocouples are used to measure temperature at the interfaces between all layers. Heat loss is measured across one of the layers whose thermal conductivity had already been well established using laboratory experiments. This value is used to deduce the thermal conductivity of other layers. Three interior temperature levels were considered; namely, 300°C, 500°C, and 700°C. Results show that the thermal conductivity of insulating firebrick remains low (approximately 0.22 W/m.K) at an average layer temperature as high as 640°C, but it was evident that the addition of mortar had an impact on its effective thermal conductivity. Results also show that the thermal conductivity of perlite concrete is very low, approximately 0.15 W/m.K at an average layer temperature of 360°C. This is evident by the large temperature drop that occurs across the perlite concrete layer. These results should be useful for future studies, especially those that focus on numerical modeling of TES bins.

  2. Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems

    NASA Astrophysics Data System (ADS)

    Dehkordi, S. Emad; Schincariol, Robert A.

    2013-10-01

    Ground-source geothermal systems are drawing increasing attention and popularity due to their efficiency, sustainability and being implementable worldwide. Consequently, design software and regulatory guidelines have been developed. Interaction with the subsurface significantly affects the thermal performance, sustainability, and impacts of such systems. Reviewing the related guidelines and the design software, room for improvement is evident, especially in regards to interaction with groundwater movement. In order to accurately evaluate the thermal effect of system and hydrogeological properties on a borehole heat exchanger, a fully discretized finite-element model is used. Sensitivity of the loop outlet temperatures and heat exchange rates to hydrogeological, system and meteorological factors (i.e. groundwater flux, thermal conductivity and volumetric heat capacity of solids, porosity, thermal dispersivity, grout thermal conductivity, background and inlet temperatures) are analyzed over 6-month and 25-year operation periods. Furthermore, thermal recovery during 25 years after system decommissioning has been modeled. The thermal plume development, transport and dissipation are also assessed. This study shows the importance of subsurface thermal conductivity, groundwater flow (flux > 10-7 m/s), and background and inlet temperature on system performance and impact. It also shows the importance of groundwater flow (flux > 10-8 m/s) on thermal recovery of the ground over other factors.

  3. Silicate bonding properties: Investigation through thermal conductivity measurements

    NASA Astrophysics Data System (ADS)

    Lorenzini, M.; Cesarini, E.; Cagnoli, G.; Campagna, E.; Haughian, K.; Hough, J.; Losurdo, G.; Martelli, F.; Martin, I.; Piergiovanni, F.; Reid, S.; Rowan, S.; van Veggel, A. A.; Vetrano, F.

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  4. Thermal properties of silicon nitride beams below 1 Kelvin.

    SciTech Connect

    Wang, G.; Yefremenko, V.; Novosad, V.; Datesman, A.; Pearson, J.; Shustakova, G.; Divan, R.; Chang, C.; McMahon, J.; Bleem, L.; Crites, A. T.; Downes, T.; Mehl, J.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2010-01-01

    We have investigated the thermal transport of long, narrow beams of silicon nitride at cryogenic temperatures. Simultaneously employing a superconducting Transition Edge Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 {micro}m thick silicon nitride beams of different lateral dimensions. Based upon these measurements, we calculate the thermal parameters of the beams. We utilize a boundary limited phonon scattering model and assume the phonon mean free path to be temperature independent in the calculation. In the temperature range from 300 mK to 530 mK, the following results are obtained for 20 (30) {micro}m beams: the volume heat capacity is 0.083 T+0.509 T{sup 3} J/m{sup 3}-K, the width dependent phonon mean free path is 9.60 (11.05) {micro}m, and the width dependent thermal conductivity is 5.60 x 10{sup -3} T+3.41 x 10{sup -2} T{sup 3} (6.50 x 10{sup -3} T+3.93 x 10{sup -2} T{sup 3}) W/m-K.

  5. Thermal Properties of Silicon Nitride Beams Below 1 Kelvin

    NASA Astrophysics Data System (ADS)

    Wang, G.; Yefremenko, V.; Novosad, V.; Datesman, A.; Pearson, J.; Shustakova, G.; Divan, R.; Chang, C.; McMahon, J.; Bleem, L.; Crites, A. T.; Downes, T.; Mehl, J.; Meyer, S. S.; Carlstrom, J. E.

    2010-04-01

    We have investigated the thermal transport of long, narrow beams of silicon nitride at cryogenic temperatures. Simultaneously employing a superconducting Transition Edge Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 μm thick silicon nitride beams of different lateral dimensions. Based upon these measurements, we calculate the thermal parameters of the beams. We utilize a boundary limited phonon scattering model and assume the phonon mean free path to be temperature independent in the calculation. In the temperature range from 300 mK to 530 mK, the following results are obtained for 20 (30) μm beams: the volume heat capacity is 0.083 T+0.509 T3 J/m3-K, the width dependent phonon mean free path is 9.60 (11.05) μm, and the width dependent thermal conductivity is 5.60×10-3 T+3.41×10-2 T3 (6.50×10-3 T+3.93×10-2 T3) W/m-K.

  6. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  7. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    SciTech Connect

    Eibling, R; Michael Stone, M

    2006-10-16

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress ({approx}10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report

  8. Thermal properties of solid oxide fuel cell perovskite LaCrO3

    NASA Astrophysics Data System (ADS)

    Parey, Vanshree; Shukla, Aarti; Parveen, Atahar; Bano, Amreen; Khare, Preeti; Gaur, N. K.

    2016-05-01

    The effect of temperature on elastic, cohesive and thermal properties of LaCrO3 in orthorhombic, rhombohedral and cubic phases has been investigated using Modified Rigid Ion Model (MRIM). We present the elastic constants (C11, C12, C44) and other elastic properties like bulk modulus (BT), Young's modulus (E) and shear modulus (G). We have computed the specific heat and volume thermal expansion coefficient as a function of temperature (0K ≤ T ≤ 2000K). The specific heat results are in reasonable agreement with the available experimental data. A check on thermal stability of this compound is made by computing other properties like Debye temperature (θD), cohesive energy (ϕ), Reststrahlen frequency (υ) and Gruneisen parameter (γ). The computed properties reproduce well with the available experimental results. To our knowledge some of the properties are reported for the first time.

  9. Effect of thermal processing practices on the properties of superplastic Al-Li alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Lippard, Henry E.

    1993-01-01

    The effect of thermal processing on the mechanical properties of superplastically formed structural components fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2090, and X2095 (Weldalite(TM) 049), in the form of commercial-grade superplastic sheet. The experimental test matrix was designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water quenching from post-forming thermal processing. The extensive hardness and tensile property data compiled are presented as a function of aging temperature, superplastic strain and temper/quench rate for each alloy. The tensile properties of the materials following superplastic forming in two T5-type tempers are compared with the baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are discussed on the basis of the results.

  10. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.

    2014-07-01

    The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.

  11. Estimating Soil Thermal Properties from Land Surface Temperature Measurements Using Ant Colony Optimization Approach

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Madadgar, S.; Bateni, S.

    2012-12-01

    Soil thermal conductivity and volumetric heat capacity are crucial parameters in land surface hydrology and hydro-climatology. There are several techniques (e.g., heat-source probe, borehole relaxation, and heat-dissipation sensors) for in situ measurement of soil thermal properties. These methods are generally expensive and labor-intensive. In a departure with these in situ approaches, regression-based techniques have been developed to estimate soil thermal properties. They require several input variables such as soil texture, water content, organic content, etc, which are typically unavailable. To overcome the aforementioned drawbacks of these methods, a new approach is developed to estimate soil thermal properties from the sequences of land surface temperature (LST) measurements. Herein, LST measurements are the only required input to estimate soil thermal properties. An objective function describing the misfit between simulated LST from the heat diffusion equation and the corresponding observations is minimized using Ant Colony Optimization (ACO) technique in order to find the optimum values for soil thermal properties. The performance of model is initially tested on a single-layer (homogeneous) soil setup and then a generalized scheme of the multi-layer soil column is explored with two, five and ten of equal thickness sub-layers to account for inhomogeneity in the soil slab. The developed model is applied to the First International Satellite Land Surface Climatology (ISLSCP) Field Experiment in summer of 1987 and 1988. The retrieved soil thermal properties from ACO are used to solve the heat diffusion equation and estimate soil temperature within the soil slab. The soil temperature estimates show relatively good agreement with observations, suggesting that the proposed technique can reliably estimate soil thermal properties.

  12. Characterization of soil thermal, hydrological, and mechanical properties at Musashino fluvial terrace in Fuchu, Japan

    NASA Astrophysics Data System (ADS)

    Saito, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.; Crest Komatsu Team

    2011-12-01

    The ground source heat pump (GSHP) system, based on heat exchange with the deep subsoil environment, generally operates with higher efficiency than the conventional air-source heat pump system. The GSHP system has received great interest in countries in North America and Western Europe because it can potentially reduce energy consumption and greenhouse gas emission. The GSHP releases heat energy to the subsoil during summer for cooling, while it pumps heat energy from the subsoil during winter for heating. To optimally design and operate GSHP systems, not only heat transport in the subsoil but also the influences of temperature changes on water flow, groundwater quality, and ground deformations need to be accurately simulated. The main objective of this study was to characterize soil thermal, hydrological, and mechanical properties of soils by monitoring subsoil temperature, groundwater level, and ground deformation at one of the potential GSHP installation sites in the Musashino fluvial terrace located in Fuchu-city, Japan. Monitoring instruments including resistance-temperature detectors and displacement transducers were installed inside a 50-m borehole excavated at the study site. Temperature observed at 5 m intervals in the borehole showed (i) that the soil temperature gradually decreased with depth, with the exception of temperature at the 5-m depth, and (ii) average temperatures increased as the average air temperature increased. Readings of the displacement transducers were found to be strongly affected by air temperature changes. Data observed at the borehole will be further evaluated and linked to soil physical properties measured from disturbed and undisturbed soil samples collected at the borehole.

  13. Rock properties and their effect on thermally-induced displacements and stresses

    SciTech Connect

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus.

  14. Rock properties and their effect on thermally induced displacements and stresses

    SciTech Connect

    Chan, T.; Mood, M.

    1982-12-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (i) temperature independent, (ii) temperature dependent thermal and thermomechanical properties, and (iii) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions or rock stresses is the in-situ modulus.

  15. Effect of Y doping on thermal properties of multiferroic BiCrO3

    NASA Astrophysics Data System (ADS)

    Parey, Vanshree; Shukla, Aarti; Parveen, Atahar; Gaur, N. K.

    2016-05-01

    The effect of Yttrium doping (0.01 ≤ x ≤ 0.5) on elastic and thermal properties of multiferroic BiCrO3 has been investigated using the Modified Rigid Ion Model (MRIM). We have computed the specific heat and volume thermal expansion coefficient for pure and doped BiCrO3 as a function of temperature (1K ≤ T ≤ 300K). The specific heat results are in good agreement with the available experimental data. A check on thermal stability of the pure and doped compounds is made by computing other properties like Debye temperature, cohesive energy and bulk modulus.

  16. The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar; Pandey, Amit; Watkins, Thomas R; More, Karren

    2012-01-01

    The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

  17. A computationally efficient and accurate numerical representation of thermodynamic properties of steam and water for computations of non-equilibrium condensing steam flow in steam turbines

    NASA Astrophysics Data System (ADS)

    Hrubý, Jan

    2012-04-01

    Mathematical modeling of the non-equilibrium condensing transonic steam flow in the complex 3D geometry of a steam turbine is a demanding problem both concerning the physical concepts and the required computational power. Available accurate formulations of steam properties IAPWS-95 and IAPWS-IF97 require much computation time. For this reason, the modelers often accept the unrealistic ideal-gas behavior. Here we present a computation scheme based on a piecewise, thermodynamically consistent representation of the IAPWS-95 formulation. Density and internal energy are chosen as independent variables to avoid variable transformations and iterations. On the contrary to the previous Tabular Taylor Series Expansion Method, the pressure and temperature are continuous functions of the independent variables, which is a desirable property for the solution of the differential equations of the mass, energy, and momentum conservation for both phases.

  18. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2015-12-01

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1-0.2 Ω.cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  19. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  20. Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites

    PubMed Central

    2013-01-01

    In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc. PMID:23294669

  1. Thermal property measurements in a fresh pumice flow at Mt. St. Helens

    SciTech Connect

    Hardee, H.C.

    1981-03-01

    A thermal penetrator that was air dropped into a freshly emplaced pumice flow at Mt. St. Helens yielded information on the in-situ thermal properties of the pumice. The in-situ conductivity-density-specific heat product at a depth of 60 cm was found to be 7.24 x 10/sup -5/ cal/sup 2/cm//sup 4/ s- /sup 0/C/sup 2/ at an average pumice temperature of 200 /sup 0/C. Using this data, values for the average in-situ thermal conductivity (2.9 x 10/sup -4/ cal/cm-s-/sup 0/C) and thermal diffusivity (1.2 x 10/sup -3/ cm/sup 2//s) were estimated. These thermal properties are of use in studies of pumice cooling and in the interpretation of infrared remote sensing data.

  2. Thermal properties of Er:LuxGd1-xVO4 crystals

    NASA Astrophysics Data System (ADS)

    Yan, Zhenghuo; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Ma, Changqin; Wang, Jiyang

    2014-06-01

    A new series Er:LuxGd1-xVO4 (x=0.1,0.24,0.48,0.57,0.79 and 0.9)mixed laser crystals have been successfully grown by the Czochralski method with 1% Er3+ concentration.The thermal properties of Er:LuxGd1-xVO4crystals series crystals were investigated systematically, including the thermal expansion, specific heat, thermal diffusion coefficients, and thermal conductivities. The anisotropy and variation of the thermal properties with the component x were also achieved and discussed based on their structure. All the results showed that this mixed crystals should have promising applications in the moderate-power lasers.

  3. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  4. Thermal and electrical properties of a solid through Fibonacci oscillators

    NASA Astrophysics Data System (ADS)

    Marinho, André A.; Brito, Francisco A.; Chesman, Carlos

    2016-02-01

    We investigate the thermodynamics of a crystalline solid applying q-deformed algebra of Fibonacci oscillators through the generalized Fibonacci sequence of two real and independent deformation parameters q1 and q2. We based part of our study on both Einstein and Debye models, exploring primarily (q1, q2) -deformed thermal and electric conductivities as a function of Debye specific heat. The results revealed that q-deformation acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure. Specially, one may find the possibility of adjusting the Fibonacci oscillators to describe the change of thermal and electrical conductivities of a given element as one inserts impurities. Each parameter can be associated to different types of deformations such as disorders and impurities.

  5. Thermal properties of epoxy resins at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Nakane, H.; Nishijima, S.; Fujishiro, H.; Yamaguchi, T.; Yoshizawa, S.; Yamazaki, S.

    2002-05-01

    In order to establish the design technique of epoxy resin at cryogenic temperature, its thermal contraction coefficients and dynamic Young's modulus were measured from room to cryogenic temperatures when plasticizer was both present and absent. The disappearance of the effects of the plasticizer were confirmed by measuring its thermal expansion coefficient. The process in which the addition of plasticizer reduces the glass transition temperature was clarified by measuring its dynamic Young's modulus. It was also discovered that blunt peak is caused by addition of plasticizer. The data obtained by measuring the dynamic Young's modulus clearly indicate that this peak disappears at cryogenic temperature resulting in the disappearance of the effects of the plastizer. The conclusion is that when epoxy resin is to be used at cryogenic temperature it is desirable that the addition of plastizer is kept at the minimum level.

  6. Spectral Properties of Dy-Doped Thermal Barrier Sensor Coatings

    SciTech Connect

    Allison, Stephen W; Moore, Danielle; Heyes, Andrew; Nichols, John R.

    2009-01-01

    We have obtained the excitation (484, 497 and 585 nm) and emission (355, 367 and 385 nm) spectra and measured the fluorescence decay lifetimes for partially Y2O3 stabilized ZrO2 thermal barrier coatings doped with 2mol% Dy2O3, as a function of coating depth for thicknesses ranging from 30 to 200 μm. In principle, these coatings can function not only as thermal protection barriers for turbomachinery blades and vanes, but also as remotely interrogated self-sensors for use in determining in situ wear rates during operation. This is done by varying the excitation wavelength and observing the fluorescence decay times and related parameters.

  7. Determination of thermal properties of commercial Ni-MH cells

    NASA Technical Reports Server (NTRS)

    Darcy, Eric C.

    1994-01-01

    The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.

  8. The effect of CNTs reinforcement on thermal and electrical properties of cement-based materials

    NASA Astrophysics Data System (ADS)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Matikas, T. E.

    2015-03-01

    This research aims to investigate the influence of the nano-reinforcement on the thermal properties of cement mortar. Nano-modified cement mortar with carbon nanotubes (CNTs) leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The assessment of the thermal behavior was evaluated using IR Thermography. Two different thermographic techniques are used to monitor the influence of the nano-reinforcement. To eliminate any extrinsic effects (e.g. humidity) the specimens were dried in an oven before testing. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. This study indicate that the CNTs nano-reinforcement enhance the thermal and electrical properties and demonstrate them useful as sensors in a wide variety of applications.

  9. Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics

    NASA Astrophysics Data System (ADS)

    Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.

    2012-10-01

    Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.

  10. Thermal Optical Properties of Lunar Dust Simulants and Their Constituents

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Ellis, Shaneise; Hanks, Nichole

    2011-01-01

    The total reflectance spectra of lunar simulant dusts (< 20 mm particles) were measured in order to determine their integrated solar absorptance (alpha) and their thermal emittance (epsilon) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependent reflectivity (p (lambda)) near 0.10 over the wavelength range of 8 to 25 microns and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the < 20 micron particles than for larger particles reported earlier. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.

  11. Thermal Optical Properties of Lunar Dust Simulants and Their Constituents

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Ellis, Shaneise; Hanks, Nichole

    2011-01-01

    The total reflectance spectra of lunar simulant dusts (less than 20 micrometer particles) were measured in order to determine their integrated solar absorptance (alpha) and their thermal emittance (e) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependant reflectivity (p(lambda)) near 0.10 over the wavelength range of 8 to 25 micrometers, and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the less 20 micrometer particles than for larger particles reported earlier. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nanometers) than in the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the alpha of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.

  12. Measurement of Thermal Dependencies of PBG Fiber Properties

    SciTech Connect

    Laouar, Rachik

    2011-07-06

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633

  13. Effect of Annealing on Thermal & Optical Properties of Polypyrrole

    NASA Astrophysics Data System (ADS)

    Saxena, Rashmi; Dixit, Manasvi; Sharma, Kananbala; Saxena, Narendra S.; Sharma, Thaneshwar P.

    2008-04-01

    Pure polypyrrole sample (S1) was synthesized by chemical oxidation method using NaOH as reducing agent in aqueous HCl medium. The polypyrrole pellet sample (S2) was then annealed at 200 °C for 4 hrs. The amorphous nature of both annealed and as- prepared polypyrrole samples was confirmed by XRD. FTIR spectra of both samples were taken, which indicate the significant change in annealed sample (S2) compared to as prepared sample. Temperature dependence of effective thermal conductivity of both samples (S1, S2) was studied by Transient plane source (TPS) technique. The effective thermal conductivity (λe) obtained for S1 & S2 exhibits a variation with temperature and a peak was observed for the two samples at 150 °C & 120 °C with a value 0.17 W/mK & 0.18 W/mK respectively. The shift of thermal conductivity peak of annealed sample towards the lower temperature side is explained on the basis of removal of voids and defects on annealing. The absorption spectra of these samples were recorded by USB-2000 spectrophotometer at room temperature in the wavelength range 300-800 nm. From the analysis of absorption spectra, optical band gap of S1 & S2 were determined. It was found that the values of optical band gap for sample S1 & S2 are 2.39 eV&2.24 eV respectively.

  14. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.

    PubMed

    Choi, Jeunghwan; Bischof, John C

    2010-02-01

    property values (thermal conductivity, specific heat, and latent heat of phase change) of porcine liver, a standard was created which showed that values based on surrogate ice properties under-predicted cooling times, while constant properties (i.e. based on limited data reported near the freezing point) over-predicted cooling times. Additionally, a new iterative numerical method that accommodates non-equilibrium cooling effects as a function of time and position (i.e. crystallization versus amorphous phase) was used to predict temperature history during freezing in glycerol loaded systems. Results indicate that in addition to the increase in cooling times due to the lowering of thermal diffusivity with more glycerol, non-equilibrium effects such as the prevention of maximal crystallization (i.e. amorphous phases) will further increase required cooling times. It was also found that the amplified effect of non-equilibrium cooling and crystallization with system size prevents the thermal history to be described with non-dimensional lengths, such as was possible under equilibrium cooling. These results affirm the need to use accurate thermal properties that incorporate temperature dependence and crystallized fraction. Further studies are needed to extract thermal properties of other important biomaterials in the subzero temperature domain and to develop accurate numerical methods which take into account non-equilibrium cooling events encountered in cryobiology when partial or total vitrification occurs. PMID:19948163

  15. Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.

  16. Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds

    SciTech Connect

    Babu, S.S.; Riemer, B.W.; Santella, M.L.; Feng, Z.

    1998-11-01

    An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

  17. Mechanical, thermal, and moisture properties of plastics with bean as filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments on polymers using beans as fillers are reported herein. We are looking for desirable mechanical, thermal and moisture properties at economical costs. Poly(lactic acid) (PLA) is studied as the polymeric matrix because it is available and biodegradable. Although the physical properties are...

  18. The influence of phonon anharmonicity on thermal and elastic properties of neptunium

    NASA Astrophysics Data System (ADS)

    Filanovich, A.; Povzner, A.

    2013-06-01

    A self-consistent thermodynamic model describing the thermal and elastic properties of α- and β-phases of neptunium was developed. The presence of strong phonon anharmonicity of Np is established. The obtained results are in good agreement with the experimental data and enable to predict the Np properties in wide temperature range.

  19. Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement

    SciTech Connect

    Bernstein, N.; Feldman, J. L.; Singh, David J.

    2010-04-05

    While the thermal conductivity of the filled skutterudites has been of great interest it had not been calculated within a microscopic theory. Here a central force, Guggenheim-McGlashen, model with parameters largely extracted from first-principles calculations and from spectroscopic data, specific to LaFe{sub 4} Sb{sub 12} or CoSb{sub 3} , is employed in a Green-Kubo/molecular dynamics calculation of thermal conductivity as a function of temperature. We find that the thermal conductivity of a filled solid is more than a factor of two lower than that of an unfilled solid, assuming the “framework” interatomic force parameters are the same between filled and unfilled solids, and that this decrease is almost entirely due to the cubic anharmonic interaction between filling and framework atoms. In addition, partially as a test of our models, we calculate thermal expansivity and isotropic atomic mean-square displacements using both molecular dynamics and lattice dynamics methods. These quantities are in reasonable agreement with experiment, increasing our confidence in the anharmonic parameters of our models. We also find an anomalously large filling-atom mode Gruneisen parameter that is apparently observed for a filled skutterudite and is observed in a clathrate.

  20. Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Edgett, Kenneth S.

    1994-01-01

    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.

  1. Physical, Thermal, Mechanical Properties, and Microstructural Characterization of Sn-9Zn-XGa Alloys

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz

    2016-01-01

    The microstructural features, physicochemical, thermal, and mechanical properties of eutectic SnZn alloys with varying Ga contents were examined in this study. In the microstructure study using scanning electron microscope and X-ray diffraction analysis, intermetallic phases were not observed. The results indicated that the primary effect of Ga was increased mechanical properties. The physicochemical properties of liquid alloys, density, viscosity, and surface tension were measured using the free flow method. The addition of Ga to eutectic SnZn alloy generally reduced density, surface tension, viscosity, and melting point, and increased the coefficient of thermal expansion and electrical resistivity.

  2. The electrical, thermal conductivity, microstructure and mechanical properties of Al-Sn-Pb ternary alloys

    NASA Astrophysics Data System (ADS)

    Alper Billur, C.; Gerçekcioglu, E.; Bozoklu, M.; Saatçi, B.; Ari, M.; Nair, F.

    2015-08-01

    The structural, thermal, electrical and mechanical properties and micro-hardness of four different samples of Al-Sn-Pb ternary alloys (Al-[x] wt. % Sn-10 wt. % Pb) (x = 40, 30, 20 and 10) with constant lead concentrations were investigated for four different samples. Electrical resistivity and conductivity were measured by using (four-point probe measurement techniques) 4PPT techniques. The variations of thermal conductivity were determined by Wiedemann-Franz law (W-F) and Smith-Palmer (S-P) equation using the data obtained from electrical properties. The mechanical properties of the same alloys were obtained by the tensile test and the Vickers micro-hardness test.

  3. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Wang, Wei; Li, Laifeng

    2015-12-14

    Recently, La(Fe,Si)13-based compounds have attracted much attention due to their isotropic and tunable abnormal thermal expansion (ATE) properties as well as bright prospects for practical applications. In this research, we have prepared cubic NaZn13-type carbon-doped La(Fe,Si)13 compounds by the arc-melting method, and their ATE and magnetic properties were investigated by means of variable-temperature X-ray diffraction, strain gauge and the physical property measurement system (PPMS). The experimental results indicate that both micro and macro negative thermal expansion (NTE) behaviors gradually weaken with the increase of interstitial carbon atoms. Moreover, the temperature region with the most remarkable NTE properties has been broadened and near zero thermal expansion (NZTE) behavior occurs in the bulk carbon-doped La(Fe,Si)13 compounds. PMID:26549525

  4. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    PubMed

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA). PMID:27109871

  5. Optical, thermal, and electronic semiconductor properties of thermochromic metal halides

    NASA Astrophysics Data System (ADS)

    Novinson, Thomas; Zink, Jeffrey I.; Kennedy, John; Kaska, William C.

    1990-12-01

    Silver mercury tetraiodide (Ag,HgI ) is a well known thermochromic pigment that changes color from yellow to ornge at 50 C. The compound is also a fast ion conductor above its phase transition temperature. We synthesized a number of analogues of this compound in which the silver was replaced by cadmium, lead, thallium(I), copper(I), indium(I), gold(I), lithium, cesium and rubidium to determine the range of color transitions and the correlation of electrical conductivity with optical and thermal activity. This paper also reports on continued research to assess the possibility of using these pigments in architectural coatings.

  6. Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene

    PubMed Central

    Vidavsky, Yuval; Navon, Yotam; Ginzburg, Yakov; Gottlieb, Moshe

    2015-01-01

    Summary Differential scanning calorimetry (DSC) analysis of ring opening methatesis polymerization (ROMP) derived polydicyclopentadiene (PDCPD) revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon. PMID:26425203

  7. Thermal properties of a DNA denaturation with solvent interaction

    NASA Astrophysics Data System (ADS)

    Macedo, D. X.; Guedes, I.; Albuquerque, E. L.

    2014-06-01

    In this work we study the effects of the solvent interaction on the nonlinear dynamical structure of a DNA segment, by using a time-independent perturbation approach. Considering a well-known set of values for the spring constant (k) and the Morse (solvent) potential parameters Dn and an (fs and λs), we investigate the denaturation temperature profiles of some DNA's thermodynamical functions, such as the stretching of the hydrogen bonds, the specific heat and the entropy. Besides a sharp thermal profile behavior of these functions, we observe also that the DNA's melting temperature decreases as the solvent potential increases.

  8. Effects of thermal quenching on mechanical properties of pyroclasts

    NASA Astrophysics Data System (ADS)

    Patel, Ameeta; Manga, Michael; Carey, Rebecca J.; Degruyter, Wim

    2013-05-01

    Contact with water can promote magma fragmentation. Obsidian chips and glass spheres typically crack when quenched. Vesicular pyroclasts are made of glass, so thermal quenching by water may damage them. If water enters eruption columns, or if pyroclastic density currents interact with water, hot pumice can be quenched. We performed a set of experiments on air fall pumice from Medicine Lake, California. We made quenched samples by heating natural clasts to 600 °C, quenching them in water at 21 °C, drying them at 105 °C, and then cooling them to room temperature. We compare these samples with untreated air fall pumice from the same deposit, hereafter referred to as regular pumice. We tested whether quenched pumice would 1) shatter more easily in collisions and 2) abrade faster. We also tested whether individual clasts lose mass upon quenching, and whether they increase in effective wet density, two measurements which may help characterize the magnitude of clast damage during quenching. We also compare pre-quenching and post-quenching textures using X-ray microtomography (μXRT) images. Results from collision experiments show no clear difference between quenched pumice and regular pumice. Quenched pumice abraded faster than regular pumice. On average 0.3% of mass may have been lost during quenching. Effective wet density increased 1.5% on average, as measured after 5 minutes of immersion in water. Overall, we find modest differences between quenched pumice and regular pumice in experiments and measurements. The experimental results imply that quenching may damage small parts of a clast but tends not to cause cracks that propagate easily through the clast. Post-quenching μXRT imaging shows no obvious change in clast texture. This is in stark contrast to non-vesicular glass that develops large cracks on quenching. We present four factors that explain why pumice is resistant to damage from thermal quenching: thin glass films experience lower transient thermal

  9. Analytical analysis of borehole experiments for the estimation of subsurface thermal properties

    NASA Astrophysics Data System (ADS)

    Moscoso Lembcke, Luis G.; Roubinet, Delphine; Gidel, Floriane; Irving, James; Pehme, Peeter; Parker, Beth L.

    2016-05-01

    Estimating subsurface thermal properties is required in many research fields and applications. To this end, borehole experiments such as the thermal response test (TRT) and active-line-source (ALS) method are of significant interest because they allow us to determine thermal property estimates in situ. With these methods, the subsurface thermal conductivity and diffusivity are typically estimated using asymptotic analytical expressions, whose simplifying assumptions have an impact on the accuracy of the values obtained. In this paper, we develop new analytical tools for interpreting borehole thermal experiments, and we use these tools to assess the impact of such assumptions on thermal property estimates. Quite importantly, our results show that the simplifying assumptions of currently used analytical models can result in errors in the estimated thermal conductivity and diffusivity of up to 60% and 40%, respectively. We also show that these errors are more important for short-term analysis and can be reduced with an appropriate choice of experimental duration. Our results demonstrate the need for cautious interpretation of the data collected during TRT and ALS experiments as well as for improvement of the existing in-situ experimental methods.

  10. Novel Radiofrequency-Assisted Thermal Processing Improves the Gelling Properties of Standard Egg White Powder.

    PubMed

    Boreddy, Sreenivasula Reddy; Thippareddi, Harshavardhan; Froning, Glenn; Subbiah, Jeyamkondan

    2016-03-01

    Effect of radiofrequency (RF)-assisted thermal processing on quality and functional properties of high-foaming standard egg white powder (std. EWP, pH approximately 7.0) was investigated and compared with traditional processing (heat treatment in a hot room at 58 °C for at least 14 d). The RF-assisted thermal treatments were selected to meet the pasteurization requirements and to improve the functional properties of the std. EWP. The treatment conditions were: RF heating to 60, 70, 80, and 90 °C followed by holding in a hot air oven at those temperatures for different periods ranging from 4 h at 90 °C to 72 h at 60 °C. The quality (color and solubility) and functional properties (foaming properties: foaming capacity and foam stability; and gelling properties: water holding capacity and gel-firmness) of the std. EWP were investigated. RF-assisted thermal processing did not affect the color and solubility of std. EWP at any of the treatment conditions. In general, the foaming and gelling properties of RF-assisted thermally processed std. EWP increased with an increase in temperature and treatment duration. The optimal RF-assisted treatment conditions to produce std. EWP with similar functional properties as the traditionally processed (hot room processed) std. EWP were 90 °C for ≥8 h. These optimal conditions were similar to those for high gel egg white powder (HG-EWP, pH approximately 9.5). The RF-assisted thermal pasteurization improved the gelling properties of std. EWP to the levels of HG-EWP, leading to newer applications of this functionally improved safe product. The RF-assisted thermal processing allows the processor to produce a HG-EWP from std. EWP subsequent to processing while simultaneously pasteurizing the product, thus assuring the product safety. PMID:26869145

  11. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  12. Vibrational, mechanical, and thermal properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1989-02-01

    Theories of the mechanical, vibrational, and electronic properties of 3 to 5 semiconductors were developed and applied to: (1) help determine the feasibility of InN-based visible and ultraviolet lasers and light detectors, (2) develop a theory of phonons in semiconductor alloys, (3) understand surface reconstruction of semiconductors, (4) predict the effects of atomic correlations on the light-scattering (Raman) properties of semiconductive alloys, (5) develop a new first principles pseudo-function implementation of local-density theory, (6) study the oxidation of GaAs, (7) develop a theory of scanning tunneling microscope images, and (8) understand the electronic and optical properties of highly strained artificial semiconductors and small semiconductor particles.

  13. Effect of grain size on thermal shock property of alumina ceramic

    NASA Astrophysics Data System (ADS)

    Xu, Xianghong; Sheng, Shilong; Yuan, Wenjun; Lin, Zhongkang

    2016-04-01

    Ceramic has a great broad application in high-temperature environment due to its favorable mechanical, antioxidant and corrosion resistance properties. However, it tends to exhibit severe crack or fail under thermal shock resulting from its inherent brittleness. Microstructure property is a vital factor and plays a critical role in influencing thermal shock property of ceramic. The present study experimentally tested and characterized thermal-shock crack and residual strength of ceramic under different quench temperature, while two kinds of alumina ceramics with different grain size are employed. A two-dimensional (2D) numerical model based on statistical mesoscopic damage mechanics is introduced to depict the micro-crack propagation of ceramic sheet under water quenching. The effects of grain size on critical thermal shock temperature, crack characteristics and residual strength are studied. And the microscopic mechanism of the influence of grain size on thermal shock resistance of ceramic is discussed based on the crack propagation path obtained from experimental and simulation results. The qualitative effect and evolution change of grain size on thermal shock property of alumina ceramic will be summarized.

  14. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  15. La/Sm/Er Cation Doping Induced Thermal Properties of SrTiO3 Perovskite.

    PubMed

    Rittiruam, Meena; Seetawan, Tosawat; Yokhasing, Sirakan; Matarat, Korakot; Bach Thang, Phan; Kumar, Manish; Han, Jeon Geon

    2016-09-01

    The La/Sm/Er cations with different radii doping SrTiO3 (STO) as model Sr0.9R0.1TiO3 (R = La, Sm, Er) were designed to investigate structural characteristics and thermal properties by the molecular dynamics simulation with the Green-Kubo relation at 300-2000 K. The structural characteristics were composed of lattice constant, atoms excursion, and pair correlation function (PCF). The thermal properties consisted of heat capacity and thermal conductivity. The lattice constant of R-doped exhibited less than the STO at 300-1100 K and more than STO at 1500-2000 K, which was encouraged by atom excursion and PCF. The thermal properties was compared with literature data at 300-1100 K. In addition, the thermal properties at 1100-2000 K were predicted. It highlights that thermal conductivity tends to decrease at high temperature, due to perturbation of La, Sm, and Er, respectively. PMID:27494425

  16. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    NASA Astrophysics Data System (ADS)

    Shao, Cheng; Bao, Hua

    2016-06-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  17. Thermal Properties of Silk Fibroin Using Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Partlow, Benjamin; Kaplan, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We performed fast scanning chip-based calorimetry of silk protein using the Mettler Flash DSC1. We suggest the methodology by which to obtain quantitative information on the very first scan to high temperature, including the melting endotherm of the beta pleated sheets. For proteins, this first scan is the most important one, because the crystalline secondary structural features, the beta pleated sheets, melt after the first heating and cannot be thermally reintroduced. To obtain high quality data, the samples must be treated to drying and enthalpy relaxation sequences. The heat flow rates in heating and cooling must be corrected for asymmetric heat loses. We evaluate methods to obtain an estimate of the sample mass, finally choosing internal calibration using the known heat capacity increment at the glass transition. We report that even heating at rates of 2000 K/s, thermal degradation of silk cannot be totally avoided, though it can be minimized. Using a set of nineteen samples, we successfully determine the liquid state heat capacity of silk as: Cpliquid (T) = (1.98 +0.06) J/gK + T (6.82 +1.4) x10-4 J/gK2. Methods for estimation of the sample mass will be presented and compared. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  18. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.

    PubMed

    Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T

    2015-07-13

    The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices. PMID:26106810

  19. Effect of Silver Nanoparticles on the Thermal Properties of Sodium Acetate Trihydrate

    NASA Astrophysics Data System (ADS)

    Garay-Ramírez, B.; Cruz-Orea, A.; San Martín-Martínez, E.

    2015-06-01

    Sodium acetate trihydrate (SAT) is used as a phase change material (PCM) because of its high latent heat of fusion. Mixtures were prepared with SAT, a blend of the polymer sodium carboxymethil cellulose (CMC) and silica gel, silver nanoparticles (AgNPs), and anhydrous sodium sulfate to form a composite-PCM (c-PCM) based on SAT; the relative proportions of CMC/silica gel in the blend and AgNP content were varied according to a central composite experimental design. The thermal properties were determined for raw SAT, CMC, , and c-PCM samples. The thermal effusivity of samples was evaluated by the inverse photopyroelectric technique. The thermal diffusivity was obtained for samples by the open photoacoustic cell technique. The thermal conductivity was calculated from the obtained and values. To assess the thermal performance of the c-PCM compared to raw SAT, samples were studied through differential scanning calorimetry which served to determine the latent heat recovery ( LHR). Properties , and LHR were analyzed by response surface methodology and compared. The SAT-based c-PCM was found to be more thermally conductive than raw SAT. The best LHR with good thermal diffusivity and thermal conductivity was identified in the region of the central composite experimental design with medium-low AgNPs and higher proportions of CMC in the polymer blend.

  20. Using Combined THEMIS Visible and Infrared Images to map Martian Topography and Slope- corrected Surface Thermal Properties

    NASA Astrophysics Data System (ADS)

    Cushing, G. E.; Titus, T. N.; Soderblom, L. A.; Kirk, R. L.

    2007-12-01

    Kirk et al. (2005) empirically deconvolved visible and thermal-infrared THEMIS data, isolating topographic information that produced an accurate digital-terrain model (DTM). Described here is the next step wherein we use the same dataset (Columbia Hills area, Mars) in conjunction with the KRC thermal model (Kieffer et al., 1977) to quantitatively derive and map slope-corrected thermophysical properties. Observed surface temperatures, at high spatial resolution, are a function of many variables such as: slope, albedo, thermal inertia, time, season and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope/albedo-corrected thermal inertia, and surface temperatures across an entire scene for any time of day or year and any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, but generating these data is a challenge. The MOLA global dataset does not have sufficient resolution (~3 km) to be combined with newer datasets (e.g. HiRISE, CTX, THEMIS, MOC, and CRISM), so new techniques to derive high-resolution DTMs are always being explored. Stereo imaging produces quality, high-resolution DTMs but is limited in the amount of available coverage. Photoclinometry techniques on visible-wavelength images have been widely investigated with varying degrees of success, but accounting for albedo variations across a scene has been an historical weakness of this method. Here we discuss a technique of combining THEMIS visible and thermal infrared (both daytime and nighttime) observations (Christensen et al., 2004) in such a manner that albedo variations in the scene are cancelled, allowing the production of a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. We employ the KRC thermal-diffusion model to generate models of slope-corrected thermal properties from the resultant DTM and THEMIS observations. This technique can provide new perspectives and

  1. Low Temperature Properties and Thermal Stability of Oligomerized Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil polymers with lower molecular weight prepared in supercritical carbon dioxide (scCO2) by cationic polymerization were investigated for their applications as lubricants and hydraulic fluids. The low-temperature properties were studied by measuring their cloud and pour points; while therm...

  2. An Experimental Study of Microstructure-Property Relationships in Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Dwivedi, G.; Nylén, P.; Vackel, A.; Sampath, S.

    2013-06-01

    The thermal-mechanical properties of thermal barrier coatings are highly influenced by the defects present in coating microstructure. The aim of this study was to meet the future needs of the gas turbine industry by further development of zirconia coatings through the assessment of microstructure-property relationships. A design of experiments was conducted for this purpose with current, spray distance, and powder feed rate as the varied parameters. Microstructure was assessed with SEM and image analysis was used to characterize porosity content. Evaluations were carried out using laser flash technique to measure thermal properties. A bi-layer beam curvature technique in conjunction with controlled thermal cycling was used to assess the mechanical properties, in particular their nonlinear elastic response. Coating lifetime was evaluated by thermo-cyclic fatigue testing. Relationships between microstructure and coating properties are discussed. Dense vertically cracked microstructure and highly porous microstructure with large globular pores were also fabricated. Correlations between parameters obtained from nonlinear measurements and lifetime based on a priori established microstructural analysis were attempted in an effort to develop and identify a simplified strategy to assess coating durability following sustained long-term exposure to high temperature thermal cycling.

  3. Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Mirnezhad, M.; Sahmani, S.

    2015-04-01

    Molecular mechanics theory has been widely used to investigate the mechanical properties of nanostructures analytically. However, there is a limited number of research in which molecular mechanics model is utilized to predict the elastic properties of boron nitride nanotubes (BNNTs). In the current study, the mechanical properties of chiral single-walled BNNTs are predicted analytically based on an accurate molecular mechanics model. For this purpose, based upon the density functional theory (DFT) within the framework of the generalized gradient approximation (GGA), the exchange correlation of Perdew-Burke-Ernzerhof is adopted to evaluate force constants used in the molecular mechanics model. Afterwards, based on the principle of molecular mechanics, explicit expressions are given to calculate surface Young's modulus and Poisson's ratio of the single-walled BNNTs for different values of tube diameter and types of chirality. Moreover, the values of surface Young's modulus, Poisson's ratio and bending stiffness of boron nitride sheets are obtained via the DFT as byproducts. The results predicted by the present model are in reasonable agreement with those reported by other models in the literature.

  4. Thermal and statistical properties of nuclei and nuclear systems

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1989-07-01

    The term statistical decay, statistical or thermodynamic equilibrium, thermalization, temperature, etc., have been used in nuclear physics since the introduction of the compound nucleus (CN) concept, and they are still used, perhaps even more frequently, in the context of intermediate- and high-energy heavy-ion reactions. Unfortunately, the increased popularity of these terms has not made them any clearer, and more often than not one encounters sweeping statements about the alleged statisticity of a nuclear process where the statistical'' connotation is a more apt description of the state of the speaker's mind than of the nuclear reaction. It is our goal, in this short set of lectures, to set at least some ideas straight on this broad and beautiful subject, on the one hand by clarifying some fundamental concepts, on the other by presenting some interesting applications to actual physical cases. 74 refs., 38 figs.

  5. Thermal properties of explosives. Quarterly report, April--June 1964

    SciTech Connect

    Myers, L.C.

    1997-09-01

    Changes in the loading technique for the Henkin test to be used when investigating high temperatures explosives are reported. Data comparing times-to-explosion for lead, aluminum {open_quotes}foil{close_quotes}, insulated lead, and insulated aluminum {open_quotes}foil{close_quotes} plugs are included. A preliminary temperature-time curve for an HMX sample in the Henkin batch at 272{degrees}C, is reported. The pyrolysis apparatus has been reworked to increase its sensitivity and the results of the changes are readily apparent in the pyrolytic decomposition curves that are reported. Thermal data are reported for some {open_quotes}tailormade{close_quotes} samples of HMX, samples of PETN from different manufacturers, and the six simulated samples of Bridgewater HMX. Differences within these groups are detected by one or another of the tests. Work has begun on a two column gas chromatograph to be used in obtaining chemical reactivity data for use in specifications.

  6. Thermal properties of stellar matter in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine

    2012-07-01

    Low statistics and selection effects of the existing observational records of neutron stars ( NSs) do not allow to draw a coherent picture of the NSs typology only from observations. From theoretical point of view the unsufficient understanding of the mechanism of Supernovae explosion as well as the uncertainties in the modeling of the stellar matter equation of state make the knowledge of the parameters of the NS's structure and thermal, magnetic field or spin evolution non robust. The model's which are including the effects of superfluidity, superconductivity in dense matter and electro dynamics of super strong magnetic fields due to The complicated physics of matter under extrim conditions need further detailed investigations. The results are demonstrating the influence of magnetic field on the cooling regulators of NSs such as neutrino emissivity, heat conductivity and specific heat in the presence of magnetic fields for the investigations of cooling evolution of magnetars.

  7. Thermal and structural properties of low-fluence irradiated graphite

    NASA Astrophysics Data System (ADS)

    Lexa, Dusan; Dauke, Michael

    2009-02-01

    The release of Wigner energy from graphite irradiated by fast neutrons at a TRIGA Mark II research reactor has been studied by differential scanning calorimetry and simultaneous differential scanning calorimetry / synchrotron powder X-ray diffraction between 25 and 725 °C at a heating rate of 10 °C min -1. The graphite, having been subject to a fast-neutron fluence from 5.67 × 10 20 to 1.13 × 10 22 n m -2 at a fast-neutron flux ( E > 0.1 MeV) of 7.88 × 10 16 n m -2 s -1 and at temperatures not exceeding 100 °C, exhibits Wigner energies ranging from 1.2 to 21.8 J g -1 and a Wigner energy accumulation rate of 1.9 × 10 -21 J g -1 n -1 m 2. The differential-scanning-calorimeter curves exhibit, in addition to the well known peak at ˜200 °C, a pronounced fine structure consisting of additional peaks at ˜150, ˜230, and ˜280 °C. These peaks correspond to activation energies of 1.31, 1.47, 1.57, and 1.72 eV, respectively. Crystal structure of the samples is intact. The dependence of the c lattice parameter on temperature between 25 and 725 °C as determined by Rietveld refinement leads to the expected microscopic thermal expansion coefficient along the c axis of ˜26 × 10 -6 °C -1. At 200 °C, coinciding with the maximum in the differential-scanning-calorimeter curves, no measurable changes in the rate of thermal expansion have been detected - unlike its decrease previously seen in more highly irradiated graphite.

  8. Investigation of Thermal Properties of SiC Ceramics Containing Carbon Nanostructures by Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Bałata, Anna; Mazur, Jacek; Bodzenta, Jerzy; Trefon-Radziejewska, Dominika; Drewniak, Łukasz

    2014-12-01

    This work presents an analysis of the influence of graphene reinforcement on properties of silicon carbide composites. Samples were prepared by a spark plasma sintering method. The density and hardness were obtained in the preliminary experiments. The thermal diffusivity was determined by the continuous wave photothermal technique with detection based on infrared radiometry. The thermal diffusivity is in the range of (0.48 to 0.57) cms for samples prepared from granulated SiC and in the range of (0.56 to 0.71) cms for samples prepared from SiC powder. Thermal properties are correlated with the density of SiC ceramics. The thermal diffusivity of samples with a higher density is lower in comparison to samples with a lower density.

  9. Effect of stabilizer on dynamic thermal transport property of ZnO nanofluid

    PubMed Central

    2013-01-01

    In this paper, we investigate the effect of adding a stabilizer on the dynamic thermal properties of ZnO nanofluid (containing 5 to 10 nm diameter of ZnO nanocrystals) measured using a 3ω method. Addition of the stabilizer leads to the stabilization of the nanofluid and also substantial reduction of the enhancement of thermal transport compared to that seen in the bare ZnO nanofluid. This also alters the frequency dependence of the thermal transport and the characteristic time scale associated with it. It is suggested that the addition of the stabilizer inhibits the thermodiffusion-assisted local aggregation thus leading to substantial reduction of the enhancement of thermal transport properties of the bare nanofluid as proposed in some recent models, and this also alters the characteristic time scales by altering the scale of aggregation. PMID:23497347

  10. Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Guizhou; Hou, Zhipeng; Yang, Bingchao; Zhang, Xiaoming; Liu, Enke; Xi, Xuekui; Liu, Zhongyuan; Zeng, Zhongming; Wang, Wenhong; Wu, Guangheng

    2016-02-01

    The anisotropy of thermal transport properties for bulk black phosphorus (BP) single crystal, which might be of particular interest in the fabrication of thermoelectric/optoelectronic devices, was investigated by using angular dependent thermal conductivity and Seebeck coefficient measurements at various temperatures. We found that the maximum thermal conductivities in x (zigzag), y (armchair), and z (perpendicular to the puckered layers) directions are 34, 17, and 5 W m-1 K-1, respectively, exhibiting large anisotropy. At temperature around 200 K, a large Seebeck coefficient up to +487 ± 10 μV/K has been obtained in x direction, which is 1.5 times higher than that in z direction. The large anisotropy of thermal transport properties can be understood from the crystal structure and bonding characters of BP. In addition, the energy gap has been obtained from nuclear spin lattice relaxation measurements, which is consistent with the value derived from temperature-dependent Seebeck coefficient measurements.

  11. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Wan, X.; Fan, J.

    2008-06-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index.

  12. A new method for measuring the thermal regulatory properties of phase change material (PCM) fabrics

    NASA Astrophysics Data System (ADS)

    Wan, X.; Fan, J.

    2009-02-01

    Several methods already exist for the measurement of the thermal regulatory properties of fabrics containing phase change materials (PCMs). However, they do not adequately simulate the actual use condition; consequently the measurements may not have relevance to the performance of PCM fabrics in actual use. Here we report on the development of a new method, which better simulates the real use situation. In this method, a hot plate, simulating the human body, generates a constant amount of heat depending on the type of human activity to be simulated. The hot plate covered by the PCM fabric is then exposed to a thermal transient simulating a wearer moving from one thermal environment to another; the changes of surface temperature and heat loss of the hot plate are then recorded and used to characterize the thermal regulatory properties of the PCM fabrics.

  13. Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation.

    PubMed

    Moriana, Rosana; Vilaplana, Francisco; Karlsson, Sigbritt; Ribes, Amparo

    2014-11-01

    The potential of lignocellulosic natural fibres as renewable resources for thermal conversion and material reinforcement is largely dependent on the correlation between their chemical composition, crystalline structure and thermal decomposition properties. Significant differences were observed in the chemical composition of cotton, flax, hemp, kenaf and jute natural fibres in terms of cellulose, hemicellulose and lignin content, which influence their morphology, thermal properties and pyrolysis product distribution. A suitable methodology to study the kinetics of the thermal decomposition process of lignocellulosic fibres is proposed combining different models (Friedman, Flynn-Wall-Ozawa, Criado and Coats-Redfern). Cellulose pyrolysis can be modelled with similar kinetic parameters for all the natural fibres whereas the kinetic parameters for hemicellulose pyrolysis show intrinsic differences that can be assigned to the heterogeneous hemicellulose sugar composition in each natural fibre. This study provides the ground to critically select the most promising fibres to be used either for biofuel or material applications. PMID:25129763

  14. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    NASA Astrophysics Data System (ADS)

    Xu, Zhongnan; Joshi, Yogesh V.; Raman, Sumathy; Kitchin, John R.

    2015-04-01

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  15. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  16. Determination of physical properties of fibrous thermal insulation

    NASA Astrophysics Data System (ADS)

    Tilioua, A.; Libessart, L.; Joulin, A.; Lassue, S.; Monod, B.; Jeandel, G.

    2012-10-01

    The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET) with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool) are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  17. Electrical, Mechanical and Thermal Properties of Single Molecules

    SciTech Connect

    Tao, Nongjian

    2014-08-20

    The specific aims of the prior DOE grant are to determine the stability of a single molecule bound to two electrodes, study local heating in single molecule junctions due to electron-phonon and electron-electron interactions, measure electron-phonon interactions in single molecule wires; and explore piezoelectric properties of single molecules. We have completed all the major tasks, and also expanded naturally the scope of the project to address several other critical issues in single molecule properties, developed new experimental capabilities, and observed a number of unexpected phenomena. We summarized here some of the findings that are most relevant to the present renewal proposal. More details can be found in the publications resulted from this grant and annual progress reports.

  18. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  19. Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Badran, Hussain A.

    2015-05-01

    A new dye compound containing azomethine groups has been synthesized and characterized by FT-IR, 13C NMR, and an UV-visible spectrometer. Measurements of the thermally induced optical nonlinearity of dichloro bis[2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II) in a chloroform solvent were studied using a cw diode laser at 487 nm as the source of excitation, both in solution and as a poly methyl methacrylate solid film, respectively. The optical response was characterized by measuring the intensity-dependent refractive index n 2 of the medium using the Z-scan technique. The sample showed negative and large nonlinear refractive index values of the order of 10-7 cm2/W and reverse saturable absorption with high values of the nonlinear absorption coefficient of the order of 10-3 cm/W. The nonlinear refractive index was found to vary with the concentration. These results indicate that the dye is a promising candidate for applications in the nonlinear optic field. Thermal lens spectrometry was applied to investigate the thermo-optical properties and the nonlinear refractive index. In this technique, a pump and a probe beam were aligned collinearly. A localized change in the refractive index of the sample due to the thermal heating produced a thermal lens, which was then detected by studying the focusing and defocusing of the pump and probe beam.

  20. Effect of γ-radiation on dynamic viscoelastic properties and thermal behavior for LDPE

    NASA Astrophysics Data System (ADS)

    Shuzhong, Li; Zhongda, He; Wanxi, Zhang

    1993-07-01

    The effect of γ-radiation on dynamic viscoelastic properties and thermal behavior for low density polyethylene(LDPE)have been investigated. The store energy modulus (E) of the samples increased after radiation. The β and α transition temperature shifted to higher temperature with increasing irradiation dose. The results of thermal analysis show that crystal melting temperature(Tm), enthalpy(ΔHm) and crystal disapperance temperature(Td) for irradiated samples decreases with increasing of dose.

  1. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  2. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films.

    PubMed

    Aguirre-Loredo, Rocío Yaneli; Rodríguez-Hernández, Adriana Inés; Morales-Sánchez, Eduardo; Gómez-Aldapa, Carlos Alberto; Velazquez, Gonzalo

    2016-04-01

    Water molecules modify the properties of biodegradable films obtained from hydrophilic materials. Most studies dealing with thermal, mechanical and barrier properties of hydrophilic films are carried out under one relative humidity (RH) condition. The objective of this work was to evaluate the effect of the moisture content on the thermal, mechanical and barrier properties of chitosan films under several RH conditions. Microclimates, obtained with saturated salt solutions were used for conditioning samples and the properties of the films were evaluated under each RH condition. Chitosan films absorbed up to 40% of moisture at the higher RH studied. The percentage of elongation and the water vapour permeability increased while tensile strength, Young's modulus and glass transition temperature decreased, when the moisture content increased. The results suggest that the water molecules plasticized the polymer matrix, changing the properties when the films were in contact with high RH environments. PMID:26593528

  3. Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling

    NASA Astrophysics Data System (ADS)

    Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya

    2016-04-01

    Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  4. Effect of thermal cycling treatment on the mechanical properties of low-alloy chromium

    SciTech Connect

    Rakitskii, A.N.; Bega, N.D.; Brodnikovskii, N.P.; Khutorskii, A.L.; Turtsevich, E.V.

    1985-10-01

    The authors report the results of a study of the effect of structural changes occurring during thermal cycling treatment in low-alloy chromium on mechanical properties. Low-alloy chromium containing 0.5 wt.% lanthanum and 0.25 wt.% tantalum was selected as test material, as well as unalloyed chromium. It is concluded that thermal cycling treatment of chromium and low-alloy chromium leads to an increase in flow stresses as the result of forming a strengthened nitrogen-containing surface layer. Alloying of chromium with lanthanum and tantalum, apart from increasing the low-temperature ductility, increases its resistance to thermal cycling. In alloy specimens subjected to prior impregnation with nitrogen, the effect ot thermal cycling strengthening and embrittlement is more clearly defined. In unalloyed chromium under the action of thermal cycling treatment, the region of strain aging shifts in the direction of lower temperature.

  5. Study on properties of Al film on CFRP after cryogenic-thermal cycling

    NASA Astrophysics Data System (ADS)

    Sheng-hu, Wu; Zhan-ji, Ma; Geng-jie, Xiao; Dong-cai, Zhao; Ni, Ren

    Al film on CFRP has been tested by cryogenic-thermal cycling according to the especial condition of space. Properties of aluminum film have been characterized by electron pull apparatus, XRD and SEM. The result shows that the adhesion of Al film increases slowly at early stage of cryogenic-thermal cycling. When the times of cryogenic-thermal cycling exceed 50, the adhesion of Al film becomes stability, and then the adhesion of Al film decrease slowly when cycling times from 100 to 600. After 600 times, the adhesion of Al film becomes stability again. The microcrack appears on the surface of Al film after 50 times, and the amounts of microcrack increase and microcrack is coarsening versus times of cryogenic-thermal cycling. The structure of Al film is changing slowly during cryogenic-thermal cycling.

  6. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  7. Thermal properties of U–Mo alloys irradiated to moderate burnup and power

    SciTech Connect

    Burkes, Douglas E.; Casella, Andrew M.; Casella, Amanda J.; Buck, Edgar C.; Pool, Karl N.; MacFarlan, Paul J.; Edwards, Matthew K.; Smith, Frances N.

    2015-09-01

    A variety of physical and thermal property measurements as a function of temperature and fission density were performed on irradiated U-Mo alloy monolithic fuel samples with a Zr diffusion barrier and clad in aluminum alloy 6061. The U-Mo alloy density, thermal diffusivity, and thermal conductivity are strongly influenced by increasing burnup, mainly as the result of irradiation induced recrystallization and fission gas bubble formation and coalescence. U-Mo chemistry, specifically Mo content, and specific heat capacity was not as sensitive to increasing burnup. Measurements indicated that thermal conductivity of the U-Mo alloy decreased approximately 30% for a fission density of 2.88 × 1021 fissions cm-3 and approximately 45% for a fission density of 4.08 × 1021 fissions cm-3 from unirradiated values at 200 oC. An empirical thermal conductivity degradation model developed previously and summarized here agrees well with the experimental measurements.

  8. Thermal properties of U-Mo alloys irradiated to moderate burnup and power

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Andrew M.; Casella, Amanda J.; Buck, Edgar C.; Pool, Karl N.; MacFarlan, Paul J.; Edwards, Matthew K.; Smith, Frances N.

    2015-09-01

    A variety of physical and thermal property measurements as a function of temperature and fission density were performed on irradiated U-Mo alloy monolithic fuel samples with a Zr diffusion barrier and clad in aluminum alloy 6061. The U-Mo alloy density, thermal diffusivity, and thermal conductivity are strongly influenced by increasing burnup, mainly as the result of irradiation induced recrystallization and fission gas bubble formation and coalescence. U-Mo chemistry, specifically Mo content, and specific heat capacity was not as sensitive to increasing burnup. Measurements indicated that thermal conductivity of the U-Mo alloy decreased approximately 30% for a fission density of 3.30 × 1021 fissions cm-3 and approximately 45% for a fission density of 4.52 × 1021 fissions cm-3 from unirradiated values at 200 °C. An empirical thermal conductivity degradation model developed previously and summarized here agrees well with the experimental measurements.

  9. Growth and thermal properties of doped monocrystalline titanium-silicide based quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Savelli, G.; Silveira Stein, S.; Bernard-Granger, G.; Faucherand, P.; Montès, L.

    2016-04-01

    This paper presents the growth mechanism of a monocrystalline silicide quantum dot superlattices (QDSL) grown by reduced pressure chemical vapor deposition (RPCVD). QDSL are made of TiSi2-based nanodots scattered in a p-doped Si90Ge10 matrix. It is the first time that the growth of a p-type monocrystalline QDSL is presented. We focus here on the growth mechanisms of QDSL and the influence of nanostructuration on their thermal properties. Thus, the dots surface deposition, the dots embedding mechanisms and the final QDSL growths are studied. The crystallographic structures and chemical properties are presented, as well as the thermal properties. It will be shown that some specific mechanisms occur such as the formation of self-formed quantum well superlattices and the dopant accumulation near the quantum dots. Finally, a slight decrease of the QDSL thermal conductivity has been measured compared to the reference sample.

  10. Dielectric and Thermal Properties of Transformer Oil Modified by Semiconductive CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Abd-Elhady, Amr M.; Ibrahim, Mohamed E.; Taha, T. A.; Izzularab, Mohamed A.

    2016-07-01

    In this paper, modified transformer oil semiconductor quantum dots (QDs) are presented. Cadmium sulfide (CdS) quantum dots of radius 4.5 nm with a hexagonal crystal structure are added to transformer oil to improve its dielectric and thermal properties. CdS QDs modified oil is prepared considering different filler loading levels. Alternating current breakdown voltages of the transformer oil samples before and after the modification are measured based on American Society for Testing and Materials D1816 standard. The relative permittivity and dissipation factor are measured for all samples. Also, thermal properties of the oil samples are experimentally evaluated according to the temperature change measurement considering heating and cooling processes. The results show significant improvements in dielectric and thermal properties of the modified transformer oil, as well as an increase in the breakdown strength by about 81% in comparison to the base transformer oil.

  11. Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG

    NASA Astrophysics Data System (ADS)

    Sokol, M.; Kalabukhov, S.; Kasiyan, V.; Rothman, A.; Dariel, M. P.; Frage, N.

    2014-12-01

    The present study deals with a comprehensive comparison of the mechanical and functional properties of Nd:YAG single crystals with those of the polycrystalline ceramics (PCs), undoped and LiF-doped, processed by Spark Plasma Sintering (SPS). The polycrystalline ceramics have higher mechanical properties (hardness, bending strength and thermal shock resistance) than the single crystals. The optical transmittance of the LiF-doped PC Nd:YAG is significantly higher than that of the undoped one and is close to that of the single crystal. With respect to other optical and thermal properties, i.e. refraction index, absorption coefficient, extinction ratio, thermo-optic coefficient, fluorescence and thermal conductivity, no significant differences were observed between the single crystals and the polycrystalline ceramic.

  12. Effect of Mo content on thermal and mechanical properties of Mo-Ru-Rh-Pd alloys

    NASA Astrophysics Data System (ADS)

    Masahira, Yusuke; Ohishi, Yuji; Kurosaki, Ken; Muta, Hiroaki; Yamanaka, Shinsuke; Komamine, Satoshi; Fukui, Toshiki; Ochi, Eiji

    2015-01-01

    Metallic inclusions are precipitated in irradiated oxide fuels. The composition of the phases varies with the burnup and the conditions such as temperature gradients and oxygen potential of the fuel. In the present work, Mox/0.7+x (Ru0.5Rh0.1Pd0.1)0.7/0.7+x (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) alloys were prepared by arc melting, followed by annealing in a high vacuum. The thermal and mechanical properties of the alloys such as elastic moduli, Debye temperature, micro-Vickers hardness, electrical resistivity, and thermal conductivity have been evaluated to elucidate the effect of Mo content on these physical properties of the alloys. The alloys with lower Mo contents show higher thermal conductivity. The thermal conductivity of the alloy with x = 0 is almost twice of that of the alloy with x = 0.25. The thermal conductivities of the alloys are dominated by electronic contribution, which has been evaluated using the Wiedemann-Franz-Lorenz relation from the electrical resistivity data. It is confirmed that the variation of the Mo contents of the alloys considerably affects the mechanical and thermal properties of the alloys.

  13. Enhanced mechanical and thermal properties of CNT/HDPE nanocomposite using MMT as secondary filler

    NASA Astrophysics Data System (ADS)

    Ali Mohsin, M. E.; Arsad, Agus; Fouad, H.; Jawaid, M.; Alothman, Othman Y.

    2014-05-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and XRD properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites.

  14. Thermal properties of multi-walled carbon nanotubes-graphite nanosheets/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramana, G. Venkata; Padya, Balaji; Srikanth, Vadali V. S. S.; Jain, P. K.

    2013-06-01

    Multi-walled carbon nanotubes (MWCNTs) and graphite nanosheets (GNS) reinforced epoxy nanocomposites are synthesized by solution mixing process. Various surface active groups on filler materials are analyzed and their effect on dispersion, interfacial bonding was correlated to the thermal conductivity and dimensional stability of the nanocomposites. Thermal conductivity of MWCNTs/epoxy nanocomposites was enhanced by 34% when compared to GNS/epoxy nanocomposites at room temperature. Improved dimensional stability was also observed in the case of MWCNTs/epoxy nanocomposites. Poor thermal properties of GNS/epoxy nanocomposites are due to formation of GNS agglomerates in the nanocomposites.

  15. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  16. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  17. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-10-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  18. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    NASA Astrophysics Data System (ADS)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  19. Anisotropic thermal transport property of defect-free GaN

    NASA Astrophysics Data System (ADS)

    Ju, Wenjing; Zhou, Zhongyuan; Wei, Zhiyong

    2016-06-01

    Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.

  20. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  1. Thermal dependency of RAG1 self-association properties

    PubMed Central

    De, Pallabi; Zhao, Shuying; Gwyn, Lori M; Godderz, LeAnn J; Peak, Mandy M; Rodgers, Karla K

    2008-01-01

    Background Functional immunoglobulin and T cell receptor genes are produced in developing lymphocytes by V(D)J recombination. The initial site-specific DNA cleavage steps in this process are catalyzed by the V(D)J recombinase, consisting of RAG1 and RAG2, which is directed to appropriate DNA cleavage sites by recognition of the conserved recombination signal sequence (RSS). RAG1 contains both the active site and the RSS binding domains, although RAG2 is also required for DNA cleavage activity. An understanding of the physicochemical properties of the RAG proteins, their association, and their interaction with the RSS is not yet well developed. Results Here, we further our investigations into the self-association properties of RAG1 by demonstrating that despite the presence of multiple RAG1 oligomers, only the dimeric form maintains the ability to interact with RAG2 and the RSS. However, facile aggregation of the dimeric form at physiological temperature may render this protein inactive in the absence of RAG2. Upon addition of RAG2 at 37°C, the preferentially stabilized V(D)J recombinase:RSS complex contains a single dimer of RAG1. Conclusion Together these results confirm that the functional form of RAG1 in V(D)J recombination is in the dimeric state, and that its stability under physiological conditions likely requires complex formation with RAG2. Additionally, in future structural and functional studies of RAG1, it will be important to take into account the temperature-dependent self-association properties of RAG1 described in this study. PMID:18234093

  2. Electrical and Thermal Properties of Polyvinyl Acetal Based Nanocomposites

    SciTech Connect

    Sauers, Isidor; James, David Randy; Ellis, Alvin R; Tuncer, Enis; Polyzos, Georgios; Pace, Marshall O

    2009-10-01

    A water chemistry procedure is used to synthesize titanium dioxide nanoparticles which can later be blended with a polymer to form a nanodielectric. The synthesized nanoparticles are dispersed in two grades of polyvinyl acetal (commercially available under the trade names BX-L and KS-10, manufactured by SEKISUI Chemicals). Nanocomposite materials were prepared with 15 and 33 wt% titanium dioxide. The variation of the glass transition temperature with increasing filler weight fraction is presented. The dielectric breakdown strengths of the nanodielectric samples are reported. The presented results can be employed to optimize the dielectric properties of the studied nanocomposites for potential use in cryogenic high voltage applications.

  3. Synthesis and thermal properties of strontium and calcium peroxides

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.; Kraft, Patricia A.

    1989-01-01

    A practical synthesis and a discussion of some chemical properties of pure strontium peroxide and calcium peroxide are presented. The general synthesis of these peroxides involves precipitation of their octahydrates by addition of H2O2 to aqueous ammoniacal Sr(NO3)2 or CaCl2. The octahydrates are converted to the anhydrous peroxides by various dehydration techniques. A new x-ray diffraction powder pattern for CaO2 x 8H2O is given from which lattice parameters a=6.212830 and c=11.0090 were calculated on the basis of the tetragonal crystal system.

  4. Thermal transitions and barrier properties of olefinic nanocomposites.

    SciTech Connect

    Chaiko, D. J.; Leyva, A. A.; Chemical Engineering

    2005-01-11

    Differential scanning calorimetry (DSC) was used to study the thermal transitions of smectite organoclays and their dispersions in olefinic systems, which included paraffinic waxes and polyethylene. The organoclays, with treatment on both the basal and edge surfaces, produced nanocscale dispersions without the aid of external coupling agents or compatibilizers. In addition to DSC measurements, the nanocomposites were further characterized using X-ray diffraction and oxygen transmission. The DSC measurements indicated that a clay/wax nanocomposite phase was generated with melt/freeze transition temperatures that were different from those of the individual components, while X-ray data indicated that the nanocomposite phase was in equilibrium with an intercalate phase. Barrier improvement of over 300x was observed and ascribed to a tortuosity effect resulting from dispersed clay platelets having a high aspect ratio and strong cohesion between the wax and the organoclay surface. Available data indicate that the barrier enhancement decreases as the difference between the freezing points of the organoclay and the wax widens. The cause of poor barrier performance in polyolefin systems is traced to the large difference in recrystallization temperatures, such that when the polymer begins to crystallize the surface of the organoclay is still in a liquid state, which leads to phase separation.

  5. Thermal properties of explosives. Quarterly report, January, February, March 1964

    SciTech Connect

    Myers, L.C.

    1997-09-01

    Henkin`s test data are reported for comparisons of the following: dry-to-moist samples, PBX 9404 in brass and gold-plated blasting caps, Holston HMX with Bridgewater HMX, LX-04-1 and LX-04-1 + Ucon oil, and PETN, LX-04-1 and Extex. The time-to-explosion curves for HMX and PBX 9404 are also given. A description of the pyrolysis apparatus and the method of calibrating the sample temperature to the response of the thermal conductivity detector are reported. The pyrolytic decomposition curves of several standard explosives and six specially prepared HMX samples (LRL raw material No. A-311 through A-316) are included. A controlled atmosphere D.T.A. is described and the thermograms of PETN with an atmosphere of air at 85 psi, nitrogen at 85 psi and 200 psi are given. The thermograms indicate that PETN becomes more sensitive as the pressure increases. Chemical reactivity data are reported for Comp B, Comp B-3, Comp C-4, HMX, PBX 9011, PBX 9205, Tetryl and TNT. Also, test results are reported for LX-01-1 and Comp B-3 heated at 150{degrees}C for 22 hours, LX-02-1 heated at 100{degrees}C for 22 hours, and pressed pellets of PBX 9404 and PBX 9404 + powdered lead.

  6. Thermal Properties of Amorphous Selenium over the Glass- Transition Range

    NASA Astrophysics Data System (ADS)

    Ismail, Mukhtar Veliev

    1997-02-01

    In has been shown that the heat capacity (Cp), coefficients of heat conductivity, (l) and thermal expansion, (a), for the amorphous selenium are dependent on the temperature of the transition from glass-forming state into a high elasticity condition. On this transition these quantities are increased by ACp=3,47 kal/deg\\cdotmol, D l=0,32\\cdot 10-3 cal/sec\\cdot deg., da=0,79\\cdot 10-5 deg-1. These increments are due to the contribution by the increased concentration of holes. Contribution of holes in the glass-forming region was calculated using the formulae by Hirai and Eyring for 1 mol of "heads", which is equal to Cp=3,06 kal/deg\\cdotmol. The "hole" theory for liquids is used as a strating point in the calculation of the l and a. The obtained resuls are: l =0,28\\cdot 10-3 kal/cm\\cdotsec\\cdotdeg. a=0,73\\cdot 10-5 deg-1. These quantities for Cp, l and a are in satisfactory agreement with experimental data.

  7. Thermal properties of D0 Run IIb silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and hybrid substrates mounted directly to the silicon sensor surfaces is evaluated for heat transfer characteristics and thermal deflections. In order to control leakage current noise in the silicon it is necessary to maintain the silicon in Layer 2 (R {approx} 100mm) at or below +5C. The current cooling system using 30% ethylene glycol in water can deliver coolant to the inlet of the silicon tracker at a temperature of -8C to -10C. This paper also investigates some alternative coolant options for Run IIB. While these are not required for the outer layers of silicon, they may be needed for L0, which sits at R {approx} 15mm. In this case the silicon must be kept at or below -5C, very near the lower limit for delivery of 30% glycol/water coolant. However, for the inner layers the electronics will be mounted independently from the silicon so the local heat flux is greatly reduced. This paper does not consider the cooling issues for the inner layers.

  8. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    SciTech Connect

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa; Sarojini, B. K.; Somashekar, R.

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  9. Thermal transport properties of ethylene glycol/N-methylformamide binary mixture based CuO nanofluid

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, M.; Kiruba, R.; Jeevaraj, A. Kingson Solomon

    2015-06-01

    In this present investigation, we have synthesized copper oxide nanoparticles by solvothermal method and analyzed their rheological behavior and thermal conductivity properties in binary base fluids (Ethylene Glycol+N-Methylformamide) and CuO binary nanofluid at different temperature. The crystalline nature and morphological properties of prepared CuO nanoparticles were characterized using XRD and SEM analysis respectively. The influence of CuO nanoparticles increases the thermal conductivity of binary base fluids. The results suggested that prepared binary nanofluids can be applicable in heat transfer.

  10. Morphology effects on electrical and thermal properties of binderless graphene aerogels

    NASA Astrophysics Data System (ADS)

    Fan, Zeng; Tng, Daniel Zhi Yong; Nguyen, Son Truong; Feng, Jingduo; Lin, Chunfu; Xiao, Pengfei; Lu, Li; Duong, Hai M.

    2013-03-01

    Three-dimensional self-assembled graphene aerogels (GAs) are successfully developed by a simple chemical reduction with L-ascorbic acid at low temperature. And for the first time, the relationship among morphologies, electrical and thermal properties of GAs is studied comprehensively by controlling reaction conditions. The electrical conductivities of the GAs are also improved by four times after an annealing at 400 °C for 5 h under Ar environment. The results are very useful to optimize the best morphology, electrical and thermal properties of GAs for the best performance of GA-based electrodes of energy storage devices such as supercapacitors and batteries.

  11. Chemical and optical properties of thermally evaporated manganese oxide thin films

    SciTech Connect

    Al-Kuhaili, M. F.

    2006-09-15

    Manganese oxide thin films were deposited using thermal evaporation from a tungsten boat. Films were deposited under an oxygen atmosphere, and the effects of thickness, substrate temperature, and deposition rate on their properties were investigated. The chemical properties of the films were studied using x-ray photoelectron spectroscopy and x-ray fluorescence. The optical properties were determined from normal-incidence transmittance and reflectance. Based on the chemical and optical characterizations, the optimum conditions for the deposition of the films were investigated. Subsequently, the optical properties (refractive index, extinction coefficient, and band gap) of these films were determined.

  12. Influence of Thermal and Radiation Effects on Microstructural and Mechanical Properties of Nb-1Zr

    SciTech Connect

    Leonard, Keith J; Busby, Jeremy T; Zinkle, Steven J

    2011-01-01

    Refractory metals and alloys offer attractive high-temperature properties, most of which are suitable for applications in nuclear environments including high temperature strength, good thermal conductivity, and compatibility with most liquid metal coolants. One of only two commercially produced Nb-alloys, Nb-1Zr has long been considered for various compact reactor designs. Nb-1Zr has also recently been considered for high-performance Gen IV gas reactor concepts. However, there are significant gaps in the irradiated materials database, especially at temperatures above 800 K. Recent work has shown that irradiated properties of Nb-1Zr are strongly controlled by phase-related transformations in the microstructure. Changes in the microstructure (obtained via scanning and transmission electron microscopy) and corresponding mechanical properties of Nb-1Zr were examined following fission reactor irradiation experiments at temperatures of 1073, 1223 and 1373 K to 1.9 dpa (displacements per atom) and compared with material thermally aged for similar exposure times of ~1100 h. Thermally driven changes in the development of precipitate phases showed a greater influence on mechanical properties compared to irradiation-induced defects for these irradiation conditions. The changes in material density, electrical resistivity and mechanical properties of the irradiated and thermally aged materials in association with microstructural developments are discussed.

  13. Thermal properties of hot and dense matter with finite range interactions

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.

    2015-08-01

    We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical-model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A , and the largest well-measured neutron star mass of 2 M⊙ . This model, which incorporates finite range interactions through a Yukawa-type finite range force, is contrasted with a conventional zero range Skyrme model. Both models predict nearly identical zero-temperature properties at all densities and proton fractions, including the neutron star maximum mass, but differ in their predictions for heavy-ion flow data. We contrast their predictions of thermal properties, including their specific heats, and provide analytical formulas for the strongly degenerate and nondegenerate limits. We find significant differences in the results of the two models for quantities that depend on the density derivatives of nucleon effective masses. We show that a constant value for the ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in simulations of proto-neutron stars and merging compact object binaries, fails to adequately describe results of either nuclear model. The region of greatest discrepancy extends from subsaturation densities to a few times the saturation density of symmetric nuclear matter. Our results suggest alternate approximations for the thermal properties of dense matter that are more realistic.

  14. Feasibility study for collecting site soil characterization thermal property data for residential construction

    SciTech Connect

    Salomone, L.R.

    1988-10-01

    According to the theory of heat transfer by conduction, soil thermal conductivity or its reciprocal, thermal resistivity, is the primary variable that influences heat loss or gain from earth contact surfaces such as uninsulated basement walls, ground-coupled water source heat pumps and underground electric cables. The thermal conductivity of soil, however, varies widely depending upon soil texture, density, and above all moisture content. The thermal conductivity of soils can vary in time and space because of changes in moisture content, density and/or soil type. Also, heat flux densities in the soil can provide the driving mechanism for moisture migration and consequent changes in soil moisture. Despite the influence of the above factors on the thermal conductivity of soils, the majority of existing computer models of the energy exchange between earth contact structures and the surrounding soil do not account for variations in soil thermal conductivity. Of the 26 experimental data sets on foundation energy losses and earth contact heat transfer found in the literature, only five of the data sets provide a description of soil and only 2 of the 26 data sets state that the thermal conductivity of the soil was measured. This report discusses the feasibility of collecting thermal property data for use in determining foundation insulation requirements in residential construction. This feasibility study assesses the availability of equipment and a judgment on facility needs. Finally, implementation procedures are recommended. 41 refs., 15 figs., 12 tabs.

  15. Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.

  16. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    SciTech Connect

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.

  17. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  18. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

    PubMed

    Willow, Soohaeng Yoo; Salim, Michael A; Kim, Kwang S; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  19. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  20. A wall-less poly(vinyl alcohol) cryogel flow phantom with accurate scattering properties for transcranial Doppler ultrasound propagation channels analysis.

    PubMed

    Weir, Alexander J; Sayer, Robin; Cheng-Xiang Wang; Parks, Stuart

    2015-08-01

    Medical phantoms are frequently required to verify image and signal processing systems, and are often used to support algorithm development for a wide range of imaging and blood flow assessments. A phantom with accurate scattering properties is a crucial requirement when assessing the effects of multi-path propagation channels during the development of complex signal processing techniques for Transcranial Doppler (TCD) ultrasound. The simulation of physiological blood flow in a phantom with tissue and blood equivalence can be achieved using a variety of techniques. In this paper, poly (vinyl alcohol) cryogel (PVA-C) tissue mimicking material (TMM) is evaluated in conjunction with a number of potential scattering agents. The acoustic properties of the TMMs are assessed and an acoustic velocity of 1524ms(-1), an attenuation coefficient of (0:49) × 10(-4)fdBm(1)Hz(-1), a characteristic impedance of (1.72) × 10(6)Kgm(-2)s(-1) and a backscatter coefficient of (1.12) × 10(-28)f(4)m(-1)Hz(-4)sr(-1) were achieved using 4 freeze-thaw cycles and an aluminium oxide (Al(2)O(3)) scattering agent. This TMM was used to make an anatomically realistic wall-less flow phantom for studying the effects of multipath propagation in TCD ultrasound. PMID:26736851

  1. Electrical and thermal transport properties of layered Bi2YO4Cu2Se2

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-01

    Bi2YO4Cu2Se2 possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi2YO4Cu2Se2 system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from ~1.8 W m-1 K-1 to ~0.9 W m-1 K-1, and the electrical conductivity decreases from ~850 S/cm to ~163 S/cm in the measured temperature range. To investigate how potential of Bi2YO4Cu2Se2 system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to ~+80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of ~0.7 W m-1 K-1 could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70-72 GPa, and Grüneisen parameters of 1.55-1.71. The low thermal conductivity makes Bi2YO4Cu2Se2 system to be a potential thermoelectric material, the ZT value ~0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc.

  2. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  3. Thermal property characterization of single crystal diamond with varying isotopic composition

    SciTech Connect

    Wei, L.

    1993-01-01

    The mirage-effect/thermal wave technique as a modern technique for thermal property characterization is described. The thermal diffusivity of a material is determined by measuring the time and space varying temperature distribution (thermal wave) in the material generated by an intensity modulated heating laser beam. These thermal waves are detected through the deflection of a probe laser beam due to modulation of gradient of the index of refraction (mirage effect) either in the air above the specimens (the in-air technique) or in the specimen itself (the in-solid technique). Three-dimensional theories, for both in-air and in-solid mirage techniques, are represented. In order to extract the material parameters by comparing the theory with experimental data, an extensive data analysis procedure based on multiparameter-least-squares has been developed. The experimental and data analysis details are discussed. Topics concerns with the quality and reliability of the measurements are addressed. This technique has been successfully applied to the thermal property characterization of single crystal diamond with varying isotope contents. The results showed a 50% enhancement in the thermal conductivity by removal of C[sup 13] content from 1.1% to 0.1% in diamond at room temperature. The technique has also been adapted to function in cryogenic temperatures. The temperature dependence of thermal conductivity in the temperature range 80-378K for natural IIA specimen and 187-375K for isotopically enriched specimen are obtained, the former results agree with previous works and the latter results demonstrate the isotope effect on the thermal conductivity of single crystal diamond consistently in a large temperature range. The physical source of this enhancement in diffusivity due to the isotope effect in diamond is discussed. The discussion is based on the full Callaway's theory with emphasizing the role of N-processes in the phonon scattering mechanism.

  4. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  5. Magnetic and thermal properties of high Tc superconductors

    SciTech Connect

    Lee, Wonchoon.

    1990-09-21

    Measurements of the normal state magnetic susceptibility {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 1.8}Pb{sub 0.2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, and Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} (x = 0.2 and 0.25) were carried out. All {chi}(T) data show negative curvature below {approximately}2{Tc}. The data for YBa{sub 2}Cu{sub 3}O{sub 7} are in excellent agreement with a new calculation of the superconducting fluctuation diamagnetism. From the analysis, we infer s-wave pairing and microscopic parameters are obtained. For {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, part of the negative curvature is inferred to arise from the normal state background. We find a strong temperature dependent anisotropy {delta}{chi} {equivalent to} {chi}{sub c} {minus} {chi}{sub ab} and estimate the normal state spin contributions to {chi}(T). The heat capacity C(T) of YBa{sub 2}Cu{sub 3}O{sub 7} is reported for 0.4 K < T < 400 K in zero and 70 kG magnetic fields. In addition to the feature associated with the onset of the superconductivity at {Tc}, two anomalies in C(T) were observed near 74 K and 330 K, with another possible anomaly near 102 K; the temperatures at which they occur correlate with anomalies in {chi}(T) and ultransonic measurements. The occurrence of the anomaly at {approx equal} 330 K is found to be sample-dependent. The influences of a magnetic field and the thermal and/or magnetic field treatment history dependence of a pellet sample on C(T), the entropy and the influence of superconducting fluctuations on C(T) near {Tc}, and the possible source of the observed intrinsic nonzero {gamma}(0) at low T are discussed.

  6. Thermal Properties of Refractory Metals for Advanced Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ozaki, Yo.

    1994-01-01

    The selection of materials for advanced nuclear energy converters is a crucial issue since many of their components must be able to sustain high temperature operation for long periods of time. Prime candidate materials for the converters including W-HfC and refractory metal carbides (TaC, NbC, HfC, ZrC and WC) were investigated in this research. The objectives were to predict the lifetime of the W-HfC alloy, via a thorough investigation of the microstructure evolution, and to obtain an understanding of the high temperature thermal radiative characteristics of the alloy and the carbides, via emissivity measurements. The W-HfC alloy was found to have an extremely high recrystallization temperature. This strong resistance to recrystallization was concluded to be one of the reasons that W-HfC has superior high temperature strength. The coarsening of HfC particles was found to be the precursor for recrystallization and grain growth. The coarsening of finely dispersed HfC particles in W-HfC was investigated and diffusion of Hf in W were measured to determine the diffusion contribution to the coarsening process. The coarsening process appears to be controlled by two energy barriers. One dictated by the diffusion of hafnium and the other by the solubility limit as a function of temperature. From the environmental aspects, the high temperature compatibility of the alloy with either a CVD-W coating or rm UO_2 nuclear fuel were investigated. Neither of these was found to affect the performance of the converters. Using single- and dual -wavelength radiation thermometries the high temperature emissivities of W-HfC, CVD-W and refractory metal carbides were found to be higher than previously reported. The effects of exposure to high temperatures (with and without the presence of hydrogen) on the emissivities of the carbides were also investigated and ZrC and HfC were concluded to be the most suitable materials for the nuclear energy converter application among the carbides tested

  7. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  8. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour.

    PubMed

    Wu, Kao; Gan, Renyou; Dai, Shuhong; Cai, Yi-Zhong; Corke, Harold; Zhu, Fan

    2016-03-01

    Buckwheat (BF) and millet (MF) are recommended as healthy foods due to their unique chemical composition and health benefits. This study investigated the thermal and rheological properties of BF-WF (wheat flour) and MF-WF flour blends at various ratios (0:100 to 100:0). Increasing BF or MF concentration led to higher cold paste viscosity and setback viscosity of pasting properties gel adhesiveness, storage modulus (G') and loss modulus (G″) of dynamic oscillatory rheology, and yield stress (σ0 ) of flow curve of WF. BF and MF addition decreased peak viscosity and breakdown of pasting, gel hardness, swelling volume, and consistency coefficient (K) of flow curve of WF. Thermal properties of the blends appeared additive of that of individual flour. Nonadditive effects were observed for some property changes in the mixtures, and indicated interactions between flour components. This may provide a physicochemical basis for using BF and MF in formulating novel healthy products. PMID:26890337

  9. Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch

    NASA Astrophysics Data System (ADS)

    Kong, Xiangli; Kasapis, Stefan; Bao, Jinsong; Corke, Harold

    2009-11-01

    Physical properties of starch from two cultivars of gamma-irradiated grain amaranth with different amylose content were investigated. Pasting viscosities decreased continuously with the increase in dosages of irradiation. Furthermore, different irradiation dosages resulted in modification of the thermal properties and crystallinity of starch. Dynamic oscillation on shear was also employed, temperature and frequency sweeps showed that changes in storage modulus and loss modulus were significant, with Tibet Yellow producing more elastic gels as compared to Hy030 at different irradiation dosages.

  10. Thermal Expansion and Thermophysical Properties of Materials and Minerals at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    1995-11-01

    The knowledge of thermal expansion at high temperature and high pressure is necessary for modeling the equation of the state in the Earth's interior. It is an important parameter for materials science and is critical for understanding the nature of the residual stress in materials. Also, thermal expansion is a factor in the equations that describe many thermoelastic parameters. Errors in thermal expansion will propagate in thermodynamic calculations. This dissertation is based on a semi-empirical, quasi-harmonic, lattice dynamic thermal expansion model, its extension to high temperatures and high pressures and the role of defects on thermal expansion. A modified quasi -harmonic model is proposed to calculate high temperature thermal expansion of alkali halides. An empirical parabolic relationship is found at high temperatures. The contributions of thermal defects at high temperatures are employed to explain the differences between experimental data and the perfect quasi-harmonic crystal model. Expressions for defect contributions on thermal expansion and expansivity are given and applied to obtain the formation energies of thermal defects. Defect ordering is proposed for ionic crystals at high temperatures. A simplified model is derived for predicting high pressure thermal expansion. A detailed expression for defect contributions at high temperatures and high pressures is provided. Thermal expansion of MgO is predicted for pressures as high as at the core-mantle boundary. This model is also applied to alkali halides, and the thermophysical properties of NaCl are given as an example. Then a general model is proposed for evaluating and predicting high temperature thermal expansion. The product of thermal expansion, bulk modulus, and volume, alpha_{V}K_{T }V, or the partial temperature derivative of the work done by thermal pressure, resembles a specific heat curve. A modified Einstein model is applied to express the alpha_{V}K_{T }V data. After assuming a linear

  11. Thermal Insulation Properties Research of the Composite Material "Water Glass - Graphite Microparticles"

    NASA Astrophysics Data System (ADS)

    Gostev, V. A.; Pitukhin, E. A.; Ustinov, A. S.; Shelestov, A. S.

    2016-04-01

    Research results for the composite material (CM) "water glass - graphite microparticles" with high thermal stability and thermal insulation properties are given. A composition is proposed consisting of graphite (42 % by weight), water glass Na2O(SiO2)n (50% by weight) and the hardener - sodium silicofluoride Na2SiF6 (8% by weight). Processing technology of such composition is suggested. Experimental samples of the CM with filler particles (graphite) of a few microns in size were obtained. This is confirmed by a study of samples using X-ray diffraction analysis and electron microscopy. The qualitative and quantitative phase analysis of the CM structure was done. Values of limit load causing destruction of the CM were identified. The character of the rupture surface was detected. Numerical values of the specific heat and thermal conductivity were defined. Dependence of the specific heat capacity and thermal conductivity on temperature during monotonic heating was obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. The CM with such properties can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  12. Impedance and thermal conductivity properties of epoxy/polyhedral oligomeric silsequioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Eed, H.; Ramadin, Y.; Zihlif, A. M.; Elimat, Ziad; Ragosta, Giuseppe

    2014-03-01

    The impedance and thermal conductivity properties of prepared organic epoxy/polyhedral oligomeric silsequioxane (POSS) nanocomposites were studied. The measurements of the impedance were carried out using the impedance technique as a function of applied field frequency range from 20 kHz to 1 MHz, temperature range from 20°C-110°C, and POSS filler concentrations 5, 10, and 20 wt%. The AC conductivity and dielectric properties were determined from the impedance data. It was found that the AC conductivity and dielectric constant are increased by increasing the POSS content in the nanocomposites. The calculated activation energy varies with the filler content, temperature, and applied frequency. The observed electrical results fit approximately the reported equations concerning the AC conductivity of the prepared nanocomposites. The dielectric behavior was explained on the basis of the interfacial polarization, dipolar polarization, and decrease in the hindrance produced by the polymer matrix. The thermal conductivity of the prepared nanocomposite was studied as a function of temperature, and POSS concentration. It was found that the thermal conductivity is enhanced by the addition of the POSS content and temperature. During the heating process, the phonons are activated and electrons hopp to higher localized energy states producing enhancement in the thermal conductivity. Furthermore, correlations between the observed physical properties as thermal conductivity, storage modulus, and glass transition temperature of the nanocomposites are presented.

  13. Thermal physical property-based fusion of geostationary meteorological satellite visible and infrared channel images.

    PubMed

    Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei

    2014-01-01

    Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017

  14. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    PubMed

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail. PMID:25833567

  15. Estimation of thermal properties of composite materials without instrumentation inside the samples

    NASA Astrophysics Data System (ADS)

    Garnier, B.; Delaunay, D.; Beck, J. V.

    1992-11-01

    Recent contributions of parameter estimation in the measurement of thermal properties are of great importance. In comparison with other techniques such as steady state (hot guarded plate, etc.) or transient (line source method, flash method, etc.), the use of parameter estimation provides more information and, in most cases, produces faster results. With this technique the thermal conductivity and the volumetric specific heat are estimated simultaneously and as a function of time, temperature, or position. This method requires experimental data, such as transient temperature and heat flux measurements. Previously, the temperature measurements came from thermocouples embedded in the sample. These thermocouples are introduced in the sample either by drilling holes or by molding the material around a series of thermocouples. Both operations are time-consuming and costly and are needed for each sample. In this study, temperature measurements are made only on the two sides of the samples with thin resistance thermometers. Since the sensors are not inside the material, the effect of the thermal contact conductance between sensor and sample was first investigated. The value of this thermal contact conductance was estimated by using samples of high-conductivity material. Using these values, the estimated thermal properties obtained with surface temperature measurements are compared with values provided by other methods for several low-thermal conductivity materials; agreement has been very good.

  16. Allosteric properties of phosphofructokinase from the epithelial cells of thermally injured rat small intestine.

    PubMed

    Khoja, S M; Salleh, M; Ardawi, M

    1987-01-01

    1. The allosteric properties of phosphofructokinase from the epithelial cells of thermally injured rat small intestine were studied and compared with those properties of the normal rats. 2. The fructose 6-phosphate saturation curve of mucosal phosphofructokinase from thermally injured rats (3 days post injury, 33% of body surface area) displayed cooperatively; the ratio of the activity observed at pH 7.0 in the presence of 0.5 mM fructose 6-phosphate and 2.5 mM-ATP to the optimal activity at pH 8.0, v 0.5/V, was 0.42 +/- 0.02 in the normal rats and 0.22 +/- 0.03 in the injured rats. 3. The enzyme from thermally injured rats was very sensitive to inhibition by ATP as compared to that from normal rats. 4. The enzyme from thermally injured rats was inhibited by citrate and phosphocreatine in a synergistic manner with ATP. 5. Activation under nearly cellular conditions was produced by ADP, AMP and glucose-1,6-biphosphate. 6. In general, the mucosal enzyme of thermally injured rats was more susceptible to inhibition or activation by various metabolites than the enzyme of the normal rats. 7. These results may suggest that mucosal phosphofructokinase of thermally injured rats may not be subject to the same control mechanism as the normal rats in vivo due to changes in the concentrations of fructose-2,6-biphosphate. PMID:2957148

  17. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    SciTech Connect

    Gheribi, Aïmen E. Chartrand, Patrice; Salanne, Mathieu

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  18. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica.

    PubMed

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth's crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices. PMID:27199352

  19. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica

    NASA Astrophysics Data System (ADS)

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654–60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor–metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  20. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    PubMed

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695