Science.gov

Sample records for accurate three-dimensional 3-d

  1. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  2. 3D object hiding using three-dimensional ptychography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wang, Zhibo; Li, Tuo; Pan, An; Wang, Yali; Shi, Yishi

    2016-09-01

    We present a novel technique for 3D object hiding by applying three-dimensional ptychography. Compared with 3D information hiding based on holography, the proposed ptychography-based hiding technique is easier to implement, because the reference beam and high-precision interferometric optical setup are not required. The acquisition of the 3D object and the ptychographic encoding process are performed optically. Owing to the introduction of probe keys, the security of the ptychography-based hiding system is significantly enhanced. A series of experiments and simulations demonstrate the feasibility and imperceptibility of the proposed method.

  3. S2PLOT: Three-dimensional (3D) Plotting Library

    NASA Astrophysics Data System (ADS)

    Barnes, D. G.; Fluke, C. J.; Bourke, P. D.; Parry, O. T.

    2011-03-01

    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.

  4. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    NASA Technical Reports Server (NTRS)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution

  5. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2014-01-01

    Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of three-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D Web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  6. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2014-01-01

    Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of three-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D Web server and package are available at http://prodata.swmed.edu/PROMALS3D.

  7. Three-dimensional (3D) stereoscopic X windows

    NASA Astrophysics Data System (ADS)

    Safier, Scott A.; Siegel, Mel

    1995-03-01

    All known technologies for displaying 3D-stereoscopic images are more or less incompatible with the X Window System. Applications that seek to be portable must support the 3D-display paradigms of multiple hardware implementations of 3D-stereoscopy. We have succeeded in modifying the functionality of X to construct generic tools for displaying 3D-stereoscopic imagery. Our approach allows for experimentation with visualization techniques and techniques for interacting with these synthetic worlds. Our methodology inherits the extensibility and portability of X. We have demonstrated its applicability in two display hardware paradigms that are specifically discussed.

  8. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  9. Three-Dimensional Air Quality System (3D-AQS)

    NASA Astrophysics Data System (ADS)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  10. Three-dimensional (3D) tumor spheroid invasion assay.

    PubMed

    Vinci, Maria; Box, Carol; Eccles, Suzanne A

    2015-01-01

    Invasion of surrounding normal tissues is generally considered to be a key hallmark of malignant (as opposed to benign) tumors. For some cancers in particular (e.g., brain tumors such as glioblastoma multiforme and squamous cell carcinoma of the head and neck - SCCHN) it is a cause of severe morbidity and can be life-threatening even in the absence of distant metastases. In addition, cancers which have relapsed following treatment unfortunately often present with a more aggressive phenotype. Therefore, there is an opportunity to target the process of invasion to provide novel therapies that could be complementary to standard anti-proliferative agents. Until now, this strategy has been hampered by the lack of robust, reproducible assays suitable for a detailed analysis of invasion and for drug screening. Here we provide a simple micro-plate method (based on uniform, self-assembling 3D tumor spheroids) which has great potential for such studies. We exemplify the assay platform using a human glioblastoma cell line and also an SCCHN model where the development of resistance against targeted epidermal growth factor receptor (EGFR) inhibitors is associated with enhanced matrix-invasive potential. We also provide two alternative methods of semi-automated quantification: one using an imaging cytometer and a second which simply requires standard microscopy and image capture with digital image analysis. PMID:25993495

  11. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    PubMed

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form.

  12. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    PubMed

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  13. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  14. Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder.

    PubMed

    Shi, Jinlong; Sun, Zhengxing; Bai, Suqin

    2015-04-01

    This paper presents a three-dimensional (3D) measurement method of large-scale objects by integrating a 3D scanner and a laser rangefinder. The 3D scanner, used to perform partial section measurement, is fixed on a robotic arm which can slide on a guide rail. The laser rangefinder, used to compute poses of the 3D scanner, is rigidly connected to the 3D scanner. During large-scale measurement, after measuring a partial section, the 3D scanner is straightly moved forward along the guide rail to measure another section. Meanwhile, the poses of the 3D scanner are estimated according to its moved distance for different partial section alignments. The performance and effectiveness are evaluated by experiments. PMID:25967194

  15. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    PubMed

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  16. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    PubMed

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-01

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  17. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    PubMed

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-01

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed. PMID:25632887

  18. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    PubMed Central

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  19. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    PubMed

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  20. Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Potapczuk, Mark G.

    1993-01-01

    A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by

  1. A study of electrochemical biosensor for analysis of three-dimensional (3D) cell culture.

    PubMed

    Jeong, Se Hoon; Lee, Dong Woo; Kim, Sanghyo; Kim, Jhingook; Ku, Bosung

    2012-05-15

    Cell culture has a fundamental role not only in regenerative medicine but also in biotechnology, pharmacology, impacting both drug discovery and manufacturing. Although cell culture has been generally developed for only two-dimensional (2D) culture systems, three-dimensional (3D) culture is being spotlighted as the means to mimic in vivo cellular conditions. In this study, a method for cytotoxicity assay using an electrochemical biosensor applying 3D cell culture is presented. In order to strengthen the advantage of a 3D cell culture, the experimental condition of gelation between several types of sol-gels (alginate, collagen, matrigel) and cancer cells can be optimized to make a 3D cell structure on the electrode, which will show the reproducibility of electrical measurement for long-term monitoring. Moreover, cytotoxicity test results applying this method showed IC(50) value of A549 lung cancer cells to erlotinib. Thus, this study evaluates the feasibility of application of the electrochemical biosensor for 3D cell culture to cytotoxicity assay for investigation of 3D cell response to drug compounds. PMID:22410483

  2. Accurate three-dimensional pose recognition from monocular images using template matched filtering

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Diaz-Ramirez, Victor H.; Kober, Vitaly; Montemayor, Antonio S.; Pantrigo, Juan J.

    2016-06-01

    An accurate algorithm for three-dimensional (3-D) pose recognition of a rigid object is presented. The algorithm is based on adaptive template matched filtering and local search optimization. When a scene image is captured, a bank of correlation filters is constructed to find the best correspondence between the current view of the target in the scene and a target image synthesized by means of computer graphics. The synthetic image is created using a known 3-D model of the target and an iterative procedure based on local search. Computer simulation results obtained with the proposed algorithm in synthetic and real-life scenes are presented and discussed in terms of accuracy of pose recognition in the presence of noise, cluttered background, and occlusion. Experimental results show that our proposal presents high accuracy for 3-D pose estimation using monocular images.

  3. User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics

    SciTech Connect

    McMaster, W H

    1982-05-07

    The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.

  4. Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer.

    PubMed

    Song, Junfeng; Luo, Xianshu; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2014-08-11

    We propose a novel three-dimensional (3D) monolithic optoelectronic integration platform. Such platform integrates both electrical and photonic devices in a bulk silicon wafer, which eliminates the high-cost silicon-on-insulator (SOI) wafer and is more suitable for process requirements of electronic and photonic integrated circuits (ICs). For proof-of-concept, we demonstrate a three-dimensional photodetector and WDM receiver system. The Ge is grown on a 8-inch bulk silicon wafer while the optical waveguide is defined in a SiN layer which is deposited on top of it, with ~4 µm oxide sandwiched in between. The light is directed to the Ge photodetector from the SiN waveguide vertically by using grating coupler with a Aluminum mirror on top of it. The measured photodetector responsivity is ~0.2 A/W and the 3-dB bandwidth is ~2 GHz. Using such vertical-coupled photodetector, we demonstrated an 8-channel receiver by integrating a 1 × 8 arrayed waveguide grating (AWG). High-quality optical signal detection with up to 10 Gbit/s data rate is demonstrated, suggesting a 80 Gbit/s throughput. Such receiver can be applied to on-chip optical interconnect, DRAM interface, and telecommunication systems.

  5. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  6. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  7. Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices

    SciTech Connect

    Wang Jianguo; Chen Zaigao; Wang Yue; Zhang Dianhui; Qiao Hailiang; Fu Meiyan; Yuan Yuan; Liu Chunliang; Li Yongdong; Wang Hongguang

    2010-07-15

    This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.

  8. EISCAT 3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Turunen, Esa

    2010-05-01

    (This talk is given on behalf of the EISCAT Scientific Association and the EISCAT_3D Design Team) EISCAT_3D is a new kind of three-dimensional imaging radar for high-latitude atmosphere and geospace studies, located in northern Scandinavia. The facility will consist of multiple large phased-array antenna transmitters/receivers in three countries, comprising some 100 000 individual antenna elements. The new radars will measure from the upper stratosphere to the magnetosphere and beyond, contributing to the basic, environmental and applied science that underpins the use of space by contemporary society. EISCAT_3D's capabilities go beyond anything currently available to the international research community, and will form a significant enhancement to the European Research area. Located in the auroral zone, at the edge of the northern polar vortex, EISCAT_3D will provide long-term continuous data for scientists studying global change, measuring the effects of man-made and natural variability on the middle and upper atmosphere. Its observations will underpin space weather prediction and monitoring, essential for operation and improved service of European space assets. In addition, EISCAT_3D will facilitate studies of solar system influences, such as solar wind, meteors, dust, energetic particles and cosmic rays. This will be done in collaboration with other research infrastructures, including the upper atmosphere programme of the SIOS proposal, focusing on observations made from Svalbard. The importance of EISCAT_3D has been recognised by its place on the ESFRI roadmap of future European Research facilities. The project has already gone through a four-year design study, funded by the European Union under the 6th Framework, and has recently applied for Preparatory Phase funding under the EU 7th Framework. The Preparatory Phase activities will facilitate the resolution of the remaining legal, financial and technical questions which must be addressed before EISCAT_3D can be

  9. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  10. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  11. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  12. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids

    PubMed Central

    Guo, Ling; Zhou, Ying; Wang, Shan; Wu, Yaojiong

    2014-01-01

    Mesenchymal stem cells (MSCs) hold profound promise in tissue repair/regeneration. However, MSCs undergo remarkable spontaneous differentiation and aging during monolayer culture expansion. In this study, we found that 2–3 days of three-dimensional (3D) spheroid culture of human MSCs (hMSCs) that had been expanded in monolayer for six passages increased their clonogenicity and differentiation potency to neuronal cells. Moreover, in accordance with these changes, the expression levels of miRNA which were involved in stem cell potency were changed and levels of histone H3 acetylation in K9 in promoter regions of Oct4, Sox2 and Nanog were elevated. Our results indicate that spheroid culture increases their multi-potency and changes the epigenetic status of pluripotent genes in hMSCs. PMID:25090911

  13. Emission of particulate matter from a desktop three-dimensional (3D) printer.

    PubMed

    Yi, Jinghai; LeBouf, Ryan F; Duling, Matthew G; Nurkiewicz, Timothy; Chen, Bean T; Schwegler-Berry, Diane; Virji, M Abbas; Stefaniak, Aleksandr B

    2016-01-01

    Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.

  14. Emission of particulate matter from a desktop three-dimensional (3D) printer.

    PubMed

    Yi, Jinghai; LeBouf, Ryan F; Duling, Matthew G; Nurkiewicz, Timothy; Chen, Bean T; Schwegler-Berry, Diane; Virji, M Abbas; Stefaniak, Aleksandr B

    2016-01-01

    Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  15. Emission of particulate matter from a desktop three-dimensional (3D) printer

    PubMed Central

    Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.

    2016-01-01

    ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  16. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  17. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  18. 3D-AQS: a three-dimensional air quality system

    NASA Astrophysics Data System (ADS)

    Hoff, Raymond M.; Engel-Cox, Jill A.; Dimmick, Fred; Szykman, James J.; Johns, Brad; Kondragunta, Shobha; Rogers, Raymond; McCann, Kevin; Chu, D. Allen; Torres, Omar; Prados, Ana; Al-Saadi, Jassim; Kittaka, Chieko; Boothe, Vickie; Ackerman, Steve; Wimmers, Anthony

    2006-08-01

    In 2006, we began a three-year project funded by the NASA Integrated Decisions Support program to develop a three-dimensional air quality system (3D-AQS). The focus of 3D-AQS is on the integration of aerosol-related NASA Earth Science Data into key air quality decision support systems used for air quality management, forecasting, and public health tracking. These will include the U.S. Environmental Protection Agency (EPA)'s Air Quality System/AirQuest and AIRNow, Infusing satellite Data into Environmental Applications (IDEA) product, U.S. Air Quality weblog (Smog Blog) and the Regional East Atmospheric Lidar Mesonet (REALM). The project will result in greater accessibility of satellite and lidar datasets that, when used in conjunction with the ground-based particulate matter monitors, will enable monitoring across horizontal and vertical dimensions. Monitoring in multiple dimensions will enhance the air quality community's ability to monitor and forecast the geospatial extent and transboundary transport of air pollutants, particularly fine particulate matter. This paper describes the concept of this multisensor system and gives current examples of the types of products that will result from it.

  19. An Accurate von Neumann's Law for Three-Dimensional Foams

    SciTech Connect

    Hilgenfeldt, Sascha; Kraynik, Andrew M.; Koehler, Stephan A.; Stone, Howard A.

    2001-03-19

    The diffusive coarsening of 2D soap froths is governed by von Neumann's law. A statistical version of this law for dry 3D foams has long been conjectured. A new derivation, based on a theorem by Minkowski, yields an explicit analytical von Neumann's law in 3D which is in very good agreement with detailed simulations and experiments. The average growth rate of a bubble with F faces is shown to be proportional to F{sup 1/2} for large F , in contrast to the conjectured linear dependence. Accounting for foam disorder in the model further improves the agreement with data.

  20. Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail

    2014-05-01

    The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points

  1. Thoracic Pedicle Screw Placement Guide Plate Produced by Three-Dimensional (3-D) Laser Printing

    PubMed Central

    Chen, Hongliang; Guo, Kaijing; Yang, Huilin; Wu, Dongying; Yuan, Feng

    2016-01-01

    Background The aim of this study was to evaluate the accuracy and feasibility of an individualized thoracic pedicle screw placement guide plate produced by 3-D laser printing. Material/Methods Thoracic pedicle samples of 3 adult cadavers were randomly assigned for 3-D CT scans. The 3-D thoracic models were established by using medical Mimics software, and a screw path was designed with scanned data. Then the individualized thoracic pedicle screw placement guide plate models, matched to the backside of thoracic vertebral plates, were produced with a 3-D laser printer. Screws were placed with assistance of a guide plate. Then, the placement was assessed. Results With the data provided by CT scans, 27 individualized guide plates were produced by 3-D printing. There was no significant difference in sex and relevant parameters of left and right sides among individuals (P>0.05). Screws were placed with assistance of guide plates, and all screws were in the correct positions without penetration of pedicles, under direct observation and anatomic evaluation post-operatively. Conclusions A thoracic pedicle screw placement guide plate can be produced by 3-D printing. With a high accuracy in placement and convenient operation, it provides a new method for accurate placement of thoracic pedicle screws. PMID:27194139

  2. Thoracic Pedicle Screw Placement Guide Plate Produced by Three-Dimensional (3-D) Laser Printing.

    PubMed

    Chen, Hongliang; Guo, Kaijing; Yang, Huilin; Wu, Dongying; Yuan, Feng

    2016-01-01

    BACKGROUND The aim of this study was to evaluate the accuracy and feasibility of an individualized thoracic pedicle screw placement guide plate produced by 3-D laser printing. MATERIAL AND METHODS Thoracic pedicle samples of 3 adult cadavers were randomly assigned for 3-D CT scans. The 3-D thoracic models were established by using medical Mimics software, and a screw path was designed with scanned data. Then the individualized thoracic pedicle screw placement guide plate models, matched to the backside of thoracic vertebral plates, were produced with a 3-D laser printer. Screws were placed with assistance of a guide plate. Then, the placement was assessed. RESULTS With the data provided by CT scans, 27 individualized guide plates were produced by 3-D printing. There was no significant difference in sex and relevant parameters of left and right sides among individuals (P>0.05). Screws were placed with assistance of guide plates, and all screws were in the correct positions without penetration of pedicles, under direct observation and anatomic evaluation post-operatively. CONCLUSIONS A thoracic pedicle screw placement guide plate can be produced by 3-D printing. With a high accuracy in placement and convenient operation, it provides a new method for accurate placement of thoracic pedicle screws. PMID:27194139

  3. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    The main objective of this paper is to establish a procedural method for measuring and cataloguing antlers through the use of laser scanner and of a 3D reconstruction of complex modeling. The deer's antlers have been used as a test and subjected to capture and measurement. For this purpose multiple data sources techniques have been studied and compared, (also considering low-cost sensors) estimating the accuracy and its errors in order to demonstrate the validity of the process. A further development is the comparison of results with applications of digital photogrammetry, considering also cloud computing software. The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH. The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison. It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID - which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different

  4. Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1996-01-01

    This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.

  5. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  6. A new three-dimensional (3D) multilayer organic material: synthesis, swelling, exfoliation, and application.

    PubMed

    Xu, Lu; Huang, Youju; Li, Junjun; Wang, Daoliang; Chen, Mingming; Tao, Jiaojiao; Cui, Kunpeng; Pan, Guoqiang; Huang, Ningdong; Li, Liangbin

    2013-03-19

    A novel fully rigid, rod-shaped oligo(p-benzamide) (OPBA-6) molecule was designed and synthesized, which can be recrystallized into a three-dimensional (3D) multilayer material via an antiparallel molecular packing model. Intermolecular hydrogen bonding and π-π interaction are brought to ensure a strong intralayer interaction, while decoration of layer surface with sulfonic groups promotes water to enter interlayer space and facilitates the swelling and exfoliation of sample. With a simple dispersion in water, the obtained multilayer material can be easily swollen by water without destruction of in-plane morphology and subsequently delaminated into 2D nanosheets with thickness of about 5.38 nm. This achievement may be the first attempt to exfoliate layered organic materials and thus provide a new strategy to prepare 2D organic nanosheets without using any substrates or templates as required by conventional and widely used self-assembly routes. Based on exfoliated nanosheets, poly(vinyl alcohol) nanocomposites were prepared using a simple water solution processing method. A 64% increase in tensile stress and a 63% improvement in Young's modulus were achieved by addition of 7 wt % OPBA-6 loading. PMID:23432342

  7. THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)

    SciTech Connect

    George Jarvis

    2001-06-18

    The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two

  8. Instructors' Perceptions of Three-Dimensional (3D) Virtual Worlds: Instructional Use, Implementation and Benefits for Adult Learners

    ERIC Educational Resources Information Center

    Stone, Sophia Jeffries

    2009-01-01

    The purpose of this dissertation research study was to explore instructors' perceptions of the educational application of three-dimensional (3D) virtual worlds in a variety of academic discipline areas and to assess the strengths and limitations this virtual environment presents for teaching adult learners. The guiding research question for this…

  9. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  10. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo

    2016-09-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.

  11. On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study

    NASA Astrophysics Data System (ADS)

    Williams, Jason J.; Yazzie, Kyle E.; Connor Phillips, N.; Chawla, Nikhilesh; Xiao, Xinghui; de Carlo, Francesco; Iyyer, Nagaraja; Kittur, Maddan

    2011-12-01

    In situ three-dimensional (3-D) X-ray synchrotron tomography of fatigue crack growth was conducted in a 7075-T6 aluminum alloy. Local measurements of da/ dN were possible with the 3-D data sets obtained from tomography. A comparison with fatigue striation spacings obtained from scanning electron microscopy of the fracture surfaces yielded excellent correlation with da/ dN obtained from tomography. The X-ray tomography technique can be used to obtain a highly accurate and representative measurements of crack growth locally in the microstructure of the material.

  12. Three-Dimensional (3D) Structure of the Malawi Rift from Remote Sensing and Geophysics Data

    NASA Astrophysics Data System (ADS)

    Salmi, Haifa S. Al; Abdelsalam, Mohamed G.

    2014-05-01

    The Malawi rift is a Cenozoic aged rift representing the southernmost segment of the Western Branch of the East African Rift System (EARS). This rift extends over 900 km from the Rungwe volcanic province (Tanzania) in the north to the Urema graben (Mozambique) to the south, with an average width of 50km. It traverses a complex array of Proterozoic orogenic belts of different ages and Permo-Triassic (Karoo) and cretaceous graben systems. The rift's depth is between 3 to 5km partitioned between the topographic escarpment and the sediments fill. The basin's subsidence reflects accumulation of sediments and rift flank uplift. Regardless of its importance in understanding rift tectonics, especially in Africa, the three-dimensional (3D) geometry of the rift is not fully understood. This research presents results from detailed analysis of Digital Elevation Model (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data to map surface morphological expressions of the entire basin. These results are compared with available seismic data to provide along-strike and at depth variation of the geometry of the border fault systems, nature of rift segmentation and alternation of the polarity of half-grabens, and the partitioning of displacement between exposed and sub-surface border faults. Our results show the following: (1) Surface expression of border faults show that, unlike the typical half-graben en-echelon rift model, where half-graben segments with opposite polarity are linked together through accommodation zones indicative of soft linkage, the Malawi rift shows along-strike segmentation by changing geometry from half-graben to full graben geometry. A half-graben with specific polarity passes through a full-graben geometry before giving place to a half-graben with the opposite polarity. The length of half-gaben and graben segments becomes shorter as the rift progresses from north to south, and this is accompanied by a decrease in displacement within border

  13. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    SciTech Connect

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  14. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    PubMed Central

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-01-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields. PMID:26926357

  15. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-02-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields.

  16. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique.

    PubMed

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-01-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields. PMID:26926357

  17. FT3D: three-dimensional Fourier analysis on small Unix workstations for electron microscopy and tomographic studies.

    PubMed

    Lanzavecchia, S; Bellon, P L; Tosoni, L

    1993-12-01

    FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.

  18. Three-Dimensional Reconstructions Come to Life – Interactive 3D PDF Animations in Functional Morphology

    PubMed Central

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366

  19. Three-dimensional reconstructions come to life--interactive 3D PDF animations in functional morphology.

    PubMed

    van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander

    2014-01-01

    Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366

  20. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  1. Three-dimensional visualization of ensemble weather forecasts - Part 1: The visualization tool Met.3D (version 1.0)

    NASA Astrophysics Data System (ADS)

    Rautenhaus, M.; Kern, M.; Schäfler, A.; Westermann, R.

    2015-07-01

    We present "Met.3D", a new open-source tool for the interactive three-dimensional (3-D) visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns; however, it is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output - 3-D visualization, ensemble visualization and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts (ECMWF) and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantities. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 (THORPEX - North Atlantic Waveguide and Downstream Impact Experiment) campaign.

  2. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    SciTech Connect

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-04-15

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 {mu}m) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  3. Optimization for enhancement of signal effectiveness in three-dimensional (3D) cell based electrochemical biosensor.

    PubMed

    Jeong, Se Hoon; Ku, Bosung; Yi, Sang Hyun; Lee, Dong Woo; Lee, Hye Seon; Kim, Jhingook

    2011-01-01

    This study addresses the optimization for enhancement of signal effectiveness in 3D cell based electrochemical biosensor. While 2D culture has a structural limitation to mimic an in vivo, 3D culture can provide more similar cell responses. In addition, although 3D cultured cells have been applied to measure electrically, the intensity of electrical signal from cells on the electrode was extremely low. Thus, we have optimized and evaluated the condition of gelation between several types of sol-gel and cancer cells using the electrical measurement to make fine 3D cell structure on the electrode. These results show that our work can be an useful method for monitoring cell activity by compensating a limitation of 2D culture in real time. PMID:22256300

  4. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.

    PubMed

    Cheng, George Z; San Jose Estepar, Raul; Folch, Erik; Onieva, Jorge; Gangadharan, Sidhu; Majid, Adnan

    2016-05-01

    Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector.

  5. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.

    PubMed

    Cheng, George Z; San Jose Estepar, Raul; Folch, Erik; Onieva, Jorge; Gangadharan, Sidhu; Majid, Adnan

    2016-05-01

    Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector. PMID:26976347

  6. Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Sinha, N.; Dash, S. M.

    1988-01-01

    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.

  7. Three-dimensional electronic unpacking of packed bags using 3-D CT images

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Crawford, Carl R.; Boyd, Douglas P.

    2009-02-01

    We present a 3-D electronic unpacking technique for airport security images based on volume rendering techniques developed for medical applications. Two electronic unpacking techniques are presented: (1) object-based unpacking and (2) unpacking by bag-slicing. Both techniques provide photo-realistic 3-D views of contents inside a packed bag with clearly marked threats. For the object-based unpacking, the 3-D objects within packed bags are unpacked (or isolated) though object selection tools that cut away undesired regions to isolates the 3-D object from the background clutter. With this selection tool, the operator is able to electronically unpack various 3-D objects and manipulate (rotate and zoom) the 3-D photo-realistic views for the immediate classification of the suspect object. The unpacking by bag-slicing technique places arbitrary cut planes to show the content beyond the cut plane that can be stepped forward or backward electronically. The methods may be used to reduce the need for manual unpacking of suitcases.

  8. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  9. Three-dimensional object recognition using gradient descent and the universal 3-D array grammar

    NASA Astrophysics Data System (ADS)

    Baird, Leemon C., III; Wang, Patrick S. P.

    1992-02-01

    A new algorithm is presented for applying Marill's minimum standard deviation of angles (MSDA) principle for interpreting line drawings without models. Even though no explicit models or additional heuristics are included, the algorithm tends to reach the same 3-D interpretations of 2-D line drawings that humans do. Marill's original algorithm repeatedly generated a set of interpretations and chose the one with the lowest standard deviation of angles (SDA). The algorithm presented here explicitly calculates the partial derivatives of SDA with respect to all adjustable parameters, and follows this gradient to minimize SDA. For a picture with lines meeting at m points forming n angles, the gradient descent algorithm requires O(n) time to adjust all the points, while the original algorithm required O(mn) time to do so. For the pictures described by Marill, this gradient descent algorithm running on a Macintosh II was found to be one to two orders of magnitude faster than the original algorithm running on a Symbolics, while still giving comparable results. Once the 3-D interpretation of the line drawing has been found, the 3-D object can be reduced to a description string using the Universal 3-D Array Grammar. This is a general grammar which allows any connected object represented as a 3-D array of pixels to be reduced to a description string. The algorithm based on this grammar is well suited to parallel computation, and could run efficiently on parallel hardware. This paper describes both the MSDA gradient descent algorithm and the Universal 3-D Array Grammar algorithm. Together, they transform a 2-D line drawing represented as a list of line segments into a string describing the 3-D object pictured. The strings could then be used for object recognition, learning, or storage for later manipulation.

  10. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  11. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    SciTech Connect

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.

  12. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    SciTech Connect

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  13. Investigation of Three-Dimensional (3-D) Solar Radiative Transfer Effects Using A-Train Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ham, S.; Kato, S.; Barker, H.; Rose, F. G.

    2012-12-01

    Three-dimensional (3-D) radiative effects are examined for cloudy atmosphere obtained from A-train satellite measurements. Since CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) only provide two-dimensional (2-D) nadir profiles along the satellite track, Moderate Resolution Imaging Spectroradiometer (MODIS) spectral radiances are used to extend the 2-D cloud profiles to the cross track direction (Barker et al., 2011). Then one-dimensional (1-D) and 3-D simulations are performed to get (SW) broad band (BB) flux and heating rate profile for constructed 3-D cloud field. In the simulation, correlated k-distribution model is employed to obtain rapid estimation of gaseous optical depths for 70 solar spectral bands. The difference between 1-D and 3-D results are interpreted as 3-D solar effects, and analyzed for different cloud types and solar zenith angle. In addition, modeled top-of-atmosphere (TOA) irradiances by the 1-D and 3-D models are compared to Clouds and the Earth's Radiant Energy System (CERES)-derived TOA irradiances. The preliminary results show that 3-D cloud absorption is larger than 1-D calculation, and thus 3-D heating rate is larger than 1-D heating rate for cloud layer. On the other hand, 3-D downward flux at surface is smaller than 1-D flux. Reference Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011, A 3D cloud-construction algorithm for the EarthCARE mission, Q. J. R. Meteorol. Soc., 137, 1042-1058.

  14. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  15. Three dimensional template matching segmentation method for motile cells in 3D+t video sequences.

    PubMed

    Pimentel, J A; Corkidi, G

    2010-01-01

    In this work, we describe a segmentation cell method oriented to deal with experimental data obtained from 3D+t microscopical volumes. The proposed segmentation technique takes advantage of the pattern of appearances exhibited by the objects (cells) from different focal planes, as a result of the object translucent properties and its interaction with light. This information allows us to discriminate between cells and artifacts (dust an other) with equivalent size and shape that are present in the biological preparation. Using a simple correlation criteria, the method matches a 3D video template (extracted from a sample of cells) with the motile cells contained into the biological sample, obtaining a high rate of true positives while discarding artifacts. In this work, our analysis is focused on sea urchin spermatozoa cells but is applicable to many other microscopical structures having the same optical properties. PMID:21096252

  16. Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.

    PubMed

    Ghanai, S; Marmulla, R; Wiechnik, J; Mühling, J; Kotrikova, B

    2010-01-01

    This study presents a computer-assisted planning system for dysgnathia treatment. It describes the process of information gathering using a virtual articulator and how the splints are constructed for orthognathic surgery. The deviation of the virtually planned splints is shown in six cases on the basis of conventionally planned cases. In all cases the plaster models were prepared and scanned using a 3D laser scanner. Successive lateral and posterior-anterior cephalometric images were used for reconstruction before surgery. By identifying specific points on the X-rays and marking them on the virtual models, it was possible to enhance the 2D images to create a realistic 3D environment and to perform virtual repositioning of the jaw. A hexapod was used to transfer the virtual planning to the real splints. Preliminary results showed that conventional repositioning could be replicated using the virtual articulator.

  17. A diffuser-based three-dimensional measurement of polarization-dependent scattering characteristics of optical films for 3D-display applications.

    PubMed

    Kim, Dae-Yeon; Seo, Jong-Wook

    2015-01-26

    We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications. PMID:25835866

  18. INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1987-01-01

    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.

  19. The Three-Dimensional Air Quality System (3D-AQS) as a Data Synthesis Toolbox

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Zhang, H.; Jordan, N.; Prados, A. I.; Engel-Cox, J.; Huff, A.; Weber, S.; Zell, E.; Kondragunta, S.; Szykman, J. J.; Johns, B.; Dimmick, F.; Wimmers, A.; Al-Saadi, J.; Kittaka, C.

    2008-12-01

    A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near-real time and archives the results for retrospective analyses. The main components of the system (IDEA, the Smog Blog, Smog Stories, AIRQuest and RSIG) are described and the relationship of how data moves from one system to another is outlined. In order to provide examples of how the results can be used to analyzed cases of pollution, three events (two fires and one wintertime low-PBL haze) are discussed. Not all tools are useful at all times and the sparsity of some data, the limitations caused by overlying clouds, etc. are shown. Nevertheless, multiple sources of data help paint a more thorough picture of haze events than what one would obtain with only surface based sensors.

  20. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  1. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  2. Hybrid Three-Dimensional (3-D) Woven Thick Composite Architectures in Bending

    NASA Astrophysics Data System (ADS)

    Pankow, Mark; Quabili, Ashiq; Yen, Chian-Fong

    2013-11-01

    In this study, three 3-dimensional (3-D) woven composite materials were examined to determine how yarn tow configurations affect the flexural response of the structure. Woven fabric preforms were manufactured with a Z-fiber architecture in 2-3 in. thicknesses. These preforms contained S-2 Glass (AGY, Aiken, SC, USA), carbon, and Twaron (Teijin Aramid, Arnhem, The Netherlands) yarns in different architectures creating a hybrid material system. Due to the thickness of the material, these samples required a significant span length (30 in.). The results showed a change in the strength and degradation after failure with the addition of carbon layers in tension.

  3. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  4. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  5. Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition.

    PubMed

    Wu, Huimin; Block, Walter F; Turski, Patrick A; Mistretta, Charles A; Johnson, Kevin M

    2013-03-01

    Pseudocontinuous arterial spin labeling (PCASL) can be used to generate noncontrast magnetic resonance angiograms of the cerebrovascular structures. Previously described PCASL-based angiography techniques were limited to two-dimensional projection images or relatively low-resolution three-dimensional (3D) imaging due to long acquisition time. This work proposes a new PCASL-based 3D magnetic resonance angiography method that uses an accelerated 3D radial acquisition technique (VIPR, spoiled gradient echo) as the readout. Benefiting from the sparsity provided by PCASL and noise-like artifacts of VIPR, this new method is able to obtain submillimeter 3D isotropic resolution and whole head coverage with a 8-min scan. Intracranial angiography feasibility studies in healthy (N = 5) and diseased (N = 5) subjects show reduced saturation artifacts in PCASL-VIPR compared with a standard time-of-flight protocol. These initial results show great promise for PCASL-VIPR for static, dynamic, and vessel selective 3D intracranial angiography. PMID:22532423

  6. DCM3D: A dual-continuum, three-dimensional, ground-water flow code for unsaturated, fractured, porous media

    SciTech Connect

    Updegraff, C.D. ); Lee, C.E. ); Gallegos, D.P. )

    1991-02-01

    This report constitutes the user's manual for DCM3D. DCM3D is a computer code for solving three-dimensional, ground-water flow problems in variably saturated, fractured porous media. The code is based on a dual-continuum model with porous media comprising one continuum and fractures comprising the other. The continua are connected by a transfer term that depends on the unsaturated permeability of the porous medium. An integrated finite-difference scheme is used to discretize the governing equations in space. The time-dependent term is allowed to remain continuous. The resulting set of ordinary differential equations (ODE's) is solved with a general ODE solver, LSODES. The code is capable of handling transient, spatially dependent source terms and boundary conditions. The boundary conditions can either prescribed head or prescribed flux. 24 refs., 22 figs., 5 tabs.

  7. 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins.

    PubMed

    Schreiber, Andreas; Humbert, Michael; Benz, Alexander; Dietrich, Ursula

    2005-07-15

    Neutralizing antibodies often recognize conformational, discontinuous epitopes. Linear peptides mimicking such conformational epitopes can be selected from phage display peptide libraries by screening with the respective antibodies. However, it is difficult to localize these "mimotopes" within the three-dimensional (3D) structures of the target proteins. Knowledge of conformational epitopes of neutralizing antibodies would help to design antigens able to elicit protective immune responses. Therefore, we provide here a software that allows to localize linear peptide sequences within 3D structures of proteins. The 3D-Epitope-Explorer (3DEX) software allows to map conformational epitopes in 3D protein structures based on an algorithm that takes into account the physicochemical neighborhood of C(alpha)- or C(beta)-atoms of individual amino acids. A given amino acid of a peptide sequence is localized within the protein and the software searches within predefined distances for the amino acids neighboring that amino acid in the peptide. Surface exposure of the amino acids can also be taken into consideration. The procedure is then repeated for the remaining amino acids of the peptide. The introduction of a joker function allows to map peptide mimotopes, which do not necessarily have 100% sequence homology to the protein. Using this software we were able to localize mimotopes selected from phage displayed peptide libraries with polyclonal antibodies from HIV-positive patient plasma within the 3D structure of gp120, the exterior glycoprotein of HIV-1. We also analyzed two recently published peptide sequences corresponding to known conformational epitopes to further confirm the integrity of 3DEX.

  8. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.

    PubMed

    Nikkhah, Mehdi; Strobl, Jeannine S; De Vita, Raffaella; Agah, Masoud

    2010-06-01

    Studying the cytoskeletal organization as cells interact in their local microenvironment is interest of biological science, tissue engineering and cancer diagnosis applications. Herein, we describe the behavior of cell lines obtained from metastatic breast tumor pleural effusions (MDA-MB-231), normal fibrocystic mammary epithelium (MCF10A), and HS68 normal fibroblasts inside three dimensional (3-D) isotropic silicon microstructures fabricated by a single-mask, single-isotropic-etch process. We report differences in adhesion, mechanism of force balance within the cytoskeleton, and deformability among these cell types inside the 3-D microenvironment. HS68 fibroblasts typically stretched and formed vinculin-rich focal adhesions at anchor sites inside the etched cavities. In contrast, MCF10A and MDA-MB-231 cells adopted the curved surfaces of isotropic microstructures and exhibited more diffuse vinculin cytoplasmic staining in addition to vinculin localized in focal adhesions. The measurement of cells elasticity using atomic force microscopy (AFM) indentation revealed that HS68 cells are significantly stiffer (p < 0.0001) than MCF10A and MDA-MB-231 cells. Upon microtubule disruption with nocodazole, fibroblasts no longer stretched, but adhesion of MCF10A and MDA-MB-231 within the etched features remained unaltered. Our findings are consistent with tensegrity theory. The 3-D microstructures have the potential to probe cytoskeletal-based differences between healthy and diseased cells that can provide biomarkers for diagnostics purposes. PMID:20207413

  9. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files

    PubMed Central

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines. PMID:25780759

  10. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files.

    PubMed

    Newe, Axel

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines.

  11. Adaptation of the three-dimensional wisdom scale (3D-WS) for the Korean cultural context.

    PubMed

    Kim, Seungyoun; Knight, Bob G

    2014-10-23

    ABSTRACT Background: Previous research on wisdom has suggested that wisdom is comprised of cognitive, reflective, and affective components and has developed and validated wisdom measures based on samples from Western countries. To apply the measurement to Eastern cultures, the present study revised an existing wisdom scale, the three-dimensional wisdom scale (3D-WS, Ardelt, 2003) for the Korean cultural context. Methods: Participants included 189 Korean heritage adults (age range 19-96) living in Los Angeles. We added a culturally specific factor of wisdom to the 3D-WS: Modesty and Unobtrusiveness (Yang, 2001), which captures an Eastern aspect of wisdom. The structure and psychometrics of the scale were tested. By latent cluster analysis, we determined acculturation subgroups and examined group differences in the means of factors in the revised wisdom scale (3D-WS-K). Results: Three factors, Cognitive Flexibility, Viewpoint Relativism, and Empathic Modesty were found using confirmatory factor analysis. Respondents with high biculturalism were higher on Viewpoint Relativism and lower on Empathic Modesty. Conclusion: This study discovered that a revised wisdom scale had a distinct factor structure and item content in a Korean heritage sample. We also found acculturation influences on the meaning of wisdom.

  12. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  13. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  14. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  15. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    SciTech Connect

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  16. Fabrication of a three dimensional particle focusing microfluidic device using a 3D printer, PDMS, and glass

    NASA Astrophysics Data System (ADS)

    Collette, Robyn; Rosen, Daniel; Shirk, Kathryn

    Microfluidic devices have high importance in fields such as bioanalysis because they can manipulate volumes of fluid in the range of microliters to picoliters. Small samples can be quickly and easily tested using complex microfluidic devices. Typically, these devices are created through lithography techniques, which can be costly and time consuming. It has been shown that inexpensive microfluidic devices can be produced quickly using a 3D printer and PDMS. However, a size limitation prohibits the fabrication of precisely controlled microchannels. By using shrinking materials in combination with 3D printing of flow-focusing geometries, this limitation can be overcome. This research seeks to employ these techniques to quickly fabricate an inexpensive, working device with three dimensional particle focusing capabilities. By modifying the channel geometry, colloidal particles in a solution will be focused into a single beam when passed through this device. The ability to focus particles is necessary for a variety of biological applications which requires precise detection and characterization of particles in a sample. We would like to thank the Shippensburg University Undergraduate Research Grant Program for their generous funding.

  17. Innovative three-dimensional (3D) eco-TiO2 photocatalysts for practical environmental and bio-medical applications

    PubMed Central

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Son, Byoungchul; Park, So Young; Lee, Jae Won; Oh, You-Kwan; Kim, Yooseok; Choi, Saehae; Lee, Young-Seak; Lee, Jouhahn

    2014-01-01

    It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the final purified water can be improved and ensured, respectively. The structure, consisting of 3D sulfur-doped TiO2 microtubes in nanotubes (eco-TiO2), is suitable for both environmental and bio-medical applications. Investigation of its formation mechanism reveals that anodic aluminum oxide (AAO), owing to a spatial constraint, causes a simple, nanoparticles-to-nanotubes structural rearrangement as a template for nanotube growth. It is found that eco-TiO2 can be activated under visible-light irradiation by non-metal (sulfur; S) doping, after which it shows visible-light photocatalytic activities over a range of solar energy. Importantly, an in vitro cytotoxicity test of well-purified water by eco-TiO2 confirms that eco-TiO2 satisfies the key human safety conditions. PMID:25338845

  18. Innovative three-dimensional (3D) eco-TiO2 photocatalysts for practical environmental and bio-medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Son, Byoungchul; Park, So Young; Lee, Jae Won; Oh, You-Kwan; Kim, Yooseok; Choi, Saehae; Lee, Young-Seak; Lee, Jouhahn

    2014-10-01

    It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the final purified water can be improved and ensured, respectively. The structure, consisting of 3D sulfur-doped TiO2 microtubes in nanotubes (eco-TiO2), is suitable for both environmental and bio-medical applications. Investigation of its formation mechanism reveals that anodic aluminum oxide (AAO), owing to a spatial constraint, causes a simple, nanoparticles-to-nanotubes structural rearrangement as a template for nanotube growth. It is found that eco-TiO2 can be activated under visible-light irradiation by non-metal (sulfur; S) doping, after which it shows visible-light photocatalytic activities over a range of solar energy. Importantly, an in vitro cytotoxicity test of well-purified water by eco-TiO2 confirms that eco-TiO2 satisfies the key human safety conditions.

  19. Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices.

    PubMed

    Kim, Hyojin; Prasain, Nutan; Vemula, Sasidhar; Ferkowicz, Michael J; Yoshimoto, Momoko; Voytik-Harbin, Sherry L; Yoder, Mervin C

    2015-09-01

    Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC. PMID:26122935

  20. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  1. Accurate color synthesis of three-dimensional objects in an image.

    PubMed

    Xin, John H; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing. PMID:15139423

  2. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  3. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot

    PubMed Central

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2014-01-01

    Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  4. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot.

    PubMed

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J

    2014-10-01

    Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design.

  5. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  6. Searching for Thermal Anomalies on Icy Satellites: Step 1- Validation of the Three Dimensional Volatile-Transport (VT3D)

    NASA Astrophysics Data System (ADS)

    Simmons, Gary G.; Howett, Carly J. A.; Young, Leslie A.; Spencer, John R.

    2015-11-01

    In the last few decades, thermal data from the Galileo and Cassini spacecraft have detected various anomalies on Jovian and Saturnian satellites, including the thermally anomalous “PacMan” regions on Mimas and Tethys and the Pwyll anomaly on Europa (Howett et al. 2011, Howett et al. 2012, Spencer et al. 1999). Yet, the peculiarities of some of these anomalies, like the weak detection of the “PacMan” anomalies on Rhea and Dione and the low thermal inertia values of the widespread anomalies on equatorial Europa, are subjects for on-going research (Howett et al. 2014, Rathbun et al. 2010). Further, analysis and review of all the data both Galileo and Cassini took of these worlds will provide information of the thermal inertia and albedos of their surfaces, perhaps highlighting potential targets of interest for future Jovian and Saturnian system missions. Many previous works have used a thermophysical model for airless planets developed by Spencer (1990). However, the Three Dimensional Volatile-Transport (VT3D) model proposed by Young (2012) is able to predict surface temperatures in significantly faster computation time, incorporating seasonal and diurnal insolation variations. This work is the first step in an ongoing investigation, which will use VT3D’s capabilities to reanalyze Galileo and Cassini data. VT3D, which has already been used to analyze volatile transport on Pluto, is validated by comparing its results to that of the Spencer thermal model. We will also present our initial results using VT3D to reanalyze the thermophysical properties of the PacMan anomaly previous discovered on Mimas by Howett et al. (2011), using temperature constraints of diurnal data from Cassini/CIRS. VT3D is expected to be an efficient tool in identifying new thermal anomalies in future Saturnian and Jovian missions.Bibliography:C.J.A. Howett et al. (2011), Icarus 216, 221.C.J.A. Howett et al. (2012), Icarus 221, 1084.C.J.A. Howett et al. (2014), Icarus 241, 239.J

  7. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  8. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude. PMID:26646289

  9. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

  10. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment.

    PubMed

    Choi, Jungsu; Chan, Sophia; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zinc Oxide Nano Wires (ZNWs) has been considered as a promising material for purification and disinfection of water and remediation of hazardous waste owing to its high activity and lower cost. In this study, three-dimensional (3D) structured palladium (Pd)/ZNWs were synthesized on the fabricated electrospun nanofibers and explored for enhancement of organic matter (OM) removal efficiency in water by suppressing electron-hole recombination during photocatalytic activity and increased surface area. The densely populated ZNWs were fabricated on the electrospun nanofiber by electroless plating (EP) and hydrothermal synthesis. In order to improve photocatalytic efficiency, a thin layer of Pd was coated prior to ZNWs growth to induce suppression of electron hole recombination produced during catalyst activity. The creation of a highly porous network of nanofibers decorated with ZNWs resulted in an increase of specific removal rate (SRR) of OM from 0.0249 to 0.0377 mg CODCr removed/mg ZNWs-hr when ZNW were grown on a Pd layer. It is believed that the demonstration of OM removal in the water through Pd/ZNWs membrane and enhanced photocatalytic activity under UV irradiation from layered structure can broaden potential applicability of Pd/ZNWs membranes for various photo catalytic water treatment.

  11. Experimental Investigation of Three-Dimensional (3-D) Material Flow Pattern in Thick Dissimilar 2050 Friction-Stir Welds

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, Marie-Noëlle; Taillard, Roland; Laye, Julien; Odièvre, Thierry

    2014-02-01

    The current microstructural investigation performed at various scales deals with the three-dimensional (3-D) material flow in thick dissimilar Airware™ 2050 friction-stir butt welds (Airware, Newport Beach, CA) because of the scarcity of the results obtained with thicker than 8 mm joints and the lack of detailed interpretation of features in the longitudinal direction. An additional originality consists in the study of material flow under the probe tip. In the current case of thick plates, the variation of local temperature along the weld depth is of key importance for the material flow. Indeed, it governs the slight difference of local mechanical behavior between both materials and therefore the shift of the interface, which was clearly put into evidence by means of a difference of Mn content as small as 0.3 pct between both alloys. This importance of temperature for the malleability also entails the pear shape of the nugget as well as a change of grains orientation along the depth in the thermomechanically affected zone. Due to the modification of tool-material adhesion with temperature, a new phenomenological model of material flow for thick friction-stir welds is proposed. In accordance with their difference of origin, the coexistence of onion rings and serrated interface is also highlighted.

  12. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment.

    PubMed

    Choi, Jungsu; Chan, Sophia; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zinc Oxide Nano Wires (ZNWs) has been considered as a promising material for purification and disinfection of water and remediation of hazardous waste owing to its high activity and lower cost. In this study, three-dimensional (3D) structured palladium (Pd)/ZNWs were synthesized on the fabricated electrospun nanofibers and explored for enhancement of organic matter (OM) removal efficiency in water by suppressing electron-hole recombination during photocatalytic activity and increased surface area. The densely populated ZNWs were fabricated on the electrospun nanofiber by electroless plating (EP) and hydrothermal synthesis. In order to improve photocatalytic efficiency, a thin layer of Pd was coated prior to ZNWs growth to induce suppression of electron hole recombination produced during catalyst activity. The creation of a highly porous network of nanofibers decorated with ZNWs resulted in an increase of specific removal rate (SRR) of OM from 0.0249 to 0.0377 mg CODCr removed/mg ZNWs-hr when ZNW were grown on a Pd layer. It is believed that the demonstration of OM removal in the water through Pd/ZNWs membrane and enhanced photocatalytic activity under UV irradiation from layered structure can broaden potential applicability of Pd/ZNWs membranes for various photo catalytic water treatment. PMID:27286471

  13. Constructing three-dimensional (3D) nanocrystalline models of Li4SiO4 for numerical modeling and simulation

    PubMed Central

    Shen, Yanhong; Gao, Tao; Tian, Xiaofeng; Chen, Xiaojun; Xiao, ChengJian; Lu, Tiecheng

    2015-01-01

    The three-dimensional (3D) nanocrystalline models of lithium silicates with the log-normal grain size distribution are constructed by constrained Voronoi tessellation. During evolution process, the algorithm is improved. We proposed a new algorithm idea by combining Genetic Algorithm (GA) with Least Square (LS) method to make up for the disadvantages of traditional genetic algorithm which may be easily trapped in local optimal solution. In the process of modeling, it is the first time, to the best of our knowledge, that we keep the whole sample showing the charge neutrality by deleting the excess atoms on the polyhedron boundary during the modeling. By using the molecular-dynamics method, the relaxation procedure of nanostructured Li4SiO4 is carried out. The results show that the average mass density of the sample is slightly lower than the experimental data of the perfect crystal after relaxation process. In addition, boundary component proportion (BCP) and density reduction proportion (DRP) of the sample is obtained, respectively. The present results display a significantly reduced BCP but an increased DRP when increasing the mean grain size of the sample. PMID:26031562

  14. Estimation of three-dimensional knee joint movement using bi-plane x-ray fluoroscopy and 3D-CT

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Fujita, Satoshi; Kohno, Takahiro; Suzuki, Masahiko; Miyagi, Jin; Moriya, Hideshige

    2005-04-01

    Acquisition of exact information of three-dimensional knee joint movement is desired in plastic surgery. Conventional X-ray fluoroscopy provides dynamic but just two-dimensional projected image. On the other hand, three-dimensional CT provides three-dimensional but just static image. In this paper, a method for acquiring three-dimensional knee joint movement using both bi-plane, dynamic X-ray fluoroscopy and static three-dimensional CT is proposed. Basic idea is use of 2D/3D registration using digitally reconstructed radiograph (DRR) or virtual projection of CT data. Original ideal is not new but the application of bi-plane fluoroscopy to natural bones of knee is reported for the first time. The technique was applied to two volunteers and successful results were obtained. Accuracy evaluation through computer simulation and phantom experiment with a knee joint of a pig were also conducted.

  15. 2D FTLE in 3D Flows: The accuracy of using two-dimensional data for Lagrangian analysis in a three-dimensional turbulent channel simulation

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Green, Melissa

    2012-11-01

    In experimental, three-dimensional vortex-dominated flows, common particle image velocimetry (PIV) data is often collected in only the plane of interest due to equipment constraints. For flows with significant out of plane velocities or velocity gradients, this can create large discrepancies in Lagrangian analyses that require accurate particle trajectories. A Finite Time Lyapunov Exponent (FTLE) analysis is one such example, and has been shown to be very powerful at examining vortex dynamics and interactions in a variety of aperiodic flows. In this work, FTLE analysis of a turbulent channel simulation was conducted using both full three-dimensional velocity data and modified planar data extracted from the same computational domain. When the out of plane velocity component is neglected the difference in FTLE fields is non-trivial. A quantitative comparison and computation of error is presented for several planes across the width of the channel to determine the efficacy of using 2D analyses on the inherently 3D flows.

  16. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  17. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  18. A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook

    2013-06-01

    In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952-975] to a full 3D MHD scheme. The scheme is a finite-volume Godunov method consisting of a constrained transport (CT) method and an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm, which extends Colella's original 2D corner transport upwind (CTU) method [P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 446-466]. We present two types of data reconstruction-evolution algorithms for 3D: (1) a reduced CTU scheme and (2) a full CTU scheme. The reduced 3D CTU scheme is a variant of a simple 3D extension of Collela's 2D CTU method and is considered as a direct extension from the 2D USM scheme. The full 3D CTU scheme is our primary 3D solver which includes all multidimensional cross-derivative terms for stability. The latter method is logically analogous to the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys. 115 (1994) 153-168]. The major novelties in our algorithms are twofold. First, we extend the reduced CTU scheme to the full CTU scheme which is able to run with CFL numbers close to unity. Both methods utilize the transverse update technique developed in the 2D USM algorithm to account for transverse fluxes without solving intermediate Riemann problems, which in turn gives cost-effective 3D methods by reducing the total number of Riemann solves. The proposed algorithms are simple and efficient especially when including multidimensional MHD terms that maintain in-plane magnetic field dynamics. Second, we introduce a new CT scheme that makes use of proper upwind information in taking averages of electric fields. Our 3D USM schemes can be easily

  19. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  20. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  1. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures?

    PubMed

    Lorber, Bernard

    2002-09-23

    The crystallization of proteins and other biological particles (including nucleic acids, nucleo-protein complexes and large assemblies such as nucleosomes, ribosomal subunits or viruses) in a microgravity environment can produce crystals having lesser defects than crystals prepared under normal gravity on earth. Such microgravity-grown crystals can diffract X-rays to a higher resolution and have a lower mosaic spread. The inferred electron density maps can be richer in details owing to which more accurate three-dimensional structure models can be built. Major results reported in this field of research are reviewed. Novel ones obtained with the Advanced Protein Crystallization Facility are presented. For structural biology, practical applications and implications associated with crystallization and crystallography onboard the International Space Station are discussed.

  2. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  3. Improving Three-Dimensional (3D) Range Gated Reconstruction Through Time-of-Flight (TOF) Imaging Analysis

    NASA Astrophysics Data System (ADS)

    Chua, S. Y.; Wang, X.; Guo, N.; Tan, C. S.; Chai, T. Y.; Seet, G. L.

    2016-04-01

    This paper performs an experimental investigation on the TOF imaging profile which strongly influences the quality of reconstruction to accomplish accurate range sensing. From our analysis, the reflected intensity profile recorded appears to deviate from Gaussian model which is commonly assumed and can be perceived as a mixture of noises and actual reflected signal. Noise-weighted Average range calculation is therefore proposed to alleviate noise influence based on the signal detection threshold and system noises. From our experimental result, this alternative range solution demonstrates better accuracy as compared to the conventional weighted average method and proven as a para-axial correction to improve range reconstruction in 3D gated imaging system.

  4. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  5. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction.

    PubMed

    Xia, J; Samman, N; Yeung, R W; Wang, D; Shen, S G; Ip, H H; Tideman, H

    2000-08-01

    The purpose of this paper is to report a new technique for three-dimensional facial soft-tissue-change prediction after simulated orthognathic surgical planning. A scheme for soft tissue deformation, "Computer-assisted three-dimensional virtual reality soft tissue planning and prediction for orthognathic surgery (CASP)", is presented. The surgical planning was based on three-dimensional reconstructed CT visualization. Soft tissue changes were predicted by two newly devised algorithms: Surface Normal-based Model Deformation Algorithm and Ray Projection-based Model Deformation Algorithm. A three-dimensional color facial texture-mapping technique was also used for generating the color photo-realistic facial model. As a final result, a predicted and simulated patient's color facial model can be visualized from arbitrary viewing points.

  6. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    ERIC Educational Resources Information Center

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  7. A multiblock/multizone code (PAB 3D-v2) for the three-dimensional Navier-Stokes equations: Preliminary applications

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1990-01-01

    The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.

  8. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    SciTech Connect

    Swanson, Erika L.; Indelicato, Daniel J.; Louis, Debbie; Flampouri, Stella; Li, Zuofeng; Morris, Christopher G.; Paryani, Nitesh; Slopsema, Roelf

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  9. Accurate quantum thermal rate constants for the three-dimensional H+H2 reaction

    NASA Astrophysics Data System (ADS)

    Park, Tae Jun; Light, J. C.

    1989-07-01

    The rate constants for the three-dimensional H+H2 reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface are calculated using Pack-Parker hyperspherical (APH) coordinates and a C2v symmetry adapted direct product discrete variable representation (DVR). The C2v symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate χ. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the J=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the J=0 rate constant k0(T) is obtained as a sum of the rate constants calculated for each block. k0(T) is compared with the exact k0(T) obtained from thermal averaging of the J=0 reaction probabilities; the errors are within 5%-20% up to T=1500 K. The sequential diagonalization-truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the J≠0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (JKJ) blocks of the Hamiltonian. The individual (JKJ) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal KJ±2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over J of (2J+1)kJ(T). The time evolution of the flux for J≠0 is again very accurately described to give a well converged rate constant.

  10. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  11. Nanoelectronic three-dimensional (3D) nanotip sensing array for real-time, sensitive, label-free sequence specific detection of nucleic acids

    PubMed Central

    Yang, Lu; koochak, Zahra; Harris, James S.; Davis, Ronald W.

    2016-01-01

    The improvements in our ability to sequence and genotype DNA have opened up numerous avenues in the understanding of human biology and medicine with various applications, especially in medical diagnostics. But the realization of a label free, real time, high-throughput and low cost biosensing platforms to detect molecular interactions with a high level of sensitivity has been yet stunted due to two factors: one, slow binding kinetics caused by the lack of probe molecules on the sensors and two, limited mass transport due to the planar structure (two-dimensional) of the current biosensors. Here we present a novel three-dimensional (3D), highly sensitive, real-time, inexpensive and label-free nanotip array as a rapid and direct platform to sequence-specific DNA screening. Our nanotip sensors are designed to have a nano sized thin film as their sensing area (~ 20 nm), sandwiched between two sensing electrodes. The tip is then conjugated to a DNA oligonucleotide complementary to the sequence of interest, which is electrochemically detected in real-time via impedance changes upon the formation of a double-stranded helix at the sensor interface. This 3D configuration is specifically designed to improve the biomolecular hit rate and the detection speed. We demonstrate that our nanotip array effectively detects oligonucleotides in a sequence-specific and highly sensitive manner, yielding concentration-dependent impedance change measurements with a target concentration as low as 10 pM and discrimination against even a single mismatch. Notably, our nanotip sensors achieve this accurate, sensitive detection without relying on signal indicators or enhancing molecules like fluorophores. It can also easily be scaled for highly multiplxed detection with up to 5000 sensors/square centimeter, and integrated into microfluidic devices. The versatile, rapid, and sensitive performance of the nanotip array makes it an excellent candidate for point-of-care diagnostics, and high

  12. Geo-accurate model extraction from three-dimensional image-derived point clouds

    NASA Astrophysics Data System (ADS)

    Nilosek, David; Sun, Shaohui; Salvaggio, Carl

    2012-06-01

    A methodology is proposed for automatically extracting primitive models of buildings in a scene from a three-dimensional point cloud derived from multi-view depth extraction techniques. By exploring the information provided by the two-dimensional images and the three-dimensional point cloud and the relationship between the two, automated methods for extraction are presented. Using the inertial measurement unit (IMU) and global positioning system (GPS) data that accompanies the aerial imagery, the geometry is derived in a world-coordinate system so the model can be used with GIS software. This work uses imagery collected by the Rochester Institute of Technology's Digital Imaging and Remote Sensing Laboratory's WASP sensor platform. The data used was collected over downtown Rochester, New York. Multiple target buildings have their primitive three-dimensional model geometry extracted using modern point-cloud processing techniques.

  13. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  14. User’s guide and reference to Ash3d: a three-dimensional model for Eulerian atmospheric tephra transport and deposition

    USGS Publications Warehouse

    Mastin, Larry G.; Randall, Michael J.; Schwaiger, Hans F.; Denlinger, Roger P.

    2013-01-01

    Ash3d is a three-dimensional Eulerian atmospheric model for tephra transport, dispersal, and deposition, written by the authors to study and forecast hazards of volcanic ash clouds and tephra fall. In this report, we explain how to set up simulations using both a web interface and an ASCII input file, and how to view and interpret model output. We also summarize the architecture of the model and some of its properties.

  15. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    SciTech Connect

    Guo, En-Yu; Chawla, Nikhilesh; Jing, Tao; Torquato, Salvatore; Jiao, Yang

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  16. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  17. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  18. Three-Dimensional (3-D) Printing: A Cost-Effective Solution for Improving Global Accessibility to Prostheses.

    PubMed

    Silva, Kyle; Rand, Stephanie; Cancel, David; Chen, Yuxi; Kathirithamby, Rani; Stern, Michelle

    2015-12-01

    The lack of access to prostheses is a global problem, partially caused by the high cost associated with the current manufacturing process. Three-dimensional printing is gaining use in the medical field, and one such area is prosthetics. In addition to using cost-effective materials, this technology allows for rapid prototyping, making it an efficient solution for the development of affordable prostheses. If the rehabilitation medicine community embraces this novel technology, we can help alleviate the global disparity of access to prostheses. PMID:26709247

  19. Three-Dimensional Phylogeny Explorer: Distinguishing paralogs, lateral transfer, and violation of "molecular clock" assumption with 3D visualization

    PubMed Central

    Kim, Namshin; Lee, Christopher

    2007-01-01

    Background Construction and interpretation of phylogenetic trees has been a major research topic for understanding the evolution of genes. Increases in sequence data and complexity are creating a need for more powerful and insightful tree visualization tools. Results We have developed 3D Phylogeny Explorer (3DPE), a novel phylogeny tree viewer that maps trees onto three spatial axes (species on the X-axis; paralogs on Z; evolutionary distance on Y), enabling one to distinguish at a glance evolutionary features such as speciation; gene duplication and paralog evolution; lateral gene transfer; and violation of the "molecular clock" assumption. Users can input any tree on the online 3DPE, then rotate, scroll, rescale, and explore it interactively as "live" 3D views. All objects in 3DPE are clickable to display subtrees, connectivity path highlighting, sequence alignments, and gene summary views, and etc. To illustrate the value of this visualization approach for microbial genomes, we also generated 3D phylogeny analyses for all clusters from the public COG database. We constructed tree views using well-established methods and graph algorithms. We used Scientific Python to generate VRML2 3D views viewable in any web browser. Conclusion 3DPE provides a novel phylogenetic tree projection method into 3D space and its web-based implementation with live 3D features for reconstruction of phylogenetic trees of COG database. PMID:17584922

  20. Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images.

    PubMed

    Aldridge, Kristina; Boyadjiev, Simeon A; Capone, George T; DeLeon, Valerie B; Richtsmeier, Joan T

    2005-10-15

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented, the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (n = 15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and due to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and, therefore, useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  1. 3D brain atlas reconstructor service--online repository of three-dimensional models of brain structures.

    PubMed

    Majka, Piotr; Kowalski, Jakub M; Chlodzinska, Natalia; Wójcik, Daniel K

    2013-10-01

    Brain atlases are important tools of neuroscience. Traditionally prepared in paper book format, more and more commonly they take digital form which extends their utility. To simplify work with different atlases, to lay the ground for developing universal tools which could abstract from the origin of the atlas, efforts are being made to provide common interfaces to these atlases. 3D Brain Atlas Reconstructor service (3dBARs) described here is a repository of digital representations of different brain atlases in CAF format which we recently proposed and a repository of 3D models of brain structures. A graphical front-end is provided for creating and viewing the reconstructed models as well as the underlying 2D atlas data. An application programming interface (API) facilitates programmatic access to the service contents from other websites. From a typical user's point of view, 3dBARs offers an accessible way to mine publicly available atlasing data with a convenient browser based interface, without the need to install extra software. For a developer of services related to brain atlases, 3dBARs supplies mechanisms for enhancing functionality of other software. The policy of the service is to accept new datasets as delivered by interested parties and we work with the researchers who obtain original data to make them available to the neuroscience community at large. The functionality offered by the 3dBARs situates it at the core of present and future general atlasing services tying it strongly to the global atlasing neuroinformatics infrastructure. PMID:23943281

  2. Extremely accurate sequential verification of RELAP5-3D

    DOE PAGES

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

  3. Extremely accurate sequential verification of RELAP5-3D

    SciTech Connect

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method of manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.

  4. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space

    PubMed Central

    Tokunaga, Terumasa; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-01-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  5. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

    PubMed

    Toyoshima, Yu; Tokunaga, Terumasa; Hirose, Osamu; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-06-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  6. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

    PubMed

    Toyoshima, Yu; Tokunaga, Terumasa; Hirose, Osamu; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-06-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured.

  7. Three-dimensional time-of-flight MR angiography for evaluation of intracranial aneurysms after endosaccular packing with Guglielmi detachable coils: comparison with 3D digital subtraction angiography.

    PubMed

    Okahara, Mika; Kiyosue, Hiro; Hori, Yuzo; Yamashita, Masanori; Nagatomi, Hirofumi; Mori, Hiromu

    2004-07-01

    The sensitivities and specificities of three-dimensional time-of-flight MR angiography (3D-TOF MRA) and 3D digital subtraction angiography (3D-DSA) were compared for evaluation of cerebral aneurysms after endosaccular packing with Guglielmi detachable coils (GDCs). Thirty-three patients with 33 aneurysms were included in this prospective study. 3D-TOF MRA and 3D-DSA were performed in the same week on all patients. Maximal intensity projection (MIP) and 3D reconstructed MRA images were compared with 3D-DSA images. The diameters of residual/recurrent aneurysms detected on 3D-DSA were calculated on a workstation. In 3 (9%) of 33 aneurysms, 3D-TOF MRA did not provide reliable information due to significant susceptibility artifacts on MRA. The sensitivity and specificity rates of MRA were 72.7 and 90.9%, respectively, for the diagnosis of residual/recurrent aneurysm. The diameters of residual/recurrent aneurysms that could not be detected by MRA were significantly smaller than those of detected aneurysms (mean 1.1 vs mean 2.3 mm). In one aneurysm of the anterior communicating artery (ACoA), the relationship between the residual aneurysm and the ACoA was more evident on MRA than DSA images. MRA can detect the recurrent/residual lumen of aneurysms treated with GDCs of up to at least 1.8 mm in diameter. 3D-TOF MRA is useful for follow-up of intracranial aneurysms treated with GDCs, and could partly replace DSA.

  8. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  9. Three-Dimensional Ballistocardiography and Seismocardiography in Parabolic Flight: Preliminary Results from the ESA B3D Project

    NASA Astrophysics Data System (ADS)

    Migeotte, P.-F.; De Ridder, S.; Neyt, X.; Pattyn, N.; Di Rienzo, M.; Beck, L.; Gauger, P.; Limper, U.; Prisk, G. K.; Rusanov, V.; Funtova, I.; Baevsky, R. M.; Tank, J.

    2013-02-01

    Ballistocardiography (BCG) is a technique that had a large interest in cardiology between the fifties and eighties. Typically BCG consisted in the recording of mechanical acceleration (Acc), caused by cardiac activity, on a subject lying on a table. As Acc was recorded only in the 2-dimensions (2D) of the horizontal plane, the antero-posterior (Z-axis) component was often neglected. From past experiments conducted in space [1,2] it was suggested that this component was comparable in magnitude to the other two and that Ballistocardiography should be recorded in three dimensions (3D). These observations and the recent modest regain of interest in the BCG technique were the starting point of the B3D project selected by ESA for the definition phase after the AO-2009. We recorded 3D Acc at various positions on the surface of the body (close to the centre of mass (CM), at the apex of the heart and on the sternum) of 8 healthy volunteers during free floating periods of parabolic flight (PF) manoeuvre (ESA 55th and DLR 19th PF campaigns conducted on-board the A300-zéroG airplane of NOVESPACE). Out of the many recordings collected, only a very limited number provided body Acc free from artefacts. Nevertheless, our results show that Seismocardiograms (SCG) and Ballistocardiograms (BCG) waves were qualitatively and quantitatively comparable in the frontal plane while larger differences were present along the antero-posterior component. Our limited number of artefact free episodes demonstrates the intrinsic difficulties of 3D recordings of SCG and BCG in PF and thus the need for a study in sustained microgravity. Moreover, our results confirm that the ventro-dorsal component of BCG is of similar amplitude as the other two which further demonstrates that the three components are essential to provide a physiological interpretation of BCG and SCG signals.

  10. FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0

    USGS Publications Warehouse

    Durbin, Timothy J.; Bond, Linda D.

    1998-01-01

    This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.

  11. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  12. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  13. Three-Dimensional (3-D) Atom Probe Tomography of a Cu-Precipitation-Strengthened, Ultrahigh-Strength Carburized Steel

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin L.; Sachdev, Anil K.; Mishra, Raja K.; Olson, Gregory B.

    2012-10-01

    In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.

  14. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    EISCAT_3D will be Europe's next-generation radar for the study of the high-latitude atmosphere and geospace, located in northern Fenno-Scandinavia, with capabilities going well beyond anything currently available to the international research community. The facility will consist of several very large active phased-array antenna transmitters/receivers, and multiple passive sites located in three countries. Depending on the available funding, EISCAT_3D will be comprised of tens of thousands, up to more than 100 000, individual antenna elements. EISCAT_3D combines several key attributes which have never before been available together in a single radar, such as volumetric imaging and tracking, aperture synthesis imaging, multistatic configuration, improved sensitivity and transmitter flexibility. The use of advanced beam-forming technology allows the beam direction to be switched in milliseconds, rather than the minutes which it can take to re-position dish-based radars. This allows very wide spatial coverage to be obtained, by interleaving multiple beam directions to carry out quasi-simultaneous volumetric imaging. It also allows objects such as satellites and space debris to be tracked across the sky. At the passive sites, the design allows for at least five simultaneous beams at full bandwidth, rising to over twenty beams if the bandwidth is limited to the ion line, allowing the whole range of the transmitted beam to be imaged from each passive site, using holographic radar techniques. EISCAT_3D has a modular configuration, which allows an active array to be split into smaller elements to be used for aperture synthesis imaging. The result will be an entirely new data product, consisting of range-dependent images of small sub-beamwidth scale structures, with sizes down to 20 m. EISCAT_3D will be the first phased array incoherent scatter radar to use a multistatic configuration. A minimum of five radar sites, consisting of two pairs located around 120 km and 250 km

  15. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  16. Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue.

    PubMed

    Lai, Yinzhi; Cheng, Ke; Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K(+) depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells' functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns.

  17. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  18. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions

    NASA Technical Reports Server (NTRS)

    Boretti, A. A.

    1990-01-01

    A numerical method useful to describe unsteady 3-D flow fields within turbomachinery stages is presented. The method solves the compressible, time dependent, Euler conservation equations with a finite volume, flux splitting, total variation diminishing, approximately factored, implicit scheme. Multiblock composite gridding is used to partition the flow field into a specified arrangement of blocks with static and dynamic interfaces. The code is optimized to take full advantage of the processing power and speed of the Cray Y/MP supercomputer. The method is applied to the computation of the flow field within a single stage, axial flow fan, thus reproducing the unsteady 3-D rotor-stator interaction.

  19. Three-dimensional (3D) GIS-based coastline change analysis and display using LIDAR series data

    NASA Astrophysics Data System (ADS)

    Zhou, G.

    This paper presents a method to visualize and analyze topography and topographic changes on coastline area. The study area, Assantage Island Nation Seashore (AINS), is located along a 37-mile stretch of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000) are created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed. The system was developed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display, and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.

  20. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.

    PubMed

    Calì, Corrado; Baghabra, Jumana; Boges, Daniya J; Holst, Glendon R; Kreshuk, Anna; Hamprecht, Fred A; Srinivasan, Madhusudhanan; Lehväslaiho, Heikki; Magistretti, Pierre J

    2016-01-01

    Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. PMID:26179415

  1. Three-dimensional image technology in forensic anthropology: Assessing the validity of biological profiles derived from CT-3D images of the skeleton

    NASA Astrophysics Data System (ADS)

    Garcia de Leon Valenzuela, Maria Julia

    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility

  2. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  3. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  4. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  5. A study on the reproducibility of cephalometric landmarks when undertaking a three-dimensional (3D) cephalometric analysis

    PubMed Central

    Llamas, José M.; Cibrián, Rosa; Gandia, José L.; Paredes, Vanessa

    2012-01-01

    Objectives: Cone Beam Computerized Tomography (CBCT) allows the possibility of modifying some of the diagnostic tools used in orthodontics, such as cephalometry. The first step must be to study the characteristics of these devices in terms of accuracy and reliability of the most commonly used landmarks. The aims were 1- To assess intra and inter-observer reliability in the location of anatomical landmarks belonging to hard tissues of the skull in images taken with a CBCT device, 2- To determine which of those landmarks are more vs. less reliable and 3- To introduce planes of reference so as to create cephalometric analyses appropriated to the 3D reality. Study design: Fifteen patients who had a CBCT (i-CAT®) as a diagnostic register were selected. To assess the reproducibility on landmark location and the differences in the measurements of two observers at different times, 41 landmarks were defined on the three spatial axes (X,Y,Z) and located. 3.690 measurements were taken and, as each determination has 3 coordinates, 11.070 data were processed with SPSS® statistical package. To discover the reproducibility of the method on landmark location, an ANOVA was undertaken using two variation factors: time (t1, t2 and t3) and observer (Ob1 and Ob2) for each axis (X, Y and Z) and landmark. The order of the CBCT scans submitted to the observers (Ob1, Ob2) at t1, t2, and t3, were different and randomly allocated. Multiple comparisons were undertaken using the Bonferroni test. The intra- and inter-examiner ICC´s were calculated. Results: Intra- and inter-examiner reliability was high, both being ICC ≥ 0.99, with the best frequency on axis Z. Conclusions: The most reliable landmarks were: Nasion, Sella, Basion, left Porion, point A, anterior nasal spine, Pogonion, Gnathion, Menton, frontozygomatic sutures, first lower molars and upper and lower incisors. Those with less reliability were the supraorbitals, right zygion and posterior nasal spine. Key words:Cone Beam

  6. Three dimensional printing as an effective method of producing anatomically accurate models for studies in thermal ecology.

    PubMed

    Watson, Charles M; Francis, Gamal R

    2015-07-01

    Hollow copper models painted to match the reflectance of the animal subject are standard in thermal ecology research. While the copper electroplating process results in accurate models, it is relatively time consuming, uses caustic chemicals, and the models are often anatomically imprecise. Although the decreasing cost of 3D printing can potentially allow the reproduction of highly accurate models, the thermal performance of 3D printed models has not been evaluated. We compared the cost, accuracy, and performance of both copper and 3D printed lizard models and found that the performance of the models were statistically identical in both open and closed habitats. We also find that 3D models are more standard, lighter, durable, and inexpensive, than the copper electroformed models. PMID:25965016

  7. The Meaning and Measurement of Work Fatigue: Development and Evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI)

    PubMed Central

    Frone, Michael R.; Tidwell, Marie-Cecile O.

    2015-01-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure; briefly examine several prior measures of work fatigue-related constructs; and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (N = 207) and a broader evaluative study of U.S. wage and salary workers (N = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. PMID:25602275

  8. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    SciTech Connect

    Jiang Ling; Chawla, Nikhilesh; Pacheco, Mario; Noveski, Vladimir

    2011-10-15

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 {mu}m in diameter. A few large pores (larger than 100 {mu}m in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: {yields} Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography {yields} Two new image analysis and reconstruction tools are presented that can be used by the community at large {yields} Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems.

  9. The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI).

    PubMed

    Frone, Michael R; Tidwell, Marie-Cecile O

    2015-07-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure, briefly examine several prior measures of work fatigue-related constructs, and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (n = 207) and a broader evaluative study of U.S. wage and salary workers (n = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue.

  10. LB3D: a protein three-dimensional substructure search program based on the lower bound of a root mean square deviation value.

    PubMed

    Terashi, Genki; Shibuya, Tetsuo; Takeda-Shitaka, Mayuko

    2012-05-01

    Searching for protein structure-function relationships using three-dimensional (3D) structural coordinates represents a fundamental approach for determining the function of proteins with unknown functions. Since protein structure databases are rapidly growing in size, the development of a fast search method to find similar protein substructures by comparison of protein 3D structures is essential. In this article, we present a novel protein 3D structure search method to find all substructures with root mean square deviations (RMSDs) to the query structure that are lower than a given threshold value. Our new algorithm runs in O(m + N/m(0.5)) time, after O(N log N) preprocessing, where N is the database size and m is the query length. The new method is 1.8-41.6 times faster than the practically best known O(N) algorithm, according to computational experiments using a huge database (i.e., >20,000,000 C-alpha coordinates).

  11. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Kwak, D.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  12. Validation of the RPLUS3D Code for Supersonic Inlet Applications Involving Three-Dimensional Shock Wave-Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A three-dimensional computational fluid dynamics code, RPLUS3D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for glancing shock wave-boundary layer interactions. Both laminar and turbulent flows were studied. A supersonic flow over a wedge mounted on a flat plate was numerically simulated. For the laminar case, the static pressure distribution, velocity vectors, and particle traces on the flat plate were obtained. For turbulent flow, both the Baldwin-Lomax and Chien two-equation turbulent models were used. The static pressure distributions, pitot pressure, and yaw angle profiles were computed. In addition, the velocity vectors and particle traces on the flat plate were also obtained from the computed solution. Overall, the computed results for both laminar and turbulent cases compared very well with the experimentally obtained data.

  13. Role of surfactant during microemulsion photopolymerization for the creation of three-dimensional (3D) liquid crystal elastomer microsphere spatial cell scaffolds

    NASA Astrophysics Data System (ADS)

    Hegmann, Elda; Bera, Tanmay; Malcuit, Christopher; Clements, Robert

    2016-06-01

    Three-dimensional (3D) cell scaffolds based on connected nematic liquid crystal elastomer microsphere architectures support the attachment and proliferation of C2C12 myoblasts, neuroblastomas (SHSY5Y) and human dermal fibroblasts (hDF). The microsphere spatial cell scaffolds were prepared by an oil-in-water microemulsion photopolymerization of reactive nematic mesogens in the presence of various surfactants, and the as-prepared scaffold constructs are composed of smooth surface microspheres with diameter ranging from 10 to 30 μm. We here investigate how the nature and type of surfactant used during the microemulsion photopolymerization impacts both the size and size distribution of the resulting microspheres as well as their surface morphology, i.e. the surface roughness.

  14. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  15. Accurate 3d Scanning of Damaged Ancient Greek Inscriptions for Revealing Weathered Letters

    NASA Astrophysics Data System (ADS)

    Papadaki, A. I.; Agrafiotis, P.; Georgopoulos, A.; Prignitz, S.

    2015-02-01

    In this paper two non-invasive non-destructive alternative techniques to the traditional and invasive technique of squeezes are presented alongside with specialized developed processing methods, aiming to help the epigraphists to reveal and analyse weathered letters in ancient Greek inscriptions carved in masonry or marble. The resulting 3D model would serve as a detailed basis for the epigraphists to try to decipher the inscription. The data were collected by using a Structured Light scanner. The creation of the final accurate three dimensional model is a complicated procedure requiring large computation cost and human effort. It includes the collection of geometric data in limited space and time, the creation of the surface, the noise filtering and the merging of individual surfaces. The use of structured light scanners is time consuming and requires costly hardware and software. Therefore an alternative methodology for collecting 3D data of the inscriptions was also implemented for reasons of comparison. Hence, image sequences from varying distances were collected using a calibrated DSLR camera aiming to reconstruct the 3D scene through SfM techniques in order to evaluate the efficiency and the level of precision and detail of the obtained reconstructed inscriptions. Problems in the acquisition processes as well as difficulties in the alignment step and mesh optimization are also encountered. A meta-processing framework is proposed and analysed. Finally, the results of processing and analysis and the different 3D models are critically inspected and then evaluated by a specialist in terms of accuracy, quality and detail of the model and the capability of revealing damaged and "hidden" letters.

  16. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  17. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    SciTech Connect

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  18. Full Three-Dimensional Approach: Seismic Structure of the Mantle Beneath Western Pacific Using 3-D Fréchet Kernels

    NASA Astrophysics Data System (ADS)

    Chen, L.; Zhao, L.; Jordan, T. H.

    2002-12-01

    We present a full three-dimensional (3-D) model of the shear-speed structure for the mantle beneath western Pacific Ocean. Over 800 three-component recordings of earthquakes (Mw > 5.5) from the seismic zones around the western Pacific rim to station HON/KIP in Hawaii, MIDW in Midway, MAT/MAJO and ERM in Japan, and GUMO in Mariana Island were processed to obtain ~20,000 frequency-dependent phase delays for various of seismic waves, including S, SS, upper-mantle guided and surface waves, and ScS reverberations. The 3-D Fréchet kernels for these delay times are computed by the coupled normal mode theory described by Zhao, Jordan, and Chapman (2000), and the measurements were inverted for a 3-D radially anisotropic shear-speed model using a linear Gaussian-Bayesian scheme. The model parameters include shear-speed variations throughout the mantle and perturbations to radial shear-wave anisotropy in the uppermost mantle. The resolving power of the inversion has been investigated through a series of checkerboard and other tests, which indicate that the horizontal and vertical resolving lengths of about 700 and 200 km or less in the upper mantle. Our results for the large-scale variations in the isotropic shear speeds are generally consistent with published global tomographic models. For example, the uppermost mantle (< 200 km depth) shows fast anomalies in the interior of the Pacific plate and slow anomalies in the marginal basins along the Pacific rim, while this pattern is reversed in the transition zone (400-700 km). Our model reveals greater lateral heterogeneity than the global models, especially in the 200-400 km depth range, suggesting a complex 3-D mantle flow in the western Pacific upper mantle.

  19. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.

    PubMed

    Du, Qi-Shi; Gao, Jing; Wei, Yu-Tuo; Du, Li-Qin; Wang, Shu-Qing; Huang, Ri-Bo

    2012-04-23

    The inhibitions of enzymes (proteins) are determined by the binding interactions between ligands and targeting proteins. However, traditional QSAR (quantitative structure-activity relationship) is a one-side technique, only considering the structures and physicochemical properties of inhibitors. In this study, the structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) is presented, in which the structural information of host protein is involved in the QSAR calculations. The SB-MP-3D-QSAR actually is a combinational method of docking approach and QSAR technique. Multiple docking calculations are performed first between the host protein and ligand molecules in a training set. In the targeting protein, the functional residues are selected, which make the major contribution to the binding free energy. The binding free energy between ligand and targeting protein is the summation of multiple potential energies, including van der Waals energy, electrostatic energy, hydrophobic energy, and hydrogen-bond energy, and may include nonthermodynamic factors. In the foundational QSAR equation, two sets of weighting coefficients {aj} and {bp} are assigned to the potential energy terms and to the functional residues, respectively. The two coefficient sets are solved by using iterative double least-squares (IDLS) technique in the training set. Then, the two sets of weighting coefficients are used to predict the bioactivities of inquired ligands. In an application example, the new developed method obtained much better results than that of docking calculations.

  20. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  1. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  2. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    (31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo

  3. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  4. Three-dimensional distribution of the ISM in the Milky Way Galaxy. IV. 3D molecular fraction and Galactic-scale H I-to-H2 transition

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Nakanishi, Hiroyuki

    2016-08-01

    Three-dimensional (3D) distribution of the volume-density molecular fraction, defined by f_mol^ρ =ρ _H_2/(ρ _{H I}+ρ _H_2), is studied in the Milky Way Galaxy. The molecular front appears at galacto-centric distance of R ˜ 8 kpc, where the galactic-scale phase transition from atomic to molecular hydrogen occurs with f_mol^ρ dropping from ˜0.8 to 0.2 within a radial interval as narrow as ˜0.5 kpc. The f_mol^ρ front is much sharper than that of the surface density molecular fraction. The f_mol^ρ front also appears in the direction vertical to the galactic plane with a full width of the high-f_mol^ρ disk to be ˜100 pc. The radial and vertical f_mol^ρ profiles, particularly the front behavior, are fitted by theoretical curves calculated using the observed density profile and assumed radiation field and metallicity with exponential gradients. The molecular fraction was found to be enhanced along spiral arms at radii R ˜ 6 to 10 kpc, such as the Perseus arm. This implies that the molecular clouds are produced from H I in the arms and are dissociated in the interarm regions in the transition region around the molecular front. We also show that there is a threshold value of mean H I density, over which H I is transformed into molecular gas.

  5. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft.

    PubMed

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-04-20

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  6. Numerical Analysis of Three-Dimensional Cervical Behaviors in Posterior-Oblique Car Collisions Using 3-D Human Whole Body Finite Element Model

    NASA Astrophysics Data System (ADS)

    Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken

    Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.

  7. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-02-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D structures are not simple box-like shapes, and that design attributes such as reflectivity could be optimized using three-dimensionality.

  8. Three-dimensional photovoltaics

    NASA Astrophysics Data System (ADS)

    Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.

    2010-03-01

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.

  9. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.

  10. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  11. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study.

    PubMed

    Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W

    2000-01-01

    We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284

  12. 3-D technology used to accurately understand equine ileocolonic aganglionosis.

    PubMed

    Muniz, Eliane; Lobo Ladd, Aliny A B; Lobo Ladd, Fernando V; da Silva, Andrea A P; Kmit, Fernanda V; Borges, Alexandre S; Teixeira, Raffaella; da Mota, Lígia S L S; Belli, Carla B; de Zoppa, André L V; da Silva, Luis C L C; de Melo, Mariana P; Coppi, Antonio A

    2013-01-01

    Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally.

  13. How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images?

    PubMed Central

    Jayaratne, Yasas S. N.; McGrath, Colman P. J.; Zwahlen, Roger A.

    2012-01-01

    Background Cone-beam Computed Tomography (CBCT) and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D) visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1) to evaluate the feasibility of integrating 3-D Photos and CBCT images 2) to assess degree of error that may occur during the above processes and 3) to identify facial regions that would be most appropriate for 3-D image registration. Methodology CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS) error. Principal Findings: The signed average and RMS of the distance differences between the registered surfaces were −0.018 (±0.129) mm and 0.739 (±0.239) mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. Conclusions CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning. PMID:23185372

  14. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    NASA Astrophysics Data System (ADS)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-12-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses.

  15. Use of Three-Dimensional (3-D) Immersive Virtual Worlds in K-12 And Higher Education Settings: A Review of the Research

    ERIC Educational Resources Information Center

    Hew, Khe Foon; Cheung, Wing Sum

    2010-01-01

    In this paper, we review past empirical research studies on the use of three-dimensional immersive virtual worlds in education settings such as K-12 and higher education. Three questions guided our review: (1) How are virtual worlds (eg, "Active Worlds", "Second Life") used by students and teachers? (2) What types of research methods have been…

  16. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  17. Accurate analysis of top gate effect of a typical triple-gate fin-type FET using three-dimensional device simulation

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Toshiyuki; Nakamura, Takeshi; Yokoyama, Norihiro; Fukuoka, Shota

    2016-06-01

    Triple-gate (TG) fin-type FETs (FinFETs) are used in advanced mass production of high-performance devices. The TG FinFET was developed from the double-gate (DG) FinFET by adding another gate for higher performance and lower variability. We analyzed the effect of the top gate of a typical TG FinFET using three-dimensional (3D) device simulation accurately for the first time. It was found that the top gate improves the drain-induced barrier lowering (DIBL) by 9%. The improvements of the threshold voltage (V th) and ON current (I on) were found to be as small as 5 and 7%, respectively. The improvement of subthreshold swing (SS) was very small at 1% despite our expectation. However, the OFF current (I off) was substantially reduced by 28% contrary to our intuitive prediction. The top gate only slightly enhances the electrostatic controllability of the channel current, so the improvements of device performance are marginal except that it has a large effect on I off reduction. It is therefore found that the biggest role of the top gate of a typical TG FinFET is substantially decreasing I off. The reason for the I off reduction is the increase in the bottleneck energy of the conduction band near the channel surface by 100 meV caused by the presence of the top gate. Since the large I off reduction is very important to suppress power consumption, our new knowledge is beneficial to develop ultralow-power devices.

  18. Upregulations of metallothionein gene expressions and tolerance to heavy metal toxicity by three dimensional cultivation of HepG2 cells on VECELL 3-D inserts.

    PubMed

    Kubo, Takashi; Kuroda, Yukie; Horiuchi, Shinichiro; Kim, Su-Ryang; Sekino, Yuko; Ishida, Seiichi

    2016-02-01

    The VECELL 3-D insert is a new culture scaffold consisting of collagen-coated ePTFE (expanded polytetrafluoroethylene) mesh. We analyzed the effects of VECELL 3-D inserts on the functionality of HepG2, a human hepatocellular carcinoma cell line. HepG2 cells cultured on VECELL 3-D inserts maintained a round shape, while those cultured on a standard culture plate or collagen-coated cell culture plate showed a flattened and cubic epithelial-like shape. HepG2 cells cultured on VECELL 3-D inserts had showed upregulated expression of metallothionein genes and in turn a higher tolerance to toxicity induced by heavy metals. These results suggest that HepG2 cell functions were changed by the cell morphology that is induced by culturing on a VECELL 3-D insert.

  19. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  20. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  1. FOR3D: A computer model for solving the LSS (Lee-Saad-Schultz) three-dimensional, wide angle wave equation

    NASA Astrophysics Data System (ADS)

    Botseas, George; Lee, Ding; King, David

    1987-08-01

    A computer model is developed for implementing the Lee-Saad-Schultz (LSS) method for solving the LSS Three-dimensional wide angle wave equation. The model is designed to predict propagation loss in range-, depth-, and azimuthal-dependent ocean environments. Computational speed is favorable since the Lee-Saad-Schultz method requires only solving two tri-diagonal systems of equations for each step marched forward in range. A test problem is included for demonstrating accuracy and the capabilities of the model. The model is written in Fortran for a VAX 11/780 computer.

  2. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method

    NASA Astrophysics Data System (ADS)

    Kruglyakov, M.; Geraskin, A.; Kuvshinov, A.

    2016-11-01

    We present a novel, open source 3-D MT forward solver based on a method of integral equations (IE) with contracting kernel. Special attention in the solver is paid to accurate calculations of Green's functions and their integrals which are cornerstones of any IE solution. The solver supports massive parallelization and is able to deal with highly detailed and contrasting models. We report results of a 3-D numerical experiment aimed at analyzing the accuracy and scalability of the code.

  3. Three-dimensional echocardiography in valve disease

    PubMed Central

    COLOMBO, CHIARA; TAMBORINI, GLORIA; PEPI, MAURO; ALIMENTO, MARINA; FIORENTINI, CESARE

    2007-01-01

    This review covers the role of three-dimensional (3D) echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic) and quantitative advantages of this technique. PMID:21977273

  4. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  5. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  6. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  7. Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method.

    PubMed

    Xue, Ming-Feng; Kang, Young Mo; Arbabi, Amir; McKeown, Steven J; Goddard, Lynford L; Jin, Jian-Ming

    2014-02-24

    A fast and accurate full-wave technique based on the dual-primal finite element tearing and interconnecting method and the second-order transmission condition is presented for large-scale three-dimensional photonic device simulations. The technique decomposes a general three-dimensional electromagnetic problem into smaller subdomain problems so that parallel computing can be performed on distributed-memory computer clusters to reduce the simulation time significantly. With the electric fields computed everywhere, photonic device parameters such as transmission and reflection coefficients are extracted. Several photonic devices, with simulation volumes up to 1.9×10(4) (λ/n(avg))3 and modeled with over one hundred million unknowns, are simulated to demonstrate the application, efficiency, and capability of this technique. The simulations show good agreement with experimental results and in a special case with a simplified two-dimensional simulation.

  8. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  9. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    NASA Astrophysics Data System (ADS)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  10. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  11. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  12. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo

    PubMed Central

    Deneux, Thomas; Kaszas, Attila; Szalay, Gergely; Katona, Gergely; Lakner, Tamás; Grinvald, Amiram; Rózsa, Balázs; Vanzetta, Ivo

    2016-01-01

    Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo. PMID:27432255

  13. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  14. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    PubMed

    Higuchi, Carolyn M; Maeda, Yuuki; Horiuchi, Toshitaka; Yamazaki, Yukiko

    2015-01-01

    In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture

  15. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice

    PubMed Central

    Higuchi, Carolyn M.; Maeda, Yuuki; Horiuchi, Toshitaka; Yamazaki, Yukiko

    2015-01-01

    In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture

  16. NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

    SciTech Connect

    2012-03-26

    The RELAP5-3D Version 3.x code has been developed for best-estimate transient simulation of nuclear reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems including pressurized water reactors, boiling water reactors, Soviet-designed reactors, heavy water reactors, gas-cooled reactors, liquid metal and molten salt cooled reactors, and even fusion reactors. Numerical models include multi-dimensional hydrodynamics, 1- and 2-D heat transfer in metal walls, 0-, 1-, 2-, and 3-D neutron kinetics, trips, and control systems. Secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems.

  17. Hybrid 3-D rocket trajectory program. Part 1: Formulation and analysis. Part 2: Computer programming and user's instruction. [computerized simulation using three dimensional motion analysis

    NASA Technical Reports Server (NTRS)

    Huang, L. C. P.; Cook, R. A.

    1973-01-01

    Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.

  18. NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

    2012-03-26

    The RELAP5-3D Version 3.x code has been developed for best-estimate transient simulation of nuclear reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems including pressurized watermore » reactors, boiling water reactors, Soviet-designed reactors, heavy water reactors, gas-cooled reactors, liquid metal and molten salt cooled reactors, and even fusion reactors. Numerical models include multi-dimensional hydrodynamics, 1- and 2-D heat transfer in metal walls, 0-, 1-, 2-, and 3-D neutron kinetics, trips, and control systems. Secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems.« less

  19. Three-dimensional (3-D) metal-organic frameworks with 3-pyridin-4-yl-benzoate defining new (3,6)-connected net topologies

    SciTech Connect

    Jiang Xiujuan; Du Miao; Sun Yan; Guo, Jian-Hua; Li, Jin-Shan

    2009-11-15

    Reactions of different metal salts with 3-pyridin-4-yl-benzoic acid (3,4-Hpybz) under ambient condition afford a series of 3-D metal-organic frameworks with two new types of (3,6)-connected net topologies. In the isomorphic complexes [M{sub 2}(mu-H{sub 2}O)(3,4-pybz){sub 4}]{sub n} (M{sup II}=Mn{sup II} for 1, Zn{sup II} for 2, or Cd{sup II} for 3), the octahedral metal nodes are extended by the 3-connected pybz tectons to constitute 3-D arrays with the Schlaefli symbol of (3.4.5)(3{sup 2}.4{sup 4}.5{sup 5}.6{sup 2}.7{sup 2}), whereas [Pb(3,4-pybz){sub 2}]{sub n} (4) shows a completely different 3-D (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 9}) framework, which represents a subnet of the (4,8)-connected fluorite lattice. - Graphical abstract: This work presents a series of 3-D metal-organic frameworks with 3-pyridin-4-yl-benzoate, which display new (3,6)-connected net topologies of (3.4.5)(3{sup 2}.4{sup 4}.5{sup 5}.6{sup 2}.7{sup 2}) for Mn{sup II}/Zn{sup II}/Cd{sup II} and (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 9}) for Pb{sup II} species.

  20. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  1. An integrated multidisciplinary re-evaluation of the geothermal system at Valles Caldera, New Mexico, using an immersive three-dimensional (3D) visualization environment

    NASA Astrophysics Data System (ADS)

    Fowler, A.; Bennett, S. E.; Wildgoose, M.; Cantwell, C.; Elliott, A. J.

    2012-12-01

    We describe an approach to explore the spatial relationships of a geothermal resource by examining diverse geological, geophysical, and geochemical data sets using the immersive 3-dimensional (3D) visualization capabilities of the UC Davis Keck Center for Active Visualization in the Earth Sciences (KeckCAVES). The KeckCAVES is a facility where stereoscopic images are projected onto four, surfaces (three walls and a floor), which the user perceives as a seamless 3D image of the data. The user can manipulate and interact with the data, allowing a more intuitive interpretation of data set relationships than is possible with traditional 2-dimensional techniques. We incorporate multiple data sets of the geothermal system at Valles Caldera, New Mexico: topography, lithology, faults, temperature, alteration mineralogy, and magnetotellurics. With the ability to rapidly and intuitively observe data relationships, we are able to efficiently and rapidly draw conclusions about the subsurface architecture of the Valles Caldera geothermal system. We identify two high-temperature anomalies, one that corresponds with normal faults along the western caldera ring fracture, and one that with the resurgent dome. A cold-temperature anomaly identified adjacent to the resurgent dome high-temperature anomaly appears to relate to a fault controlled graben valley that acts as a recharge zone, likely funneling cold meteoric water into the subsurface along normal faults observed on published maps and cross sections. These high-temperature anomalies broadly correspond to subsurface regions where previous magnetotelluric studies have identified low apparent resistivity. Existing hot springs in the Sulfur Springs area correspond to the only location where our modeled 100°C isotherm intersects the ground surface. Correlation between the first occurrence of key alteration minerals (pyrite, chlorite, epidote) in previously drilled boreholes and our temperature model vary, with chlorite showing a

  2. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing

  3. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g-1 at 100 mA g-1 after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g-1 at 1 Ag-1). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.

  4. IVUSAngio tool: a publicly available software for fast and accurate 3D reconstruction of coronary arteries.

    PubMed

    Doulaverakis, Charalampos; Tsampoulatidis, Ioannis; Antoniadis, Antonios P; Chatzizisis, Yiannis S; Giannopoulos, Andreas; Kompatsiaris, Ioannis; Giannoglou, George D

    2013-11-01

    There is an ongoing research and clinical interest in the development of reliable and easily accessible software for the 3D reconstruction of coronary arteries. In this work, we present the architecture and validation of IVUSAngio Tool, an application which performs fast and accurate 3D reconstruction of the coronary arteries by using intravascular ultrasound (IVUS) and biplane angiography data. The 3D reconstruction is based on the fusion of the detected arterial boundaries in IVUS images with the 3D IVUS catheter path derived from the biplane angiography. The IVUSAngio Tool suite integrates all the intermediate processing and computational steps and provides a user-friendly interface. It also offers additional functionality, such as automatic selection of the end-diastolic IVUS images, semi-automatic and automatic IVUS segmentation, vascular morphometric measurements, graphical visualization of the 3D model and export in a format compatible with other computer-aided design applications. Our software was applied and validated in 31 human coronary arteries yielding quite promising results. Collectively, the use of IVUSAngio Tool significantly reduces the total processing time for 3D coronary reconstruction. IVUSAngio Tool is distributed as free software, publicly available to download and use.

  5. Reconstructing the Geomorphic Evolution of a Freshwater Baymouth Bar in Response to Lake Level Change Using Three Dimensional (3D) Ground-Penetrating Radar (GPR) Data

    NASA Astrophysics Data System (ADS)

    Kremmin, T. M.; Wattrus, N. J.

    2015-12-01

    Situated at the southwestern tip of Lake Superior, Minnesota and Wisconsin Points', form a 16 kilometer baymouth bar between Duluth, MN and Superior, WI providing the breakwater for the largest and farthest inland freshwater seaport in North America. Comprised of sandy sediment, this baymouth bar's formation is attributed largely to littoral drift from the Wisconsin South Shore and minor sediments from the outflows of the St. Louis and Nemadji Rivers. Due to continuing differential isostatic rebound of the basin, local lake level at Duluth is presently rising at approximately 25 centimeters/century. The objective of this project is to understand how the baymouth bar has evolved in response to lake level change. Although it is a young, non-marine system in which hydrocarbons are not developing, this baymouth bar is a useful analogue for similar, much larger system in basins experiencing sea-level change. Using an approach similar to that used to study the seismic geomorphology of a sand-prone marine system using 3D seismic data, the geomorphic expression of the baymouth bar's response to lake level change is investigated using 3D Ground Penetrating Radar (GPR) data. Vibracore sampling is used to calibrate the collected GPR data. Radiocarbon dating of samples taken from the cores will be used to establish a chronology for the evolution of the bar, making it possible to draw linkages between the various phases of the system and changes in local lake level.

  6. Three-Dimensional Rotation, Twist and Torsion Analyses Using Real-Time 3D Speckle Tracking Imaging: Feasibility, Reproducibility, and Normal Ranges in Pediatric Population

    PubMed Central

    Han, Wei; Gao, Jun; He, Lin; Yang, Yali; Yin, Ping; Xie, Mingxing; Ge, Shuping

    2016-01-01

    Background and Objective The specific aim of this study was to evaluate the feasibility, reproducibility and maturational changes of LV rotation, twist and torsion variables by real-time 3D speckle-tracking echocardiography (RT3DSTE) in children. Methods A prospective study was conducted in 347 consecutive healthy subjects (181 males/156 females, mean age 7.12 ± 5.3 years, and range from birth to 18-years) using RT 3D echocardiography (3DE). The LV rotation, twist and torsion measurements were made off-line using TomTec software. Manual landmark selection and endocardial border editing were performed in 3 planes (apical “2”-, “4”-, and “3”- chamber views) and semi-automated tracking yielded LV rotation, twist and torsion measurements. LV rotation, twist and torsion analysis by RT 3DSTE were feasible in 307 out of 347 subjects (88.5%). Results There was no correlation between rotation or twist and age, height, weight, BSA or heart rate, respectively. However, there was statistically significant, but very modest correlation between LV torsion and age (R2 = 0.036, P< 0.001). The normal ranges were defined for rotation and twist in this cohort, and for torsion for each age group. The intra-observer and inter-observer variabilities for apical and basal rotation, twist and torsion ranged from 7.3% ± 3.8% to 12.3% ± 8.8% and from 8.8% ± 4.6% to 15.7% ± 10.1%, respectively. Conclusions We conclude that analysis of LV rotation, twist and torsion by this new RT3D STE is feasible and reproducible in pediatric population. There is no maturational change in rotation and twist, but torsion decreases with age in this cohort. Further refinement is warranted to validate the utility of this new methodology in more sensitive and quantitative evaluation of congenital and acquired heart diseases in children. PMID:27427968

  7. The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound are strongly correlated, but 2D overestimates thyroid volume in the presence of nodules.

    PubMed

    Rago, T; Bencivelli, W; Scutari, M; Di Cosmo, C; Rizzo, C; Berti, P; Miccoli, P; Pinchera, A; Vitti, P

    2006-05-01

    The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound (US) were compared in assessing thyroid volume (TV) in 104 patients: 53 had an isolated thyroid nodule, 32 toxic diffuse goiter, 17 non-toxic multinodular goiter, 1 toxic multinodular goiter and 1 a toxic adenoma. A real-time Technos apparatus (Esaote SpA, Italy) with a 7,5 MHz linear transducer was used. The volume of thyroid lobes by 2D was calculated according to the ellipsoid formula. In the same session, TV by 3D US was calculated using a probe tracking system (in vivo ScanNT Esaote 3.4 MedCom. Darmasdt) and software to reconstruct 3D images, directly giving the lobe volume. There was a very good agreement between 2D and 3D, but in 94/208 lobes with nodular lesions 2D showed a 10% systematic overestimation compared to 3D, the percentage error being higher in lobes with lower volumes. A possible explanation for this result is the inadequacy of the ellipsoid formula in forecasting the correct lobe profile in the presence of nodules. This intrinsic defect of 2D US should be taken into account when evaluating TV in patients with nodular goiter.

  8. Developing and Evaluating of Non-Realistic Three-Dimensional (3d-Nr) and Two-Dimensional (2d) Talking-Head Animation Courseware

    ERIC Educational Resources Information Center

    Hamdan, Mohd Najib; Ali, Ahmad Zamzuri Mohamad

    2015-01-01

    The talking-head animation is an instructional animation capable of improving the communication skills through enhancing the pronunciation skills; whereby a word is pronounced correctly and accurately. This had been proven by several researches, which indicate that learning with interactive animation is much more advantageous than conventional…

  9. Highly accurate video coordinate generation for automatic 3-D trajectory calculation

    NASA Astrophysics Data System (ADS)

    Macleod, A.; Morris, Julian R. W.; Lyster, M.

    1990-08-01

    Most TV-based motion analysis systems, including the original version of 1/ICON, produce 3D coordinates by combining pre-tracked 2D trajectories from each camera. The latest version of the system, VICON-VX, uses totally automatic 3D trajectory calculation using the Geometric Self Identification (GSI) technique. This is achieved by matching unsorted 2D image coordinates from all cameras, looking for intersecting marker 'rays', and matching intersections into 3D trajectories. Effective GSI, with low false-positive intersection rates is only possible with highly accurate 2D data, produced by stable, high-resolution coordinate generators, and incorporating appropriate compensation for lens distortions. Data capture software and hardware have been completely redesigned to achieve this accuracy, together with higher throughput rates and better resistance to errors. In addition, a new ADC facility has been incorporated to allow very high speed analog data acquisition, synchronised with video measurements.

  10. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  11. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  12. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls.

    PubMed

    Yuan, Jintao; Pu, Yuepu; Yin, Lihong

    2013-07-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.

  13. Progress Toward an Integration of Process-Structure-Property-Performance Models for "Three-Dimensional (3-D) Printing" of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.

    2014-07-01

    Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.

  14. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

    PubMed

    Swennen, G R J; Barth, E-L; Eulzer, C; Schutyser, F

    2007-02-01

    Three-dimensional (3D) virtual planning of orthognathic surgery requires detailed visualization of the interocclusal relationship. The purpose of this study was to introduce the modification of the double computed tomography (CT) scan procedure using a newly designed 3D splint in order to obtain a detailed anatomic 3D virtual augmented model of the skull. A total of 10 dry adult human cadaver skulls were used to evaluate the accuracy of the automatic rigid registration method for fusion of both CT datasets (Maxilim, version 1.3.0). The overall mean registration error was 0.1355+/-0.0323 mm (range 0.0760-0.1782 mm). Analysis of variance showed a registration method error of 0.0564 mm (P < 0.001; 95% confidence interval = 0.0491-0.0622). The combination of the newly designed 3D splint with the double CT scan procedure allowed accurate registration and the set-up of an accurate anatomic 3D virtual augmented model of the skull with detailed dental surface.

  15. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm3 crystals

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm3 cubic crystals, in contrast to our previous development using 3.0 mm3 cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm3 in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm2, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  16. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  17. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  18. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  19. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  20. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  1. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  2. WaveQ3D: Fast and accurate acoustic transmission loss (TL) eigenrays, in littoral environments

    NASA Astrophysics Data System (ADS)

    Reilly, Sean M.

    This study defines a new 3D Gaussian ray bundling acoustic transmission loss model in geodetic coordinates: latitude, longitude, and altitude. This approach is designed to lower the computation burden of computing accurate environmental effects in sonar training application by eliminating the need to transform the ocean environment into a collection of Nx2D Cartesian radials. This approach also improves model accuracy by incorporating real world 3D effects, like horizontal refraction, into the model. This study starts with derivations for a 3D variant of Gaussian ray bundles in this coordinate system. To verify the accuracy of this approach, acoustic propagation predictions of transmission loss, time of arrival, and propagation direction are compared to analytic solutions and other models. To validate the model's ability to predict real world phenomena, predictions of transmission loss and propagation direction are compared to at-sea measurements, in an environment where strong horizontal refraction effect have been observed. This model has been integrated into U.S. Navy active sonar training system applications, where testing has demonstrated its ability to improve transmission loss calculation speed without sacrificing accuracy.

  3. Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees.

    PubMed

    Omasa, Kenji; Qiu, Guo Yu; Watanuki, Kenichi; Yoshimi, Kenji; Akiyama, Yukihide

    2003-03-15

    Forests are one of the most important carbon sinks on Earth. However, owing to the complex structure, variable geography, and large area of forests, accurate estimation of forest carbon stocks is still a challenge for both site surveying and remote sensing. For these reasons, the Kyoto Protocol requires the establishment of methodologies for estimating the carbon stocks of forests (Kyoto Protocol, Article 5). A possible solution to this challenge is to remotely measure the carbon stocks of every tree in an entire forest. Here, we present a methodology for estimating carbon stocks of a Japanese cedar forest by using a high-resolution, helicopter-borne 3-dimensional (3-D) scanning lidar system that measures the 3-D canopy structure of every tree in a forest. Results show that a digital image (10-cm mesh) of woody canopy can be acquired. The treetop can be detected automatically with a reasonable accuracy. The absolute error ranges for tree height measurements are within 42 cm. Allometric relationships of height to carbon stocks then permit estimation of total carbon storage by measurement of carbon stocks of every tree. Thus, we suggest that our methodology can be used to accurately estimate the carbon stocks of Japanese cedar forests at a stand scale. Periodic measurements will reveal changes in forest carbon stocks.

  4. Using multiple quantum coherence to increase the 15N resolution in a three-dimensional TROSY HNCO experiment for accurate PRE and RDC measurements.

    PubMed

    Hu, Kaifeng; Doucleff, Michaeleen; Clore, G Marius

    2009-10-01

    We present a new version of the 3D TROSY HNCO pulse scheme, referred to as HR-TROSY HNCO, with comparable resolution in the (15)N dimension to a 2D (1)H-(15)N HSQC experiment. In the conventional 3D TROSY HNCO, the constant time period (1/2J(NC) approximately 32 ms) severely limits the maximum resolution in the (15)N dimension. In the HR-TROSY HNCO experiment presented here, both constant time periods (approximately 32 ms each) for coherence forward and backward transfer between (15)N and (13)C' are utilized to double the (15)N evolution time. This leads to a dramatic enhancement in peak separation along the (15)N dimension, making the HR-TROSY HNCO an ideal pulse scheme for accurate paramagnetic relaxation enhancement and residual dipolar coupling measurements. PMID:19615926

  5. A new 3D Eikonal solver for accurate traveltimes, take-off angles and amplitudes

    NASA Astrophysics Data System (ADS)

    Noble, Mark; Gesret, Alexandrine

    2013-04-01

    The finite-difference approximation to the eikonal equation was first introduced by J.Vidale in 1988 to propagate first-arrival times throughout a 2D or 3D gridded velocity model. Even today this method is still very attractive from a computational point of view when dealing with large datasets. Among many domains of application, the eikonal solver may be used for 2-D or 3-D depth migration, tomography or microseismicity data analysis. The original 3D method proposed by Vidale in 1990 did exhibit some degree of travel time error that may lead to poor image focusing in migration or inaccurate velocities estimated via tomographic inversion. The method even failed when large and sharp velocity contrasts were encountered. To try and overcome these limitations many authors proposed alternative algorithms, incorporating new finite-difference operators and/or new schemes of implementing the operators to propagate the travel times through the velocity model. If many recently published algorithms for resolving the 3D eikonal equation do yield fairly accurate travel times for most applications, the spatial derivatives of travel times remain very approximate and prevent reliable computation of auxiliary quantities such as take-off angle and amplitude. This limitation is due to the fact that the finite-difference operators locally assume that the wavefront is flat (plane wave). This assumption is in particularly wrong when close to the source where a spherical approximation would be more suitable. To overcome this singularity at the source, some authors proposed an adaptive method that reduces inaccuracies, however, the cost is more algorithmic complexity. The objective of this study is to develop an efficient simple 3D eikonal solver that is able to: overcome the problem of the source singularity, handle velocity models that exhibit strong vertical and horizontal velocity variations, use different grid spacing in x, y and z axis of model. The final goal is of course to

  6. Initial Efficacy Results of RTOG 0319: Three-Dimensional Conformal Radiation Therapy (3D-CRT) Confined to the Region of the Lumpectomy Cavity for Stage I/ II Breast Carcinoma

    SciTech Connect

    Vicini, Frank; Winter, Kathryn; Wong, John

    2010-07-15

    Purpose: This prospective study (Radiation Therapy Oncology Group 0319) examines the use of three-dimensional conformal external beam radiotherapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Initial data on efficacy and toxicity are presented. Methods and Materials: Patients with Stage I or II breast cancer with lesions {<=}3 cm, negative margins and with {<=}3 positive nodes were eligible. The 3D-CRT was 38.5 Gy in 3.85 Gy/fraction delivered 2x/day. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Mastectomy-free, disease-free, and overall survival (MFS, DFS, OS) were recorded. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3, was used to grade acute and late toxicity. Results: Fifty-eight patients were entered and 52 patients are eligible and evaluable for efficacy. The median age of patients was 61 years with the following characteristics: 46% tumor size <1 cm; 87% invasive ductal histology; 94% American Joint Committee on Cancer Stage I; 65% postmenopausal; 83% no chemotherapy; and 71% with no hormone therapy. Median follow-up is 4.5 years (1.7-4.8). Four-year estimates (95% CI) of efficacy are: IBF 6% (0-12%) [4% within field (0-9%)]; INF 2% (0-6%); CBF 0%; DF 8% (0-15%); MFS 90% (78-96%); DFS 84% (71-92%); and OS 96% (85-99%). Only two (4%) Grade 3 toxicities were observed. Conclusions: Initial efficacy and toxicity using 3D-CRT to deliver APBI appears comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate the extent of application, limitations, and value of this particular form of APBI.

  7. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  8. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    SciTech Connect

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2013-08-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.

  9. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    NASA Astrophysics Data System (ADS)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  10. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    PubMed Central

    Jacob, Richard E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2014-01-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory. PMID:23786464

  11. Three-dimensional conformal setup (3D-CSU) of patients using the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems in the treatment room

    SciTech Connect

    Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Oita, Masataka; Fujita, Katsuhisa; Shimizu, Shinichi; Onimaru, Rikiya; Uegaki, Shinji; Watanabe, Yoshiharu; Kato, Norio; Miyasaka, Kazuo

    2004-10-01

    Purpose: To test the accuracy of a system for correcting for the rotational error of the clinical target volume (CTV) without having to reposition the patient using three fiducial markers and two orthogonal fluoroscopic images. We call this system 'three-dimensional conformal setup' (3D-CSU). Methods and materials: Three 2.0-mm gold markers are inserted into or adjacent to the CTV. On the treatment couch, the actual positions of the three markers are calculated based on two orthogonal fluoroscopies crossing at the isocenter of the linear accelerator. Discrepancy of the actual coordinates of gravity center of three markers from its planned coordinates is calculated. Translational setup error is corrected by adjustment of the treatment couch. The rotation angles ({alpha}, {beta}, {gamma}) of the coordinates of the actual CTV relative to the planned CTV are calculated around the lateral (x), craniocaudal (y), and anteroposterior (z) axes of the planned CTV. The angles of the gantry head, collimator, and treatment couch of the linear accelerator are adjusted according to the rotation of the actual coordinates of the tumor in relation to the planned coordinates. We have measured the accuracy of 3D-CSU using a static cubic phantom. Results: The gravity center of the phantom was corrected within 0.9 {+-} 0.3 mm (mean {+-} SD), 0.4 {+-} 0.2 mm, and 0.6 {+-} 0.2 mm for the rotation of the phantom from 0-30 degrees around the x, y, and z axes, respectively, every 5 degrees. Dose distribution was shown to be consistent with the planned dose distribution every 10 degrees of the rotation from 0-30 degrees. The mean rotational error after 3D-CSU was -0.4 {+-} 0.4 (mean {+-} SD), -0.2 {+-} 0.4, and 0.0 {+-} 0.5 degrees around the x, y, and z axis, respectively, for the rotation from 0-90 degrees. Conclusions: Phantom studies showed that 3D-CSU is useful for performing rotational correction of the target volume without correcting the position of the patient on the treatment couch

  12. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A.

    PubMed

    Xiao, Xin; Hao, Rong; Liang, Min; Zuo, Xiaoxi; Nan, Junmin; Li, Laisheng; Zhang, Weide

    2012-09-30

    Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI(3) and BiCl(3) as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L(-1) in the BPA solution (C(0)=20 mg L(-1), pH=7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron-hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC-MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst exhibited a high mineralization ratio, high stability and easy separation for recycling use, suggesting that it is a promising photocatalyst for the removal of BPA pollutants. PMID:22818177

  13. Towards Contactless, Low-Cost and Accurate 3D Fingerprint Identification.

    PubMed

    Kumar, Ajay; Kwong, Cyril

    2015-03-01

    Human identification using fingerprint impressions has been widely studied and employed for more than 2000 years. Despite new advancements in the 3D imaging technologies, widely accepted representation of 3D fingerprint features and matching methodology is yet to emerge. This paper investigates 3D representation of widely employed 2D minutiae features by recovering and incorporating (i) minutiae height z and (ii) its 3D orientation φ information and illustrates an effective matching strategy for matching popular minutiae features extended in 3D space. One of the obstacles of the emerging 3D fingerprint identification systems to replace the conventional 2D fingerprint system lies in their bulk and high cost, which is mainly contributed from the usage of structured lighting system or multiple cameras. This paper attempts to addresses such key limitations of the current 3D fingerprint technologies bydeveloping the single camera-based 3D fingerprint identification system. We develop a generalized 3D minutiae matching model and recover extended 3D fingerprint features from the reconstructed 3D fingerprints. 2D fingerprint images acquired for the 3D fingerprint reconstruction can themselves be employed for the performance improvement and have been illustrated in the work detailed in this paper. This paper also attempts to answer one of the most fundamental questions on the availability of inherent discriminable information from 3D fingerprints. The experimental results are presented on a database of 240 clients 3D fingerprints, which is made publicly available to further research efforts in this area, and illustrate the discriminant power of 3D minutiae representation and matching to achieve performance improvement.

  14. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  15. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    NASA Astrophysics Data System (ADS)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  16. Automatic pose initialization for accurate 2D/3D registration applied to abdominal aortic aneurysm endovascular repair

    NASA Astrophysics Data System (ADS)

    Miao, Shun; Lucas, Joseph; Liao, Rui

    2012-02-01

    Minimally invasive abdominal aortic aneurysm (AAA) stenting can be greatly facilitated by overlaying the preoperative 3-D model of the abdominal aorta onto the intra-operative 2-D X-ray images. Accurate 2-D/3-D registration in 3-D space makes the 2-D/3-D overlay robust to the change of C-Arm angulations. By far, the 2-D/3-D registration methods based on simulated X-ray projection images using multiple image planes have been shown to be able to provide satisfactory 3-D registration accuracy. However, one drawback of the intensity-based 2-D/3-D registration methods is that the similarity measure is usually highly non-convex and hence the optimizer can easily be trapped into local minima. User interaction therefore is often needed in the initialization of the position of the 3-D model in order to get a successful 2-D/3-D registration. In this paper, a novel 3-D pose initialization technique is proposed, as an extension of our previously proposed bi-plane 2-D/3-D registration method for AAA intervention [4]. The proposed method detects vessel bifurcation points and spine centerline in both 2-D and 3-D images, and utilizes landmark information to bring the 3-D volume into a 15mm capture range. The proposed landmark detection method was validated on real dataset, and is shown to be able to provide a good initialization for 2-D/3-D registration in [4], thus making the workflow fully automatic.

  17. An accurate and efficient 3-D micromagnetic simulation of metal evaporated tape

    NASA Astrophysics Data System (ADS)

    Jones, M.; Miles, J. J.

    1997-07-01

    Metal evaporated tape (MET) has a complex column-like structure in which magnetic domains are arranged randomly. In order to accurately simulate the behaviour of MET it is important to capture these aspects of the material in a high-resolution 3-D micromagnetic model. The scale of this problem prohibits the use of traditional scalar computers and leads us to develop algorithms for a vector processor architecture. We demonstrate that despite the materials highly non-uniform structure, it is possible to develop fast vector algorithms for the computation of the magnetostatic interaction field. We do this by splitting the field calculation into near and far components. The near field component is calculated exactly using an efficient vector algorithm, whereas the far field is calculated approximately using a novel fast Fourier transform (FFT) technique. Results are presented which demonstrate that, in practice, the algorithms require sub-O( N log( N)) computation time. In addition results of highly realistic simulation of hysteresis in MET are presented.

  18. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  19. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  20. PROMALS3D web server for accurate multiple protein sequence and structure alignments.

    PubMed

    Pei, Jimin; Tang, Ming; Grishin, Nick V

    2008-07-01

    Multiple sequence alignments are essential in computational sequence and structural analysis, with applications in homology detection, structure modeling, function prediction and phylogenetic analysis. We report PROMALS3D web server for constructing alignments for multiple protein sequences and/or structures using information from available 3D structures, database homologs and predicted secondary structures. PROMALS3D shows higher alignment accuracy than a number of other advanced methods. Input of PROMALS3D web server can be FASTA format protein sequences, PDB format protein structures and/or user-defined alignment constraints. The output page provides alignments with several formats, including a colored alignment augmented with useful information about sequence grouping, predicted secondary structures and consensus sequences. Intermediate results of sequence and structural database searches are also available. The PROMALS3D web server is available at: http://prodata.swmed.edu/promals3d/. PMID:18503087

  1. Ventricular Septal Defect: the Three-Dimensional Point of View

    PubMed Central

    Parisi, V; Ratto, E; Silvestri, C; Pastore, F

    This case highlights the clinical usefulness of three-dimensional (3D) echocardiography. The diagnosis of inter-ventricular septal defect associated with aortic regurgitation has been performed in a 50-year-old man using 3D echocardiography. This advanced echocardiography could accurately reproduce the anatomy of the defect and provide further insights in the mechanisms of aortic regurgitation showing an unusual non-coronary cusp prolapse. The routinely use of 3D echocardiography in clinics might allow a better characterization of cardiac anatomy, especially of aortic valve disorders. PMID:24251244

  2. Three dimensional modelling of ICRF launchers for fusion devices

    NASA Astrophysics Data System (ADS)

    Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.

    1996-02-01

    The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive

  3. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    NASA Astrophysics Data System (ADS)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  4. Three-dimensional comparative analysis of bitemarks.

    PubMed

    Lasser, Allan J; Warnick, Allan J; Berman, Gary M

    2009-05-01

    Historically, the inability to accurately represent bitemarks and other wound patterns has limited their evidentiary value. The development of the ABFO #2 scale by Krauss and Hyzer enabled forensic odontologists to correct for most photographic plane distortions. The technique presented here uses the ABFO #2 scale in conjunction with the evolving technologies of laser scanners and comparative software commonly used by the automobile industry for three-dimensional (3D) analysis. The 3D software comparison was performed in which measurements were analyzed of the normal distance for each point on the teeth relative to the bitemarks. It created a color-mapped display of the bitemark model, with the color indicating the deviation at each point. There was a correlation between the bitemark and the original teeth. PMID:19432742

  5. Communication: Accurate hydration free energies at a wide range of temperatures from 3D-RISM.

    PubMed

    Misin, Maksim; Fedorov, Maxim V; Palmer, David S

    2015-03-01

    We present a new model for computing hydration free energies by 3D reference interaction site model (3D-RISM) that uses an appropriate initial state of the system (as suggested by Sergiievskyi et al.). The new adjustment to 3D-RISM theory significantly improves hydration free energy predictions for various classes of organic molecules at both ambient and non-ambient temperatures. An extensive benchmarking against experimental data shows that the accuracy of the model is comparable to (much more computationally expensive) molecular dynamics simulations. The calculations can be readily performed with a standard 3D-RISM algorithm. In our work, we used an open source package AmberTools; a script to automate the whole procedure is available on the web (https://github.com/MTS-Strathclyde/ISc). PMID:25747054

  6. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-04-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

  7. Dynamic Three-Dimensional Echocardiography

    NASA Astrophysics Data System (ADS)

    Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-08-01

    Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

  8. Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic.

    PubMed

    Matsumoto, Jane S; Morris, Jonathan M; Foley, Thomas A; Williamson, Eric E; Leng, Shuai; McGee, Kiaran P; Kuhlmann, Joel L; Nesberg, Linda E; Vrtiska, Terri J

    2015-01-01

    Radiologists will be at the center of the rapid technologic expansion of three-dimensional (3D) printing of medical models, as accurate models depend on well-planned, high-quality imaging studies. This article outlines the available technology and the processes necessary to create 3D models from the radiologist's perspective. We review the published medical literature regarding the use of 3D models in various surgical practices and share our experience in creating a hospital-based three-dimensional printing laboratory to aid in the planning of complex surgeries.

  9. Accurate Diagnosis of Severe Hypospadias Using 2D and 3D Ultrasounds

    PubMed Central

    López Ramón y Cajal, Carlos; Marín Ortiz, Elena; Sarmiento Carrera, Nerea

    2016-01-01

    The hypospadias is the most common urogenital anomaly of male neonates but the prenatal diagnosis of this is often missed before birth. We present the prenatal diagnosis of a severe penoscrotal hypospadias using 2D and 3D ultrasounds. 3D sonography allowed us the best evaluation of the genitals and their anatomical relations. This ample detailed study allowed us to show the findings to the parents and the pediatric surgeon and to configure the best information about the prognosis and surgical treatment. PMID:27774326

  10. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  11. SU-E-J-08: A Hybrid Three Dimensional Registration Framework for Image-Guided Accurate Radiotherapy System ARTS-IGRT

    SciTech Connect

    Wu, Q; Pei, X; Cao, R; Hu, L; Wu, Y

    2014-06-01

    Purpose: The purpose of this work was to develop a registration framework and method based on the software platform of ARTS-IGRT and implement in C++ based on ITK libraries to register CT images and CBCT images. ARTS-IGRT was a part of our self-developed accurate radiation planning system ARTS. Methods: Mutual information (MI) registration treated each voxel equally. Actually, different voxels even having same intensity should be treated differently in the registration procedure. According to their importance values calculated from self-information, a similarity measure was proposed which combined the spatial importance of a voxel with MI (S-MI). For lung registration, Firstly, a global alignment method was adopted to minimize the margin error and achieve the alignment of these two images on the whole. The result obtained at the low resolution level was then interpolated to become the initial conditions for the higher resolution computation. Secondly, a new similarity measurement S-MI was established to quantify how close the two input image volumes were to each other. Finally, Demons model was applied to compute the deformable map. Results: Registration tools were tested for head-neck and lung images and the average region was 128*128*49. The rigid registration took approximately 2 min and converged 10% faster than traditional MI algorithm, the accuracy reached 1mm for head-neck images. For lung images, the improved symmetric Demons registration process was completed in an average of 5 min using a 2.4GHz dual core CPU. Conclusion: A registration framework was developed to correct patient's setup according to register the planning CT volume data and the daily reconstructed 3D CBCT data. The experiments showed that the spatial MI algorithm can be adopted for head-neck images. The improved Demons deformable registration was more suitable to lung images, and rigid alignment should be applied before deformable registration to get more accurate result. Supported by

  12. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  13. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Danilevicius, Paulius; Georgiadi, Leoni; Pateman, Christopher J.; Claeyssens, Frederik; Chatzinikolaidou, Maria; Farsari, Maria

    2015-05-01

    The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds' porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  14. A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions

    PubMed Central

    Paulsen, Jonas; Rødland, Einar A.; Holden, Lars; Holden, Marit; Hovig, Eivind

    2014-01-01

    Identification of three-dimensional (3D) interactions between regulatory elements across the genome is crucial to unravel the complex regulatory machinery that orchestrates proliferation and differentiation of cells. ChIA-PET is a novel method to identify such interactions, where physical contacts between regions bound by a specific protein are quantified using next-generation sequencing. However, determining the significance of the observed interaction frequencies in such datasets is challenging, and few methods have been proposed. Despite the fact that regions that are close in linear genomic distance have a much higher tendency to interact by chance, no methods to date are capable of taking such dependency into account. Here, we propose a statistical model taking into account the genomic distance relationship, as well as the general propensity of anchors to be involved in contacts overall. Using both real and simulated data, we show that the previously proposed statistical test, based on Fisher's exact test, leads to invalid results when data are dependent on genomic distance. We also evaluate our method on previously validated cell-line specific and constitutive 3D interactions, and show that relevant interactions are significant, while avoiding over-estimating the significance of short nearby interactions. PMID:25114054

  15. Hipparcos makes an accurate 3-D chart of an important star cluster

    NASA Astrophysics Data System (ADS)

    1998-02-01

    Star clusters are crucial for understanding the lives of the stars everywhere, because all the members of a cluster formed at the same time from the same raw materials. Astrophysicists can see how the evolution of each star depends on its mass and chemical composition. The heavier a star is, the more intensely it burns and the faster it consumes its thermonuclear fuel. But the accuracy of the theories has been limited hitherto by inaccuracies in the observations. The brightest members of Hyades are visible to the naked eye, in the constellation Taurus. As the nearest moderately rich star cluster, the Hyades have loomed large in astrophysics for more than a century. Contradictory results for the distance of the star cluster left big question marks for the theorists, and even recent observations with the Hubble Space Telescope seemed only to deepen the mystery. Astronomers from ESA, Leiden Observatory, Observatoire de Paris-Meudon, University of Lausanne and Observatoire de la Côte d'Azur joined forces to analyse the data on the Hyades cluster contained in the Hipparcos Catalogue published last year. Their results will appear in the March issue of the European journal Astronomy & Astrophysics. The distance to the centre of the Hyades cluster is 151 light-years (46.34 parsecs) with an uncertainty of less than one light-year (0.27 parsec). From astrophysical theory the astronomers can date the birth of the Hyades at 625 million years ago, when only the most primitive animals lived on the Earth. The cluster has done well to survive so long.The individual stars of the Hyades are bound together by the gravity of the cluster as a whole, and their collective and individual motions are also plotted by Hipparcos. The result is a crisp 3-D motion picture of the cluster. An animation is available on the Internet (see note below). Outlying members sharing the same general motion can now be added to the Hyades tribe, while other candidate members are rejected on grounds of

  16. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  17. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  18. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  19. Artifacts in three-dimensional transesophageal echocardiography.

    PubMed

    Faletra, Francesco Fulvio; Ramamurthi, Alamelu; Dequarti, Maria Cristina; Leo, Laura Anna; Moccetti, Tiziano; Pandian, Natesa

    2014-05-01

    Three-dimensional (3D) transesophageal echocardiography (TEE) is subject to the same types of artifacts encountered on two-dimensional TEE. However, when displayed in a 3D format, some of the artifacts appear more "realistic," whereas others are unique to image acquisition and postprocessing. Three-dimensional TEE is increasingly used in the setting of percutaneous catheter-based interventions and ablation procedures, and 3D artifacts caused by the metallic components of catheters and devices are particularly frequent. Knowledge of these artifacts is of paramount relevance to avoid misinterpretation of 3D images. Although artifacts and pitfalls on two-dimensional echocardiography are well described and classified, a systematic description of artifacts in 3D transesophageal echocardiographic images and how they affect 3D imaging is still absent. The aim of this review is to describe the most relevant artifacts on 3D TEE, with particular emphasis on those occurring during percutaneous interventions for structural heart disease and ablation procedures.

  20. Accurate 3d Textured Models of Vessels for the Improvement of the Educational Tools of a Museum

    NASA Astrophysics Data System (ADS)

    Soile, S.; Adam, K.; Ioannidis, C.; Georgopoulos, A.

    2013-02-01

    Besides the demonstration of the findings, modern museums organize educational programs which aim to experience and knowledge sharing combined with entertainment rather than to pure learning. Toward that effort, 2D and 3D digital representations are gradually replacing the traditional recording of the findings through photos or drawings. The present paper refers to a project that aims to create 3D textured models of two lekythoi that are exhibited in the National Archaeological Museum of Athens in Greece; on the surfaces of these lekythoi scenes of the adventures of Odysseus are depicted. The project is expected to support the production of an educational movie and some other relevant interactive educational programs for the museum. The creation of accurate developments of the paintings and of accurate 3D models is the basis for the visualization of the adventures of the mythical hero. The data collection was made by using a structured light scanner consisting of two machine vision cameras that are used for the determination of geometry of the object, a high resolution camera for the recording of the texture, and a DLP projector. The creation of the final accurate 3D textured model is a complicated and tiring procedure which includes the collection of geometric data, the creation of the surface, the noise filtering, the merging of individual surfaces, the creation of a c-mesh, the creation of the UV map, the provision of the texture and, finally, the general processing of the 3D textured object. For a better result a combination of commercial and in-house software made for the automation of various steps of the procedure was used. The results derived from the above procedure were especially satisfactory in terms of accuracy and quality of the model. However, the procedure was proved to be time consuming while the use of various software packages presumes the services of a specialist.

  1. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    SciTech Connect

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  2. Tomographic phase microscopy of living three-dimensional cell cultures.

    PubMed

    Kuś, Arkadiusz; Dudek, Michał; Kemper, Björn; Kujawińska, Małgorzata; Vollmer, Angelika

    2014-04-01

    A successful application of self-interference digital holographic microscopy in combination with a sample-rotation-based tomography module for three-dimensional (3-D) label-free quantitative live cell imaging with subcellular resolution is demonstrated. By means of implementation of a hollow optical fiber as the sample cuvette, the observation of living cells in different 3-D matrices is enabled. The fiber delivers a stable and accurate rotation of a cell or cell cluster, providing quantitative phase data for tomographic reconstruction of the 3-D refractive index distribution with an isotropic spatial resolution. We demonstrate that it is possible to clearly distinguish and quantitatively analyze several cells grouped in a "3-D cluster" as well as subcellular organelles like the nucleoli and local internal refractive index changes. PMID:24723114

  3. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

  4. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  5. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  6. Two and three dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Booker, J. R.

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  7. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  8. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.

  9. Angular interpolations and splice options for three-dimensional transport computations

    SciTech Connect

    Abu-Shumays, I.K.; Yehnert, C.E.

    1996-01-01

    New, accurate and mathematically rigorous angular Interpolation strategies are presented. These strategies preserve flow and directionality separately over each octant of the unit sphere, and are based on a combination of spherical harmonics expansions and least squares algorithms. Details of a three-dimensional to three-dimensional (3-D to 3-D) splice method which utilizes the new angular interpolations are summarized. The method has been implemented in a multidimensional discrete ordinates transport computer program. Various features of the splice option are illustrated by several applications to a benchmark Dog-Legged Void Neutron (DLVN) streaming and transport experimental assembly.

  10. A system for extracting three-dimensional measurements from a stereo pair of TV cameras

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Cunningham, R.

    1978-01-01

    Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system that models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented at JPL. This system is operating and provides three-dimensional measurement resolution of plus or minus 5 mm at distances of about 2 m.

  11. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes.

    PubMed

    Shen, Shuhan

    2013-05-01

    In this paper, we propose a depth-map merging based multiple view stereo method for large-scale scenes which takes both accuracy and efficiency into account. In the proposed method, an efficient patch-based stereo matching process is used to generate depth-map at each image with acceptable errors, followed by a depth-map refinement process to enforce consistency over neighboring views. Compared to state-of-the-art methods, the proposed method can reconstruct quite accurate and dense point clouds with high computational efficiency. Besides, the proposed method could be easily parallelized at image level, i.e., each depth-map is computed individually, which makes it suitable for large-scale scene reconstruction with high resolution images. The accuracy and efficiency of the proposed method are evaluated quantitatively on benchmark data and qualitatively on large data sets.

  12. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  13. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  14. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    SciTech Connect

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.

  15. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology.

    PubMed

    Haberfehlner, Helga; Maas, Huub; Harlaar, Jaap; Becher, Jules G; Buizer, Annemieke I; Jaspers, Richard T

    2016-10-01

    In several neurological disorders and muscle injuries, morphological changes of the m. semitendinosus (ST) are presumed to contribute to movement limitations around the knee. Freehand three-dimensional (3D) ultrasound (US), using position tracking of two-dimensional US images to reconstruct a 3D voxel array, can be used to assess muscle morphology in vivo. The aims of this study were: (i) to introduce a newly developed 3D US protocol for ST; and (ii) provide a first comparison of morphological characteristics determined by 3D US with those measured on dissected cadaveric muscles. Morphological characteristics of ST (e.g. muscle belly length, tendon length, fascicle length and whole muscle volume, and volumes of both compartments) were assessed in six cadavers using a 3D US protocol. Subsequently, ST muscles were removed from the body to measure the same morphological characteristics. Mean differences between morphological characteristics measured by 3D US and after dissection were smaller than 10%. Intra-class correlation coefficients (ICCs) were higher than 0.75 for all variables except for the lengths of proximal fascicles (ICC = 0.58). Measurement of the volume of proximal compartment by 3D US was not feasible, due to low US image quality proximally. We conclude that the presented 3D US protocol allows for reasonably accurate measurements of key morphological characteristics of ST muscle.

  16. Fast, Accurate and Precise Mid-Sagittal Plane Location in 3D MR Images of the Brain

    NASA Astrophysics Data System (ADS)

    Bergo, Felipe P. G.; Falcão, Alexandre X.; Yasuda, Clarissa L.; Ruppert, Guilherme C. S.

    Extraction of the mid-sagittal plane (MSP) is a key step for brain image registration and asymmetry analysis. We present a fast MSP extraction method for 3D MR images, based on automatic segmentation of the brain and on heuristic maximization of the cerebro-spinal fluid within the MSP. The method is robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and lesions. The method is also accurate with respect to MSP delineations done by a specialist. The method was evaluated on 64 MR images (36 pathological, 20 healthy, 8 synthetic), and it found a precise and accurate approximation of the MSP in all of them with a mean time of 60.0 seconds per image, mean angular variation within a same image (precision) of 1.26o and mean angular difference from specialist delineations (accuracy) of 1.64o.

  17. Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers

    NASA Astrophysics Data System (ADS)

    Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung

    2016-09-01

    In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.

  18. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    PubMed Central

    Antoni, Delphine; Burckel, Hélène; Josset, Elodie; Noel, Georges

    2015-01-01

    Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design. PMID:25768338

  19. Coherent Lagrangian vortices in three-dimensional unsteady flows

    NASA Astrophysics Data System (ADS)

    Blazevski, Daniel; Haller, George

    2014-05-01

    Detecting barriers to, and facilitators of, transport is a fundamental problem in studying the behavior of Lagrangian trajectories in a fluid. A recent extension of two-dimensional results provides transport barriers in 3D flows as locally most attracting, repelling or shearing surfaces. This provides an objective definition of a Lagrangian vortex boundary as an outermost member of a family of most shearing cylindrical material surfaces. The detection of such a 3D vortex boundary yields an accurate estimate on the volume the vortex transports. We compute 3D Lagrangian vortices in kinematic models, and also use a global circulation model to extract sharp boundaries for coherent three-dimensional Agulhas rings in the South Atlantic.

  20. A New Three-Dimensional Cephalometric Analysis for Orthognathic Surgery

    PubMed Central

    Gateno, Jaime; Xia, James J.; Teichgraeber, John F.

    2010-01-01

    Two basic problems are associated with traditional 2-dimensional ((2D) cephalometry First, many important parameters cannot be measured on plain cephalograms; and second, most 2D cephalometric measurements are distorted in the presence of facial asymmetry. Three-dimensional (3D) cephalometry, which has been facilitated by the introduction of cone beam computed tomography scans, can be solved these problems. However, before this can be realized, fundamental problems must be solved. They are the unreliability of internal reference systems and some 3D measurements, and the lack of tools to assess and measure symmetry. In this manuscript, the authors present a new 3D cephalometric analysis that uses different geometric approaches to solve the fundamental problems previously mentioned. This analysis allows the accurate measurement of the size, shape, position and orientation of the different facial units and incorporates a novel method to measure asymmetry. PMID:21257250

  1. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  2. Intrinsic spatial shift of local focus metric curves in digital inline holography for accurate 3D morphology measurement of irregular micro-objects

    NASA Astrophysics Data System (ADS)

    Wu, Yingchun; Wu, Xuecheng; Lebrun, Denis; Brunel, Marc; Coëtmellec, Sébastien; Lesouhaitier, Olivier; Chen, Jia; Gréhan, Gérard

    2016-09-01

    A theoretical model of digital inline holography system reveals that the local focus metric curves (FMCs) of different parts of an irregular micro-object present spatial shift in the depth direction which is resulted from the depth shift. Thus, the 3D morphology of an irregular micro-object can be accurately measured using the cross correlation of the local FMCs. This method retrieves the 3D depth information directly, avoiding the uncertainty inherited from the depth position determination. Typical 3D morphology measurements, including the 3D boundary lines of tilted carbon fibers and irregular coal particles, and the 3D swimming gesture of a live Caenorhabdities elegans, are presented.

  3. Isotropic three-dimensional MRI-Fricke-infused gel dosimetry

    SciTech Connect

    Cho, Nai-Yu; Chu, Woei-Chyn; Huang, Sung-Cheng; Chung, Wen-Yuh; Guo, Wan-Yuo

    2013-05-15

    Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation

  4. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  5. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    SciTech Connect

    Christensen, J S; Hrousis, C A

    2010-03-09

    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  6. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  7. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  8. Role of Three-Dimensional Ultrasound in Gynecology.

    PubMed

    Turkgeldi, Engin; Urman, Bulent; Ata, Baris

    2015-05-01

    Three-dimensional ultrasound (3D USG) is a fast-evolving imaging technique that holds a great potential for use in gynecology. Its sensitivity and specificity is reported to be close to 100 % for diagnosing congenital uterine anomalies, comparable with those of magnetic resonance imaging (MRI) and laparoscopy. With 3D USG, a coronal view of the uterus can be obtained, clearly outlining the external contour of the uterus and providing accurate information about the shape of the cavity. Although 3D USG may not perform well in thin endometria, combining it with saline infusion sonography (SIS) overcomes this problem. Research shows that 3D USG is more sensitive and specific than two-dimensional ultrasound (2D USG) in defining and mapping uterine lesions, such as fibroids, adenomyosis, and intrauterine synechia. In cases of suspected malignancy, 3D USG is mainly used in the initial evaluation of patients. Measuring various indices and mapping vascular architecture with 3D power Doppler have been proposed for evaluating adnexal masses. Although some studies raised hope, no consensus is reached about its use, success, and limitations. In urogynecology, translabial 3D USG is proved to be a valuable tool, as it provides instant access to the axial plane, which clearly depicts the relationship of the vagina, urethra, rectum, and the muscular pelvic floor. Studies report no significant differences between translabial 3D USG and MRI measurements for evaluation of the pelvic floor. In conclusion, adding 3D USG to routine gynecological workup can be beneficial for clinicians, as it provides fast and accurate results in a relatively cost-effective setting.

  9. Calculation of fully three-dimensional separated flow with an unsteady viscous-inviscid interaction method

    NASA Technical Reports Server (NTRS)

    Leballeur, J. C.; Girodroux-Lavigne, P.

    1992-01-01

    Three previous papers have shown that the viscous inviscid numerical methods were capable of calculating separated turbulent flows. The 'Semi-inverse method' and the models of the first author allow the computation of massive separations, stalled flows, and shock wave-boundary layer interactions, in two-dimensional or quasi-three-dimensional conditions, from low speeds to supersonic speeds. The 'Semi-implicit' method for time-consistent coupling allows for the computation of time-accurate transonic separated flow and buffer computations in two-dimensions. The present paper shows that the viscous-inviscid interaction approach is also able to compute the fully three-dimensional flow separation phenomena. The method is based on a thin-layer approximation of the theory of 'Defect-Formulation' that provides the viscous-inviscid splitting of the Navier-Stokes equations. A parametric analytical modelling of the 3D-turbulent velocity profiles is involved. Numerically, the 3D-velocity profiles are discretized in the normal z-direction and driven by parametric integral 3D-equations in direct or inverse modes in the x-direction. The viscous-inviscid coupling is fully 3D and solved the time-consistency problem with an extension of the 'Semi-implicit' method previously suggested in two-dimensions. A 3D inviscid subroutine with TSP approximation is used. Results are obtained for transonic steady flows over wings with shock-induced transonic separation. The method provides results for highly three-dimensional flow separations, such as induced by a three-dimensional through at the wall of a flat plate. The 3D viscous-inviscid coupling and the 3D model of the velocity field provide three-dimensional instantaneous skin-friction lines whose patterns exhibit the same complex topology as Navier-Stokes solvers, with foci, nodes, and saddle-points.

  10. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  11. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  12. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  13. Three-dimensional hologram display system

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  14. Towards microscale electrohydrodynamic three-dimensional printing

    NASA Astrophysics Data System (ADS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  15. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  16. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661

  17. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-01

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  18. A deterministic method for transient, three-dimensional neutron transport

    NASA Astrophysics Data System (ADS)

    Goluoglu, Sedat

    A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable is the improved quasi-static (IQS) method. The position, energy, and angle variables of the neutron flux are computed using the three-dimensional (3-D) discrete ordinates code TORT. The resulting time-dependent, 3-D code is called TDTORT. The flux shape calculated by TORT is used to compute the point kinetics parameters (e.g., reactivity, generation time, etc.). The amplitude function is calculated by solving the point kinetics equations using LSODE (Livermore Solver of Ordinary differential Equations). Several transient 1-D, 2-D, and 3-D benchmark problems are used to verify TDTORT. The results show that methodology and code developed in this work have sufficient accuracy and speed to serve as a benchmarking tool for other less accurate models and codes. More importantly, a new computational tool based on transport theory now exists for analyzing the dynamic behavior of complex neutronic systems.

  19. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

  20. Three-dimensional computations of cross-flow injection and combustion in a supersonic flow

    NASA Technical Reports Server (NTRS)

    Carpenter, M. H.

    1989-01-01

    A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.

  1. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  2. Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations.

    PubMed

    Rey, Michaël; Nikitin, Andrei V; Tyuterev, Vladimir G

    2014-07-28

    Accurate variational high-resolution spectra calculations in the range 0-8000 cm(-1) are reported for the first time for the monodeutered methane ((12)CH3D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue (12)CH4. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach. PMID:25084919

  3. Measuring three-dimensional interaction potentials using optical interference.

    PubMed

    Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi

    2013-04-22

    We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution. PMID:23609648

  4. Three-dimensional reconstruction of light microscopy image sections: present and future.

    PubMed

    Wang, Yuzhen; Xu, Rui; Luo, Gaoxing; Wu, Jun

    2015-03-01

    Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstructures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a problem. Despite some drawbacks, histological sectioning remains one of the most powerful methods for accurate high-resolution representation of tissue structures. Computer technologies can produce 3D representations of interesting human tissue and organs that have been serial-sectioned, dyed or stained, imaged, and segmented for 3D visualization. 3D reconstruction also has great potential in the fields of tissue engineering and 3D printing. This article outlines the most common methods for 3D tissue section reconstruction. We describe the most important academic concepts in this field, and provide critical explanations and comparisons. We also note key steps in the reconstruction procedures, and highlight recent progress in the development of new reconstruction methods.

  5. Three-dimensional reconstruction of light microscopy image sections: present and future.

    PubMed

    Wang, Yuzhen; Xu, Rui; Luo, Gaoxing; Wu, Jun

    2015-03-01

    Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstructures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a problem. Despite some drawbacks, histological sectioning remains one of the most powerful methods for accurate high-resolution representation of tissue structures. Computer technologies can produce 3D representations of interesting human tissue and organs that have been serial-sectioned, dyed or stained, imaged, and segmented for 3D visualization. 3D reconstruction also has great potential in the fields of tissue engineering and 3D printing. This article outlines the most common methods for 3D tissue section reconstruction. We describe the most important academic concepts in this field, and provide critical explanations and comparisons. We also note key steps in the reconstruction procedures, and highlight recent progress in the development of new reconstruction methods. PMID:24952302

  6. Three dimensional simulations of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Li, Guotu; Rizzi, Francesco; Knio, Omar

    2014-11-01

    This study focuses on mass transport and mixing induced by mode-2 internal solitary waves (ISWs) propagating along a pycnocline between two continuously stratified fluid layers. A direct numerical simulation (DNS) model is developed for the incompressible three-dimensional Navier-Stokes equations in the Boussinesq limit. By using high order schemes in both space and time, the model is able to accurately capture the convection-dominated flow at high Reynolds and Schmidt numbers. Simulations both with and without background shear are conducted. The spatial frequency analysis of both density and vorticity fields reveals that no long range spanwise structures are present during the propagation of ISWs, which makes a relatively short spanwise depth sufficient to characterize the evolution of the flow. The growth of 3D structures during the propagation of ISWs is quantified using a spanwise roughness measure. The flow energy budget, dye transport, density mixing and vortex circulations are also analyzed. Work supported by the Office of Naval Research, Physical Oceanography Program.

  7. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  8. A three-dimensional dynamic vorticity vector associated with tropical oceanic convection

    NASA Astrophysics Data System (ADS)

    Gao, Shouting

    2007-09-01

    The relationship between cloud hydrometeors and the dynamic vorticity vector (DVV) is investigated using hourly data from a three-dimensional (3D), 5-day cloud-resolving model (CRM) simulation during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX). Horizontal components of the 3D DVV (which represent the interaction between vertical vorticity and horizontal winds) show higher linear correlation coefficients with cloud hydrometeors than does the vertical component. This is different from the two-dimensional (2D) results from Gao et al. (2005), which show that both zonal and vertical components of 2D DVV have good linear correlations with convection. The difference is caused by the fact that dominant items in horizontal components of the 3D DVV are excluded from that of the 2D DVV. This suggests that three-dimensional representation of tropical deep convection is crucial to accurately simulate convection and associated dynamics.

  9. Development of Three-Dimensional Completion of Complex Objects

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2013-01-01

    Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…

  10. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  11. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  12. Three dimensional ultrasonic imaging

    SciTech Connect

    Thomas, G. H.; Benson, S.; Crawford, S.

    1993-03-01

    Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.

  13. Detailed and Highly Accurate 3d Models of High Mountain Areas by the Macs-Himalaya Aerial Camera Platform

    NASA Astrophysics Data System (ADS)

    Brauchle, J.; Hein, D.; Berger, R.

    2015-04-01

    Remote sensing in areas with extreme altitude differences is particularly challenging. In high mountain areas specifically, steep slopes result in reduced ground pixel resolution and degraded quality in the DEM. Exceptionally high brightness differences can in part no longer be imaged by the sensors. Nevertheless, detailed information about mountainous regions is highly relevant: time and again glacier lake outburst floods (GLOFs) and debris avalanches claim dozens of victims. Glaciers are sensitive to climate change and must be carefully monitored. Very detailed and accurate 3D maps provide a basic tool for the analysis of natural hazards and the monitoring of glacier surfaces in high mountain areas. There is a gap here, because the desired accuracies are often not achieved. It is for this reason that the DLR Institute of Optical Sensor Systems has developed a new aerial camera, the MACS-Himalaya. The measuring unit comprises four camera modules with an overall aperture angle of 116° perpendicular to the direction of flight. A High Dynamic Range (HDR) mode was introduced so that within a scene, bright areas such as sun-flooded snow and dark areas such as shaded stone can be imaged. In 2014, a measuring survey was performed on the Nepalese side of the Himalayas. The remote sensing system was carried by a Stemme S10 motor glider. Amongst other targets, the Seti Valley, Kali-Gandaki Valley and the Mt. Everest/Khumbu Region were imaged at heights up to 9,200 m. Products such as dense point clouds, DSMs and true orthomosaics with a ground pixel resolution of up to 15 cm were produced. Special challenges and gaps in the investigation of high mountain areas, approaches for resolution of these problems, the camera system and the state of evaluation are presented with examples.

  14. Three-dimensional Simulation of Backward Raman Amplification

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch

    2005-11-12

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.

  15. Three-dimensional photogrammetry for laboratory applications

    NASA Astrophysics Data System (ADS)

    Alem, Nabih M.

    1994-12-01

    The direct linear transformation (DLT) is a method that simplifies measurements of the three-dimensional coordinates of a point target in the laboratory using photographic two-dimensional imagery. This report describes a procedure to implement the DLT equations and gives the Fortran code of computer programs for the DLT calibration of multicamera system and 3-D reconstruction of a single point from several images.

  16. Three dimensional dynamics of pretwisted beams: A spectral-Tchebychev solution

    NASA Astrophysics Data System (ADS)

    Filiz, Sinan; Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2014-05-01

    This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of unconstrained pretwisted beams with general cross-section (including both straight and curved cross-sections). In general, the dynamic response of pretwisted beams presents three-dimensional (3D) motions, including coupled bending-bending-torsional-axial motions. As such, accurately solving pretwisted beam dynamics requires a 3D solution approach. In this work, the integral boundary value problem based on the 3D linear elasticity equations is solved numerically using the 3D-ST approach. To simplify evaluation of the volume integrals, the boundaries are simplified by applying two coordinate transformations to render the pretwisted beam with curved cross-section into an equivalent straight beam with rectangular cross-section. Three sample pretwisted beam problems with rectangular, curved, and airfoil cross-sections at different twist rates are solved using the presented approach. In each case, the convergence of the solution is analyzed, and non-dimensional natural frequencies and mode shapes are compared to those from a finite-element (FE) solution. Furthermore, cross-sectional stress and displacements are obtained from the 3D-ST solution. Lastly, the non-dimensional natural frequencies from the 3D-ST and a 1D/2D solutions are compared. It is concluded that the 3D-ST solution can capture the three-dimensional dynamic behavior of pretwisted beams as accurately as an FE solution, but for a fraction of the computational cost. Furthermore, it is shown that 1D/2D solution can lead to significant errors at high twist rates, and thus, the 3D-ST solution should be preferred.

  17. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2014-08-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  18. Three dimensional magnetic abacus memory.

    PubMed

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  19. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  20. Three dimensional digital holographic aperture synthesis.

    PubMed

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  1. Three dimensional model of the human mandible.

    PubMed

    Muftić, O; Milcić, D; Saucha, J; Carek, V

    2000-07-01

    A new biomechanical three-dimensional (3D) model for the human mandible is proposed. A simple two-dimensional model cannot explain the biomechanics of the human mandible, where muscular forces through occlusion and condylar surfaces are in a state of dynamical 3D equilibrium. All forces are resolved into components according to a selected coordinate system. The muscular forces, which during clenching act on the jaw, along with the necessary force level for chewing, also act as some kind of stabilizers of the mandibular condyles preventing dislocation and loading of nonarticular tissues.

  2. Clinical application of three-dimensional echocardiography.

    PubMed

    Morbach, Caroline; Lin, Ben A; Sugeng, Lissa

    2014-01-01

    Echocardiography is one of the most valuable diagnostic tools in cardiology. Technological advances in ultrasound, computer and electronics enables three-dimensional (3-D) imaging to be a clinically viable modality which has significant impact on diagnosis, management and interventional procedures. Since the inception of 3D fully-sampled matrix transthoracic and transesophageal technology it has enabled easier acquisition, immediate on-line display, and availability of on-line analysis for the left ventricle, right ventricle and mitral valve. The use of 3D TTE has mainly focused on mitral valve disease, left and right ventricular volume and functional analysis. As structural heart disease procedures become more prevalent, 3D TEE has become a requirement for preparation of the procedure, intra-procedural guidance as well as monitoring for complications and device function. We anticipate that there will be further software development, improvement in image quality and workflow.

  3. A system of three-dimensional complex variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  4. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials.

    PubMed

    Tatone, Bryan S A; Grasselli, Giovanni

    2009-12-01

    Conventionally, the evaluation of fracture surface roughness in brittle geomaterials, such as concrete and rock, has been based on the measurement and analysis of two-dimensional profiles rather than three-dimensional (3D) surfaces. The primary reason for doing so was the lack of tools capable of making 3D measurements. However, in recent years, several optical and mechanical measurement tools have become available, which are capable of quickly and accurately producing high resolution point clouds defining 3D surfaces. This paper provides a methodology for evaluating the surface roughness and roughness anisotropy using these 3D surface measurements. The methodology is presented step-by-step to allow others to easily adopt and implement the process to analyze their own surface measurement data. The methodology is demonstrated by digitizing a series of concrete fracture surfaces and comparing the estimated 3D roughness parameters with qualitative observations and estimates of the well-known roughness coefficient, R(s).

  5. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  6. Accurate registration of random radiographic projections based on three spherical references for the purpose of few-view 3D reconstruction

    SciTech Connect

    Schulze, Ralf; Heil, Ulrich; Weinheimer, Oliver; Gross, Daniel; Bruellmann, Dan; Thomas, Eric; Schwanecke, Ulrich; Schoemer, Elmar

    2008-02-15

    Precise registration of radiographic projection images acquired in almost arbitrary geometries for the purpose of three-dimensional (3D) reconstruction is beset with difficulties. We modify and enhance a registration method [R. Schulze, D. D. Bruellmann, F. Roeder, and B. d'Hoedt, Med. Phys. 31, 2849-2854 (2004)] based on coupling a minimum amount of three reference spheres in arbitrary positions to a rigid object under study for precise a posteriori pose estimation. Two consecutive optimization procedures (a, initial guess; b, iterative coordinate refinement) are applied to completely exploit the reference's shadow information for precise registration of the projections. The modification has been extensive, i.e., only the idea of using the sphere shadows to locate each sphere in three dimensions from each projection was retained whereas the approach to extract the shadow information has been changed completely and extended. The registration information is used for subsequent algebraic reconstruction of the 3D information inherent in the projections. We present a detailed mathematical theory of the registration process as well as simulated data investigating its performance in the presence of error. Simulation of the initial guess revealed a mean relative error in the critical depth coordinate ranging between 2.1% and 4.4%, and an evident error reduction by the subsequent iterative coordinate refinement. To prove the applicability of the method for real-world data, algebraic 3D reconstructions from few ({<=}9) projection radiographs of a human skull, a human mandible and a teeth-containing mandible segment are presented. The method facilitates extraction of 3D information from only few projections obtained from off-the-shelf radiographic projection units without the need for costly hardware. Technical requirements as well as radiation dose are low.

  7. Predictive three dimensional modeling of Stimulated Brillouin Scattering in ignition-scale experiments

    SciTech Connect

    Divol, L; Berger, R; Meezan, N; Froula, D H; Dixit, S; Suter, L; Glenzer, S H

    2007-11-07

    The first three-dimensional (3D) simulations of a high power 0.351 {micro}m laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D linear kinetic modeling of Stimulated Brillouin scattering reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelop down to the micron scale speckles. These simulations accurately predict the strong reduction of SBS measured when polarization smoothing is used.

  8. Three-dimensional ultrasonography in maxillofacial surgery. A new diagnostic tool.

    PubMed

    Hell, B; Walter, F A; Schreiber, S; Blase, H; Bielke, G; Meindl, S; Stein, G

    1993-06-01

    Three-dimensional (3-D) ultrasonography is introduced as a new diagnostic method for soft-tissue lesions. This method is based on the production of absolutely parallel brightness (B)-scan tomographies with constant intervals. After adequate preparation, the sonographic primaries are processed into 3-D graphs by a specialized program called EUCLID-IS. This method promises to be useful in the evaluation of tumor patients as well as in the follow-up examination of these patients. The main advantages of the presented method are the capacity to measure accurately the volume of regions of interest and the excellent visualization of the structures examined.

  9. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  10. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  11. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  12. Masking in three-dimensional auditory displays.

    PubMed

    Doll, T J; Hanna, T E; Russotti, J S

    1992-06-01

    The extent to which simultaneous inputs in a three-dimensional (3D) auditory display mask one another was studied in a simulated sonar task. The minimum signal-to-noise ratio (SNR) required to detect an amplitude-modulated 500-Hz tone in a background of broadband noise was measured using a loudspeaker array in a free field. Three aspects of the 3D array were varied: angular separation of the sources, degree of correlation of the background noises, and listener head movement. Masking was substantially reduced when the sources were uncorrelated. The SNR needed for detection decreased with source separation, and the rate of decrease was significantly greater with uncorrelated sources than with partially or fully correlated sources. Head movement had no effect on the SNR required for detection. Implications for the design and application of 3D auditory displays are discussed.

  13. 3-D Time-Accurate CFD Simulations of a Multi-Megawatt Slender Bladed HAWT under Yawed Inflow Conditions

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.

    2016-09-01

    In the present study numerical investigations of a generic Multi-Megawatt slender bladed Horizontal-Axis Wind Turbine (HAWT) under yawed inflow conditions were conducted. A three-dimensional URANS flow solver based on structured overlapping meshes was used. The simulations were conducted at wind speeds of 7m/sec, 11 m/sec and 15 m/sec for different yaw angles ranging from +60° to -60°. It was concluded that, for below rated wind speeds, under small yaw angles (below ±15°) the magnitudes of the blade forces are slightly increased, while under high yaw angles (above ±15°) there is a significant decrease. Moreover, the load fluctuations, for the different yaw angles, have the same frequency but different amplitude and oscillation shape. It was concluded that at the above rated wind speed of 15 m/sec, the blade aerodynamic loads are significantly affected by the yaw inflow conditions and the magnitude values of the loads are decreased with increasing yaw angle. It can be concluded that the angle of attack and the tower interference are the utmost variables affecting the yawed turbines.

  14. Three dimensional dynamics of rotating structures under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2015-12-01

    This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the

  15. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  16. In-lab three-dimensional printing

    PubMed Central

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

  17. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  18. Accurate and automated image segmentation of 3D optical coherence tomography data suffering from low signal-to-noise levels.

    PubMed

    Su, Rong; Ekberg, Peter; Leitner, Michael; Mattsson, Lars

    2014-12-01

    Optical coherence tomography (OCT) has proven to be a useful tool for investigating internal structures in ceramic tapes, and the technique is expected to be important for roll-to-roll manufacturing. However, because of high scattering in ceramic materials, noise and speckles deteriorate the image quality, which makes automated quantitative measurements of internal interfaces difficult. To overcome this difficulty we present in this paper an innovative image analysis approach based on volumetric OCT data. The engine in the analysis is a 3D image processing and analysis algorithm. It is dedicated to boundary segmentation and dimensional measurement in volumetric OCT images, and offers high accuracy, efficiency, robustness, subpixel resolution, and a fully automated operation. The method relies on the correlation property of a physical interface and effectively eliminates pixels caused by noise and speckles. The remaining pixels being stored are the ones confirmed to be related to the target interfaces. Segmentation of tilted and curved internal interfaces separated by ∼10  μm in the Z direction is demonstrated. The algorithm also extracts full-field top-view intensity maps of the target interfaces for high-accuracy measurements in the X and Y directions. The methodology developed here may also be adopted in other similar 3D imaging and measurement technologies, e.g., ultrasound imaging, and for various materials. PMID:25606743

  19. Three-dimensional measurement of small mechanical parts under a complicated background based on stereo vision

    SciTech Connect

    Ren Zhiguo; Liao Jiarui; Cai Lilong

    2010-04-01

    We present an effective method for the accurate three-dimensional (3D) measurement of small industrial parts under a complicated noisy background, based on stereo vision. To effectively extract the nonlinear features of desired curves of the measured parts in the images, a strategy from coarse to fine extraction is employed, based on a virtual motion control system. By using the multiscale decomposition of gray images and virtual beam chains, the nonlinear features can be accurately extracted. By analyzing the generation of geometric errors, the refined feature points of the desired curves are extracted. Then the 3D structure of the measured parts can be accurately reconstructed and measured with least squares errors. Experimental results show that the presented method can accurately measure industrial parts that are represented by various line segments and curves.

  20. Three-dimensional image of hepatocellular carcinoma under confocal laser scanning microscope

    PubMed Central

    Zhang, Wang-Hai; Zhu, Shi-Neng; Lu, Shi-Lun; Huang, Ya-Lin; Zhao, Peng

    2000-01-01

    AIM: To investigate the application of confocal laser scanning microscopy (CLSM) in tumor pathology and three-dimensional (3-D) reconstruction by CLSM in pathologic specimens of hepatocellular carcinoma (HCC). METHODS: The 30 μm thick sections were cut from the paraffin-embedded tissues of HCC, hyperplasia and normal liver, stained with DNA fluorescent probe YOYO-1 iodide and examined by CLSM to collect optical sections of nuclei and 3-D images reconstructed. RESULTS: HCC displayed chaotic arrangement of carcinoma cell nuclei, marked pleomorphism, indented and irregular nuclear surface, and irregular and coarse chromatin texture. CONCLUSION: The serial optical tomograms of CLSM can be used to create 3-D reconstruction of cancer cell nuclei. Such 3-D impressions might be helpful or even essential in making an accurate diagnosis. PMID:11819594

  1. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    SciTech Connect

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  2. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    DOE PAGES

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less

  3. Dynamic properties of three-dimensional piezoelectric Kagome grids

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Jing; Li, Feng-Ming

    2015-07-01

    Piezoelectric Kagome grids can be considered as a kind of functional material because they have vibration isolation performance and can transform mechanical energy to electric energy. In this study, the dynamic properties of three-dimensional (3D) piezoelectric Kagome grids without and with material defects are studied based on the frequency-domain responses. The spectral element method (SEM) is adopted to solve a 3D piezoelectric beam which contains bending components in two planes, tensional components, and torsional components. The dynamic stiffness matrix of a spectral piezoelectric beam is derived. Highly accurate solutions in the frequency-domain are obtained by solving the equation of motion of the whole structure. Compared with the results from the FEM and those in the existing literature, it can be seen that the SEM can be effectively used to study the 3D piezoelectric Kagome grids. The band-gap properties of Kagome grid and defect state properties of Kagome grid with material defects are analyzed. The effect of the piezoelectric parameter on the band-gap property is investigated further.

  4. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Pei; Wang, Yves T.; Gu, Shi; Watanabe, Michiko; Jenkins, Michael W.; Rollins, Andrew M.

    2014-07-01

    Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps and corrected conduction velocity maps of early embryonic quail hearts. 3-D correction eliminates underestimation bias in 2-D conduction velocity measurements, therefore enabling more accurate measurements with less experimental variability. The integrated system will also open the door to correlate the structure and electrophysiology, thereby improving our understanding of heart development.

  5. Structured image reconstruction for three-dimensional ghost imaging lidar.

    PubMed

    Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng

    2015-06-01

    A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814

  6. Accuracy of three-dimensional printing for manufacturing replica teeth

    PubMed Central

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment. PMID:26445716

  7. Creating three-dimensional lattice patterns using programmable Dammann gratings.

    PubMed

    Davis, Jeffrey A; Moreno, Ignacio; Martínez, José Luis; Hernandez, Travis J; Cottrell, Don M

    2011-07-10

    We demonstrate the creation of a three dimensional (3D) lattice of focus spots using a 3D Dammann grating structure. Such a 3D lattice of focus spots can be used for probing 3D structures or for creating 3D photonic crystal structures in optically sensitive media. Experimental results are included where the patterns are encoded onto a programmable liquid crystal display. We demonstrate the generation of five planar arrays each having 6×6 points surrounding another set of four planar arrays each having 5×5 points with a single pattern. PMID:21743578

  8. Experimental and three-dimensional finite element investigation of fatigue

    NASA Astrophysics Data System (ADS)

    Bomidi, John A. R.

    Materials often fail at cyclic loads that are lower than their ultimate strength or even their yield strength due to progressive internal material degradation; commonly known as fatigue. Moreover, there is a wide scatter in observed fatigue lives of mechanical components operating under identical loading conditions. The randomness of fatigue failure is considered to be linked to basic microstructural effects such as random microstructure topology and the initiation/growth of cracks along inter/transgranular planes. Several modeling approaches have been previously presented ranging from 2D discrete element to 3D Finite Element methods with explicit representation of microstructure topology and continuum damage mechanics to capture dispersion in rolling contact fatigue life and fatigue spalling. There is, however, a need to compare the modeling approach with experimental fatigue test conditions in order to verify and as required enhance the modeling approach to capture observed fatigue failure. This dissertation presents experimental test results and three-dimensional modeling approach that capture fatigue failure. The three-dimensional modeling approach is enhanced according to the experimental observations to consider inter/trans granular failure, different modes of fatigue initiation and propagation and finally for considering effect of plasticity in fatigue of rolling contacts. The following phenomena have been investigated: (1) Fatigue of microbeams: (a )Results of fatigue life and failure from 3D modeling of intergranular fatigue in microbeams are compared with experimental observations reported in literature (2) Tensile fatigue of thin sheets: (a) A test rig with a new grip and alignment system is developed to address the challenges associated with thin sheet testing and conduct fatigue experiments. (b) The 3D fatigue model is enhanced to capture the dominant transgranular fatigue observed in the experiments. The observed and modeled fatigue life and failure

  9. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  10. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  11. Double labeling serial sections to enhance three-dimensional imaging of injured spinal cord.

    PubMed

    Duerstock, Bradley S

    2004-03-15

    A method of double labeling a set of serial histological sections was performed to produce multiple three-dimensional (3D) reconstructions from the same segment of injured spinal cord. Alternate groups of consecutive histological sections were stained with Luxol fast blue with cresyl violet and Mallory's trichrome in order to reconstruct two different 3D images that reveal different pathological features of the same 1-month-old compression spinal cord injury. Three-dimensional visualization of the two reconstructions was accomplished using an isocontouring algorithm that automatically extracts surfaces of features of interest based on pixel intensity. The two 3D reconstructions demonstrated the sparing of myelinated nerve fibers and the composition of neuroglia through the chronic lesion of an adult guinea pig. The 3D images provided a comprehensive and explicit view of a chronically injured spinal cord that is not possible by the inspection of two-dimensional (2D) histological sections or from magnetic resonance imaging. Using every histological section, we believe this double labeling 3D reconstruction technique provides a more enhanced and accurate visualization of the entire spinal cord lesion than has been possible before. Furthermore, we contend that this double labeling technique can further elucidate the histopathological events of secondary injury at different time points post-injury by using different combinations of complementary histological makers.

  12. Fast and accurate determination of 3D temperature distribution using fraction-step semi-implicit method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Gu, Ning

    2016-09-01

    In this paper, we proposed a method to numerically determinate 3-dimensional thermal response due to electromagnetic exposure quickly and accurately. Due to the stability criterion the explicit finite-difference time-domain (FDTD) method works fast only if the spatial step is not set very small. In this paper, the semi-implicit Crank-Nicholson method for time domain discretization with unconditional time stability is proposed, where the idea of fractional steps method was utilized in 3-dimension so that an efficient numerical implementation is obtained. Compared with the explicit FDTD, with similar numerical precision, the proposed method takes less than 1/200 of the execution time.

  13. Piezoelectric characteristics of three-dimensional solid object of poly(l-lactide) fabricated by three-dimensional printing

    NASA Astrophysics Data System (ADS)

    Hayashi, Syota; Kamimura, Yuki; Tsukamoto, Nobuyuki; Imoto, Kenji; Sugitani, Hideki; Kondo, Takashi; Imada, Yuya; Nakiri, Takuo; Tajitsu, Yoshiro

    2015-10-01

    Through three-dimensional (3D) printing, we attempted to fabricate 3D solid objects with piezoelectricity. By optimizing the conditions of 3D printing, we realized the fabrication of a piezoelectric object by 3D printing. In fact, we could produce a poly(l-lactide) (PLLA) object similar to a smart phone case fabricated by 3D printing, the molded body of which has button sensors at the desired sites by exploiting the piezoelectric properties of PLLA. Finally, we confirmed that the PLLA object behaved as a fully functional sensor.

  14. Three-dimensional television: a broadcaster's perspective

    NASA Astrophysics Data System (ADS)

    Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

    2009-02-01

    The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

  15. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  16. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  17. Three-dimensional silicon micromachining

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

    2012-11-01

    A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

  18. Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI

    PubMed Central

    Merchant, Samer S.; Hsu, Edward W.

    2014-01-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  19. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  20. Three-dimensional echocardiography of the mitral valve: lessons learned.

    PubMed

    Maffessanti, Francesco; Mirea, Oana; Tamborini, Gloria; Pepi, Mauro

    2013-07-01

    Three-dimensional echocardiography has markedly improved our understanding of normal and pathologic mitral valve (MV) mechanics. Qualitative and quantitative analysis of three-dimensional (3D) data on the mitral valve could have a clinical impact on diagnosis, patient referral, surgical strategies, annuloplasty ring design and evaluation of the immediate and long-term surgical outcome. This review covers the contribution of 3D echocardiography in the diagnosis of MV disease, its role in selecting and monitoring surgical procedures, and in the assessment of surgical outcomes. Moreover, advantages of this technique versus the standard 2D modality, as well as future applications of advanced analysis techniques, will be reviewed. PMID:23686753

  1. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  2. Three-dimensional Allan fault plane analysis

    SciTech Connect

    Hoffman, K.S.; Taylor, D.R.; Schnell, R.T.

    1994-12-31

    Allan fault-plane analysis is a useful tool for determining hydrocarbon migration paths and the location of possible traps. While initially developed for Gulf coast deltaic and interdeltaic environments, fault-plane analysis has been successfully applied in many other geologic settings. Where the geology involves several intersecting faults and greater complexity, many two-dimensional displays are required in the investigation and it becomes increasingly difficult to accurately visualize both fault relationships and migration routes. Three-dimensional geospatial fault and structure modeling using computer techniques, however, facilitates both visualization and understanding and extends fault-plane analysis into much more complex situations. When a model is viewed in three dimensions, the strata on both sides of a fault can be seen simultaneously while the true structural character of one or more fault surfaces is preserved. Three-dimensional analysis improves the speed and accuracy of the fault plane methodology.

  3. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  4. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  5. Magnetophotonic response of three-dimensional opals.

    PubMed

    Caicedo, José Manuel; Pascu, Oana; López-García, Martín; Canalejas, Víctor; Blanco, Alvaro; López, Cefe; Fontcuberta, Josep; Roig, Anna; Herranz, Gervasi

    2011-04-26

    Three-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs. The results of the optical and magneto-optical characterization are consistent with a homogeneous magnetic infiltration of the opal structure that gives rise to both a red-shift of the optical bandgap and a modification of the magneto-optical spectral response due to photonic bandgap effects. The results of our investigation demonstrate the potential of 3D-MPCs fabricated following the approach outlined here and offer opportunities to adapt the magneto-optical spectral response at optical frequencies by appropriate design of the opal structure or magnetic field strength.

  6. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation.

  7. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation. PMID:26636371

  8. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  9. The Three-Dimensional Universe.

    ERIC Educational Resources Information Center

    Banks, Dale A.; Powell, Harry D.

    1992-01-01

    Provides instructions for helping students construct a three-dimensional model of a constellation. Aluminum foil spheres with various diameters are used to represent stars with various apparent magnitudes. The positions of the stars in the model are determined from constellation maps and by converting actual star distances into millimeters. (PR)

  10. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  11. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  12. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  13. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  14. On the Use of Uavs in Mining and Archaeology - Geo-Accurate 3d Reconstructions Using Various Platforms and Terrestrial Views

    NASA Astrophysics Data System (ADS)

    Tscharf, A.; Rumpler, M.; Fraundorfer, F.; Mayer, G.; Bischof, H.

    2015-08-01

    During the last decades photogrammetric computer vision systems have been well established in scientific and commercial applications. Especially the increasing affordability of unmanned aerial vehicles (UAVs) in conjunction with automated multi-view processing pipelines have resulted in an easy way of acquiring spatial data and creating realistic and accurate 3D models. With the use of multicopter UAVs, it is possible to record highly overlapping images from almost terrestrial camera positions to oblique and nadir aerial images due to the ability to navigate slowly, hover and capture images at nearly any possible position. Multi-copter UAVs thus are bridging the gap between terrestrial and traditional aerial image acquisition and are therefore ideally suited to enable easy and safe data collection and inspection tasks in complex or hazardous environments. In this paper we present a fully automated processing pipeline for precise, metric and geo-accurate 3D reconstructions of complex geometries using various imaging platforms. Our workflow allows for georeferencing of UAV imagery based on GPS-measurements of camera stations from an on-board GPS receiver as well as tie and control point information. Ground control points (GCPs) are integrated directly in the bundle adjustment to refine the georegistration and correct for systematic distortions of the image block. We discuss our approach based on three different case studies for applications in mining and archaeology and present several accuracy related analyses investigating georegistration, camera network configuration and ground sampling distance. Our approach is furthermore suited for seamlessly matching and integrating images from different view points and cameras (aerial and terrestrial as well as inside views) into one single reconstruction. Together with aerial images from a UAV, we are able to enrich 3D models by combining terrestrial images as well inside views of an object by joint image processing to

  15. Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera

    NASA Astrophysics Data System (ADS)

    Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.

    2004-01-01

    We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.

  16. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  17. High resolution three-dimensional prostate ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Patil, Abhay; Hossack, John A.

    2006-03-01

    This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically controlled "Synthetic Digital Rectal Examination (SDRE)" wherein a smoothly increasing force was applied by injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is possible and may provide reliable and accurate determination of the size and the location of cancers, which may result in improved specificity and sensitivity of cancer detection.

  18. Three-Dimensional Printing: An Enabling Technology for IR.

    PubMed

    Sheth, Rahul; Balesh, Elie R; Zhang, Yu Shrike; Hirsch, Joshua A; Khademhosseini, Ali; Oklu, Rahmi

    2016-06-01

    Rapid prototyping, also known as three-dimensional (3D) printing, is a recent technologic advancement with tremendous potential for advancing medical device design. A wide range of raw materials can be incorporated into complex 3D structures, including plastics, metals, biocompatible polymers, and even living cells. With its promise of highly customized, adaptable, and personalized device design at the point of care, 3D printing stands to revolutionize medical care. The present review summarizes the methods for 3D printing and their current and potential roles in medical device design, with an emphasis on their potential relevance to interventional radiology. PMID:27117948

  19. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  20. Evaluation of gallbladder volume and contraction index with three-dimensional ultrasonography in healthy dogs.

    PubMed

    Rahmani, Vahideh; Molazem, Mohammad; Jamshidi, Shahram; Vali, Yasamin; Hanifeh, Mohsen

    2015-09-01

    Three-dimensional (3D) ultrasonography has been shown to be an accurate and appropriate tool for measurement of gallbladder volume in humans. Therefore, we applied this novel technique for the first time to study fasting and postprandial gallbladder volume in 10 healthy dogs and compared the results with those of 2-dimensional (2D) ultrasonography. Fasting gallbladder volumes determined by 3D ultrasonography were significantly higher than corresponding volumes determined by 2D ultrasonography (P<0.01). Additionally, gallbladder volumes were significantly decreased in the postprandial state compared with the fasting state using 3D ultrasonography (P<0.001), but 2D ultrasonography showed no significant difference (P=0.189). The Gallbladder contraction index was higher in 3D ultrasonography than 2D ultrasonography; however, it did not reach statistical significance (P=0.25). In conclusion, 3D ultrasonography was able to measure gallbladder volume in healthy dogs in this study. It is suggested that 3D ultrasonography can be used to accurately estimate gallbladder volume and contractility.

  1. Covalently interconnected three-dimensional graphene oxide solids.

    PubMed

    Sudeep, Parambath M; Narayanan, Tharangattu N; Ganesan, Aswathi; Shaijumon, Manikoth M; Yang, Hyunseung; Ozden, Sehmus; Patra, Prabir K; Pasquali, Matteo; Vajtai, Robert; Ganguli, Sabyasachi; Roy, Ajit K; Anantharaman, Maliemadom R; Ajayan, Pulickel M

    2013-08-27

    The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers.

  2. Validity of three-dimensional computed tomography measurements for Le Fort I osteotomy.

    PubMed

    Gaia, B F; Pinheiro, L R; Umetsubo, O S; Costa, F F; Cavalcanti, M G P

    2014-02-01

    The purpose of this study was to test the precision and accuracy of three-dimensional (3D) linear measurements for Le Fort I osteotomy, obtained from multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) scans. The study population consisted of 11 dried skulls submitted to 64-row MSCT and CBCT scans. Three-dimensional reconstructed images (3D-CT) were generated, and linear measurements (n=11) based on anatomical structures and landmarks of interest for Le Fort I osteotomy were performed independently by two oral and maxillofacial radiologists, twice each, using Vitrea software; this allows true 3D measurement on 3D-CT images. The results demonstrated no statistically significant differences between the inter-examiner and intra-examiner analyses, and physical and true 3D linear measurements using MSCT and CBCT images. Regarding examiner accuracy, no statistically significant differences were found for the comparisons among the physical and the MSCT and the CBCT linear measurements by either examiner. For examiners 1 and 2, the analysis intra-examiner correlation coefficient ranged from 0.87 to 0.96 and 0.82 to 0.98, respectively, using MSCT, and from 0.84 to 0.98 and 0.80 to 0.98, respectively, using CBCT, indicating almost perfect agreement for all analyses performed. 3D linear measurements obtained from MSCT and CBCT images were considered precise and accurate for Le Fort I osteotomy and thus accurate and helpful for Le Fort I osteotomy planning.

  3. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    NASA Astrophysics Data System (ADS)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  4. Development of three dimensional blood vessel search system by using on stereo and autofocus hybrid method.

    PubMed

    Nakamachi, E

    2011-01-01

    In this study, we developed an accurate three dimensional blood vessel search (3D BVS) system and an automatic operated blood sampling system. These systems were implemented into the point-of-care system for the ubiquitous medical care, which was featured as the portable type self-monitoring blood glucose (SMBG) devise. It resolved the human error problem, which causes by the complicated manual operation of blood sampling and blood glucose measurement in conventional SMBG devices. In this study, we mainly discuss the performance examination of accurate position detection of blood vessel. Our 3D BVS system employed the near-infrared (NIR) light imaging process and the stereo and autofocus hybrid method to determine the 3D blood vessel location accurately. We evaluated the accuracy of our 3D BVS system by using the phantom of human skin, blood vessel and blood. As a result, we validated a very good performance ability of our 3D BVS system for a portable type SMBG device. PMID:22255741

  5. Statistically deformable 2D/3D registration for accurate determination of post-operative cup orientation from single standard X-ray radiograph.

    PubMed

    Zheng, Guoyan

    2009-01-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D/3D rigid image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of a pre-operative CT scan, which is not available for most retrospective studies. To address these issues, we developed and validated a statistically deformable 2D/3D registration approach for accurate determination of post-operative cup orientation. No CAD model and pre-operative CT data is required any more. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the validity of the approach. PMID:20426064

  6. A Three-dimensional Camera: Development and Applications of a Three-dimensional Image Measurement System

    NASA Astrophysics Data System (ADS)

    Lu, Cunwei; Kamitomo, Hiroya; Sun, Ke; Tsujino, Kazuhiro; Cho, Genki

    Three-dimensional (3-D) image measurement is a technique that uses a digital camera to determine the shape and dimensions of the surface of an object. Although it has been studied for a long time, various problems still remain to be solved for practical applications. The goal of our research is to solve these problems and to develop a 3-D camera that can be used for practical 3-D image measurements. This paper analyzes the problems associated with the conventional technology and introduces development goals for the new 3-D camera. The key techniques of this 3-D camera are explained, including techniques for optimizing the intensity-modulation pattern projection, controlling the projection pattern intensity, determining the projection position, and controlling the stripe period. The system is evaluated and some examples of applications are given. The proposed 3-D camera can automatically adjust for variations in an object's size, form, surface color, and reflection characteristics and it can measure non-stationary objects. Consequently, it has the potential to be used in a wide range of applications including product quality control, human measurement, and face recognition.

  7. Hydrothermal fabrication of three-dimensional secondary battery anodes.

    PubMed

    Liu, Jinyun; Zhang, Hui Gang; Wang, Junjie; Cho, Jiung; Pikul, James H; Epstein, Eric S; Huang, Xingjiu; Liu, Jinhuai; King, William P; Braun, Paul V

    2014-11-01

    A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances. PMID:25195592

  8. Three-dimensional source reconstruction with a scanned pinhole camera.

    PubMed

    Marks, D L; Brady, D J

    1998-06-01

    We present a simple reconstruction algorithm for three-dimensional (3D) incoherent source distributions imaged by a laterally scanned pinhole camera. We consider digital sampling of multiple pinhole images for 3D reconstruction and implement an experimental demonstration with lateral resolution of 2x10(-3) rad and longitudinal resolution of approximately 0.14z(2) m , where z is the object-to-pinhole distance in meters.

  9. Three-dimensional compressible and stretchable conductive composites.

    PubMed

    Yu, You; Zeng, Jifang; Chen, Chaojian; Xie, Zhuang; Guo, Ruisheng; Liu, Zhilu; Zhou, Xuechang; Yang, Yong; Zheng, Zijian

    2014-02-01

    Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting. PMID:24307070

  10. Applications of three-dimensional printing technology in urological practice.

    PubMed

    Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime

    2015-11-01

    A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice.

  11. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina.

    PubMed

    Martín, Jaime; Martín-González, Marisol; Francisco Fernández, Jose; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors. PMID:25342247

  12. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina.

    PubMed

    Martín, Jaime; Martín-González, Marisol; Francisco Fernández, Jose; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.

  13. Three-dimensional volumetric object reconstruction using computational integral imaging.

    PubMed

    Hong, Seung-Hyun; Jang, Ju-Seog; Javidi, Bahram

    2004-02-01

    We propose a three-dimensional (3D) imaging technique that can sense a 3D scene and computationally reconstruct it as a 3D volumetric image. Sensing of the 3D scene is carried out by obtaining elemental images optically using a pickup microlens array and a detector array. Reconstruction of volume pixels of the scene is accomplished by computationally simulating optical reconstruction according to ray optics. The entire pixels of the recorded elemental images contribute to volumetric reconstruction of the 3D scene. Image display planes at arbitrary distances from the display microlens array are computed and reconstructed by back propagating the elemental images through a computer synthesized pinhole array based on ray optics. We present experimental results of 3D image sensing and volume pixel reconstruction to test and verify the performance of the algorithm and the imaging system. The volume pixel values can be used for 3D image surface reconstruction.

  14. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    SciTech Connect

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David; Timmes, F. X.

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impact of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.

  15. Real-time three-dimensional intracardiac echocardiography: an early single-center experience.

    PubMed

    Maini, Brijeshwar

    2015-01-01

    As interventional procedures in structural heart diseases are coming of age, there is a significant lag in the periinterventional imaging development for these procedures to become safe, expedient, accurate, and well tolerated by this patient population. Currently, transesophageal echocardiography (TEE), including real-time three-dimensional (RT-3D), has been used for monitoring and guidance for these procedures. Accurate identification of the pathology, its anatomy, and its relationship with the adjoining structures along with spatial resolution is of paramount importance for wire and catheter placement, device deployment, evaluation of the results, and any potential complications. Two-dimensional intracardiac echocardiography (ICE) has been used extensively for a variety of interventional procedures that undergo conscious sedation of monitored anesthesia. RT-3D ICE has recently become available; we describe our initial experience with this new imaging technology. PMID:25589706

  16. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  17. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    PubMed

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  18. Facial three-dimensional morphometry.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G

    1996-01-01

    Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses. PMID:8540488

  19. Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient and high-throughput analyses to evaluate therapeutics. PMID:26084404

  20. Three-dimensional localization of fluorescent spots with adapted MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Scholz, Bernhard; Pfister, Marcus

    2003-10-01

    We present a novel method, space-space MUSIC (MUltiple SIgnal Classification), to localize three-dimensionally focal fluorophore-tagged lesions activated subsequently by different laser source posi-tions from multi-sensor fluorescence data obtained from a single measurement plane. Matches between a signal subspace derived from the measured data and data from model spots allow 3D determination of the centers-of-gravity of fluorescence regions. Simulated spots in bounded, inho-mogeneous media could be localized accurately. The algorithm has shown to be robust against patient-dependent parameters, such as optical background parameters. The algorithm does also not consider medium boundaries.

  1. Three-dimensional Printing in the Intestine.

    PubMed

    Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John

    2016-08-01

    Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913

  2. Three-dimensional landing zone ladar

    NASA Astrophysics Data System (ADS)

    Savage, James; Goodrich, Shawn; Burns, H. N.

    2016-05-01

    Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.

  3. Development of Three-Dimensional Object Completion in Infancy

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2008-01-01

    Three-dimensional (3D) object completion was investigated by habituating 4- and 6-month-old infants (n = 24 total) with a computer-generated wedge stimulus that pivoted 15[degrees], providing only a limited view. Two displays, rotating 360[degrees], were then shown: a complete, solid volume and an incomplete, hollow form composed only of the sides…

  4. Real-time construction of three-dimensional occupancy maps

    SciTech Connect

    Jones, J.P.

    1992-01-01

    This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.

  5. Real-time construction of three-dimensional occupancy maps

    SciTech Connect

    Jones, J.P.

    1992-12-01

    This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.

  6. A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy

    ERIC Educational Resources Information Center

    Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.

    2010-01-01

    Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…

  7. Leaving flatland: Diagnostics for Lagrangian coherent structures in three-dimensional flows

    NASA Astrophysics Data System (ADS)

    Sulman, Mohamed H. M.; Huntley, Helga S.; Lipphardt, B. L.; Kirwan, A. D.

    2013-09-01

    Finite-time Lyapunov exponents (FTLE) are often used to identify Lagrangian Coherent Structures (LCS). Most applications are confined to flows on two-dimensional (2D) surfaces where the LCS are characterized as curves. The extension to three-dimensional (3D) flows, whose LCS are 2D structures embedded in a 3D volume, is theoretically straightforward. However, in geophysical flows at regional scales, full prognostic computation of the evolving 3D velocity field is not computationally feasible. The vertical or diabatic velocity, then, is either ignored or estimated as a diagnostic quantity with questionable accuracy. Even in cases with reliable 3D velocities, it may prove advantageous to minimize the computational burden by calculating trajectories from velocities on carefully chosen surfaces only. When reliable 3D velocity information is unavailable or one velocity component is explicitly ignored, a reduced FTLE form to approximate 2D LCS surfaces in a 3D volume is necessary. The accuracy of two reduced FTLE formulations is assessed here using the ABC flow and a 3D quadrupole flow as test models. One is the standard approach of knitting together FTLE patterns obtained on adjacent surfaces. The other is a new approximation accounting for the dispersion due to vertical (u,v) shear. The results are compared with those obtained from the full 3D velocity field. We introduce two diagnostic quantities to identify situations when a fully 3D computation is required for an accurate determination of the 2D LCS. For the ABC flow, we found the full 3D calculation to be necessary unless the vertical (u,v) shear is sufficiently small. However, both methods compare favorably with the 3D calculation for the quadrupole model scaled to typical open ocean conditions.

  8. Three-dimensional anorthoscopic perception.

    PubMed

    Fujita, N

    1990-01-01

    When a rotating 3-D wireframe object passes behind a narrow slit, it is often perceived as a 3-D object, even though only a small portion of it is visible at any one instant. This result constitutes a new finding in connection with both anorthoscopic perception and the perception of structure-from-motion.

  9. Three-dimensional image reconstruction for electrical impedance tomography.

    PubMed

    Kleinermann, F; Avis, N J; Judah, S K; Barber, D C

    1996-11-01

    Very little work has been conducted on three-dimensional aspects of electrical impedance tomography (EIT), partly due to the increased computational complexity over the two-dimensional aspects of EIT. Nevertheless, extending EIT to three-dimensional data acquisition and image reconstruction may afford significant advantages such as an increase in the size of the independent data set and improved spatial resolution. However, considerable challenges are associated with the software aspects of three-dimensional EIT systems due to the requirement for accurate three-dimensional forward problem modelling and the derivation of three-dimensional image reconstruction algorithms. This paper outlines the work performed to date to derive a three-dimensional image reconstruction algorithm for EIT based on the inversion of the sensitivity matrix approach for a finite right circular cylinder. A comparison in terms of the singular-value spectra and the singular vectors between the sensitivity matrices for a three-dimensional cylinder and a two-dimensional disc has been performed. This comparison shows that the three-dimensional image reconstruction algorithm recruits more central information at lower condition numbers than the two-dimensional image reconstruction algorithm.

  10. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; Vanderburg, C. R.; Hammond, T.; Pierson, D. L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  11. Three-Dimensional Tissue Assemblies: Novel Models for the Study of Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Nickerson, Cheryl A.; Goodwin, Thomas J.; Terlonge, Jacqueline; Ott, C. Mark; Buchanan, Kent L.; Uicker, William C.; Emami, Kamal; LeBlanc, Carly L.; Ramamurthy, Rajee; Clarke, Mark S.; Vanderburg, Charles R.; Hammond, Timothy; Pierson, Duane L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1α (IL-1α), IL-1β, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor β1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction. PMID:11598087

  12. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  13. Three-dimensional scanning microscopy through thin turbid media.

    PubMed

    Yang, Xin; Hsieh, Chia-Lung; Pu, Ye; Psaltis, Demetri

    2012-01-30

    We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.

  14. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  15. Three-dimensional dimeron as a stable topological object

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Kai; Yang, Shi-Jie

    2015-04-01

    Searching for novel topological objects is always an intriguing task for scientists in various fields. We study a three-dimensional (3D) topological structure called a 3D dimeron in trapped two-component Bose-Einstein condensates. The 3D dimeron differs from the conventional 3D skyrmion for the condensates hosting two interlocked vortex rings. We demonstrate that the vortex rings are connected by a singular string and the complexity constitutes a vortex molecule. The stability of the 3D dimeron is examined in two different models using the imaginary time evolution method. We find that the stable 3D dimeron can be naturally generated from a vortex-free Gaussian wave packet incorporating a synthetic non-Abelian gauge potential into the condensates.

  16. Simulating complex storm surge dynamics: Three-dimensionality, vegetation effect, and onshore sediment transport

    NASA Astrophysics Data System (ADS)

    Lapetina, Andrew; Sheng, Y. Peter

    2015-11-01

    The 3-D hydrodynamics of storm surge events, including the effects of vegetation and impact on onshore transport of marine sediment, have important consequences for coastal communities. Here, complex storm surge dynamics during Hurricane Ike are investigated using a three-dimensional (3-D), vegetation-resolving storm surge-wave model (CH3D-SWAN) which includes such effects of vegetation as profile drag, skin friction, and production, dissipation, and transport of turbulence. This vegetation-resolving 3-D model features a turbulent kinetic energy (TKE) closure model, which uses momentum equations with vegetation-induced profile and skin friction drags, a dynamic q2 equation including turbulence production and dissipation by vegetation, as well as vegetation-dependent algebraic length-scale equations, and a Smagorinsky-type horizontal turbulence model. This vegetation model has been verified using extensive laboratory tests, but this study is a comparison of 2-D and 3-D simulations of complex storm surge dynamics during Hurricane Ike. We examine the value of 3-D storm surge models relative to 2-D models for simulating coastal currents, effects of vegetation on surge, and sediment transport during storm events. Comparisons are made between results obtained using simple 2-D formulations for bottom friction, the Manning coefficient (MC) approach, and physics-based 3-D vegetation-modeling (VM) approach. Last, the role that the 3-D hydrodynamics on onshore transport and deposition of marine sediments during the storm is investigated. While both the 3-D and 2-D results simulated the water level dynamics, results of the physics-based 3-D VM approach, as compared to the 2-D MC approach, more accurately captures the complex storm surge dynamics.

  17. High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors

    SciTech Connect

    Couch, Sean M.; O'Connor, Evan P.

    2014-04-20

    Three-dimensional (3D) simulations of core-collapse supernovae (CCSNe) are granting new insight into the as-yet-uncertain mechanism that drives successful explosions. While there is still debate about whether explosions are obtained more easily in 3D than in 2D, it is undeniable that there exist qualitative and quantitative differences between the results of 3D and 2D simulations. We present an extensive set of high-resolution 1D, 2D, and 3D CCSN simulations with multispecies neutrino leakage carried out in two different progenitors. Our simulations confirm the results of Couch indicating that 2D explodes more readily than 3D. We argue that this is due to the inadequacies of 2D to accurately capture important aspects of the 3D dynamics. We find that without artificially enhancing the neutrino heating rate, we do not obtain explosions in 3D. We examine the development of neutrino-driven convection and the standing accretion shock instability (SASI) and find that, in separate regimes, either instability can dominate. We find evidence for growth of the SASI for both 15 M {sub ☉} and 27 M {sub ☉} progenitors; however, it is weaker in 3D exploding models. The growth rate of both instabilities is artificially enhanced along the symmetry axis in 2D as compared with our axis-free 3D Cartesian simulations. Our work highlights the growing consensus that CCSNe must be studied in 3D if we hope to solve the mystery of how the explosions are powered.

  18. Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

    PubMed Central

    Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong

    2016-01-01

    Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods. PMID:27689050

  19. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation.

  20. Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

    PubMed Central

    Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong

    2016-01-01

    Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

  1. Three-dimensional flow in the storative semiconfining layers of a leaky aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2008-01-01

    An analytical solution for three-dimensional (3D) flow in the storative semiconfining layers of a leaky aquifer fully penetrated by a production well is developed in this article to provide a method from which accurate hydraulic parameters in the semiconfining layers can be derived from aquifer test data. The analysis of synthetic aquifer test data with the 3D analytical solution in the semiconfining layers provided more accurate optimal hydraulic parameters than those derived using the available quasi-two-dimensional (2D) solution. Differences between the 3D and 2D flow solutions in the semiconfining layers become larger when a no flow boundary condition is imposed at either at the top of the upper semiconfining layer or at the bottom of the lower semiconfining layer or when the hydraulic conductivity ratio of the semiconfining layer to the aquifer is larger than 0.001. In addition, differences between the 3D and 2D flow solutions in the semiconfining layers are illustrated when the thickness ratio of the semiconfining layer to the aquifer is changed. Analysis of water level data from two hypothetical and one real aquifer test showed that the 3D solution in the semiconfining layers provides lower correlation coefficients among hydraulic parameters than the 2D solution. ?? 2007 National Ground Water Association.

  2. Effects of uncertainty in camera geometry on three-dimensional catheter reconstruction from biplane fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Dietz, Anthony; Kynor, David B.; Friets, Eric; Triedman, John; Hammer, Peter

    2002-05-01

    Clinical procedures that rely on biplane x-ray images for three-dimensional (3-D) information may be enhanced by three-dimensional reconstructions. However, the accuracy of reconstructed images is dependent on the uncertainty associated with the parameters that define the geometry of the camera system. In this paper, we use a numerical simulation to examine the effect of these uncertainties and to determine the limits required for adequate three-dimensional reconstruction. We then test our conclusions with images of a calibration phantom recorded using a clinical system. A set of reconstruction routines, developed for a cardiac mapping system, were used in this evaluation. The routines include procedures for correcting image distortion and for automatically locating catheter electrodes. Test images were created using a numerical simulation of a biplane x-ray projection system. The reconstruction routines were then applied using accurate and perturbed camera geometries and error maps were produced. Our results indicate that useful catheter reconstructions are possible with reasonable bounds on the uncertainty of camera geometry provided the locations of the camera isocenters are accurate. The results of this study provide a guide for the specification of camera geometry display systems and for researchers evaluating possible methodologies for determining camera geometry.

  3. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  4. Three-dimensional optical encryption based on ptychography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi

    2015-10-01

    We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.

  5. Three-dimensional visual stimulator

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

    1995-02-01

    We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

  6. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  7. Transitional Suspensions Containing Thermosensitive Dispersant for Three-Dimensional Printing.

    PubMed

    Wang, Xiaofeng; Sun, Yuehua; Peng, Chaoqun; Luo, Hang; Wang, Richu; Zhang, Dou

    2015-12-01

    Tailoring the rheology of suspensions is an essential and persistent issue form many applications, especially three-dimensional (3D) printing. Colloidal suspensions of ceramic powder (Al2O3) dispersed by a special thermosensitive dispersant (poly(acrylic acid)-poly(N-isopropylacrylamide), PAA-PNIPAM) were designed, which underwent a remarkable fluid-gel transition in response to thermal stimulus due to the phase transition of the graft chains (-PNIPAM). 3D periodic structures with a fine size of 100 μm were assembled by 3D printing. PMID:26552611

  8. Three-dimensional assessment of facial asymmetry: A systematic review

    PubMed Central

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-01-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries. PMID:26538893

  9. Single-shot afocal three-dimensional microscopy.

    PubMed

    Feldkhun, Daniel; Wagner, Kelvin H

    2016-08-01

    Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D.

  10. Three dimensional audio versus head down TCAS displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Pittman, Marc T.

    1994-01-01

    The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.

  11. Ghost imaging for three-dimensional optical security

    SciTech Connect

    Chen, Wen Chen, Xudong

    2013-11-25

    Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.

  12. Single-shot afocal three-dimensional microscopy.

    PubMed

    Feldkhun, Daniel; Wagner, Kelvin H

    2016-08-01

    Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D. PMID:27472599

  13. Three-dimensional aerodynamic shape optimization of supersonic delta wings

    NASA Technical Reports Server (NTRS)

    Burgreen, Greg W.; Baysal, Oktay

    1994-01-01

    A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.

  14. High-resolution three-dimensional imaging of dislocations.

    PubMed

    Barnard, J S; Sharp, J; Tong, J R; Midgley, P A

    2006-07-21

    Dislocations and their interactions govern the properties of many materials, ranging from work hardening in metals to device pathology in semiconductor laser diodes. However, conventional electron micrographs are simply two-dimensional projections of three-dimensional (3D) structures, and even stereo microscopy cannot reveal the true 3D complexity of defect structures. Here, we describe an electron tomographic method that yields 3D reconstructions of dislocation networks with a spatial resolution three orders of magnitude better than previous work. We illustrate the method's success with a study of dislocations in a GaN epilayer, where dislocation densities of 1010 per square centimeter are common.

  15. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units

    PubMed Central

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A.; Anastasio, Mark A.

    2013-01-01

    Purpose: Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Methods: Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. Results: The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Conclusions: Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction. PMID:23387778

  16. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  17. Three-dimensional reconstitution of bullet trajectory in gunshot wounds: a case report.

    PubMed

    Puentes, Katerina; Taveira, Francisco; Madureira, António J; Santos, Agostinho; Magalhães, Teresa

    2009-10-01

    In the medico-legal assessment of cases of aggression with firearms, imaging techniques have a particularly important role, especially in the study of a bullet's path through the victim's body. The analysis of these trajectories can be performed by the use of three-dimensional reconstitution techniques, namely Three-Dimensional Multi-Slice Computed Tomography (3D-MSCT). This imaging technique has been widely used in fatal cases, as a very important complement of the classical autopsy procedures, becoming known as "virtual autopsy" or "Virtopsy". To our knowledge, no reports describing the use of 3D-MSCT in non-fatal cases have been described in the medico-legal literature. The authors present a case of a man with a gunshot injury, in the context of a multiple aggressor situation, in which it was not possible to extract the bullet. To accurately determine the bullet's trajectory, 3D-MSCT was performed, thus contributing to a more reliable reconstruction of the crime scene in which the victim and the suspects were located. PMID:19733332

  18. Three-dimensional reconstitution of bullet trajectory in gunshot wounds: a case report.

    PubMed

    Puentes, Katerina; Taveira, Francisco; Madureira, António J; Santos, Agostinho; Magalhães, Teresa

    2009-10-01

    In the medico-legal assessment of cases of aggression with firearms, imaging techniques have a particularly important role, especially in the study of a bullet's path through the victim's body. The analysis of these trajectories can be performed by the use of three-dimensional reconstitution techniques, namely Three-Dimensional Multi-Slice Computed Tomography (3D-MSCT). This imaging technique has been widely used in fatal cases, as a very important complement of the classical autopsy procedures, becoming known as "virtual autopsy" or "Virtopsy". To our knowledge, no reports describing the use of 3D-MSCT in non-fatal cases have been described in the medico-legal literature. The authors present a case of a man with a gunshot injury, in the context of a multiple aggressor situation, in which it was not possible to extract the bullet. To accurately determine the bullet's trajectory, 3D-MSCT was performed, thus contributing to a more reliable reconstruction of the crime scene in which the victim and the suspects were located.

  19. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation.

    PubMed

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  20. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  1. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  2. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  3. Visualization of three-dimensional liquid flow on sieve trays

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling

    2004-03-01

    This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.

  4. Three-dimensional subband coding of video.

    PubMed

    Podilchuk, C I; Jayant, N S; Farvardin, N

    1995-01-01

    We describe and show the results of video coding based on a three-dimensional (3-D) spatio-temporal subband decomposition. The results include a 1-Mbps coder based on a new adaptive differential pulse code modulation scheme (ADPCM) and adaptive bit allocation. This rate is useful for video storage on CD-ROM. Coding results are also shown for a 384-kbps rate that are based on ADPCM for the lowest frequency band and a new form of vector quantization (geometric vector quantization (GVQ)) for the data in the higher frequency bands. GVQ takes advantage of the inherent structure and sparseness of the data in the higher bands. Results are also shown for a 128-kbps coder that is based on an unbalanced tree-structured vector quantizer (UTSVQ) for the lowest frequency band and GVQ for the higher frequency bands. The results are competitive with traditional video coding techniques and provide the motivation for investigating the 3-D subband framework for different coding schemes and various applications. PMID:18289965

  5. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  6. A three dimensional probe positionera)

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sun, X.; Dorf, L.; Furno, I.; Lapenta, G.

    2008-10-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  7. A three dimensional probe positioner.

    PubMed

    Intrator, T; Sun, X; Dorf, L; Furno, I; Lapenta, G

    2008-10-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  8. A three dimensional probe positioner

    SciTech Connect

    Intrator, T.; Sun, X.; Furno, I.; Dorf, L.; Lapenta, G.

    2008-10-15

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a 'wobbly' probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  9. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  10. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  11. Three-dimensional architectural and structural analysis--a transition in concept and design from Delaire's cephalometric analysis.

    PubMed

    Lee, S-H; Kil, T-J; Park, K-R; Kim, B C; Kim, J-G; Piao, Z; Corre, P

    2014-09-01

    The aim of this study was to present a systematic sequence for three-dimensional (3D) measurement and cephalometry, provide the norm data for computed tomography-based 3D architectural and structural cephalometric analysis, and validate the 3D data through comparison with Delaire's two-dimensional (2D) lateral cephalometric data for the same Korean adults. 2D and 3D cephalometric analyses were performed for 27 healthy subjects and the measurements of both analyses were then individually and comparatively analyzed. Essential diagnostic tools for 3D cephalometry with modified definitions of the points, planes, and measurements were set up based on a review of the conceptual differences between two and three dimensions. Some 2D and 3D analysis results were similar, though significant differences were found with regard to craniofacial angle (C1-F1), incisal axis angles, cranial base length (C2), and cranial height (C3). The discrepancy in C2 and C3 appeared to be directly related to the magnification of 2D cephalometric images. Considering measurement discrepancies between 2D and 3D Delaire's analyses due to differences in concept and design, 3D architectural and structural analysis needs to be conducted based on norms and a sound 3D basis for the sake of its accurate application and widespread adoption.

  12. Three-dimensional fast imaging employing steady-state acquisition MRI and its diagnostic value for lumbar foraminal stenosis.

    PubMed

    Nemoto, Osamu; Fujikawa, Akira; Tachibana, Atsuko

    2014-07-01

    The aim of this study was to evaluate the usefulness of three-dimensional (3D) fast imaging employing steady-state acquisition (3D FIESTA) in the diagnosis of lumbar foraminal stenosis (LFS). Fifteen patients with LFS and 10 healthy volunteers were studied. All patients met the following criteria: (1) single L5 radiculopathy without compressive lesion in the spinal canal, (2) pain reproduction during provocative radiculography, and (3) improvement of symptoms after surgery. We retrospectively compared the symptomatic nerve roots to the asymptomatic nerve roots on fast spin-echo (FSE) T1 sagittal, FSE T2 axial and reconstituted 3D FIESTA images. The κ values for interobserver agreement in determining the presence of LFS were 0.525 for FSE T1 sagittal images, 0.735 for FSE T2 axial images, 0.750 for 3D FIESTA sagittal, 0.733 for axial images, and 0.953 for coronal images. The sensitivities and specificities were 60 and 86 % for FSE T1 sagittal images, 27 and 91 % for FSE T2 axial images, 60 and 97 % for 3D FIESTA sagittal images, 60 and 94 % for 3D FIESTA axial images, and 100 and 97 % for 3D FIESTA coronal images, respectively. 3D FIESTA can provide more reliable and additional information for the running course of lumbar nerve root, compared with conventional magnetic resonance imaging. Particularly, use of 3D FIESTA coronal images enables accurate diagnosis for LFS.

  13. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    PubMed

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-01

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.

  14. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data

    PubMed Central

    Borotikar, Bhushan S.; Sipprell, William H.; Wible, Emily E.; Sheehan, Frances T.

    2012-01-01

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47mm–0.77mm for the patella and femur and 0.68mm–0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy < 0.33mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. PMID:22284428

  15. Real-time three-dimensional fingerprint acquisition via a new photometric stereo means

    NASA Astrophysics Data System (ADS)

    Xie, Wuyuan; Song, Zhan; Chung, Ronald

    2013-10-01

    A real-time means for three-dimensional (3-D) fingerprint acquisition is presented. The system is configured with only one camera and some white light-emitting diode lamps. The reconstruction is performed based on the principle of photometric stereo. In the algorithm, a two-layer Hanrahan-Krueger model is proposed to represent the finger surface reflectance property instead of the traditional Lambert model. By the proposed lighting direction calibration and the nonuniform lighting correction methods, surface normal at each image point can be accurately estimated by solving a nonlinear optimization problem. Finally, a linear normal transformation is implemented for the enhancement of 3-D models. The experiments are implemented with real finger and palm prints, and the results are also compared with traditional means to show its feasibility and improvement in the reconstruction accuracy.

  16. Object shape classification and scene shape representation for three-dimensional laser scanned outdoor data

    NASA Astrophysics Data System (ADS)

    Ning, Xiaojuan; Wang, Yinghui; Zhang, Xiaopeng

    2013-02-01

    Shape analysis of a three-dimensional (3-D) scene is an important issue and could be widely used for various applications: city planning, robot navigation, virtual tourism, etc. We introduce an approach for understanding the primitive shape of the scene to reveal the semantic scene shape structure and represent the scene using shape elements. The scene objects are labeled and recognized using the geometric and semantic features for each cluster, which is based on the knowledge of scene. Furthermore, the object in scene with a different primitive shape could also be classified and fitted using the Gaussian map of the segmented scene. We demonstrate the presented approach on several complex scenes from laser scanning. According to the experimental result, the proposed method can accurately represent the geometric structure of the 3-D scene.

  17. Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating

    SciTech Connect

    Cao, Miaomiao Li, Ke; Liu, Wenxin Wang, Yong

    2014-09-14

    A dielectric loaded rectangular grating for Smith-Purcell devices is proposed in this paper. Regarding the electron beam as a moving plasma dielectric, a three dimensional (3D) linear theory of beam-wave interaction is developed. The first and second order growth rates are calculated, which are obtained by expanding hot dispersion equation at synchronous point. The results show that the cutoff frequency is affected by grating width. The dispersion curve becomes flatter and shifts towards lower frequency by loading dielectric in grooves. The simulation results, which are obtained by a 3D particle-in-cell code, are in good agreement with theoretical calculations. Compared the first and second order growth rate, it shows that the discrepancy is large when beam parameters are selected with high values. In this case, it is necessary to apply the second order growth rate, which can accurately describe the process of beam-wave interaction.

  18. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  19. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  20. Comparison of simulated human dermal bitemarks possessing three-dimensional attributes to suspected biters using a proprietary three-dimensional comparison.

    PubMed

    Martin-de-las-Heras, Stella; Tafur, Daniel

    2009-09-10

    The infliction of a bite is a four-dimensional space-time event that is ideally analyzed with three-dimensional (3-D) technology. Comparison of 2-D images (photographs) of a bitemark with a 3-D replica of a suspect's dentition is challenging. The authors present a technique that produces 3-D images of indented marks and dentitions for comparisons. Study models and corresponding dental-wax bites were digitized by 3-D scanning, and comparison overlays were generated using DentalPrint software. The effectiveness of the method was analyzed by determining the area under receiver operating characteristic (ROC) curve and the sensitivity, specificity and 95% confidence interval (CI) for each cut-off point. An area under the ROC curve of 0.953 (SE=0.029; 95% CI=0.893-0.985) and high sensitivity and specificity values were obtained for 104 comparisons made by an expert examiner, who correctly identified 92.3% of matching dentitions and 98.7% of non-matching dentitions. This technique can be considered a highly accurate method of bitemark analysis, although indentations must be present in the injury, limiting the cases that can be resolved. A comparative study of the same dentitions using 2-D bitemark photography confirmed the superiority of the new approach. PMID:19505780

  1. Porcelain three-dimensional shape reconstruction and its color reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyang; Wu, Haibin; Yang, Xue; Yu, Shuang; Wang, Beiyi; Chen, Deyun

    2013-01-01

    In this paper, structured light three-dimensional measurement technology was used to reconstruct the porcelain shape, and further more the porcelain color was reconstructed. So the accurate reconstruction of the shape and color of porcelain was realized. Our shape measurement installation drawing is given. Because the porcelain surface is color complex and highly reflective, the binary Gray code encoding is used to reduce the influence of the porcelain surface. The color camera was employed to obtain the color of the porcelain surface. Then, the comprehensive reconstruction of the shape and color was realized in Java3D runtime environment. In the reconstruction process, the space point by point coloration method is proposed and achieved. Our coloration method ensures the pixel corresponding accuracy in both of shape and color aspects. The porcelain surface shape and color reconstruction experimental results completed by proposed method and our installation, show that: the depth range is 860 ˜ 980mm, the relative error of the shape measurement is less than 0.1%, the reconstructed color of the porcelain surface is real, refined and subtle, and has the same visual effect as the measured surface.

  2. Dynamical study of the three dimensional Saffman-Taylor problem

    NASA Astrophysics Data System (ADS)

    Nicoli, Matteo; Henry, Hervé.; Plapp, Mathis

    2011-11-01

    The mathematical generalization of the Saffman-Taylor problem to three spatial dimensions is straightforward but, nevertheless, it has not been widely studied. Recently, Levine and Tu [Phys. Rev. A 45, 1044 (1992)] solved numerically the problem in the axisymmetric tube geometry finding several solution branches which merge for positive values of the rescaled surface tension parameter γ (of the order of 10-3). Unlike the two dimensional case, it seems that for this geometry does not exists any axisymmetric solution below this threshold. We have developed a phase-field model of two viscous flows to investigate the dynamics of the 3D Saffman-Taylor problem in the regime of small γ . Full three dimensional simulations in a channel with square section and two dimensional axisymmetric simulations in the tube geometry show that the growing finger undergoes a Plateau-Rayleigh instability leading to pinch-off at the finger tail. Through the linear stability analysis of the tube solution in the axisymmetric geometry, we show that the solutions found by Levine and Tu are unstable for any value of γ . Our phase-field model reproduces accurately this linear prediction and allows to study the influence of the finger tip on the pinch-off velocity. Moreover, we observe that the interface between the two fluids undergoes a tip splitting instability for γ < 6 . 5 ×10-3 , spoiling the stability of the Saffman-Taylor finger.

  3. Three Dimensional Simulation of the Baneberry Nuclear Event

    SciTech Connect

    Lomov, I

    2003-07-16

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  4. A comparative study of the quantitative accuracy of three-dimensional reconstructions of spinal cord from serial histological sections.

    PubMed

    Duerstock, B S; Bajaj, C L; Borgens, R B

    2003-05-01

    We evaluated the accuracy of estimating the volume of biological soft tissues from their three-dimensional (3D) computer wireframe models, reconstructed from histological data sets obtained from guinea-pig spinal cords. We compared quantification from two methods of three-dimensional surface reconstruction to standard quantitative techniques, Cavalieri method employing planimetry and point counting and Geometric Best-Fitting. This involved measuring a group of spinal cord segments and test objects to evaluate the accuracy of our novel quantification approaches. Once a quantitative methodology was standardized there was no statistical difference in volume measurement of spinal segments between quantification methods. We found that our 3D surface reconstructions' ability to model precisely actual soft tissues provided an accurate volume quantification of complex anatomical structures as standard approaches of Cavalieri estimation and Geometric Best-Fitting. Additionally, 3D reconstruction quantitatively interrogates and three-dimensionally images spinal cord segments and obscured internal pathological features with approximately the same effort required for standard quantification alone.

  5. Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography

    PubMed Central

    Addetia, Karima; Yamat, Megan; Mediratta, Anuj; Medvedofsky, Diego; Patel, Mita; Ferrara, Preston; Mor-Avi, Victor; Lang, Roberto M.

    2016-01-01

    Background Accurate identification of tricuspid valve (TV) leaflets by two-dimensional (2D) transthoracic echocardiography is difficult because of variability in the intersection between the imaging plane and leaflets. Using information obtained from multiplanar reconstruction (MPR) of three-dimensional (3D) data sets, the investigators sought to define “novel” 2D views that would allow targeted interrogation of TV leaflets using 2D transthoracic echocardiography. Methods Images of the TV in the standard 2D views (apical four chamber, right ventricular focused, right ventricular inflow, and parasternal short axis) and 3D data sets were acquired from the same probe position in 106 adults. Three-dimensional MPR was used to determine which leaflet combination was seen in the 2D image: anterior and septal, anterior and posterior, anterior alone, or posterior and septal. Using this analysis, 2D landmarks were identified to define nonstandard TV views tailored to depict specific leaflets. Two-dimensional images in these views and 3D data sets were then prospectively collected in 54 additional patients. Three independent readers analyzed these 2D views to determine TV leaflet combinations, and their interpretation was compared with 3D MPR–derived reference. Results Three-dimensional MPR views made it possible to define six nonstandard 2D views on the basis of anatomic clues and landmarks, which consistently depicted all the aforementioned leaflet combinations. When these six views were prospectively tested, the agreement of TV leaflet identification against 3D MPR was excellent (κ = 0.88, κ = 0.93, and κ = 0.98). Conclusion The nonstandard 2D views defined in this study allow accurate TV leaflet identification and may thus be useful when localization of TV leaflet pathology is clinically important. (J Am Soc Echocardiogr 2016;29:74–82.) PMID:26427537

  6. New developments in: three-dimensional planning for orthognathic surgery.

    PubMed

    Popat, Hashmat; Richmond, Stephen; Drage, Nicholas A

    2010-03-01

    The limitations of plain film radiographs are well documented and the recent introduction of cone beam computed tomography (CBCT) imaging has been a breakthrough in enabling three-dimensional (3D) visualization of the bony skeleton and dentition. There are many reported applications for CBCT in the field of orthodontics and maxillofacial surgery, including the localization of impacted teeth and implant site assessment. More recently, by augmenting CBCT volumes of the maxilla, mandible and dentition, a virtual 3D patient can be created, which can allow planning of orthognathic surgery entirely in 3D. A commercially available software package for 3D orthognathic planning (Maxilim(R), Medicim NV, Belgium) is independently reviewed, familiarizing the reader with the technique for creating a virtual 3D patient, outlining the advantages and disadvantages of the software and concluding on the feasibility of its routine use in clinical practice.

  7. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    PubMed

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  8. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    PubMed

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed. PMID:23164720

  9. Three-dimensional magnetic resonance cardiac imaging shows initial promise

    SciTech Connect

    Not Available

    1988-04-15

    Three-dimensional magnetic resonance imaging (3-D MRI) of the heart is already receiving encouraging reviews from heart surgeons, says Michael Vannier, MD, an associate professor of radiology at Washington University School of Medicine, St. Louis. In fact, the demand for his group's 3-D images is becoming overwhelming, Vannier says. So far, the group has used 3-D MRI to evaluate congenital heart disease. The advantage of the 3-D system is that, even to an untrained eye, anomalies are apparent and the images can even be animated. Many of the patients are infants, who are sedated while the images are acquired. When the information is combined, the averaged image produced represents a slice about 5 mm thick. The computer then stacks a number of those images together to make the 3-D image. Total scanning takes about one hour.

  10. Three-dimensional, three-component wall-PIV

    NASA Astrophysics Data System (ADS)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  11. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired