Science.gov

Sample records for accurate three-dimensional models

  1. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  2. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  3. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  4. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions. PMID:21622076

  5. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512

  6. Accurate complex scaling of three dimensional numerical potentials

    SciTech Connect

    Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan; Deutsch, Thierry

    2013-05-28

    The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.

  7. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    SciTech Connect

    Guo, En-Yu; Chawla, Nikhilesh; Jing, Tao; Torquato, Salvatore; Jiao, Yang

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  8. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  9. Three-dimensional modeling of ovarian cancer

    PubMed Central

    Erin, White; Hilary, Kenny; Ernst, Lengyel

    2015-01-01

    New models for epithelial ovarian cancer initiation and metastasis are required to obtain a mechanistic understanding of the disease and to develop new therapeutics. Modeling ovarian cancer however is challenging as a result of the genetic heterogeneity of the malignancy, the diverse pathology, the limited availability of human tissue for research, the atypical mechanisms of metastasis, and because the origin is unclear. Insights into the origin of high-grade serous ovarian carcinomas and mechanisms of metastasis have resulted in the generation of novel three-dimensional (3D) culture models that better approximate the behavior of the tumor cells in vivo than prior two-dimensional models. The 3D models aim to recapitulate the tumor microenvironment, which has a critical role in the pathogenesis of ovarian cancer. Ultimately, findings using models that accurately reflect human ovarian cancer biology are likely to translate into improved clinical outcomes. In this review we discuss the design of new 3D culture models of ovarian cancer primarily using human cells, key studies in which these models have been applied, current limitations, and future applications. PMID:25034878

  10. Three-dimensional pancreas organogenesis models.

    PubMed

    Grapin-Botton, A

    2016-09-01

    A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129

  11. Three-dimensional model of lignin structure

    SciTech Connect

    Jurasek, L.

    1995-12-01

    An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.

  12. A three-dimensional asymmetric magnetopause model

    NASA Astrophysics Data System (ADS)

    Lin, R. L.; Zhang, X. X.; Liu, S. Q.; Wang, Y. L.; Gong, J. C.

    2010-04-01

    A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus Pd + Pm is a bit less than -1/6, the northward IMF Bz almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how Pd + Pm compresses the magnetopause, how the southward IMF Bz erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations.

  13. Volumetric techniques: three-dimensional midface modeling

    PubMed Central

    Pierzchała, Ewa; Placek, Waldemar

    2014-01-01

    Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354

  14. Modelling of Three-Dimensional Nanographene.

    PubMed

    Mathioudakis, Christos; Kelires, Pantelis C

    2016-12-01

    Monte Carlo simulations and tight-binding calculations shed light on the properties of three-dimensional nanographene, a material composed of interlinked, covalently-bonded nanoplatelet graphene units. By constructing realistic model networks of nanographene, we study its structure, mechanical stability, and optoelectronic properties. We find that the material is nanoporous with high specific surface area, in agreement with experimental reports. Its structure is characterized by randomly oriented and curved nanoplatelet units which retain a high degree of graphene order. The material exhibits good mechanical stability with a formation energy of only ∼0.3 eV/atom compared to two-dimensional graphene. It has high electrical conductivity and optical absorption, with values approaching those of graphene. PMID:26983431

  15. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  16. A three-dimensional human walking model

    NASA Astrophysics Data System (ADS)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  17. Three-dimensional modeling equatorial spread F

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Krall, J.; Joyce, G.

    2008-12-01

    Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR

  18. An Accurate von Neumann's Law for Three-Dimensional Foams

    SciTech Connect

    Hilgenfeldt, Sascha; Kraynik, Andrew M.; Koehler, Stephan A.; Stone, Howard A.

    2001-03-19

    The diffusive coarsening of 2D soap froths is governed by von Neumann's law. A statistical version of this law for dry 3D foams has long been conjectured. A new derivation, based on a theorem by Minkowski, yields an explicit analytical von Neumann's law in 3D which is in very good agreement with detailed simulations and experiments. The average growth rate of a bubble with F faces is shown to be proportional to F{sup 1/2} for large F , in contrast to the conjectured linear dependence. Accounting for foam disorder in the model further improves the agreement with data.

  19. Three-dimensional ring current decay model

    NASA Astrophysics Data System (ADS)

    Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-06-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995

  20. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  1. Three-Dimensional Tectonic Model of Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Francis; Kuo-Chen, Hao; McIntosh, kirk

    2014-05-01

    We built a three-dimensional model of the interactions of the Eurasian plate (EUP) the Philippine Sea plate (PSP) and the collisional orogen, in and around Taiwan. The model is based on the results of comprehensive, milt-prong TAIGER experiments on land and at sea as well as other existing data. The clockwise rotating PSP moves NWW at ~8 cm/year relative to the Taiwan Strait. Under northern Taiwan the northward subducting PSP terminates near the edge of eastern Taiwan and collides with EUP at in increasing depth toward the north. Mountain building due to collision of EUP and PSP tapers off where the PSP goes below about 60 km. The PSP in the asthenosphere continues to advance NWW-ward. In central Taiwan PSP and EUP collide fully, lithosphere against lithosphere in the upper 60 km or so, leading to significant thickening of the crust to about 55 km on the Central Range side and about 35 km on the Coastal Range/Arc side. In between these "roots" a high velocity rise is found. Although a clear, steep dipping high velocity zone under Central Taiwan is detected, it is found not to be associated with seismicity. In southern Taiwan, mountains form over well-defined, seismically active subduction zone. The upper mantle high velocity anomaly appears to be continues with that under central Taiwan, but here an inclined seismic zone is found. In this area the Luzon Arc has not yet encountered the continental shelf - thus arc-continental collision has not yet occurred. The orogeny here may involve inversion of the subducted South China Sea lithosphere, rifted Eurasian continent, and/or escape of continental material from central Taiwan. GPS and Leveling data reflect well the 3-D plate collision model.

  2. Accurate three-dimensional pose recognition from monocular images using template matched filtering

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Diaz-Ramirez, Victor H.; Kober, Vitaly; Montemayor, Antonio S.; Pantrigo, Juan J.

    2016-06-01

    An accurate algorithm for three-dimensional (3-D) pose recognition of a rigid object is presented. The algorithm is based on adaptive template matched filtering and local search optimization. When a scene image is captured, a bank of correlation filters is constructed to find the best correspondence between the current view of the target in the scene and a target image synthesized by means of computer graphics. The synthetic image is created using a known 3-D model of the target and an iterative procedure based on local search. Computer simulation results obtained with the proposed algorithm in synthetic and real-life scenes are presented and discussed in terms of accuracy of pose recognition in the presence of noise, cluttered background, and occlusion. Experimental results show that our proposal presents high accuracy for 3-D pose estimation using monocular images.

  3. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  4. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  5. An interactive three-dimensional nose model for rhinosurgery.

    PubMed

    Heppt, Werner Johannes; Godbersen, Heinrich; Hildebrandt, Thomas

    2013-04-01

    The motivation behind the development of a new interactive three-dimensional (3D) model of the cartilaginous and bony framework of the nose originated from the significant demand for sophisticated patient communication and for accurate documentation of the surgical steps in rhinoplasty. Basically, the model consists of three features--the viewer function, the freehand function, and default applications--enabling the surgeon to replicate fundamental compilations of findings and to graphically document operative measures easily. The user is able to save all graphics in two-dimensional format and allocate them to patient files. Because the application was designed to be sufficiently universal without being too complex, the 3D model provides a well-balanced mix between freehand and default functions, representing the consistent development of currently available tools. PMID:23564244

  6. Three-dimensional model for fusion processes

    SciTech Connect

    Olson, A.P.

    1984-01-01

    Active galactic nuclei (AGN) emit unusual spectra of radiation which is interpreted to signify extreme distance, extreme power, or both. The status of AGNs was recently reviewed by Balick and Heckman. It seems that the greatest conceptual difficulty with understanding AGNs is how to form a coherent phenomenological model of their properties. What drives the galactic engine. What and where are the mass-flows of fuel to this engine. Are there more than one engine. Do the engines have any symmetry properties. Is observed radiation isotropically emitted from the source. If it is polarized, what causes the polarization. Why is there a roughly spherical cloud of ionized gas about the center of our own galaxy, the Milky Way. The purpose of this paper is to discuss a new model, based on fusion processes which are not axisymmetric, uniform, isotropic, or even time-invariant. Then, the relationship to these questions will be developed. A unified model of fusion processes applicable to many astronomical phenomena will be proposed and discussed.

  7. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

    PubMed

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697

  8. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

  9. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  10. Three-dimensional modeling of the plasma arc in arc welding

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hu, J.; Tsai, H. L.

    2008-11-01

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  11. Three dimensional geometric modeling of processing-tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...

  12. THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL

    EPA Science Inventory

    We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...

  13. Interactive Multimedia and Concrete Three-Dimensional Modelling.

    ERIC Educational Resources Information Center

    Baxter, J. H.; Preece, Peter F. W.

    1999-01-01

    Compares a multimedia package for teaching about the phases of the moon to grade 8 (12-year-old) students with a conventional three-dimensional modeling approach. Results show both methods were equally effective in terms of student learning, for male and female students, and prior computer experience was not a factor in multimedia use. (Author/LRW)

  14. Three-dimensional hydrodynamic modeling of a bubbling fluidized bed

    SciTech Connect

    Gamwo, I.K.; Soong, Y.; Gidaspow, D.; Lyczkowski, R.W.

    1995-12-31

    A well-posed three-dimensional model for bed dynamics was developed starting from an ill-posed model. The new model has predicted a roughly-spheroidal bubble shape and computed porosity distributions consistent with experimental observations with no disturbing ``fountain`` as predicted by the earlier model. The model can be applied to a variety of gas-solids flows of practical interest such as fluidization, pneumatic conveying, and two-phase jets, as well as liquid-solids flows.

  15. Three-dimensional models. [For orbital celestial mechanics

    SciTech Connect

    Hunter, C. )

    1990-06-01

    The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.

  16. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  17. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  18. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    SciTech Connect

    and Ahmad Pesaran, Gi-Heon Kim

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data from accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.

  19. Three-dimensional shape measurement with a fast and accurate approach

    SciTech Connect

    Wang Zhaoyang; Du Hua; Park, Seungbae; Xie Huimin

    2009-02-20

    A noncontact, fast, accurate, low-cost, broad-range, full-field, easy-to-implement three-dimensional (3D) shape measurement technique is presented. The technique is based on a generalized fringe projection profilometry setup that allows each system component to be arbitrarily positioned. It employs random phase-shifting, multifrequency projection fringes, ultrafast direct phase unwrapping, and inverse self-calibration schemes to perform 3D shape determination with enhanced accuracy in a fast manner. The relative measurement accuracy can reach 1/10,000 or higher, and the acquisition speed is faster than two 3D views per second. The validity and practicability of the proposed technique have been verified by experiments. Because of its superior capability, the proposed 3D shape measurement technique is suitable for numerous applications in a variety of fields.

  20. Modeling Cometary Coma with a Three Dimensional, Anisotropic Multiple Scattering Distributed Processing Code

    NASA Technical Reports Server (NTRS)

    Luchini, Chris B.

    1997-01-01

    Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.

  1. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  2. Optical computed tomography of radiochromic gels for accurate three-dimensional dosimetry

    NASA Astrophysics Data System (ADS)

    Babic, Steven

    In this thesis, three-dimensional (3-D) radiochromic Ferrous Xylenol-orange (FX) and Leuco Crystal Violet (LCV) micelles gels were imaged by laser and cone-beam (Vista(TM)) optical computed tomography (CT) scanners. The objective was to develop optical CT of radiochromic gels for accurate 3-D dosimetry of intensity-modulated radiation therapy (IMRT) and small field techniques used in modern radiotherapy. First, the cause of a threshold dose response in FX gel dosimeters when scanned with a yellow light source was determined. This effect stems from a spectral sensitivity to multiple chemical complexes that are at different dose levels between ferric ions and xylenol-orange. To negate the threshold dose, an initial concentration of ferric ions is needed in order to shift the chemical equilibrium so that additional dose results in a linear production of a coloured complex that preferentially absorbs at longer wavelengths. Second, a low diffusion leuco-based radiochromic gel consisting of Triton X-100 micelles was developed. The diffusion coefficient of the LCV micelle gel was found to be minimal (0.036 + 0.001 mm2 hr-1 ). Although a dosimetric characterization revealed a reduced sensitivity to radiation, this was offset by a lower auto-oxidation rate and base optical density, higher melting point and no spectral sensitivity. Third, the Radiological Physics Centre (RPC) head-and-neck IMRT protocol was extended to 3-D dose verification using laser and cone-beam (Vista(TM)) optical CT scans of FX gels. Both optical systems yielded comparable measured dose distributions in high-dose regions and low gradients. The FX gel dosimetry results were crossed checked against independent thermoluminescent dosimeter and GAFChromicRTM EBT film measurements made by the RPC. It was shown that optical CT scanned FX gels can be used for accurate IMRT dose verification in 3-D. Finally, corrections for FX gel diffusion and scattered stray light in the Vista(TM) scanner were developed to

  3. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  4. Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic.

    PubMed

    Matsumoto, Jane S; Morris, Jonathan M; Foley, Thomas A; Williamson, Eric E; Leng, Shuai; McGee, Kiaran P; Kuhlmann, Joel L; Nesberg, Linda E; Vrtiska, Terri J

    2015-01-01

    Radiologists will be at the center of the rapid technologic expansion of three-dimensional (3D) printing of medical models, as accurate models depend on well-planned, high-quality imaging studies. This article outlines the available technology and the processes necessary to create 3D models from the radiologist's perspective. We review the published medical literature regarding the use of 3D models in various surgical practices and share our experience in creating a hospital-based three-dimensional printing laboratory to aid in the planning of complex surgeries. PMID:26562234

  5. Three-dimensional "Mercedes-Benz" model for water.

    PubMed

    Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility. PMID:19673572

  6. Three-dimensional ``Mercedes-Benz'' model for water

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  7. Fiddler crabs accurately measure two-dimensional distance over three-dimensional terrain.

    PubMed

    Walls, Michael L; Layne, John E

    2009-10-01

    Foraging fiddler crabs (Uca spp.) monitor the location of, and are able to return to, their burrows by employing path integration. This requires them to accurately measure both the directions and distances of their locomotory movements. Even though most fiddler crabs inhabit relatively flat terrain, they must cope with vertical features of their environment, such as sloping beaches, mounds and shells, which may represent significant obstacles. To determine whether fiddler crabs can successfully perform path integration among such three-dimensional obstacles, we tested their ability to measure distance while we imposed a vertical detour. By inserting a large hill in the homeward path of foraging crabs we show that fiddler crabs can cope with vertical detours: they accurately travel the correct horizontal distance, despite the fact that the shape of the hill forces them to change their gait from what would be used on flat ground. Our results demonstrate a flexible path integrator capable of measuring, and either integrating or discarding, the vertical dimension. PMID:19801428

  8. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  9. Three-dimensional nanojunction device models for photovoltaics

    NASA Astrophysics Data System (ADS)

    Wangperawong, Artit; Bent, Stacey F.

    2011-06-01

    A model is developed to describe the behavior of three-dimensionally nanostructured photovoltaic devices, distinguishing between isolated radial pn junctions and interdigitated pn junctions. We examine two specific interdigitated architectures, the point-contact nanojunction and the extended nanojunction, which are most relevant to experimental devices reported to date but have yet to be distinguished in the field. The model is also applied to polycrystalline CdTe devices with inverted grain boundaries. We demonstrate that for CdTe/CdS solar cells using low-quality materials, the efficiency of the extended nanojunction geometry is superior to other designs considered.

  10. Three-dimensional thermal modeling of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Lee, J.; Choi, K. W.; Yao, N. P.; Christianson, C. C.

    1985-10-01

    A generic three-dimensional thermal model was developed for analyzing the thermal behavior of electric-vehicle batteries. The model calculates temperature distribution and excursion of a battery during discharge, change, and open circuit. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation on the temperature distribution in a battery. The three-dimensional feature of the model permits incorporation of various asymmetric boundary conditions; thus the effects of cell orientation and packaging on thermal behavior can be analyzed for a multiple-cell battery pack. Various modes of boundary heat transfer such as radiation, insulation, and natural and forced convections were also included in the model. Model predictions agreed well with the temperature distributions measured in nickel/iron batteries. Application of the thermal model to a closely packed 330-Ah module of five cells indicated that excessive temperature rise will occur upon discharge. Forced air convection is not effective for cooling the module.

  11. An algebraic turbulence model for three-dimensional viscous flows

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Giel, P. W.; Boyle, R. J.

    1993-01-01

    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.

  12. A three-dimensional spin-diffusion model for micromagnetics

    PubMed Central

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  13. A three-dimensional spin-diffusion model for micromagnetics.

    PubMed

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  14. A three-dimensional spin-diffusion model for micromagnetics

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-10-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation.

  15. Modeling of three-dimensional mixing and reacting ducted flows

    NASA Technical Reports Server (NTRS)

    Zelazny, S. W.; Baker, A. J.; Rushmore, W. L.

    1976-01-01

    A computer code, based upon a finite element solution algorithm, was developed to solve the governing equations for three-dimensional, reacting boundary region, and constant area ducted flow fields. Effective diffusion coefficients are employed to allow analyses of turbulent, transitional or laminar flows. The code was used to investigate mixing and reacting hydrogen jets injected from multiple orifices, transverse and parallel to a supersonic air stream. Computational results provide a three-dimensional description of velocity, temperature, and species-concentration fields downstream of injection. Experimental data for eight cases covering different injection conditions and geometries were modeled using mixing length theory (MLT). These results were used as a baseline for examining the relative merits of other mixing models. Calculations were made using a two-equation turbulence model (k+d) and comparisons were made between experiment and mixing length theory predictions. The k+d model shows only a slight improvement in predictive capability over MLT. Results of an examination of the effect of tensorial transport coefficients on mass and momentum field distribution are also presented. Solutions demonstrating the ability of the code to model ducted flows and parallel strut injection are presented and discussed.

  16. Accurate three-dimensional shape and deformation measurement at microscale using digital image correlation.

    PubMed

    Ren, Maodong; Liang, Jin; Li, Leigang; Wei, Bin; Wang, Lizhong; Tang, Zhengzong

    2015-07-01

    Based on stereomicroscope and three-dimensional (3D) digital image correlation (DIC) method, a non-contact measurement technique is presented to measure the 3D shape and deformation data on miniature specimens and the corresponding microscopic measurement system is developed. A pair of cameras is mounted on a binocular stereo light microscope to acquire pairing micrographs from two different optical paths of a specimen surface spraying with speckle pattern. Considering complex optical paths and high magnification, an accurate equivalent relative calibration method, combining a priori warping functions, is proposed to correct image distortions and optimize the intrinsic and extrinsic parameters of stereomicroscope. Then, a fast one-dimensional synchronous stereo matching method, based on the DIC method and image rectification technique, is proposed to search for discontinuous corresponding points in the pairing micrographs. Finally, the 3D shape is reconstructed from the corresponding points, while the temporal micrographs acquired before and after deformation are employed to determine the full-field deformation. The effectiveness and accuracy of the presented microscale measurement technique are verified by a series of experiments. PMID:26233412

  17. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues.

    PubMed

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Chen, Zhidong; Chen, Duo; Duan, Wei; Yan, Binbin; Yu, Chongxiu; Xu, Daxiong

    2015-10-01

    A three-dimensional (3D) display with smooth motion parallax and large viewing angle is demonstrated, which is based on a microlens array and a coded two-dimensional (2D) image on a 50 inch liquid crystal device (LCD) panel with the resolution of 3840 × 2160. Combining with accurate depth cues expressing, the flipping images of the traditional integral imaging (II) are eliminated, and smooth motion parallax can be achieved. The image on the LCD panel is coded as an elemental image packed repeatedly, and the depth cue is determined by the repeated period of elemental image. To construct the 3D image with complex depth structure, the varying period of elemental image is required. Here, the detailed principle and coding method are presented. The shape and the texture of a target 3D image are designed by a structure image and an elemental image, respectively. In the experiment, two groups of structure images and their corresponding elemental images are utilized to construct a 3D scene with a football in a green net. The constructed 3D image exhibits obviously enhanced 3D perception and smooth motion parallax. The viewing angle is 60°, which is much larger than that of the traditional II. PMID:26480110

  18. Modelling Three Dimensional, Tape Spring Based, Space Deployable Structures

    NASA Astrophysics Data System (ADS)

    Walker, S. J. I.; Kiley, A.; Aglietti, G. S.; Cook, A.; McDonald, A. D.

    2012-07-01

    Deployable structures are required for many satellite operations, to deploy booms for communications or area deployment for power generation, and many sophisticated mechanisms have been developed for these types of structures. However, tape springs, defined as thin metallic strips with an initially curved cross- section, are an attractive structural solution and hinge mechanism for satellite deployable structures because of their low mass, low cost and general simplicity. They have previously been used to deploy booms and array panels in various configurations that incorporate small two-dimensional tape hinges, but they also have the potential to be used in greater numbers to create larger, more geometrically complicated deployable structures. This publication investigates the applicability of using a simplified modelling approach to predict the deployment dynamics of a three dimensional deployable structure that uses a significant quantity of tape springs. This work builds on previous studies which have focused on the analysis of two dimensional tape spring based structures. The configuration being investigated consists of four walls mounted as a square. Each wall has three fold lines allowing the structure to fold down in a concertina style and each fold line is populated by a series of tape spring hinges mounted in pairs. A total number of around 600 individual tape springs elements are used across the 12 fold lines. A computationally efficient method of simulating the three dimensional deployable structure was studied based on a finite element explicit analysis. Equivalent static and dynamic experimental testing on a breadboard structure is presented allowing a direct comparison of the theoretical and experimental data. It was concluded that this simplified analysis approach is capable of modelling the structural dynamics in the deployment direction for three dimensional structural deployments. As a result, the use of this approach could significantly reduce

  19. Assessment of higher order turbulence models for complex two- and three-dimensional flowfields

    NASA Technical Reports Server (NTRS)

    Menter, Florian R.

    1992-01-01

    A numerical method is presented to solve the three-dimensional Navier-Stokes equations in combination with a full Reynolds-stress turbulence model. Computations will be shown for three complex flowfields. The results of the Reynolds-stress model will be compared with those predicted by two different versions of the k-omega model. It will be shown that an improved version of the k-omega model gives as accurate results as the Reynolds-stress model.

  20. On multiscale approaches to three-dimensional modelling of morphogenesis

    PubMed Central

    Chaturvedi, R; Huang, C; Kazmierczak, B; Schneider, T; Izaguirre, J.A; Glimm, T; Hentschel, H.G.E; Glazier, J.A; Newman, S.A; Alber, M.S

    2005-01-01

    In this paper we present the foundation of a unified, object-oriented, three-dimensional biomodelling environment, which allows us to integrate multiple submodels at scales from subcellular to those of tissues and organs. Our current implementation combines a modified discrete model from statistical mechanics, the Cellular Potts Model, with a continuum reaction–diffusion model and a state automaton with well-defined conditions for cell differentiation transitions to model genetic regulation. This environment allows us to rapidly and compactly create computational models of a class of complex-developmental phenomena. To illustrate model development, we simulate a simplified version of the formation of the skeletal pattern in a growing embryonic vertebrate limb. PMID:16849182

  1. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System

    PubMed Central

    Liu, Taoming; Çavuşoğlu, M. Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  2. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    PubMed

    Liu, Taoming; Cavuşoğlu, M Cenk

    2014-01-01

    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype. PMID:25328804

  3. Three-dimensional face model reproduction method using multiview images

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio

    1991-11-01

    This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.

  4. Star-triangle relation for a three-dimensional model

    SciTech Connect

    Bazhanov, V.V. Institute for High Eenrgy Physics, Protvino, Moscow Region ); Baxter, R.J. Australian National Univ., Canberra )

    1993-06-01

    The solvable sl(n)-chiral Potts model can be interpreted as a three-dimensional lattice model with local interactions. To within a minor modification of the boundary conditions it is an Ising-type model on the body-centered cubic lattice with two- and three-spin interactions. The corresponding local Boltzmann weights obey a number of simple relations, including a restricted star-triangle relation, which is a modified version of the well-known star-triangle relation appearing in two-dimensional models. It is shown that these relations lead to remarkable symmetry properties of the Boltzmann weight function of an elementary cube of the lattice, related to the spatial symmetry group of the cubic lattice. These symmetry properties allow one to prove the commutativity of the row-to-row transfer matrices, bypassing the tetrahedron relation. The partition function per site for the infinite lattice is calculated exactly. 20 refs., 4 figs.

  5. A three dimensional heart model based on anatomically aligned trusses.

    PubMed

    Witman, S; Gefen, A; Barnea, O

    2007-01-01

    A new approach for modeling and simulating the contraction of the heart is presented. The model is based on anatomical images and accounts for cardiac muscle fibers and their orientation. The heart is modeled as a structure built of trusses, each representing a group of myofibers with calculated deformations using matrix structural analysis. Three elements are represented; these are the contractile cardiac muscle, the elastic passive collagen, and intracardiac blood interacting with the heart's preload and afterload. Incompressibility of each element is preserved. The conduction system is simulated in the model by transferring the activating signal from one element to another or by Purkinje fibers activation. The method was demonstrated using a three-dimensional one-layer geometrical ventricle with orthogonal fibers and with anatomically oriented fibers. PMID:18002551

  6. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  7. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  8. Floquet Weyl phases in a three-dimensional network model

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Zhou, Longwen; Chong, Y. D.

    2016-04-01

    We study the topological properties of three-dimensional (3D) Floquet band structures, which are defined using unitary evolution matrices rather than Hamiltonians. Previously, two-dimensional band structures of this sort have been shown to exhibit anomalous topological behaviors, such as topologically nontrivial zero-Chern-number phases. We show that the band structure of a 3D network model can exhibit Weyl phases, which feature "Fermi arc" surface states like those found in Weyl semimetals. Tuning the network's coupling parameters can induce transitions between Weyl phases and various topologically distinct gapped phases. We identify a connection between the topology of the gapped phases and the topology of Weyl point trajectories in k space. The model is feasible to realize in custom electromagnetic networks, where the Weyl point trajectories can be probed by scattering parameter measurements.

  9. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  10. Three-dimensional micromechanical modeling of voided polymeric materials

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Parks, D. M.; Boyce, M. C.

    2002-02-01

    A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states. The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix. The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality. The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for

  11. Three-dimensional lattice Boltzmann model for compressible flows.

    PubMed

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade. PMID:12935242

  12. Three dimensional CAD model of the Ignitor machine

    NASA Astrophysics Data System (ADS)

    Orlandi, S.; Zanaboni, P.; Macco, A.; Sioli, V.; Risso, E.

    1998-11-01

    defind The final, global product of all the structural and thermomechanical design activities is a complete three dimensional CAD (AutoCAD and Intergraph Design Review) model of the IGNITOR machine. With this powerful tool, any interface, modification, or upgrading of the machine design is managed as an integrated part of the general effort aimed at the construction of the Ignitor facility. ind The activities that are underway, to complete the design of the core of the experiment and that will be described, concern the following: ind - the cryogenic cooling system, ind - the radial press, the center post, the mechanical supports (legs) of the entire machine, ind - the inner mechanical supports of major components such as the plasma chamber and the outer poloidal field coils.

  13. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis.

    PubMed

    Lozito, Thomas P; Alexander, Peter G; Lin, Hang; Gottardi, Riccardo; Cheng, Anthony Wai-Ming; Tuan, Rocky S

    2013-01-01

    Osteoarthritis (OA), the most prevalent form of arthritis, affects up to 15% of the adult population and is principally characterized by degeneration of the articular cartilage component of the joint, often with accompanying subchondral bone lesions. Understanding the mechanisms underlying the pathogenesis of OA is important for the rational development of disease-modifying OA drugs. While most studies on OA have focused on the investigation of either the cartilage or the bone component of the articular joint, the osteochondral complex represents a more physiologically relevant target because the disease ultimately is a disorder of osteochondral integrity and function. In our current investigation, we are constructing an in vitro three-dimensional microsystem that models the structure and biology of the osteochondral complex of the articular joint. Osteogenic and chondrogenic tissue components are produced using adult human mesenchymal stem cells derived from bone marrow and adipose seeded within biomaterial scaffolds photostereolithographically fabricated with defined internal architecture. A three-dimensional-printed, perfusion-ready container platform with dimensions to fit into a 96-well culture plate format is designed to house and maintain the osteochondral microsystem that has the following features: an anatomic cartilage/bone biphasic structure with a functional interface; all tissue components derived from a single adult mesenchymal stem cell source to eliminate possible age/tissue-type incompatibility; individual compartments to constitute separate microenvironment for the synovial and osseous components; accessible individual compartments that may be controlled and regulated via the introduction of bioactive agents or candidate effector cells, and tissue/medium sampling and compositional assays; and compatibility with the application of mechanical load and perturbation. The consequences of mechanical injury, exposure to inflammatory cytokines, and

  14. Digital Moon: A three-dimensional framework for lunar modeling

    NASA Astrophysics Data System (ADS)

    Paige, D. A.; Elphic, R. C.; Foote, E. J.; Meeker, S. R.; Siegler, M. A.; Vasavada, A. R.

    2009-12-01

    The Moon has a complex three-dimensional shape with significant large-scale and small-scale topographic relief. The Moon’s topography largely controls the distribution of incident solar radiation, as well as the scattered solar and infrared radiation fields. Topography also affects the Moon’s interaction with the space environment, its magnetic field, and the propagation of seismic waves. As more extensive and detailed lunar datasets become available, there is an increasing need to interpret and compare them with the results of physical models in a fully three-dimensional context. We have developed a three-dimensional framework for lunar modeling we call the Digital Moon. The goal of this work is to enable high fidelity physical modeling and visualization of the Moon in a parallel computing environment. The surface of the Moon is described by a continuous triangular mesh of arbitrary shape and spatial scale. For regions of limited geographic extent, it is convenient to employ meshes on a rectilinear grid. However for global-scale modeling, we employ a continuous geodesic gridding scheme (Teanby, 2008). Each element in the mesh surface is allowed to have a unique set of physical properties. Photon and particle interactions between mesh elements are modeled using efficient ray tracing algorithms. Heat, mass, photon and particle transfer within each mesh element are modeled in one dimension. Each compute node is assigned a portion of the mesh and collective interactions between elements are handled through network interfaces. We have used the model to calculate lunar surface and subsurface temperatures that can be compared directly with radiometric temperatures measured by the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter. The model includes realistic surface photometric functions based on goniometric measurements of lunar soil samples (Foote and Paige, 2009), and one-dimensional thermal models based on lunar remote sensing and Apollo

  15. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    SciTech Connect

    Miesch, Mark S.; Dikpati, Mausumi

    2014-04-10

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.

  16. Three-dimensional cardiac computational modelling: methods, features and applications.

    PubMed

    Lopez-Perez, Alejandro; Sebastian, Rafael; Ferrero, Jose M

    2015-01-01

    The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases. PMID:25928297

  17. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  18. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  19. Three-dimensional static modeling of the lumbar spine.

    PubMed

    Karadogan, Ernur; Williams, Robert L

    2012-08-01

    This paper presents three-dimensional static modeling of the human lumbar spine to be used in the formation of anatomically-correct movement patterns for a fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The mathematical model incorporates five lumbar vertebrae between the first lumbar vertebra and the sacrum, with dimensions of an average adult human spine. The vertebrae are connected to each other by elastic elements, torsional springs and a spherical joint located at the inferoposterior corner in the mid-sagittal plane of the vertebral body. Elastic elements represent the ligaments that surround the facet joints and the torsional springs represent the collective effect of intervertebral disc which plays a major role in balancing torsional load during upper body motion and the remaining ligaments that support the spinal column. The elastic elements and torsional springs are considered to be nonlinear. The nonlinear stiffness constants for six motion types were solved using a multiobjective optimization technique. The quantitative comparison between the angles of rotations predicted by the proposed model and in the experimental data confirmed that the model yields angles of rotation close to the experimental data. The main contribution is that the new model can be used for all motions while the experimental data was only obtained at discrete measurement points. PMID:22938364

  20. Three dimensional water quality modeling of a shallow subtropical estuary.

    PubMed

    Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong

    2012-12-01

    Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern. PMID:23122270

  1. A three-dimensional model of Tangential YORP

    SciTech Connect

    Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2014-10-10

    Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroid's rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. To date, TYORP has been studied only in a simplified one-dimensional model, substituting stones with high long walls. This article for the first time considers TYORP in a realistic three-dimensional model, also including shadowing and self-illumination effects via ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only five free parameters and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from the one-dimensional model, but is still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids and also as a basis for more sophisticated models of TYORP.

  2. Miniaturized three-dimensional cancer model for drug evaluation.

    PubMed

    Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M

    2013-09-01

    A more relevant in vitro cell culture model that closely mimics tumor biology and provides better predictive information on anticancer therapies has been the focus of much attention in recent years. We have developed a three-dimensional (3D) human tumor cell culture model that attempts to recreate the in vivo microenvironment and tumor biology in a miniaturized 384-well plate format. This model aims to exploit the potential of 3D cell culture as a screening tool for novel therapeutics for discovery programs. Here we have evaluated a Matrigel™ based induction of 3D tumor formation using standard labware and plate reading equipment. We have demonstrated that with an optimized protocol, reproducible proliferation, and cell viability data can be obtained across a range of cell lines and reagent batches. A panel of reference drugs was used to validate the suitability of the assays for a high throughput drug discovery program. Indicators of assay reproducibility, such as Z'-factor and coefficient of variation, as well as dose response curves confirmed the robustness of the assays. Several methods of drug activity determination were examined, including metabolic and imaging based assays. These data demonstrate this model as a robust tool for drug discovery bridging the gap between monolayer cell culture and animal models, providing insights into drug efficacy at an earlier time point, ultimately reducing costs and high attrition rates. PMID:25310845

  3. Three-dimensional lattice Boltzmann model for magnetic reconnection

    SciTech Connect

    Mendoza, M.; Munoz, J. D.

    2008-02-15

    We develop a three-dimensional (3D) lattice Boltzmann model that recovers in the continuous limit the two-fluids theory for plasmas, and consequently includes the generalized Ohm's law. The model reproduces the magnetic reconnection process just by giving the right initial equilibrium conditions in the magnetotail, without any assumption on the resistivity in the diffusive region. In this model, the plasma is handled similar to two fluids with an interaction term, each one with distribution functions associated to a cubic lattice with 19 velocities (D3Q19). The electromagnetic fields are considered as a third fluid with an external force on a cubic lattice with 13 velocities (D3Q13). The model can simulate either viscous fluids in the incompressible limit or nonviscous compressible fluids, and successfully reproduces both the Hartmann flow and the magnetic reconnection in the magnetotail. The reconnection rate in the magnetotail obtained with this model lies between R=0.062 and R=0.073, in good agreement with the observations.

  4. Three-dimensional lattice Boltzmann model for magnetic reconnection.

    PubMed

    Mendoza, M; Muñoz, J D

    2008-02-01

    We develop a three-dimensional (3D) lattice Boltzmann model that recovers in the continuous limit the two-fluids theory for plasmas, and consequently includes the generalized Ohm's law. The model reproduces the magnetic reconnection process just by giving the right initial equilibrium conditions in the magnetotail, without any assumption on the resistivity in the diffusive region. In this model, the plasma is handled similar to two fluids with an interaction term, each one with distribution functions associated to a cubic lattice with 19 velocities (D3Q19). The electromagnetic fields are considered as a third fluid with an external force on a cubic lattice with 13 velocities (D3Q13). The model can simulate either viscous fluids in the incompressible limit or nonviscous compressible fluids, and successfully reproduces both the Hartmann flow and the magnetic reconnection in the magnetotail. The reconnection rate in the magnetotail obtained with this model lies between R=0.062 and R=0.073, in good agreement with the observations. PMID:18352154

  5. Using Three-Dimensional Models to Teach Molecular Structures in High School Chemistry.

    ERIC Educational Resources Information Center

    Copolo, Cynthia F.; Hounshell, Paul B.

    1995-01-01

    Compares the effects of using two- and three-dimensional model representations of molecular structures on student learning of organic chemical structures. Reports that students using both three-dimensional computer models and ball-and-stick models scored higher on the three-dimensional retention test of isomeric identification but lower on a…

  6. A three-dimensional transport model for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.

    1994-01-01

    In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative

  7. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. PMID:25228501

  8. Three-dimensional bonded-cell model for grain fragmentation

    NASA Astrophysics Data System (ADS)

    Cantor, D.; Azéma, E.; Sornay, P.; Radjai, F.

    2016-07-01

    We present a three-dimensional numerical method for the simulation of particle crushing in 3D. This model is capable of producing irregular angular fragments upon particle fragmentation while conserving the total volume. The particle is modeled as a cluster of rigid polyhedral cells generated by a Voronoi tessellation. The cells are bonded along their faces by a cohesive Tresca law with independent tensile and shear strengths and simulated by the contact dynamics method. Using this model, we analyze the mechanical response of a single particle subjected to diametral compression for varying number of cells, their degree of disorder, and intercell tensile and shear strength. In particular, we identify the functional dependence of particle strength on the intercell strengths. We find that two different regimes can be distinguished depending on whether intercell shear strength is below or above its tensile strength. In both regimes, we observe a power-law dependence of particle strength on both intercell strengths but with different exponents. The strong effect of intercell shear strength on the particle strength reflects an interlocking effect between cells. In fact, even at low tensile strength, the particle global strength can still considerably increase with intercell shear strength. We finally show that the Weibull statistics describes well the particle strength variability.

  9. Three-dimensional transient electromagnetic modeling in the Laplace Domain

    SciTech Connect

    Mizunaga, H.; Lee, Ki Ha; Kim, H.J.

    1998-09-01

    In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data.

  10. Three-dimensional computer modeling of hydrogen injection and combustion

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Naber, J.D.; Siebers, D.L.

    1995-02-01

    The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

  11. Turbulence modeling in three-dimensional stenosed arterial bifurcations.

    PubMed

    Banks, J; Bressloff, N W

    2007-02-01

    Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k-omega model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k-epsilon model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k-epsilon model, whereas the velocity profiles in the transitional k-omega model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k-omega model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity. PMID:17227097

  12. THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS

    SciTech Connect

    Rauscher, Emily; Menou, Kristen

    2010-05-10

    We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.

  13. Three Dimensional TEM Forward Modeling Using FDTD Accelerated by GPU

    NASA Astrophysics Data System (ADS)

    Li, Z.; Huang, Q.

    2015-12-01

    Three dimensional inversion of transient electromagnetic (TEM) data is still challenging. The inversion speed mostly depends on the forward modeling. Finite-difference time-domain (FDTD) method is one of the popular forward modeling scheme. In an explicit type, which is based on the Du Fort-Frankel scheme, the time step is under the constraint of quasi-static approximation. Often an upward-continuation boundary condition (UCBC) is applied on the earth-air surface to avoid time stepping in the model air. However, UCBC is not suitable for models with topography and has a low parallel efficiency. Modeling without UCBC may cause a much smaller time step because of the resistive attribute of the air and the quasi-static constraint, which may also low the efficiency greatly. Our recent research shows that the time step in the model air is not needed to be constrained by the quasi-static approximation, which can let the time step without UCBC much closer to that with UCBC. The parallel performance of FDTD is then largely released. On a computer with a 4-core CPU, this newly developed method is obviously faster than the method using UCBC. Besides, without UCBC, this method can be easily accelerated by Graphics Processing Unit (GPU). On a computer with a CPU of 4790k@4.4GHz and a GPU of GTX 970, the speed accelerated by CUDA is almost 10 times of that using CPU only. For a model with a grid size of 140×140×130, if the conductivity of the model earth is 0.02S/m, and the minimal space interval is 15m, it takes only 80 seconds to evolve the field from excitation to 0.032s.

  14. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  15. THREE-DIMENSIONAL MODELING OF QUASI-HOMOLOGOUS SOLAR JETS

    SciTech Connect

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-05-10

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (3D) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  16. Modelling for three dimensional coalescence of two bubbles

    NASA Astrophysics Data System (ADS)

    Han, R.; Li, S.; Zhang, A. M.; Wang, Q. X.

    2016-06-01

    This paper is concerned with the three dimensional (3D) interaction and coalescence of two bubbles subject to buoyancy and the dynamics of the subsequent joined bubble using the boundary integral method (BIM). An improved density potential method is implemented to control the mesh quality. It helps to avoid the numerical instabilities, which occur after coalescence. Numerical convergence tests are conducted in terms of mesh sizes and time steps. The 3D numerical model agrees well with an axisymmetric BIM model for axisymmetric cases as well as experimental results captured by high-speed camera. The bubble jetting, interaction, and coalescence of the two bubbles depend on the maximum bubble radii, the centre distance between two bubbles at inception, and the angle β between the centre line and the direction of buoyancy. We investigate coalescence of two bubbles for β = 0, π/4, and π/2, respectively, and at various centre distances at inception. Numerical results presented include the bubble and jet shapes, the velocity, and pressure fields surrounding the bubbles, as well as the time histories of bubble volumes, jet velocities, and positions of centroid of the bubble system.

  17. Three dimensional numerical modeling of land subsidence in Shanghai

    NASA Astrophysics Data System (ADS)

    Ye, S.; Luo, Y.; Wu, J.; Teatini, P.; Wang, H.; Jiao, X.

    2015-11-01

    Shanghai city has been suffering land subsidence caused by overly exploitation of ground water since 1921, which is a serious problem for this coastal city with altitude of 2.2-4.8 m above mean sea level. The largest cumulative land subsidence amounted to 2.6 m in the downtown area. Measures to decrease the ground water exploitation, change the pumping aquifers, and increase aquifer artificial recharge have been used to mitigate land subsidence since 1961. It is necessary to develop a proper numerical model to simulate and predict land subsidence. In this study, a decoupled three-dimensional (3-D) finite element land subsidence model including a 3-D ground water flow model and a 3-D geo-mechanical model was developed to simulate the 3-D deformation of the aquifer systems in the center area of Shanghai. The area of downtown Shanghai is 660 km2, with 10 million inhabitants, dense high buildings, and 11 metro lines. The simulation spans the period from 1979 to 1995. Two different assumptions have been tested on the side boundary, i.e., precluding the three components of the displacement, or assuming a free-displacement condition. The distribution of calculated land subsidence and horizontal displacements in different aquifers was analyzed. The computed vertical displacement fitted well with the available observations. It has been verified that the two different assumptions on the lateral boundaries in the geo-mechanical model caused different results just limited on nodes close to boundary. The developed 3-D land subsidence model is reasonable and can be used to simulate and predict 3-D movement of aquifer systems in the center area of Shanghai, which could provide scientific support to local government in controlling land subsidence and differential movements of the land surface.

  18. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events. PMID:26936572

  19. A Three-Dimensional Model of the Yeast Genome

    NASA Astrophysics Data System (ADS)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  20. A Three-Dimensional Unsteady CFD Model of Compressor Stability

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2006-01-01

    A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.

  1. A regional adaptive and assimilative three-dimensional ionospheric model

    NASA Astrophysics Data System (ADS)

    Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-03-01

    A regional adaptive and assimilative three-dimensional (3D) ionospheric model is proposed. It is able to ingest real-time data from different ionosondes, providing the ionospheric bottomside plasma frequency fp over the Italian area. The model is constructed on the basis of empirical values for a set of ionospheric parameters Pi[base] over the considered region, some of which have an assigned variation ΔPi. The values for the ionospheric parameters actually observed at a given time at a given site will thus be Pi = Pi[base] + ΔPi. These Pi values are used as input for an electron density N(h) profiler. The latter is derived from the Advanced Ionospheric Profiler (AIP), which is software used by Autoscala as part of the process of automatic inversion of ionogram traces. The 3D model ingests ionosonde data by minimizing the root-mean-square deviation between the observed and modeled values of fp(h) profiles obtained from the associated N(h) values at the points where observations are available. The ΔPi values are obtained from this minimization procedure. The 3D model is tested using data collected at the ionospheric stations of Rome (41.8N, 12.5E) and Gibilmanna (37.9N, 14.0E), and then comparing the results against data from the ionospheric station of San Vito dei Normanni (40.6N, 18.0E). The software developed is able to produce maps of the critical frequencies foF2 and foF1, and of fp at a fixed altitude, with transverse and longitudinal cross-sections of the bottomside ionosphere in a color scale. fp(h) and associated simulated ordinary ionogram traces can easily be produced for any geographic location within the Italian region. fp values within the volume in question can also be provided.

  2. Novel three-dimensional in vitro models of ovarian endometriosis

    PubMed Central

    2014-01-01

    Background Endometriosis is characterized by the presence of functional endometrial tissue outside of the uterine cavity. It affects 1 in 10 women of reproductive age. This chronic condition commonly leads to consequences such as pelvic pain, dysmenorrhea, infertility and an elevated risk of epithelial ovarian cancer. Despite the prevalence of endometriosis and its impact on women’s lives, there are relatively few in vitro and in vivo models available for studying the complex disease biology, pathophysiology, and for use in the preclinical development of novel therapies. The goal of this study was to develop a novel three-dimensional (3D) cell culture model of ovarian endometriosis and to test whether it is more reflective of endometriosis biology than traditional two dimensional (2D) monolayer cultures. Methods A novel ovarian endometriosis epithelial cell line (EEC16) was isolated from a 34-year old female with severe endometriosis. After characterization of cells using in vitro assays, western blotting and RNA-sequencing, this cell line and a second, already well characterized endometriosis cell line, EEC12Z, were established as in vitro 3D spheroid models. We compared biological features of 3D spheroids to 2D cultures and human endometriosis lesions using immunohistochemistry and real-time semi-quantitative PCR. Results In comparison to normal ovarian epithelial cells, EEC16 displayed features of neoplastic transformation in in vitro assays. When cultured in 3D, EEC16 and EEC12Z showed differential expression of endometriosis-associated genes compared to 2D monolayer cultures, and more closely mimicked the molecular and histological features of human endometriosis lesions. Conclusions To our knowledge, this represents the first report of an in vitro spheroid model of endometriosis. 3D endometriosis models represent valuable experimental tools for studying EEC biology and the development of novel therapeutic approaches. PMID:24502583

  3. A three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1994-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  4. Fully three-dimensional simulation and modeling of a dense plasma focus

    SciTech Connect

    Meehan, B. T.; Niederhaus, J. H. J.

    2014-10-01

    A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (~ 100 ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments.

  5. Application of three dimensional geological models to hydrogeology

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.

    2009-04-01

    Recently, three dimensional (3D) numerical simulation of subsurface structure has become a common engineering geological tool to investigate a variety of geological settings. Besides, hydrogeology always tightly combines with geological structures. For these reasons, coupling 3D geological models with hydrogeology will not only improve understanding of subsurface conditions, but also provide a common stratigraphic framework for hydrogeological applications. The reliability of 3D geological models largely depends on the quality and quantity of data. Normally, before 3D geological models are constructed in the software package, the initial data (borehole descriptions, geological maps, geological cross sections, outcrop data, geo-electrical survey, digital elevation model, etc.) are acquired from archive as much as possible and standardized in a single table. To ensure the precision of models, new drilling data should be gathered from local authorities such as Geological Survey in time. Some experimental data are necessary to be kept at the initial moment to create a subset for verification of the models. In particular, the resulting models will be used for hydrogeological applications. So, more parameters should be collected to construct the 3D property models. Properties contain porosities of soil, bearing capacity, compressibility and particular geological phenomenon such as the regional aquifers, aquitard and faults. During the processing of model construction, the minimum element of the models is grid, which can be converted to some finite elements software. Further studies of these models to hydrogeological application involve: integrating faulted horizons of the 3D geological model into the groundwater modeling software package and simulating the groundwater flow within the main relevant aquifers using a finite elements approach; simulating distribution and calculating volume of groundwater in particular area; providing 3D parameters for vulnerability maps of

  6. Three dimensional modeling of Laser-Plasma interaction: benchmarking our predictive modeling tools vs. experiments

    SciTech Connect

    Divol, L; Berger, R; Meezan, N; Froula, D H; Dixit, S; Suter, L; Glenzer, S H

    2007-11-08

    We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA[2]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d[3]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, whole beam three-dimensional linear kinetic modeling of stimulated Brillouin scattering reproduces quantitatively the experimental measurements(SBS thresholds, reflectivity values and the absence of measurable SRS). This good agreement was made possible by the recent increase in computing power routinely available for such simulations. These simulations accurately predicted the strong reduction of SBS measured when polarization smoothing is used.

  7. Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments

    SciTech Connect

    Divol, L.; Berger, R. L.; Meezan, N. B.; Froula, D. H.; Dixit, S.; Michel, P.; London, R.; Strozzi, D.; Ross, J.; Williams, E. A.; Still, B.; Suter, L. J.; Glenzer, S. H.

    2008-05-15

    New experimental capabilities [Froula et al., Phys. Rev. Lett. 98, 085001 (2007)] have been developed to study laser-plasma interaction (LPI) in ignition-relevant condition at the Omega laser facility (LLE/Rochester). By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV was created. Extensive Thomson scattering measurements allowed to benchmark hydrodynamic simulations performed with HYDRA [Meezan et al., Phys. Plasmas 14, 056304 (2007)]. As a result of this effort, these simulations can be used with much confidence as input parameters for the LPI simulation code PF3D [Berger et al., Phys. Plasmas 5, 4337 (1998)]. In this paper, it is shown that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, whole beam three-dimensional linear kinetic modeling of stimulated Brillouin scattering (SBS) reproduces quantitatively the experimental measurements (SBS thresholds, reflectivity values, and the absence of measurable stimulated Raman scattering). This good agreement was made possible by the recent increase in computing power routinely available for such simulations. These simulations accurately predicted the strong reduction of SBS measured when polarization smoothing is used.

  8. Three-dimensional Thermal Model of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  9. A multiphase model for three-dimensional tumor growth

    NASA Astrophysics Data System (ADS)

    Sciumè, G.; Shelton, S.; Gray, W. G.; Miller, C. T.; Hussain, F.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2013-01-01

    infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a three-dimensional geometry. It is shown that TCs tend to migrate among adjacent vessels seeking new oxygen and nutrients. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on TC proliferation.

  10. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot

    PubMed Central

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2014-01-01

    Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  11. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot.

    PubMed

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J

    2014-10-01

    Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  12. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

  13. Three-dimensional modeling of canopy flow in complex terrain

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yi, C.; Montagnani, L.

    2013-12-01

    Flows within and just above forest canopy over mountainous terrain are most complicated, which substantially influence the biosphere-atmosphere interaction of mass and energy. Due to the significant spatial variation, canopy flow in complex terrain is poorly understood based on the point-based tower measurement. We employ numerical model integrated with biogenic CO2 process to examine the impacts of topography, canopy structure, and synoptic atmospheric motion on canopy flow and associated CO2 transport in an alpine forest, with special focus on stable nocturnal condition when biogenic CO2 emission is active. Our model prediction is in better agreement with tower measurements when background synoptic wind is present, which leads to better larger-scale mixing, while local slope flow is just thermal-driven in the modeled domain by ignorance of surround mountain-valley. Our results show that large-scale synoptic wind is modified by local slope-canopy flow within and just above canopy. As the synoptic wind is down-slope (Figure 1a), recirculation is formed on the downwind slope with cool air and high accumulation of CO2 in front of tall and dense vegetation. As the synoptic wind is up-slope(Figure 1b), canopy flow at the higher elevation of the slope is in the same direction of synoptic wind, while canopy flow at the lower part of the slope blows down-slope. The upslope wind causes better mixing in the canopy and leads to smaller CO2 accumulation just close to the slope surface. The local down-slope wind (Figure 1c) causes rich and deep CO2 build-up in the downwind direction on the lower slope. Our numerical performance has demonstrated that three-dimensional CFD approach is a useful tool to understanding relationships between tower-point measurements and surrounding's field distributions. Acknowledgement: This research was supported by NSF Grants ATM-0930015, CNS-0958379 & CNS-0855217, PSC-CUNY ENHC-42-64 & CUNY HPCC. Figure 1 CO2 distribution within and just above

  14. Three-dimensional bioremediation modeling in heterogeneous porous media

    SciTech Connect

    Wheeler, M.F.; Roberson, K.R.; Chilakapati, A.

    1992-06-01

    Recently Price University and Pacific Northwest Laboratory (PNL) have begun a collaborative research effort that involves laboratory, field, and simulation work directed toward validating remediation strategies, including both natural and in situ bioremediation at US Department of Energy (DOE) sites such as Hanford. Because of chemical, biological, geologic and physical complexities of modeling these DOE sites, one of the major simulation goals of the project is to formulate and implement accurate and efficient (parallel) algorithms for modeling multiphase/multicomponent mow and reactive transport. In this paper we first describe the physical problem that needs to be modeled. Because of the emergence of concurrent supercomputing, we propose accurate numerical algorithms that are based on operator-splitting in time and domain decomposition iterative techniques. In particular reference is made to the biodegradation of carbon tetrachloride.

  15. Three-Dimensional Modeling of Guide-Field Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2005-01-01

    The dissipation mechanism of guide field magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we analyze three-dimensional PIC simulations of guide-field magnetic reconnection. Specific emphasis will be on the question whether thermal-inertia processes, mediated by the electron pressure tensor, remain a viable dissipation mechanism in fully three-dimensional systems.

  16. Three-dimensional finite element modeling of liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2011-03-01

    A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.

  17. Accurate three-dimensional registration of magnetic resonance images for detecting local changes in cartilage thickness

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanzhi; Jin, Quan; Zhao, Jie; Guo, Changyong; Bai, Jing

    2011-04-01

    The purpose of this study is to develop a three-dimensional registration method for monitoring knee joint disease from magnetic resonance (MR) image data sets. A global optimization technique was used for identifying anatomically corresponding points of knee femur surfaces (bone cartilage interfaces). In a first pre-registration step, we used the principal axes transformation to correct for different knee joint positions and orientations in the MR scanner. In a second step, we presented a global search algorithm based on Lipschitz optimization theory. This technique can simultaneously determine the translation and rotation parameters through searching a six-dimensional space of Euclidean motion metrics (translation and rotation) after calculating the point correspondences. The point correspondences were calculated by using the Hungarian algorithm. The accuracy of registration was evaluated using 20 porcine knees. There were 300 corresponding landmark points over the 20 pig knees. We evaluated the registration accuracy by measuring the root-mean-square distance (RMSD) error of corresponding landmark points between two femur surfaces (two time-points). The results show that the average RMSD was 1.22 +/- 0.10 mm (SD) by the iterative closest point (ICP) method, 1.17 +/- 0.10 mm the by expectation-maximization-ICP method, 1.02 +/- 0.06 mm by the genetic method, and 0.93 +/- 0.04 mm by the proposed method. Compared with the other three registration approaches, the proposed method achieved the highest registration accuracy.

  18. Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient and high-throughput analyses to evaluate therapeutics. PMID:26084404

  19. Three-dimensional numerical modeling of indium phosphide Point-Contact Solar Cells

    NASA Technical Reports Server (NTRS)

    Clark, Ralph O.

    1992-01-01

    The Point-Contact Solar Cell (PCSC) geometry has proven very effective for silicon cells. To date, it has not been implemented in III-V materials. In addition, modeling such a geometry is very difficult because of its three-dimensional nature. We have developed a three-dimensional finite element modeling code (FIESTA ROC). In this paper, we present results from a three-dimensional modeling study of InP point-contact solar cells.

  20. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  1. A practical implementation of turbulence models for the computation of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1991-01-01

    An upwind MUSCL-type implicit scheme for the three-dimensional Navier-Stokes equations is presented and details on the implementation for three-dimensional flows of a 'diagonal' upwind implicit operator are developed. Turbulence models for separated flows are also described with an emphasis on the numerical specificities of the Johnson-King nonequilibrium model. Good predictions of separated two- and three-dimensional flows are demonstrated.

  2. Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments.

    PubMed

    Divol, L; Berger, R L; Meezan, N B; Froula, D H; Dixit, S; Suter, L J; Glenzer, S H

    2008-06-27

    The first three-dimensional simulations of a high power 0.351 mum laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D fluid-based modeling of stimulated Brillouin scattering, including linear kinetic corrections, reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelope down to the micron scale speckles. These simulations accurately predict the strong reduction of stimulated Brillouin scattering measured when polarization smoothing is used. PMID:18643667

  3. Spatiotemporal lattice Boltzmann model for the three-dimensional cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Yan, Guangwu

    2015-12-01

    A spatiotemporal lattice Boltzmann model for solving the three-dimensional cubic-quintic complex Ginzburg-Landau equation (CQCGLE) is proposed. Different from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a three-dimensional spatiotemporal space, and the evolution of the model is about a spatial axis rather than time. The algorithm possesses advantages similar to the lattice Boltzmann method in that it is easily adapted to complex Ginzburg-Landau equations. Examples show that the model reproduces the phenomena in the CQCGLE accurately.

  4. Hydrogen program combustion research: Three dimensional computational modeling

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Butler, T.D.

    1995-05-01

    We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.

  5. [Study on the methods for establishing virtual three-dimensional models of cerebral arteries with the three-dimensional moulding software].

    PubMed

    Wei, Xin; Xie, Xiaodong; Wang, Chaohua

    2007-12-01

    This study was conducted to establish the methods of virtual three-dimensional cerebral arteries models by use of three-dimensional moulding software. The virtual models of the cerebral arteries were established using the three-dimensional moulding software of 3D Studio MAX R3 with 46 cases of normal cerebral DSA image as the original. The results showed there was similarity in appearance between the virtual cerebral arteries and DSA image. This is of benefit to understanding the vascular three-dimensional spatial relation in visual sense. Several models of different variant anatomy could be easily established on the copy files of the virtual cerebral arteries model. The virtual model could help learners to create and increase the three-dimensional space concept of arteries and aneurysms in clinical teaching. The results indicated that the virtual three-dimensional cerebral arteries models could display the three-dimensional spatial relation of the cerebral arterial system distinctly, and could serve as a morphologic foundation in the researches on vascular disease. PMID:18232470

  6. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  7. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation.

    PubMed

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  8. Three-Dimensional In Vitro Co-Culture Model of Breast Tumor using Magnetic Levitation

    PubMed Central

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R.; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  9. Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma.

    PubMed

    Takai, Atsushi; Fako, Valerie; Dang, Hien; Forgues, Marshonna; Yu, Zhipeng; Budhu, Anuradha; Wang, Xin Wei

    2016-01-01

    Three-dimensional cell culture methods are viable in vitro approaches that facilitate the examination of biological features cancer cells present in vivo. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells in porous alginate scaffolds can generate organoid-like spheroids that mimic numerous features of glandular epithelium in vivo, such as acinar morphogenesis and apical expression patterns of EpCAM, a hepatic stem/progenitor cell marker highly expressed in a subset of HCC with stemness features. We show that the activation of Wnt/β-catenin signaling, an essential pathway for maintaining HCC stemness, is required for EpCAM(+) HCC spheroid formation as well as the maintenance of the acinous structure. Furthermore, we demonstrate that EpCAM(+) HCC cells cultured as spheroids are more sensitive to TGF/β-induced epithelial-mesenchymal transition with highly tumorigenic and metastatic potential in vivo compared to conventional two-dimensional (2D) culture. In addition, HCC cells in EpCAM(+) spheroids are more resistant to chemotherapeutic agents than 2D-cultured cells. The alginate scaffold-based organotypic culture system is a promising, reliable, and easy system that can be configured into a high throughput fashion for the identification of critical signaling pathways and screening of molecular drug targets specific for HCC. PMID:26880118

  10. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. PMID:26322723

  11. Axisymmetric and three dimensional flow modeling within thermal vapor compressors

    NASA Astrophysics Data System (ADS)

    Sharifi, Navid

    2013-10-01

    Thermal vapor compressor (TVC) is a device for compressing vapor in water-steam cycles and frequently used in desalination systems. Large amounts of useless vapor can be compressed by this device and the efficiency of a desalination unit is effectively enhanced through this process. Motive steam is injected into the TVC through a convergent-divergent nozzle and accelerated to supersonic velocities. The low pressure steam is entrained at the upstream zone and mixed with this highly compressible motive flow within the TVC. In the current study, the flow field of an experimental TVC is scrutinized in both axisymmetric and three-dimensional approaches and compared with experimental measurements. Since the steam collector at the suction surface of the TVC has a curved shape and may undermine the symmetry of the flow on either side of the central axis, the second objective of this study is to reveal the deviation of the symmetric assumption from the real non-symmetric condition of entering steam flow into the TVC. Results show that the presence of a bending at the inlet side has approximately negligible effects on the mixing phenomenon and the flow remains symmetric around the central axis. Hence, there is no need to consider the collector geometry in further simulations and the performance parameters of the TVC would be sufficiently obtained through an axisymmetric method with a substantial reduction in the computational cost and time.

  12. Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma

    PubMed Central

    Takai, Atsushi; Fako, Valerie; Dang, Hien; Forgues, Marshonna; Yu, Zhipeng; Budhu, Anuradha; Wang, Xin Wei

    2016-01-01

    Three-dimensional cell culture methods are viable in vitro approaches that facilitate the examination of biological features cancer cells present in vivo. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells in porous alginate scaffolds can generate organoid-like spheroids that mimic numerous features of glandular epithelium in vivo, such as acinar morphogenesis and apical expression patterns of EpCAM, a hepatic stem/progenitor cell marker highly expressed in a subset of HCC with stemness features. We show that the activation of Wnt/β-catenin signaling, an essential pathway for maintaining HCC stemness, is required for EpCAM+ HCC spheroid formation as well as the maintenance of the acinous structure. Furthermore, we demonstrate that EpCAM+ HCC cells cultured as spheroids are more sensitive to TGF/β-induced epithelial-mesenchymal transition with highly tumorigenic and metastatic potential in vivo compared to conventional two-dimensional (2D) culture. In addition, HCC cells in EpCAM+ spheroids are more resistant to chemotherapeutic agents than 2D-cultured cells. The alginate scaffold-based organotypic culture system is a promising, reliable, and easy system that can be configured into a high throughput fashion for the identification of critical signaling pathways and screening of molecular drug targets specific for HCC. PMID:26880118

  13. Three-dimensional modelling of trace species in the Arctic lower stratosphere

    NASA Technical Reports Server (NTRS)

    Chipperfield, Martyn; Cariolle, Daniel; Simon, Pascal; Ramaroson, Richard

    1994-01-01

    A three-dimensional radiative-dynamical-chemical model has been developed and used to study some aspects of modeling the polar lower stratosphere. The model includes a comprehensive gas-phase chemistry scheme as well as a treatment of heterogeneous reactions occurring on the surface of polar stratospheric clouds. Tracer transport is treated by an accurate, nondispersive scheme with little diffusion suited to the representation of strong gradients. Results from a model simulation of early February 1990 are presented and used to illustrate the importance of the model transport scheme. The model simulation is also used to examine the potential for Arctic ozone destruction and the relative contributions of the chemical cycles responsible.

  14. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  15. A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook

    2013-06-01

    In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952-975] to a full 3D MHD scheme. The scheme is a finite-volume Godunov method consisting of a constrained transport (CT) method and an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm, which extends Colella's original 2D corner transport upwind (CTU) method [P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 446-466]. We present two types of data reconstruction-evolution algorithms for 3D: (1) a reduced CTU scheme and (2) a full CTU scheme. The reduced 3D CTU scheme is a variant of a simple 3D extension of Collela's 2D CTU method and is considered as a direct extension from the 2D USM scheme. The full 3D CTU scheme is our primary 3D solver which includes all multidimensional cross-derivative terms for stability. The latter method is logically analogous to the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys. 115 (1994) 153-168]. The major novelties in our algorithms are twofold. First, we extend the reduced CTU scheme to the full CTU scheme which is able to run with CFL numbers close to unity. Both methods utilize the transverse update technique developed in the 2D USM algorithm to account for transverse fluxes without solving intermediate Riemann problems, which in turn gives cost-effective 3D methods by reducing the total number of Riemann solves. The proposed algorithms are simple and efficient especially when including multidimensional MHD terms that maintain in-plane magnetic field dynamics. Second, we introduce a new CT scheme that makes use of proper upwind information in taking averages of electric fields. Our 3D USM schemes can be easily

  16. Three-dimensional single-shot optoacoustic visualization of excised mouse organs with model-based reconstruction

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Buehler, Andreas; Ntziachristos, Vasilis; Razansky, Daniel

    2013-03-01

    Optoacoustic imaging offers the unique capability of simultaneous excitation of a three-dimensional (volumetric) region with a single interrogating laser pulse. In this way, three-dimensional imaging with single-shot illumination is theoretically achievable, which in principle allows the visualization of dynamic events at a high frame rate mainly limited by the pulse repetition rate of the laser. Simultaneous acquisition of optoacoustic signals at a set of points surrounding the imaging sample is however required for this purpose, which is hampered by several technical limitations related to lack of appropriate ultrasound detection technology, digital sampling and processing capacities. Also, a convenient reconstruction algorithm must be selected to accurately image the distribution of the optical absorption from the acquired signals. Specifically, the resolution and quantitativeness of the images depend on the reconstruction procedure employed. Herein we describe an accurate three-dimensional model-based optoacoustic reconstruction algorithm based on a convenient discretization of the analytical solution of the forward model. Subsequent algebraic inversion is done with the LSQR algorithm. The performance of the algorithm is showcased by reconstructing an excised mouse heart with a custom made three-dimensional optoacoustic imaging system. In this system, 256 optoacoustic signals corresponding to single-shot excitation are simultaneously collected with an array of ultrasonic transducers disposed on a spherical surface, which allows three-dimensional imaging at a frame rate of 10 Hz.

  17. Three-dimensional Neumann-series approach to model light transport in nonuniform media

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Barrett, Harrison H.; Clarkson, Eric; Hartman, John H.

    2014-01-01

    We present the implementation, validation, and performance of a three-dimensional (3D) Neumann-series approach to model photon propagation in nonuniform media using the radiative transport equation (RTE). The RTE is implemented for nonuniform scattering media in a spherical harmonic basis for a diffuse-optical-imaging setup. The method is parallelizable and implemented on a computing system consisting of NVIDIA Tesla C2050 graphics processing units (GPUs). The GPU implementation provides a speedup of up to two orders of magnitude over non-GPU implementation, which leads to good computational efficiency for the Neumann-series method. The results using the method are compared with the results obtained using the Monte Carlo simulations for various small-geometry phantoms, and good agreement is observed. We observe that the Neumann-series approach gives accurate results in many cases where the diffusion approximation is not accurate. PMID:23201945

  18. Predicting bite force in mammals: two-dimensional versus three-dimensional lever models.

    PubMed

    Davis, J L; Santana, S E; Dumont, E R; Grosse, I R

    2010-06-01

    Bite force is a measure of whole-organism performance that is often used to investigate the relationships between performance, morphology and fitness. When in vivo measurements of bite force are unavailable, researchers often turn to lever models to predict bite forces. This study demonstrates that bite force predictions based on two-dimensional (2-D) lever models can be improved by including three-dimensional (3-D) geometry and realistic physiological cross-sectional areas derived from dissections. Widely used, the 2-D method does a reasonable job of predicting bite force. However, it does so by over predicting physiological cross-sectional areas for the masseter and pterygoid muscles and under predicting physiological cross-sectional areas for the temporalis muscle. We found that lever models that include the three dimensional structure of the skull and mandible and physiological cross-sectional areas calculated from dissected muscles provide the best predictions of bite force. Models that accurately represent the biting mechanics strengthen our understanding of which variables are functionally relevant and how they are relevant to feeding performance. PMID:20472771

  19. A three-dimensional characterization of coarse glacial outwash used for modeling contaminant movement

    SciTech Connect

    Aiken, J.S. ); Mickelson, D.M.; Anderson, M.P. . Dept. of Geology and Geophysics)

    1994-04-01

    Various mathematical and statistical techniques are employed to predict contaminant movement at multiple scales in heterogeneous aquifers. However, all of these methods require real geologic information to both design and calibrate models intended to predict contaminant movement accurately. A considerable gap exists between the ability of the hydrogeologist to construct models of heterogeneity and the availability of field data on which to base and compare these simulations. The gap exists because detailed geologic information is usually not available for a specific site without enormous expenditures of time and money. To bridge this gap, a field mapping project was undertaken to provide an example of outwash heterogeneity. The three-dimensional distribution of sediments was mapped in outcrop as it was incrementally exposed during commercial quarrying of a coarse out was deposit in south-central Wisconsin. Grain size sample measurements were used to estimate the hydrogeologic properties of the mapped units (facies). These data were combined to construct a three-dimensional map and a numerical model based on the distribution of the mapped heterogeneities. The model was then used to simulate groundwater flow and was linked to a particle tracking code to demonstrate the effect of the facies on contaminant movement.

  20. A three-dimensional finite element model of maximal grip loading in the human wrist.

    PubMed

    Gislason, M K; Nash, D H; Nicol, A; Kanellopoulos, A; Bransby-Zachary, M; Hems, T; Condon, B; Stansfield, B

    2009-10-01

    The aim of this work was to create an anatomically accurate three-dimensional finite element model of the wrist, applying subject-specific loading and quantifying the internal load transfer through the joint during maximal grip. For three subjects, representing the anatomical variation at the wrist, loading on each digit was measured during a maximal grip strength test with simultaneous motion capture. The internal metacarpophalangeal joint load was calculated using a biomechanical model. High-resolution magnetic resonance scans were acquired to quantify bone geometry. Finite element analysis was performed, with ligaments and tendons added, to calculate the internal load distribution. It was found that for the maximal grip the thumb carried the highest load, an average of 72.2 +/- 20.1 N in the neutral position. Results from the finite element model suggested that the highest regions of stress were located at the radial aspect of the carpus. Most of the load was transmitted through the radius, 87.5 per cent, as opposed to 12.5 per cent through the ulna with the wrist in a neutral position. A fully three-dimensional finite element analysis of the wrist using subject-specific anatomy and loading conditions was performed. The study emphasizes the importance of modelling a large ensemble of subjects in order to capture the spectrum of the load transfer through the wrist due to anatomical variation. PMID:19908424

  1. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  2. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  3. Assessing waveform predictions of recent three-dimensional velocity models of Tibet

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2015-12-01

    High-resolution tomographic models are essential for understanding the physical and compositional properties in the lithosphere and obtaining accurate earthquake source locations and moment tensors. Yet, there are significant disagreements in recent three-dimensional velocity models of the crust and uppermost mantle in Tibet. Question also remains as to whether models constructed from one type of seismic waves (body or surface waves) can be used to predict travel times and waveforms of another. In this study, six global or regional models are selected for Tibet, most of which became publically available in the past five years. A three-dimensional finite-difference method in the spherical coordinates is applied to simulate full-wave propagation of regional Pn (with periods longer than 1 second) and Rayleigh waves (20-75 s period) for ground-truth events located at regional distances. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography by Shen and Zhang (2012) consistently produces the best predictions for Rayleigh waves throughout the dataset and the Pn waves for the paths from the Tarim Basin to central Tibet. LITHO1.0, inverted from surface wave dispersions, shows a relatively stable but intermediate performance in predicting Pn and Rayleigh waves. None of the models provide the best matches to both waves throughout the region. Furthermore, the models constructed from surface waves are not well suited to predict Pn, and vice versa. We attribute this mainly to lack of accurate constraints on radial anisotropy and Vp/Vs ratios in the upper mantle, and Moho topography. We conclude that simultaneous prediction for P, S, and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy and attenuation.

  4. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    PubMed Central

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

  5. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction.

    PubMed

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients' ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care. PMID:27403103

  6. A THREE-DIMENSIONAL MODEL ASSESSMENT OF THE GLOBAL DISTRIBUTION OF HEXACHLOROBENZENE

    EPA Science Inventory

    The distributions of persistent organic pollutants (POPs) in the global environment have been studied typically with box/fugacity models with simplified treatments of atmospheric transport processes1. Such models are incapable of simulating the complex three-dimensional mechanis...

  7. Application of a three-dimensional computational wrist model to proximal row carpectomy.

    PubMed

    Wayne, Jennifer S; Mir, Afsarul Q

    2015-06-01

    A three-dimensional (3D) computational model of the wrist examined the biomechanical effects of the proximal row carpectomy (PRC), a surgical treatment of certain wrist degenerative conditions but with functional consequences. Model simulations, replicating the 3D bony anatomy, soft tissue restraints, muscle loading, and applied perturbations, demonstrated quantitatively accurate responses for the decreased motions subsequent to the surgical procedure. It also yielded some knowledge of alterations in radiocarpal contact force which likely increase contact pressure as well as additional insight into the importance of the triangular fibrocartilage complex and retinacular/capsular structures for stabilizing the deficient wrist. As better understanding of the wrist joint is achieved, this model could serve as a useful clinical tool. PMID:25710135

  8. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    SciTech Connect

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  9. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    DOE PAGESBeta

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less

  10. A three-dimensional numerical model of ionospheric plasma in the magnetosphere

    SciTech Connect

    Delcourt, D.C.; Chappell, C.R.; Moore, T.E.; Waite, J.H. Jr. )

    1989-09-01

    The magnetospheric transport of terrestrial plasma is numerically investigated by means of three-dimensional particle trajectory tracing in empirical models of the geoelectric and geomagnetic fields. Various ionospheric outflows (auroral, polar cap, cusp, and polar wind) are systematically examined using observational definitions of their respective locations and strengths, and assuming purely adiabatic motions under the effect of the large-scale magnetospheric convection. Due to field model limitations, the simulations are limited in scope of the region within a geocentric radius of 17 {ital R}{sub {ital E}}. Consequently, much of the terrestiral H{sup +} outflow cannot be accurately traced beyond the polar cap region, and the conclusions concerning the terrestrial contribution to plasma sheet H{sup +} are necessarily limited. Many qualitative features of the plasma sheet are produced in the model by the ionospheric plasmas. The motions of terrestrial O{sup +} outflow are well described within the assumptions of the calculation.

  11. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  12. Three-dimensional digital models for rating dental arch relationships in unilateral cleft lip and palate.

    PubMed

    Chawla, O; Atack, N E; Deacon, S A; Leary, S D; Ireland, A J; Sandy, J R

    2013-03-01

    Objective : To determine the reliability and reproducibility of using three-dimensional digital models as an alternative to plaster models for rating dental arch relationships in patients born with unilateral cleft lip and palate. Design : Reliability and reproducibility study. Methods : Study models of 45 patients born with unilateral cleft lip and palate were made available in plaster and three-dimensional digital models. Records were scored a week apart by three examiners using the 5-year-olds' index reference models in the same two formats as the patient models. To assess reproducibility the study was repeated 4 weeks later under similar conditions to minimize the influence of memory bias on the results. The reliability of using the three-dimensional digital models was determined by comparing the scores for each examiner with the plaster model scores. Results : Weighted kappa statistics indicated repeatability for the plaster models was very good (.83 to .87). For the three-dimensional digital models it was good to very good (.74 to .83). Overall, the use of the three-dimensional digital models showed good agreement with the plaster model scores on both occasions. Conclusion : Three-dimensional digital models appear to be a good alternative to plaster models for assessing dental arch relationships using the 5-year-olds' index. PMID:22420605

  13. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  14. Coarse-graining intermittent intracellular transport: Two- and three-dimensional models

    NASA Astrophysics Data System (ADS)

    Lawley, Sean D.; Tuft, Marie; Brooks, Heather A.

    2015-10-01

    Viruses and other cellular cargo that lack locomotion must rely on diffusion and cellular transport systems to navigate through a biological cell. Indeed, advances in single particle tracking have revealed that viral motion alternates between (a) diffusion in the cytoplasm and (b) active transport along microtubules. This intermittency makes quantitative analysis of trajectories difficult. Therefore, the purpose of this paper is to construct mathematical methods to approximate intermittent dynamics by effective stochastic differential equations. The coarse-graining method that we develop is more accurate than existing techniques and applicable to a wide range of intermittent transport models. In particular, we apply our method to two- and three-dimensional cell geometries (disk, sphere, and cylinder) and demonstrate its accuracy. In addition to these specific applications, we also explain our method in full generality for use on future intermittent models.

  15. Stereographic projection for three-dimensional global discontinuous Galerkin atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Blaise, Sébastien; Lambrechts, Jonathan; Deleersnijder, Eric

    2015-09-01

    A method to solve the three-dimensional compressible Navier-Stokes equations on the sphere is suggested, based on a stereographic projection with a high-order mapping of the elements from the stereographic space to the sphere. The projection is slightly modified, in order to take into account the domain thickness without introducing any approximation about the aspect ratio (deep-atmosphere). In a discontinuous Galerkin framework, the elements alongside the equator are exactly represented using a nonpolynomial geometry, in order to avoid the numerical issues associated with the seam connecting the two hemispheres. This is an crucial point, necessary to avoid mass loss and spurious deviations of the velocity. The resulting model is validated on idealized three-dimensional atmospheric test cases on the sphere, demonstrating the good convergence properties of the scheme, its mass conservation, and its satisfactory behavior in terms of accuracy and low numerical dissipation. A simulation is performed on a variable resolution unstructured grid, producing accurate results despite a substantial reduction of the number of elements.

  16. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  17. Three Dimensional Thermal Model of Newberry Volcano, Oregon

    DOE Data Explorer

    Trenton Cladouhos

    2015-01-30

    Final results of a 3D finite difference thermal model of Newberry Volcano, Oregon. Model data are formatted as a text file with four data columns (X, Y, Z, T). X and Y coordinates are in UTM (NAD83 Zone 10N), Z is elevation from mean sea level (meters), T is temperature in °C. Model is 40km X 40km X 12.5 km, grid node spacing is 100m in X, Y, and Z directions. A symmetric cylinder shaped magmatic heat source centered on the present day caldera is the modeled heat source. The center of the modeled body is a -1700 m (elevation) and is 600m thick with a radius of 8700m. This is the best fit results from 2D modeling of the west flank of the volcano. The model accounts for temperature dependent thermal properties and latent heat of crystallization. For additional details, assumptions made, data used, and a discussion of the validity of the model see Frone, 2015 (http://search.proquest.com/docview/1717633771).

  18. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  19. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  20. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility

    PubMed Central

    Hoevenaren, Inge A.; Meulstee, J.; Krikken, E.; Bergé, S. J.; Ulrich, D. J. O.; Maal, Thomas J. J.

    2015-01-01

    Purpose Using three-dimensional (3D) stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings. Methods A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1). Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method. Results The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers) than the female hand. Conclusions This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored. PMID:26366860

  1. Flow Induced Vibration and Glottal Aerodynamics in a Three-Dimensional Laryngeal Model

    NASA Astrophysics Data System (ADS)

    Zheng, Xudong; Xue, Qian; Mittal, Rajat; Bielamowicz, Steven

    2009-11-01

    Three-dimensional effects associated with phonation remain unclear due to the lack of capability of simulating 3D fluid-tissue interaction in the past. To advance the state-of-the-art in this arena, an immersed-boundary method based flow solver coupled with a finite-element solid dynamics solver is employed to conduct high-fidelity direct-numerical simulations of phonation in a 3D model of the human larynx. Three-dimensional vibration patterns are captured along with turbulence effects and three-dimensional vortex structures in the glottal jet. Results from these simulations are presented.

  2. Three dimensional modelling of chlorine activation in the Arctic stratosphere

    SciTech Connect

    Kettleborough, J.A.; Carver, G.D.; Lary, D.J.; Pyle, J.A. ); Scott, P.A. )

    1994-06-22

    This paper presents the results of using the UK Universities Global Atmospheric Modelling Program (UGAMP) general circulation model to study the atmospheric chemistry of chlorine compounds in the arctic stratosphere during EASOE. Here the authors discuss the results of a model run started in early January 1992, which show that the low temperatures favored the production of polar stratospheric clouds which can process active chlorine compounds to densities in the ppbv range. The model also shows that lack of sunlight means that this reactive chlorine is not able to contribute to chemical destruction of ozone. As the temperatures rise, the active chlorine is seen to cycle back into the compound ClONO[sub 2].

  3. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  4. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  5. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    SciTech Connect

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  6. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth.

    PubMed

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  7. Preliminary results of a three-dimensional radiative transfer model

    SciTech Connect

    O`Hirok, W.

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  8. Three-dimensional modelling of film flows over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2014-11-01

    Film flows over spinning disks are of central importance to a wide array of industrial processes, such as the augmentation of heat and mass transfer in chemical reactors, or power production in metallurgy. As a result they have been extensively investigated experimentally. Theoretically they constitute an interesting problem due to the interplay of inertial, capillary, centrifugal and Coriolis forces. However, modelling efforts have typically been restricted to the consideration of the one-dimensional axisymmetric situation. We extend the existing models to incorporate azimuthal variations. The resultant system is solved via the use of an operator-splitting method. In addition, we have performed Direct Numerical Simulations of the system. We compare the low order model, the direct simulations and the results of experiments, to reveal a wide variety of different flow regimes in accordance with existing literature. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. Parallelisation study of a three-dimensional environmental flow model

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Ragnoli, Emanuele; Suits, Frank

    2014-03-01

    There are many simulation codes in the geosciences that are serial and cannot take advantage of the parallel computational resources commonly available today. One model important for our work in coastal ocean current modelling is EFDC, a Fortran 77 code configured for optimal deployment on vector computers. In order to take advantage of our cache-based, blade computing system we restructured EFDC from serial to parallel, thereby allowing us to run existing models more quickly, and to simulate larger and more detailed models that were previously impractical. Since the source code for EFDC is extensive and involves detailed computation, it is important to do such a port in a manner that limits changes to the files, while achieving the desired speedup. We describe a parallelisation strategy involving surgical changes to the source files to minimise error-prone alteration of the underlying computations, while allowing load-balanced domain decomposition for efficient execution on a commodity cluster. The use of conjugate gradient posed particular challenges due to implicit non-local communication posing a hindrance to standard domain partitioning schemes; a number of techniques are discussed to address this in a feasible, computationally efficient manner. The parallel implementation demonstrates good scalability in combination with a novel domain partitioning scheme that specifically handles mixed water/land regions commonly found in coastal simulations. The approach presented here represents a practical methodology to rejuvenate legacy code on a commodity blade cluster with reasonable effort; our solution has direct application to other similar codes in the geosciences.

  10. Three-Dimensional Models for Teaching Neuroanatomy to Blind Students.

    ERIC Educational Resources Information Center

    Pietsch, Paul

    1980-01-01

    An audio/tactile course enables blind college students to understand the anatomy of the human brain. Models were designed which allow tactile exploration of the visual fields, retina, optic nerves, and the subdivisions of the tracts and radiations in the brain. (Author/PHR)

  11. Three Dimensional Morphodynamic and Vegetation Modeling of Wax Lake Delta

    NASA Astrophysics Data System (ADS)

    Khadka, A. K.; Meselhe, E. A.; Sadid, K. M.

    2013-12-01

    The Wax Lake Delta (WLD) is located at the downstream end of the Wax Lake outlet, approximately 13 miles upstream from Morgan City, Louisiana. In 1942 the United States Army Corps of Engineer (USACE) dredged Wax Lake Outlet channel from lower Atchafalaya River to reduce flood stages at Morgan City. The channel diverts 50% of Atchafalaya River water and sediment to WLD. Since 1942, the WLD has been building seaward due to the deposition of sediment at the channel mouth. Growth of this delta supports the concept of land building via river diversions. A process based morphodynamic model (Delft3D) with the ability to predict evolution of river-dominated deltas is used in this study to further our understanding of land-building and delta growth processes. Initial model bathymetry is prepared based on USACE hydrographic survey of 1998 along with LIDAR survey data for over bank areas. Two continuous gauges at Wax Lake outlet near Calumet and Atchafalaya Bay near Eugene Island are used to assign upstream inflow and outflow boundary conditions, respectively. The model is calibrated and validated for Hydrodynamics and Sediment transport through two sets of field observations for flooded and average conditions. Vertical velocity and suspended sediment profiles made in the channels of the WLD in 2000 and 2001 are used for the model calibration and validation. More comprehensive field observations are being gathered as part of an ongoing study funded by the National Science Foundation (FESD-Delta Dynamics Collaboratory). Data include mutli-beam bathymetric data, velocities, sediment, and nutrient concentrations in the channels as well as on top of the islands. The Delft3D morphodynamic model for WLD provides quantitative information regarding water and sediment distribution among the inter-connected channel bifurcations, the exchange of sediment and nutrients between the channels and islands. The model is being used to investigate the rate of land building and delta growth from

  12. Three dimensional modeling of Titan's aerosols and winds

    NASA Astrophysics Data System (ADS)

    Larson, Erik Joseph Lester

    Titan's atmosphere is enshrouded by an organic aerosol haze that obscures the surface at visible wavelengths. Elucidating the nature of this haze is key to understanding Titan's complex climate system and seasonal cycles. To approach this problem, I used a global circulation model coupled to an aerosol microphysical model to explore the physical properties of the haze, its spatial and temporal distribution, and any effects on the atmosphere. I established a best-guess set of microphysical properties that describes the aerosol in Titan's atmosphere based on sensitivity tests of the parameters. From this approach I confirmed that the aerosol haze is comprised of aggregate particles with a fractal dimension of about 2. A charge on the particles equal to 7.5 electrons/micron radius best fist observations of phase function and number density, and a production rate of 10--14 g/cm2 /s best matches vertical extinction profiles in Titan's atmosphere. I also present a formation mechanism for Titan's detached haze layer based on a balance between the vertical winds and particle fall velocities, and use a simple analytical model to reproduce the mechanism and match it to vertical extinction profiles from Cassini observations. Our simulations suggest that the detached haze layer will reappear at high altitude, around 550 km, between mid 2014 and early 2015. Finally, we show how the addition of topography and an ad hoc acceleration in our model affects the surface winds, making them more aligned with the dune crestline orientations on Titan. Through analysis of model output and comparison with spacecraft observations, I have been able to provide a coherent picture for the origin and evolution of Titan' s mysterious haze.

  13. Three-Dimensional Geometric Modeling for Anatomical Structures

    PubMed Central

    Shani, Uri

    1981-01-01

    Computer analysis of images of anatomical structures can benefit from the use of a priori knowledge about the inspected domain. Even though the anatomy structure of humans is variable, it is far more organized than other domains which are commonly used for image understanding (e.g., outdoor scenes or even images of a boxes-and-cylinders world). This paper discusses an organization scheme for modeling the 3-D structure of the abdominal anatomy and its use for analyzing 3-D CAT (Computed Axial Tomography) scans of the abdomen. The discussion is divided into two major portions of the knowledge organization: a relational database for gross anatomy and a 3-D shape model for individual organs using generalized cylinders. The paper also includes an example of 3-D image analysis for the detection of the kidneys' 3-D shape from abdominal CAT scans.

  14. Three-dimensional model of surfactant replacement therapy.

    PubMed

    Filoche, Marcel; Tai, Cheng-Feng; Grotberg, James B

    2015-07-28

    Surfactant replacement therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. It is widely successful for treating surfactant deficiency in premature neonates who develop neonatal respiratory distress syndrome (NRDS). However, when applied to adults with acute respiratory distress syndrome (ARDS), early successes were followed by failures. This unexpected and puzzling situation is a vexing issue in the pulmonary community. A pressing question is whether the instilled surfactant mixture actually reaches the adult alveoli/acinus in therapeutic amounts. In this study, to our knowledge, we present the first mathematical model of SRT in a 3D lung structure to provide insight into answering this and other questions. The delivery is computed from fluid mechanical principals for 3D models of the lung airway tree for neonates and adults. A liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug deposits a coating film on the airway wall and then splits unevenly at the bifurcation due to gravity. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published procedural methods, we show the neonatal lung is a well-mixed compartment, whereas the adult lung is not. The earlier, successful adult SRT studies show comparatively good index values implying adequate delivery. The later, failed studies used different protocols resulting in very low values of both indexes, consistent with inadequate acinar delivery. Reasons for these differences and the evolution of failure from success are outlined and potential remedies discussed. PMID:26170310

  15. Evolution of life in three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena; Lewis, Adam; Merritt, Ronald; Newland, Derek; Williams, George

    2013-09-01

    The geometry of coordinates for physiological optima of Archaea demonstrates the function of a hyperbola in two dimensions, and of a hyperboloid in three dimensions modeling. It was shown that the hyperboloid has an inclination of 67.5°. In previous work, both hyperboloids (one- and two-sheet) were positioned vertically, as schematic data for a preliminary result's demonstration. Furthermore, our previous model of the Evolution of Life was constructed exclusively on the data of Archaea. In this work, we have constructed a hyperboloid with respect to the precise coordinates of physiological groups, and we have added the data for other key groups of microorganisms and multicellular eukaryotes that interfered and co-evolved with the relic ancient Archaean's groups. Consequently, the inclined hyperboloid was composed to demonstrate the evolution of prokaryotic and eukaryotic organisms in space and time. Here, a complete model of the Evolution of Life is presented for consideration. In this article, we discuss some critical changes of geometry for separate physiological groups during the process of evolution, and focus on a possible involvement of mathematical laws and potential application of geometric function for explanation of the evolution.

  16. A multiphase model for three-dimensional tumor growth

    PubMed Central

    Sciumè, G; Shelton, S; Gray, WG; Miller, CT; Hussain, F; Ferrari, M; Decuzzi, P; Schrefler, BA

    2014-01-01

    Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of nutrients. The equations are solved by a Finite Element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor cells whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case – mostly due to the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular, for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced

  17. Weyl Phases in a Three Dimensional Network Model

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Chong, Yidong; theoretical photonics Team

    We study the topological properties of 3D ``Floquet'' band structures, defined using unitary evolution matrices rather than Hamiltonians. Such band structures can be realized in coherent-wave networks or lattices subjected to time-periodic drives. Previously, 2D Floquet band structures have been shown to exhibit unusual topological behaviors such as topologically-nontrivial zero-Chern-number phases. Here, we analyze the Floquet band structure of a 3D network model, which exhibits an Floquet analogue of a Weyl phase. The surface states exhibit topologically-protected ``Fermi'' arcs, similar to the recently-discovered Weyl semi-metals; however, the Weyl points in different quasi-energy gaps are related by a particle-hole symmetry which is unique to the Floquet system. By tuning the coupling parameters of the network, we can drive a transition between conventional insulator, weak topological insulator, and Weyl phases. Finally, we discuss the possibility of realizing this model using custom-designed electromagnetic networks. GRANT: Supported by Singapore National Research Foundation under Grant No. NRFF2012-02.

  18. Computational Model of Three Dimensional Elastic Wing Driven by Muscles

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Cowen, Nathaniel; Peskin, Charles S.; Childress, Stephen W.

    2003-11-01

    The flapping wing motion observed in nature results from couplings of muscles, flexible wing structures, and unsteady flows. Previously we have studied the unsteady flows and forces of a rigid two dimensional wing undergoing prescribed motion similar to kinematics observed in insects, as a means of understanding basic unsteady aerodynamic mechanisms. In this talk, we describe our recent progress in constructing a more realistic model insect, which consists of a pair of elastic wings immersed in fluids, and is driven by periodically contracting 'muscles'. A natural computational framework for such a system is the immersed boundary method, which is used here. We present simulations of flapping flight at Reynolds number 10^2, in the same range as that of fruitflies and butterflies.

  19. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam

  20. The Three-Dimensional Finite-Volume Non-Hydrostatic Icosahedral Model (NIM)

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; MacDonald, A. E.

    2014-12-01

    A multi-scales Non-hydrostatic Icosahedral Model (NIM) has been developed at Earth System Research Laboratory (ESRL) to meet NOAA's future prediction mission ranging from mesoscale short-range, high-impact weather forecasts to longer-term intra-seasonal climate prediction. NIM formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM is designed to utilize the state-of-art computing architecture such as Graphic Processing Units (GPU) processors to run globally at kilometer scale resolution to explicitly resolve convective storms and complex terrains. The novel features of NIM numerical design include: 1.1. A local coordinate system upon which finite-volume integrations are undertaken. The use of a local Cartesian coordinate greatly simplifies the mathematic formulation of the finite-volume operators and leads to the finite-volume integration along straight lines on the plane, rather than along curved lines on the spherical surface. 1.2. A general indirect addressing scheme developed for modeling on irregular grid. It arranges the icosahedral grid with a one-dimensional vector loop structure, table specified memory order, and an indirect addressing scheme that yields very compact code despite the complexities of this grid. 1.3. Use of three-dimensional finite-volume integration over control volumes constructed on the height coordinates. Three-dimensional finite-volume integration accurately represents the Newton Third Law over terrain and improves pressure gradient force over complex terrain. 1.4. Use of the Runge-Kutta 4th order conservative and positive-definite transport scheme 1.5. NIM dynamical solver has been implemented on CPU as well as GPU. As one of the potential candidates for NWS next generation models, NIM dynamical core has been successfully verified with various benchmark test cases including those proposed by DCMIP

  1. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  2. A three-dimensional finite element model for biomechanical analysis of the hip.

    PubMed

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip. PMID:23504633

  3. Satellite microwave rainfall simulations with a three-dimensional dynamical cloud model

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Simpson, Joanne; Tao, Wei-Kuo; Prasad, N.; Yeh, Hwa-Young

    1988-01-01

    The three-dimensional, multicloud model of Tao and Soong (1986) is used to generate three-dimensional distribution of pertinent microphysical and state parameters which are used as input into a microwave radiative transfer model. The model is used to calculate upwelling radiance (brightness temperature) at microwave frequencies from 10 to 183 GHz with an ocean background. The model is used to study the relationship between simulated upwell brightness temperature and the cloud-model-generated rain rate at the surface. It is suggested that these calculations can be used to simulate satellite observed brightness temperature values and to make area-averaged rain rates.

  4. A computationally-efficient secondary organic aerosol module for three-dimensional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhang, Y.

    2008-04-01

    Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; turning on organic-inorganic interactions only when the water content associated with organic compounds is significant; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 29.7 with ±15% deviation from benchmark results. These speedup methods are applicable to other SOA modules that are based on partitioning theories.

  5. A computationally-efficient secondary organic aerosol module for three-dimensional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhang, Y.

    2008-07-01

    Accurately simulating secondary organic aerosols (SOA) in three-dimensional (3-D) air quality models is challenging due to the complexity of the physics and chemistry involved and the high computational demand required. A computationally-efficient yet accurate SOA module is necessary in 3-D applications for long-term simulations and real-time air quality forecasting. A coupled gas and aerosol box model (i.e., 0-D CMAQ-MADRID 2) is used to optimize relevant processes in order to develop such a SOA module. Solving the partitioning equations for condensable volatile organic compounds (VOCs) and calculating their activity coefficients in the multicomponent mixtures are identified to be the most computationally-expensive processes. The two processes can be speeded up by relaxing the error tolerance levels and reducing the maximum number of iterations of the numerical solver for the partitioning equations for organic species; conditionally activating organic-inorganic interactions; and parameterizing the calculation of activity coefficients for organic mixtures in the hydrophilic module. The optimal speed-up method can reduce the total CPU cost by up to a factor of 31.4 from benchmark under the rural conditions with 2 ppb isoprene and by factors of 10 71 under various test conditions with 2 10 ppb isoprene and >40% relative humidity while maintaining ±15% deviation. These speed-up methods are applicable to other SOA modules that are based on partitioning theories.

  6. Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model

    SciTech Connect

    Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy

    2007-09-01

    A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low

  7. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system, FY 1993 status report

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.

    1993-12-01

    The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model.

  8. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  9. Evaluation of a Three-Dimensional Chemical Transport Model (PMCAMx) in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2007-05-01

    Atmospheric aerosols have adverse effects on human health, contribute to the visibility reduction and influence the energy balance of the planet. A three-dimensional chemical transport model (PMCAMx) (Gaydos et al., 2007) is used to simulate the particular matter (PM) mass composition distribution in the Mexico City Metropolitan Area (MCMA). PMCAMx uses the framework of CAMx (ENVIRON, 2002) modelling the processes of horizontal and vertical advection, horizontal and vertical dispersion, wet and dry deposition, and gas-phase chemistry. In addition to the above, PMCAMx includes three detailed aerosol modules: inorganic aerosol growth (Gaydos et al., 2003; Koo et al., 2003a), aqueous-phase chemistry (Fahey and Pandis, 2001), and secondary organic aerosol formation and growth (Koo et al., 2004). The aerosol thermodynamic model ISORROPIA has been improved as it now simulates explicitly the chemistry of Ca, Mg, and K salts and is linked to PMCAMx. The hybrid approach (Koo et al., 2003b) for modelling aerosol dynamics is applied in order to accurately simulate the inorganic components in coarse mode. This approach assumes that the smallest particles are in equilibrium while the condensation/evaporation equation is solved for the larger ones. The new CMU organic aerosol model, which is based on the splitting of the organic aerosol volatility range in discrete bins, is also used. The model predictions are evaluated against the PM and vapour concentration measurements from the MCMA-2003 Campaign (Molina et al., 2007). References Gaydos, T., Pinder, R., Koo, B., Fahey, Κ., Yarwood, G., and Pandis, S. N., (2007). Development and application of a three-dimensional Chemical Transport Model, PMCAMx. Atmospheric Environment, in press. ENVIRON (2002). User's guide to the comprehensive air quality model with extensions (CAMx). Version 3.10. Report prepared by ENVIRON International corporation, Novato, CA Gaydos, T., Koo, B., and Pandis, S. N., (2003). Development and application of

  10. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  11. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo

    PubMed Central

    Deneux, Thomas; Kaszas, Attila; Szalay, Gergely; Katona, Gergely; Lakner, Tamás; Grinvald, Amiram; Rózsa, Balázs; Vanzetta, Ivo

    2016-01-01

    Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo. PMID:27432255

  12. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo.

    PubMed

    Deneux, Thomas; Kaszas, Attila; Szalay, Gergely; Katona, Gergely; Lakner, Tamás; Grinvald, Amiram; Rózsa, Balázs; Vanzetta, Ivo

    2016-01-01

    Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo. PMID:27432255

  13. A three-dimensional digital visualization model of cervical nerves in a healthy person.

    PubMed

    Cao, Jiaming; Fu, Dong; Li, Sen

    2013-07-15

    Three-dimensional reconstruction nerve models are classically obtained from two-dimensional ages of "visible human" frozen sections. However, because of the flexibility of nerve tissues and small color differences compared with surrounding tissues, the integrity and validity of nerve tissues can be impaired during milling. Thus, in the present study, we obtained two-dimensional data from a healthy volunteer based on continuous CT angiography and magnetic resonance myelography. Semi-automatic segmentation and reconstruction were then conducted at different thresholds in different tissues using Mimics software. Small anatomical structures such as muscles and cervical nerves were reconstructed using the medical computer aided design module. Three-dimensional digital models of the cervical nerves and their surrounding structures were successfully developed, which allowed visualization of the spatial relation of anatomical structures with a strong three-dimensional effect, distinct appearance, clear distribution, and good continuity, precision, and integrality. These results indicate the validity of a three-dimensional digital visualization model of healthy human cervical nerves, which overcomes the disadvantages of milling, avoids data loss, and exhibits a realistic appearance and three-dimensional image. PMID:25206491

  14. Plastinated tissue samples as three-dimensional models for optical instrument characterization

    PubMed Central

    Marks, Daniel L.; Chaney, Eric J.; Boppart, Stephen A.

    2010-01-01

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating three-dimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography. PMID:18825267

  15. Plastinated tissue samples as three-dimensional models for optical instrument characterization.

    PubMed

    Marks, Daniel L; Chaney, Eric J; Boppart, Stephen A

    2008-09-29

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating three-dimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography. PMID:18825267

  16. Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling

    SciTech Connect

    Zhang, Huai; Ju, Lili; Gunzburger, Max; Ringler, Todd; Price, Stephen

    2011-01-01

    A three-dimensional full-Stokes computational model is considered for determining the dynamics, temperature, and thickness of ice sheets. The governing thermomechanical equations consist of the three-dimensional full-Stokes system with nonlinear rheology for the momentum, an advective-diffusion energy equation for temperature evolution, and a mass conservation equation for icethickness changes. Here, we discuss the variable resolution meshes, the finite element discretizations, and the parallel algorithms employed by the model components. The solvers are integrated through a well-designed coupler for the exchange of parametric data between components. The discretization utilizes high-quality, variable-resolution centroidal Voronoi Delaunay triangulation meshing and existing parallel solvers. We demonstrate the gridding technology, discretization schemes, and the efficiency and scalability of the parallel solvers through computational experiments using both simplified geometries arising from benchmark test problems and a realistic Greenland ice sheet geometry.

  17. A High Spatial Resolution Three Dimensional Version of the SASKTRAN Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Zawada, D.; Dueck, S.; Lloyd, N. D.; Bourassa, A. E.; Degenstein, D. A.

    2013-12-01

    For the past decade the SASKTRAN radiative transfer model has been used, along with OSIRIS measurements of spectrally dispersed limb scattered sunlight, to retrieve vertical profiles of atmospheric constituents such as ozone, nitrogen dioxide and stratospheric aerosol. SASKTRAN is a spherical geometry, multiple scatter model that uses a successive orders approach. Until recently SASKTRAN has relied on horizontal homogeneity of the atmospheric constituents for its simulations. This paper details recent advances to the SASKTRAN model that now allow it to accurately and quickly calculate the diffuse radiance field in the presence of two and three dimensional structure within the atmospheric state. Included is a description of the modifications along with an analysis of the similarities and differences between the original model and the new version in the presence of structures that are found near realistic ozone hole conditions. These results demonstrate the utility of the SASKTRAN model for use in the retrievals associated with the Canadian Atmospheric Tomography System (CATS), an OSIRIS follow-on instrument, that is currently funded under the auspices of the Canadian Space Agency.

  18. Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries

    NASA Astrophysics Data System (ADS)

    McBride, D.; Cross, M.; Croft, N.; Bennett, C.; Gebhardt, J.

    2006-03-01

    A computational procedure is presented for solving complex variably saturated flows in porous media, that may easily be implemented into existing conventional finite-volume-based computational fluid dynamics codes, so that their functionality might be geared upon to readily enable the modelling of a complex suite of interacting fluid, thermal and chemical reaction process physics. This procedure has been integrated within a multi-physics finite volume unstructured mesh framework, allowing arbitrarily complex three-dimensional geometries to be modelled. The model is particularly targeted at ore heap-leaching processes, which encounter complex flow problems, such as infiltration into dry soil, drainage, perched water tables and flow through heterogeneous materials, but is equally applicable to any process involving flow through porous media, such as in environmental recovery processes. The computational procedure is based on the mixed form of the classical Richards equation, employing an adaptive transformed mixed algorithm that is numerically robust and significantly reduces compute (or CPU) time. The computational procedure is accurate (compares well with other methods and analytical data), comprehensive (representing any kind of porous flow model), and is computationally efficient. As such, this procedure provides a suitable basis for the implementation of large-scale industrial heap-leach models.

  19. A three-dimensional tunnel model for calculation of train-induced ground vibration

    NASA Astrophysics Data System (ADS)

    Forrest, J. A.; Hunt, H. E. M.

    2006-07-01

    The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations.

  20. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume.

    PubMed

    Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A

    2012-12-01

    In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. PMID:23137621

  1. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  2. Development of a three-dimensional time-dependent flow field model

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Waldrop, W. R.; Pitts, F. H.; Shah, K. R.

    1975-01-01

    A three-dimensional, time-dependent mathematical model to represent Mobile Bay was developed. Computer programs were developed which numerically solve the appropriate conservation equations for predicting bay and estuary flow fields. The model is useful for analyzing the dispersion of sea water into fresh water and the transport of sediment, and for relating field and physical model data.

  3. THREE-DIMENSIONAL FINITE-DIFFERENCE THERMOREGULATORY MODEL OF A SQUIRREL MONKEY

    EPA Science Inventory

    A three-dimensional thermoregulatory model of a squirrel monkey, whose shape is approximated by 742 rectangular blocks of varying sizes, has been developed. The inhomogeneous model has four layers: a core, a composite layer of muscle and fat, skin, and fur. The model simulates th...

  4. Three-Dimensional Geologic Modeling of the Pohang Basin, Korea for Geologic Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Kim, C.; Ahn, H.; Park, S.; Kim, J.; Kihm, J.

    2013-12-01

    Three-dimensional geologic modeling and cross-validation using GOCAD (Paradigm, 2012) were performed to visualize realistically and to characterize quantitatively geologic formations in the Pohang Basin, which is one of the prospective basins for geologic carbon dioxide storage in Korea. The study area is 1,200 m long in the east-west direction, 2,200 m long in the north-south direction, and 2,176 m thick below the ground surface. First, satellite images, digital topographic maps, geologic maps, and eight deep borehole data in the study area were collected and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations, was established using the discrete smooth interpolation (DSI) method, and a three-dimensional grid model, which consists of 2,046,000 hexahedral blocks, was produced. Three-dimensional geologic formation modeling was then performed by polymerizing these two models. Second, a series of variogram modeling was performed to analyze spatial correlation of lithofacies in individual geologic formations. A Gaussian model, which has 180° strike and 0° dip, was selected as an optimal theoretical variogram because it has the longest lag distance, and its coefficient of determination is nearest to 1 among 84 trials. Based on the optimal theoretical variogram, a series of three-dimensional lithofacies modeling was performed 100 realization times, respectively, using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The results of the three-dimensional lithofacies modeling show that mudstone and sandstone distribute horizontally rather than vertically, and the volume fractions of mudstone and sandstone of the SIS case is more similar to the actual eight deep borehole data than that of the TGS case. Thus, the results of the three-dimensional lithofacies modeling using the SIS geostatistically have higher reliability than

  5. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here. PMID:27093542

  6. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet

    PubMed Central

    Rubab, Khansa; Mustafa, M.

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here. PMID:27093542

  7. Theory for the three-dimensional Mercedes-Benz model of water

    NASA Astrophysics Data System (ADS)

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.

    2009-11-01

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.

  8. Theory for the three-dimensional Mercedes-Benz model of water.

    PubMed

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A

    2009-11-21

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation. PMID:19929057

  9. Theory for the three-dimensional Mercedes-Benz model of water

    PubMed Central

    Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the “right answer,” we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim’s Ornstein–Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation. PMID:19929057

  10. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  11. Evaluation of geographic information systems for three-dimensional ground-water modeling, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Turner, A. Keith; Ervin, Elisabeth M.; Downey, Joe S.

    1991-01-01

    Fully three-dimensional representations of the geologic system at Yucca Mountain have been developed using a Geoscientific Information System, which is an expansion of a traditional Geographic Information Systems. These advanced, three dimensional, representations of Yucca Mountain are required to adequately evaluate the complex geologic and hydrologic conditions surrounding the site. This Geoscientific Information System will be used to store, analyze, and display site data. The system also will provide a link between geologic and hydrologic data and the numerical ground-water-flow model resulting in more easy testing of hypotheses concerning the conceptual model of the geohydrologic system at Yucca Mountain.

  12. Grid Generator for Two, Three-dimensional Finite Element Subsurface Flow Models

    1993-04-28

    GRIDMAKER serves as a preprocessor for finite element models in solving two- and three-dimensional subsurface flow and pollutant transport problems. It is designed to generate three-point triangular or four-point quadrilateral elements for two-dimensional domains and eight-point hexahedron elements for three-dimensional domains. A two-dimensional domain of an aquifer with a variable depth layer is treated as a special case for depth-integrated two-dimensional, finite element subsurface flow models. The program accommodates the need for aquifers with heterogeneousmore » systems by identifying the type of material in each element.« less

  13. Maneuvering target tracking algorithm based on current statistical model in three dimensional space

    NASA Astrophysics Data System (ADS)

    Huang, Ligang; Yan, Kang; Wang, Xiangdong

    2015-07-01

    This paper is mainly to solve the problems associated with maneuvering target tracking based current statistical model in three dimensional space. Firstly, a three-dimensional model of the nine state variables is presented. Then adaptive Kalman filtering algorithm is designed with the motor acceleration data mean and variance. Finally, A simulation about the adaptive Kalman filtering put forward by this thesis and the direct calculation method is given, which aim at the maneuvering target in three-dimension. The results show the good performances such as better target position, velocity and acceleration estimates brought by the proposed approach by presenting and discussing the simulation results.

  14. MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)

    EPA Science Inventory

    A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...

  15. Three-dimensional numerical modeling of water quality and sediment-associated processes in natural lakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...

  16. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    SciTech Connect

    William S. Winters

    2002-02-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied.

  17. Transient three-dimensional thermal model for batteries with thin electrodes

    NASA Astrophysics Data System (ADS)

    Taheri, Peyman; Yazdanpour, Maryam; Bahrami, Majid

    2013-12-01

    A three-dimensional analytical model is proposed to investigate the thermal response of batteries, with a plurality of thin electrodes, to heat generation during their operation. The model is based on integral-transform technique that gives a closed-form solution for the fundamental problem of unsteady heat conduction in batteries with orthotropic thermal conductivities, where the heat generation is a function of both temperature and depth-of-discharge. The full-field solutions take the form of a rapidly converging triple infinite sum whose leading terms provide a very simple yet accurate approximation of the battery thermal behavior with modest numerical effort. The accuracy of the proposed model is tested through comparison with numerical simulations. The method is used to describe spatial and temporal temperature evolution in a sample pouch type lithium-ion polymer battery during galvanostatic discharge processes while subjected to convective-radiative cooling at its surfaces (the most practical case is considered, when surrounding medium is at a constant ambient temperature). In the simulations, emphasis is placed on the maintenance of the battery operational temperature below a critical temperature. Through definition of a surface-averaged Biot number, certain conditions are highlighted, under which a two-dimensional thermal analysis is applicable.

  18. Research on three-dimensional positioning method of big data image under bag of words model guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Wang, Xiqi; Qiu, Zhenguo; Zhu, Shihuan; Xu, Xiaolei; Zhong, Sidong

    2015-12-01

    In order to retrieve the positioning image efficiently and quickly from a large number of different images to realize the three-dimensional spatial positioning, in this article, based on photogrammetry and computer vision theory, a new method of three-dimensional positioning of big data image under the bag of words model guidance is proposed. The method consists of two parts: image retrieving and spatial positioning. First, complete image retrieval by feature extraction, K-means clustering, bag of words model building and other processes, thus improve the efficiency of image matching. Second, achieve interior and exterior orientation element through image matching, building projection relationship and calculating the projection matrix, and then the spatial orientation is realized. The experimental result showed that the proposed method can retrieve the target image efficiently and achieve spatial orientation accurately, which made a beneficial exploration for achieving space positioning based on big data images.

  19. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The

  20. An application of three-dimensional modeling in the cutting machine of intersecting line software

    NASA Astrophysics Data System (ADS)

    Lu, Jixiang

    2011-11-01

    This paper developed a software platform of intersecting line cutting machine. The software platform consists of three parts. The first is the interface of parameter input and modify, the second is the three-dimensional display of main tube and branch tube, and the last is the cutting simulation and G code output. We can obtain intersection data by intersection algorithm, and we also make three-dimensional model and dynamic simulation on the data of intersecting line cutting. By changing the parameters and the assembly sequence of main tube and branch tube, you can see the modified two-dimensional and three-dimensional graphics and corresponding G-code output file. This method has been applied to practical cutting machine of intersecting line software.

  1. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    SciTech Connect

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl; Birn, Joachim

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  2. Three-Dimensional Animation Technology: a New Interactive Model Designed for the Teaching of Cryospheric Science

    NASA Astrophysics Data System (ADS)

    Porter, P. R.; Marunchak, A.

    2011-12-01

    One of the key challenges facing educators in the cryospheric sciences is to explain to students the processes that operate and the landforms that exist in relatively unfamiliar glacial environments. In many cases these environments are also largely inaccessible which can hinder field-based teaching. This is particularly the case for en-glacial and sub-glacial hydrology and the closely related topic of sub-glacial glacier dynamics, yet a full understanding of these subject areas is pivotal to overall student understanding of glaciology. An ability to visualise these unfamiliar and inaccessible environments offers a potentially powerful tool to assist student conceptualisation and comprehension. To address this we have developed a three-dimensional interactive 'virtual glacier' simulation model. Based on standards and technology established by the rapidly evolving video gaming industry, the user is presented with an interactive real-time three-dimensional environment designed to accurately portray multiple aspects of glacial environments. The user can move in all directions in the fore-field area, on the glacier surface and within en-glacial and sub-glacial drainage networks. Descent into the glacier hydrological system is via a moulin, from which the user can explore en-glacial channels linking to this moulin and ultimately descend into the sub-glacial drainage system. Various sub-glacial drainage network morphologies can then be 'explored' to aid conceptualisation and understanding and the user can navigate through drainage networks both up- and down-glacier and ultimately emerge at the portal into the fore-field environment. Interactive icons relating to features of interest are presented to the user throughout the model, prompting multimedia dialogue boxes to open. Dialogue box content (e.g. text, links to online resources, videos, journal papers, etc.) is fully customisable by the educator. This facilitates the use of the model at different academic levels

  3. Using Three-dimensional Plant Root Architecture in Models of Shallow-slope Stability

    PubMed Central

    Danjon, Frédéric; Barker, David H.; Drexhage, Michael; Stokes, Alexia

    2008-01-01

    Background The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Methods Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Key Results Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1·0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Conclusions Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses. PMID:17766845

  4. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model

    NASA Astrophysics Data System (ADS)

    Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber

    2016-04-01

    In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.

  5. Development of a Three-Dimensional Urban Energy Model for Predicting and Understanding Surface Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xinyan; Li, Yuguo

    2013-11-01

    The Model for Urban Surface Temperature, a three-dimensional approach, is developed for a realistically complex city with considerations of the energy exchange processes at the urban surface. The discrete transfer method and Gebhart absorption factor method are used for the shape factor estimation and multiple reflection calculation, respectively. The surface energy balance model is evaluated against existing field measurements that pertain to idealized urban geometry. It performs well in terms of predicting surface temperature and heat fluxes by allowing for detailed urban surface properties and meteorological conditions. The compressed row storage scheme is applied to calculate the transfer of surface thermal radiation, which dramatically reduces the computational requirements. This strategy permits the rigorous consideration of multiple reflections in a realistic urban area with hundreds of buildings. The result illustrates that considering only the first reflection is a good approach when the urban area is comprised of typical urban materials, e.g. materials with high emissivity and low albedo, because relatively accurate computational results can be obtained rapidly by avoiding the multiple reflection calculation.

  6. Three-dimensional Wavelet-based Adaptive Mesh Refinement for Global Atmospheric Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.; Semakin, A. N.

    2013-12-01

    Accurate numerical simulations of global scale three-dimensional atmospheric chemical transport models (CTMs) are essential for studies of many important atmospheric chemistry problems such as adverse effect of air pollutants on human health, ecosystems and the Earth's climate. These simulations usually require large CPU time due to numerical difficulties associated with a wide range of spatial and temporal scales, nonlinearity and large number of reacting species. In our previous work we have shown that in order to achieve adequate convergence rate and accuracy, the mesh spacing in numerical simulation of global synoptic-scale pollution plume transport must be decreased to a few kilometers. This resolution is difficult to achieve for global CTMs on uniform or quasi-uniform grids. To address the described above difficulty we developed a three-dimensional Wavelet-based Adaptive Mesh Refinement (WAMR) algorithm. The method employs a highly non-uniform adaptive grid with fine resolution over the areas of interest without requiring small grid-spacing throughout the entire domain. The method uses multi-grid iterative solver that naturally takes advantage of a multilevel structure of the adaptive grid. In order to represent the multilevel adaptive grid efficiently, a dynamic data structure based on indirect memory addressing has been developed. The data structure allows rapid access to individual points, fast inter-grid operations and re-gridding. The WAMR method has been implemented on parallel computer architectures. The parallel algorithm is based on run-time partitioning and load-balancing scheme for the adaptive grid. The partitioning scheme maintains locality to reduce communications between computing nodes. The parallel scheme was found to be cost-effective. Specifically we obtained an order of magnitude increase in computational speed for numerical simulations performed on a twelve-core single processor workstation. We have applied the WAMR method for numerical

  7. A Three-Dimensional Model for Individualizing Instruction for Gifted Students.

    ERIC Educational Resources Information Center

    Irvine, David J.

    A proposed three-dimensional model for identifying the gifted conceives of giftedness as a combination of characteristics. It emphasizes the different qualities of the characteristics as well as the fact that such characteristics exist in degrees or levels, thus helping to avoid thinking of giftedness or its components as being either wholly…

  8. Exact quantum cross sections for a three dimensional angle dependent model for three body reactions.

    NASA Technical Reports Server (NTRS)

    Baer, M.; Kouri, D. J.

    1971-01-01

    Exact quantum mechanical reactive cross sections are reported for a three dimensional angle dependent model surface. The surface simulates an atom-heteronuclear diatom system A + BC leading to AB + C where atom B is much heavier than A or C. The molecules BC and AB are taken to be rotating vibrators which can dissociate. Results for two angle dependent potentials are given.

  9. MAGPOLY; a modification of a three-dimensional magnetic modelling program

    USGS Publications Warehouse

    Godson, Richard H.

    1983-01-01

    The three-dimensional magnetic modelling program of Donald Plouff (Plouff, 1975) has been made operational on a Honeywell Multics 68/80 computer. Modifications were made to input and output procedures to make the program compatible with U.S. Geological Survey (USGS) standard geophysical input and output formats.

  10. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  11. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; Vanderburg, C. R.; Hammond, T.; Pierson, D. L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  12. A finite-volume ELLAM for three-dimensional solute-transport modeling

    USGS Publications Warehouse

    Russell, T.F.; Heberton, C.I.; Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.

  13. Global Well-Posedness of an Inviscid Three-Dimensional Pseudo-Hasegawa-Mima Model

    NASA Astrophysics Data System (ADS)

    Cao, Chongsheng; Farhat, Aseel; Titi, Edriss S.

    2013-04-01

    The three-dimensional inviscid Hasegawa-Mima model is one of the fundamental models that describe plasma turbulence. The model also appears as a simplified reduced Rayleigh-Bénard convection model. The mathematical analysis of the Hasegawa-Mima equation is challenging due to the absence of any smoothing viscous terms, as well as to the presence of an analogue of the vortex stretching terms. In this paper, we introduce and study a model which is inspired by the inviscid Hasegawa-Mima model, which we call a pseudo-Hasegawa-Mima model. The introduced model is easier to investigate analytically than the original inviscid Hasegawa-Mima model, as it has a nicer mathematical structure. The resemblance between this model and the Euler equations of inviscid incompressible fluids inspired us to adapt the techniques and ideas introduced for the two-dimensional and the three-dimensional Euler equations to prove the global existence and uniqueness of solutions for our model. This is in addition to proving and implementing a new technical logarithmic inequality, generalizing the Brezis-Gallouet and the Brezis-Wainger inequalities. Moreover, we prove the continuous dependence on initial data of solutions for the pseudo-Hasegawa-Mima model. These are the first results on existence and uniqueness of solutions for a model that is related to the three-dimensional inviscid Hasegawa-Mima equations.

  14. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  15. Computational analysis of three-dimensional epithelial morphogenesis using vertex models

    PubMed Central

    Du, XinXin; Osterfield, Miriam; Shvartsman, Stanislav Y.

    2014-01-01

    The folding of epithelial sheets, accompanied by cell shape changes and rearrangements, gives rise to three-dimensional structures during development. Recently, some aspects of epithelial morphogenesis have been modeled using vertex models, in which each cell is approximated by a polygon; however, these models have been largely confined to two dimensions. Here, we describe an adaptation of these models in which the classical two-dimensional vertex model is embedded in three dimensions. This modification allows for the construction of complex three-dimensional shapes from simple sheets of cells. We describe algorithmic, computational, and biophysical aspects of our model, with the view that it may be useful for formulating and testing hypotheses regarding the mechanical forces underlying a wide range of morphogenetic processes. PMID:25410646

  16. Three-dimensional eutrophication model of Chesapeake Bay. Volume 1: Main report. Final report

    SciTech Connect

    Cerco, C.F.; Cole, T.M.

    1994-05-01

    A three-dimensional, time-variable, eutrophication model, CE-QUAL-ICM, was applied to Chesapeake Bay. The model incorporated 22 state variables that included physical properties, multiple forms of algae, carbon, nitrogen, phosphorus, and silica, and dissolved oxygen. The model was part of a larger package that included a three-dimensional hydrodynamic model and a benthic sediment diagenesis model. The model was initially applied to a 3-year period, 1984-1986. The model successfully simulated water-column and sediment processes that affected water quality. Phenomena simulated include formation of the spring algal bloom subsequent to the annual peak in nutrient runoff, onset and breakup of summer anoxia, and coupling of organic particle deposition with sediment-water nutrient and oxygen fluxes. The model was next applied in a 30-year simulation of water quality, 1959-1988. The model indicated longterm trends in water quality and affirmed the role of stratification in determining anoxia. Final application of the model was in a series of nutrient load-reduction sensitivity analyses. The study demonstrated that complex eutrophication problems can be addressed with coupled three-dimensional hydrodynamic and water quality models.

  17. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China.

    PubMed

    Zhao, Lei; Zhang, Xiaoling; Liu, Yong; He, Bin; Zhu, Xiang; Zou, Rui; Zhu, Yuanguan

    2012-01-01

    Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making. PMID:23513675

  18. Ozone and other trace gases in the Arctic and Antarctic regions: Three-dimensional model simulations

    SciTech Connect

    Granier, C.; Brasseur, G. )

    1991-02-20

    A three-dimensional mechanistic model of the middle atmosphere with calculated dynamics and chemistry is used to study the behavior of chemically active trace gases at high latitudes in winter and spring, and to simulate the formation of an ozone hole in Antarctica. The dynamics of both hemispheres is simulated by applying at the lower boundary of the model (8.5 km) a wavelike perturbation representing qualitatively a climatological tropospheric forcing. The chemical heterogeneous processes converting chlorine reservoirs into active chlorine in cold air masses are parameterized. The model simulates the behavior of nitrogen oxides, nitric acid, water vapor, methane, hydrogen radicals, chlorine compounds, and ozone. It reproduces important features observed during different Antarctic and Arctic observation campaigns. The ozone hole in the southern hemisphere can only be simulated when the heterogeneous polar chemistry is taken into account. The springtime ozone depletion over Antarctica calculated in the model is thus mostly the result of chemical removal although the dynamics is responsible for the low temperature that triggers the large ozone loss rates. Unresolved questions are related to the strength of the vertical exchanges inside the vortex, the preconditioning of trace gases before and during the winter season, the behavior of the different trace gases as the vortex breaks down (dilution effects), accurate determination of the ozone sink inside the vortex, and a better quantitative estimation of the role of polar stratospheric clouds. Despite elevated concentrations of active chlorine at high latitudes in the northern hemisphere in late winter, no ozone hole is produced by the model, even with chlorine levels as high as 6 ppbv. This conclusion could, however, be modified for very stable and cold winters with delayed final warming.

  19. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx

    PubMed Central

    Xue, Q.; Mittal, R.; Zheng, X.; Bielamowicz, S.

    2012-01-01

    Simulation of the phonatory flow-structure interaction has been conducted in a three-dimensional, tubular shaped laryngeal model that has been designed with a high level of realism with respect to the human laryngeal anatomy. A non-linear spring-based contact force model is also implemented for the purpose of representing contact in more general conditions, especially those associated with three-dimensional modeling of phonation in the presence of vocal fold pathologies. The model is used to study the effects of a moderate (20%) vocal-fold tension imbalance on the phonatory dynamics. The characteristic features of phonation for normal as well as tension-imbalanced vocal folds, such as glottal waveform, glottal jet evolution, mucosal wave-type vocal-fold motion, modal entrainment, and asymmetric glottal jet deflection have been discussed in detail and compared to established data. It is found that while a moderate level of tension asymmetry does not change the vibratory dynamics significantly, it can potentially lead to measurable deterioration in voice quality. PMID:22978889

  20. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  1. Development and application of a three-dimensional finite element vapor intrusion model.

    PubMed

    Pennell, Kelly G; Bozkurt, Ozgur; Suuberg, Eric M

    2009-04-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  2. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    NASA Astrophysics Data System (ADS)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  3. A proto-object based saliency model in three-dimensional space.

    PubMed

    Hu, Brian; Kane-Jackson, Ralinkae; Niebur, Ernst

    2016-02-01

    Most models of visual saliency operate on two-dimensional images, using elementary image features such as intensity, color, or orientation. The human visual system, however, needs to function in complex three-dimensional environments, where depth information is often available and may be used to guide the bottom-up attentional selection process. In this report we extend a model of proto-object based saliency to include depth information and evaluate its performance on three separate three-dimensional eye tracking datasets. Our results show that the additional depth information provides a small, but statistically significant, improvement in the model's ability to predict perceptual saliency (eye fixations) in natural scenes. The computational mechanisms of our model have direct neural correlates, and our results provide further evidence that proto-objects help to establish perceptual organization of the scene. PMID:26739278

  4. A new three-dimensional terrain-following tidal model of free-surface flows

    NASA Astrophysics Data System (ADS)

    Lu, Fuqiang; Zhang, Zhuo; Song, Zhiyao; Yue, Songshan; Wen, Yongning

    2015-12-01

    A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.

  5. Three-dimensional Fast Flux Test Facility plenum model turbulent flow prediction and data comparison

    SciTech Connect

    Eyler, L.L.; Sawdye, R.W.

    1981-01-01

    Two- and three-dimensional numerical simulations of turbulent flow in a scaled Fast Flux Test Facility (FFTF) upper plenum model were performed using the TEMPEST hydrothermal code. A standard k-element of model was used to describe turbulence through an effective viscosity. Comparisons with previously reported mean velocity and turbulence field data measured in the plenum model and two-dimensional numerical simulations using the TEACH code were made. Predicted horizontal and vertical mean velocities and turbulent kinetic energy are shown to be in good agreement with available experimental data when inlet conditions of the dissipation of turbulent kinetic energy are appropriately prescribed. The three-dimensional quarter-symmetry simulation predicts the turbulent kinetic energy field significantly better than the two-dimensional centerplane simulations. These results lead to conclusions concerning deficiencies in the experimental data and the turbulence model.

  6. A three-dimensional statistical mechanical model of folding double-stranded chain molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbing; Chen, Shi-Jie

    2001-05-01

    Based on a graphical representation of intrachain contacts, we have developed a new three-dimensional model for the statistical mechanics of double-stranded chain molecules. The theory has been tested and validated for the cubic lattice chain conformations. The statistical mechanical model can be applied to the equilibrium folding thermodynamics of a large class of chain molecules, including protein β-hairpin conformations and RNA secondary structures. The application of a previously developed two-dimensional model to RNA secondary structure folding thermodynamics generally overestimates the breadth of the melting curves [S-J. Chen and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 97, 646 (2000)], suggesting an underestimation for the sharpness of the conformational transitions. In this work, we show that the new three-dimensional model gives much sharper melting curves than the two-dimensional model. We believe that the new three-dimensional model may give much improved predictions for the thermodynamic properties of RNA conformational changes than the previous two-dimensional model.

  7. a Three-Dimensional Approach to Modeling Root Water Uptake by Multiple Trees

    NASA Astrophysics Data System (ADS)

    Manoli, G.; Bonetti, S.; domec, J.; Putti, M.; Katul, G. G.; Marani, M.

    2013-12-01

    Competition for water among rooting zones of multiple trees is a ubiquitous feature of canopy-scale transpiration, yet rarely incorporated in watershed scale models. To accommodate the three-dimensional rooting overlap in space, a three-dimensional approach to modeling soil moisture and root-water uptake is developed in which the overlap of the rooting system is allowed. The model is based on the 3-D Richards equation and uses an Ohm's law type model to account for root, xylem and stomatal conductances needed to describe root water uptake (RWU). The hydraulic model is then linked to the atmosphere via a stomatal conductance, where the stomatal aperture is regulated so as to maximum carbon gain for a given water loss. Because of this tight coupling between Fickian mass transfer of CO2 and H2O through the stomatal pores, plant hydraulics and biochemical demand for CO2 via photosynthesis are simultaneously considered in the estimation of RWU. The model is then evaluated with field data and used to investigate tree-to-tree interactions in a well-drained loblolly pine plantation. The importance of three-dimensional modeling to upscale plant-water relations at large scales is discussed.

  8. Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model

    NASA Astrophysics Data System (ADS)

    Gendiar, A.; Nishino, T.

    2005-01-01

    The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product variational approach. A global phase diagram is constructed with numerous commensurate and incommensurate magnetic phases. The devil’s stairs behavior for the model is confirmed. The wavelength of the spin modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commensurate phases are considerably narrower than those calculated by mean-field approximations.

  9. Documentation of finite-difference model for simulation of three-dimensional ground-water flow

    USGS Publications Warehouse

    Trescott, Peter C.; Larson, S.P.

    1976-01-01

    User experience has indicated that the documentation of the model of three-dimensional ground-water flow (Trescott and Larson, 1975) should be expanded. This supplement is intended to fulfill that need. The original report emphasized the theory of the strongly implicit procedure, instructions for using the groundwater-flow model, and practical considerations for application. (See also W76-02962 and W76-13085) (Woodard-USGS)

  10. Finite-element model for three-dimensional optical scattering problems.

    PubMed

    Wei, Xiuhong; Wachters, Arthur J; Urbach, H Paul

    2007-03-01

    We present a three-dimensional model based on the finite-element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals and to many configurations such as an isolated scatterer in a multilayer, bi-gratings, and crystals. We discuss the application of the model to near-field optical recording. PMID:17301875

  11. Three-Dimensional In Vitro Tumor Models for Cancer Research and Drug Evaluation

    PubMed Central

    Xu, Xian; Farach-Carson, Mary C.; Jia, Xinqiao

    2014-01-01

    Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell-cell communications and cell-matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized

  12. A three-dimensional multiscale model for gas exchange in fruit.

    PubMed

    Ho, Quang Tri; Verboven, Pieter; Verlinden, Bert E; Herremans, Els; Wevers, Martine; Carmeliet, Jan; Nicolaï, Bart M

    2011-03-01

    Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus×domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure. PMID:21224337

  13. Using three-dimensional models to teach molecular structures in high school chemistry

    NASA Astrophysics Data System (ADS)

    Copolo, Cynthia E.; Hounshell, Paul B.

    1995-12-01

    The purpose of this study was to compare the effects of using two- and three-dimensional model representations of molecular structures on student learning of organic chemical structures. Organic structures were taught to high school students using one of four methods of molecular representation: (1) two-dimensional textbook representations, (2) three-dimensional computer models, (3) three-dimensional ball and stick models, and (4) combination of the computer molecular models and the ball and stick models. The computer software used in this study was Molecular Editor. Students in the combination group of using both computer and ball and stick models scored significantly higher on the retention test of isomeric identification compared to the other groups. Molecules were represented in this test in the same mode as the instructional representation. However, on a similar two-dimensional post-instructional test of isomeric identification, this group had a significantly lower mean than the other groups; the two-dimensional group had the highest mean. This difference was not observed with the two-dimensional retention test of isomeric identification. When given a two-dimensional test of isomeric construction, no significant difference was found among the group means with either the posttest or the retention test.

  14. Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells

    SciTech Connect

    Kim, G. H.; Pesaran, A.; Spotnitz, R.

    2007-01-01

    To understand further the thermal abuse behavior of large format Li-ion batteries for automotive applications, the one-dimensional modeling approach formulated by Hatchard et al. was reproduced. Then it was extended to three dimensions so we could consider the geometrical features, which are critical in large cells for automotive applications. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, and is used to simulate oven tests, and to determine how a local hot spot can propagate through the cell. In simulations of oven abuse testing of cells with cobalt oxide cathode and graphite anode with standard LiPF6 electrolyte, the three-dimensional model predicts that thermal runaway will occur sooner or later than the lumped model, depending on the size of the cell. The model results showed that smaller cells reject heat faster than larger cells; this may prevent them from going into thermal runaway under identical abuse conditions. In simulations of local hot spots inside a large cylindrical cell, the three-dimensional model predicts that the reactions initially propagate in the azimuthal and longitudinal directions to form a hollow cylinder-shaped reaction zone.

  15. A three-dimensional thermal abuse model for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Heon; Pesaran, Ahmad; Spotnitz, Robert

    To understand further the thermal abuse behavior of large format Li-ion batteries for automotive applications, the one-dimensional modeling approach formulated by Hatchard et al. [T.D. Hatchard, D.D. MacNeil, A. Basu, J.R. Dahn, J. Electrochem. Soc. 148(7) (2001) A755-A761] was reproduced. Then it was extended to three dimensions so we could consider the geometrical features, which are critical in large cells for automotive applications. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, and is used to simulate oven tests, and to determine how a local hot spot can propagate through the cell. In simulations of oven abuse testing of cells with cobalt oxide cathode and graphite anode with standard LiPF 6 electrolyte, the three-dimensional model predicts that thermal runaway will occur sooner or later than the lumped model, depending on the size of the cell. The model results showed that smaller cells reject heat faster than larger cells; this may prevent them from going into thermal runaway under identical abuse conditions. In simulations of local hot spots inside a large cylindrical cell, the three-dimensional model predicts that the reactions initially propagate in the azimuthal and longitudinal directions to form a hollow cylinder-shaped reaction zone.

  16. Three-dimensional imperfections in a model vertical Bridgman growth system for cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Compère, Geoffrey; Pandy, Arun; Derby, Jeffrey J.

    2004-03-01

    Three-dimensional, quasi-steady-state modeling of heat transfer, flow, and segregation are carried out with a self-consistent, parallel, finite element model to analyze the effects of imperfections on a model system for the vertical Bridgman growth of cadmium zinc telluride. Even small amounts of ampoule tilting (defined as the offset between the ampoule axis from the direction of gravity) produce large asymmetries in the flow and solute segregation. However, the application of ampoule rotation, at rates far smaller than considered in prior studies, acts to restore axisymmetric segregation behavior. Thermal imperfections caused by ampoule offset in the furnace bore and ampoule distortion are also shown to yield significant three-dimensional flows and segregation asymmetry. Local heating is shown to strongly affect solute mixing and may be effective in active strategies for segregation control.

  17. Three-dimensional modeling of biopsy protocols for localized prostate cancer.

    PubMed

    Loughlin, M; Carlbom, I; Busch, C; Douglas, T; Egevad, L; Frimmel, H; Norberg, M; Sesterhenn, I; Frogge, J M

    1998-01-01

    Prostate cancer is the most common malignant tumor in American men, yet only a small percentage of men will develop clinically significant disease. Needle core biopsies are used to confirm the presence of cancer prior to surgery. While needle core biopsies have shown some ability to predict tumor volume and grade in prostatectomy specimens, for the individual patient they are neither sensitive nor specific enough to guide therapy. In this paper, we describe a system for simulating needle biopsies on three-dimensional models of cancerous prostates reconstructed from serial sections. First we segment the serial sections, delineating tumors and landmarks. Next, we register the sections using a color-merging scheme, and reconstruct the three-dimensional model using modified-shape-based interpolation. The resulting volume can be rendered, and simulated needle core biopsies can be taken from the reconstructed model. We use our system to simulate two different biopsy protocols on a reconstructed prostate specimen. PMID:9740040

  18. Accuracy of open-source software segmentation and paper-based printed three-dimensional models.

    PubMed

    Szymor, Piotr; Kozakiewicz, Marcin; Olszewski, Raphael

    2016-02-01

    In this study, we aimed to verify the accuracy of models created with the help of open-source Slicer 3.6.3 software (Surgical Planning Lab, Harvard Medical School, Harvard University, Boston, MA, USA) and the Mcor Matrix 300 paper-based 3D printer. Our study focused on the accuracy of recreating the walls of the right orbit of a cadaveric skull. Cone beam computed tomography (CBCT) of the skull was performed (0.25-mm pixel size, 0.5-mm slice thickness). Acquired DICOM data were imported into Slicer 3.6.3 software, where segmentation was performed. A virtual model was created and saved as an .STL file and imported into Netfabb Studio professional 4.9.5 software. Three different virtual models were created by cutting the original file along three different planes (coronal, sagittal, and axial). All models were printed with a Selective Deposition Lamination Technology Matrix 300 3D printer using 80 gsm A4 paper. The models were printed so that their cutting plane was parallel to the paper sheets creating the model. Each model (coronal, sagittal, and axial) consisted of three separate parts (∼200 sheets of paper each) that were glued together to form a final model. The skull and created models were scanned with a three-dimensional (3D) optical scanner (Breuckmann smart SCAN) and were saved as .STL files. Comparisons of the orbital walls of the skull, the virtual model, and each of the three paper models were carried out with GOM Inspect 7.5SR1 software. Deviations measured between the models analysed were presented in the form of a colour-labelled map and covered with an evenly distributed network of points automatically generated by the software. An average of 804.43 ± 19.39 points for each measurement was created. Differences measured in each point were exported as a .csv file. The results were statistically analysed using Statistica 10, with statistical significance set at p < 0.05. The average number of points created on models for each measurement was 804

  19. The correction of the distortion of human face based on three-dimensional modeling methods

    NASA Astrophysics Data System (ADS)

    Ye, Qingmin; Chen, Kuo; Feng, Huajun; Xu, Zhihai; Li, Qi

    2015-08-01

    When the human face is on the edge of field of the camera which has a large view, serious deformation will be captured. To correct the distortion of the human face, we present an approach based on setting up a 3D model. Firstly, we construct 3D target face modeling by using the data and depth information of the standard human face, which is set up by the three-dimensional model with three-dimensional Gaussian function with sectional type. According to the size of the face in the image and the parameters of the camera, we can obtain the information of relative position and depth of the human face. Then by translating the virtual camera axis to the center of the face, we can achieve the goal to correct the distortion of the face based on the theory of three-dimensional imaging. Finally, we have made a lot of experiments, and we study the influence of parameters of the 3D model of human face. The result indicates that the method presented by this paper can play an effective role in correcting the distortion of the face in the edge of the view, and we can get better results if the model appreciates the real human face.

  20. Feasibility of determining surface emissions of trace gases using an inverse method in a three-dimensional chemical transport model

    NASA Technical Reports Server (NTRS)

    Hartley, Dana; Prinn, Ronald

    1993-01-01

    The paper investigates the feasibility of using an inverse method based on a linear Kalman filter in a three-dimensional atmospheric transport model, for the determination of regional surface fluxes with rapid convergence, using data from a finite number of observation sites. It was found that the inverse method used was capable to accurately determine regional surface fluxes using the present ALE/GALE sites, and to converge to the correct solution within a year or two, using initial conditions very different from the final solution.

  1. Three-Dimensional Numerical Modelling of Reach-Scale River Flows Using a Porosity Treatment

    NASA Astrophysics Data System (ADS)

    Hunt, R. M.; Lane, S. N.; Hardy, R. J.; Ingham, D. B.; Elliott, L.; Wen, X.; Whiting, P. J.

    2004-05-01

    superelevation, as well as reducing the volume to represent surface depression. Solution is achieved using three-dimensional finite volume CFD code. A steady state solution is obtained using the renormalized group (RNG) variant of the k-ɛ turbulence model and a hybrid interpolation scheme. The model is used to simulate the flow in a relatively straight section of Solfatara Creek in Wyoming, USA, containing a submerged mid-channel bar. The results show that the large scale flow processes are accurately captured by the model, including accurate qualitative representation of secondary circulation.

  2. [The potential of three-dimensional tumor models and cell culturing in cancer research and diagnostics].

    PubMed

    Alföldi, Róbert; Szebeni, János Gábor; Puskás, László G

    2015-12-01

    In vitro testing of antitumor agents on human cancer cell lines has become essential in pharmaceutical research and in clinical practice. Although the most widely used technique is the two-dimensional cell growing protocol (in tissue culture plates), the new three-dimensional methods are becoming more and more popular as their structure and complexity is more similar to the microenvironment of the real tumor. The aim of the present study is to describe the most widely used in vitro three-dimensional tumor models and to compare a RAFT(TM) three dimensional in vitro tumor model with the traditional two-dimensional tumor cell cultures. In the study, the viability and the enzyme activity of cultured A549 non-small cell lung cancer (NSCLC) cells under different conditions were compared. The results show that while the number of necrotic cells increased significantly (20-fold; 2D/A549 T75 conventional tissue culture flask 1.6%; 2D/A549-collagen coated T75 tissue culture flask 1.45%, RAFT(TM) 22.11%) during long culturing period in the RAFT(TM) three-dimensional in vitro tumor model, there was no significant difference during the conventional antitumor screening period (3-5 day) compared to the traditional two-dimensional cell cultures. The structure of the tumor cell islets grown with RAFT(TM) is much more complex than that of the traditional two-dimensional cultures. Thus, similarly to the in vivo tumor microenvironment, there is also a collagen matrix in the extracellular space which can have significant effect on the diffusion of the antitumor agents to cells. In conclusion, it can be stated that testing of antitumor agents on tumor cells cultured in three-dimensional systems can be an important complementary method to the traditional two-dimensional in vitro analyses. The results of the new three-dimensional method can be more easily applied in the in vivo analysis and translated into clinical practice. PMID:26665190

  3. Experimental and theoretical study of Pseudomonas putida transport in a three-dimensional model aquifer

    NASA Astrophysics Data System (ADS)

    Vasiliadou, I. A.; Katzourakis, V. E.; Syngouna, V. I.; Chrysikopoulos, C. V.

    2012-04-01

    This study is focused on the transport of Pseudomonas (P.) putida bacterial cells in a three-dimensional model aquifer. The pilot-scale aquifer consisted of a rectangular glass tank with internal dimensions: 120 cm length, 48 cm width, and 50 cm height, carefully packed with well-characterized quartz sand. The P. putida attachment onto the aquifer sand was determined with batch experiments, and was adequately described by a linear isotherm. Transport experiments with a conservative tracer and P. putida were conducted to characterize the aquifer and to investigate the bacterial behavior during transport in water saturated porous media. A three-dimensional, finite-difference numerical model for bacterial transport in saturated, homogeneous porous media was developed and was used to successfully fit the experimental data. Furthermore, theoretical interaction energy calculations suggested that the extended DLVO theory seems to predict bacteria attachment onto the aquifer sand better than the classical DLVO theory.

  4. Three-Dimensional Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S.; Wu, H.; Pingerelli, P.; Glickman, B.

    2000-01-01

    In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of mUltiple copies of defined target genes for genotoxic assessment. The Rat 2(lambda) fibroblasts (Stratagene, Inc.) were genetically engineered to contain high-density target genes for mutagenesis. Stable three-dimensional, multicellular spheroids were formed when human mammary epithelial cells and Rat 2(lambda) fibroblasts were cocultured on Cytodex 3 Beads in a rotating wall bioreactor. The utility of this spheroidal model for genotoxic assessment was indicated by a linear dose response curve and by results of gene sequence analysis of mutant clones from 400micron diameter spheroids following low-dose, high-energy, neon radiation exposure

  5. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models

    USGS Publications Warehouse

    Kauahikaua, J.; Hildenbrand, T.; Webring, M.

    2000-01-01

    A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.

  6. Nematic order by thermal disorder in a three-dimensional lattice spin model with dipolarlike interactions.

    PubMed

    Chamati, Hassan; Romano, Silvano

    2014-08-01

    At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example, nearest-neighbor interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally ordered phases exhibiting nematic (second-rank) order, in addition to the primary first-rank one; on the other hand, in the literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with finite-size scaling analysis, have been used for characterizing its critical behavior; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder. PMID:25215748

  7. Liquid-based three-dimensional tumor models for cancer research and drug discovery.

    PubMed

    Ham, Stephanie L; Joshi, Ramila; Thakuri, Pradip S; Tavana, Hossein

    2016-05-01

    Tumors are three-dimensional tissues where close contacts between cancer cells, intercellular interactions between cancer and stromal cells, adhesion of cancer cells to the extracellular matrix, and signaling of soluble factors modulate functions of cancer cells and their response to therapeutics. Three-dimensional cultures of cancer cells overcome limitations of traditionally used monolayer cultures and recreate essential characteristics of tumors such as spatial gradients of oxygen, growth factors, and metabolites and presence of necrotic, hypoxic, quiescent, and proliferative cells. As such, three-dimensional tumor models provide a valuable tool for cancer research and oncology drug discovery. Here, we describe different tumor models and primarily focus on a model known as tumor spheroid. We summarize different technologies of spheroid formation, and discuss the use of spheroids to address the influence of stromal fibroblasts and immune cells on cancer cells in tumor microenvironment, study cancer stem cells, and facilitate compound screening in the drug discovery process. We review major techniques for quantification of cellular responses to drugs and discuss challenges ahead to enable broad utility of tumor spheroids in research laboratories, integrate spheroid models into drug development and discovery pipeline, and use primary tumor cells for drug screening studies to realize personalized cancer treatment. PMID:27072562

  8. Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Pasko, Victor P.

    2005-02-01

    Comparison of results from a three-dimensional (3-D) finite difference time domain (FDTD) model of Schumann resonances (SR) with a set of classical eigenfrequency and quality factor solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and recent SR observations during solar proton events (SPEs) and X-ray bursts demonstrate the potential and applicability of the FDTD technique for studies of realistic SR problems.

  9. Logarithmic finite-size corrections in the three-dimensional mean spherical model

    SciTech Connect

    Brankov, J.G.; Danchev, D.M. )

    1993-05-01

    The finite-size scaling prediction about logarithmic corrections in the free energy arising from corners in the geometry of the system is tested on the three-dimensional mean spherical model. The general case of boundary conditions which are periodic in d[prime] [ge] 0 dimensions and free or fixed in the remaining 3 - d[prime] dimensions is considered. Logarithmic and double-logarithmic size corrections stemming from corners, edges, and surfaces are obtained. 15 refs.

  10. Methodology for creating three-dimensional terrain databases for use in IR signature modeling

    NASA Astrophysics Data System (ADS)

    Williams, Bryan L.; Pickard, J. W., Jr.

    1996-06-01

    This paper describes a methodology which has been successfully used to create high fidelity three-dimensional infrared (IR) signature models of terrain backgrounds for use in digital simulations by the U.S. Army Missile Command. Topics discussed include (1) derivation of database fidelity and resolution requirements based upon system parameters, (2) use of existing digital elevation maps (DEMs) (3) generation of digital elevation maps from stereo aerial and satellite imagery, and (4) classification of ground cover materials.

  11. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  12. High performance computing for three-dimensional agent-based molecular models.

    PubMed

    Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A

    2016-07-01

    Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool. PMID:27372059

  13. Three-Dimensional Quasistatic Model for High Brightness Beam Dynamics Simulation

    SciTech Connect

    Qiang, Ji; Lidia, S.; Ryne, R.D.; Limborg-Deprey, C.; /SLAC

    2006-06-19

    In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics simulation in rf/dc photoinjectors, rf linacs, and similar devices on parallel computers. In this model, electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each time step by solving the three-dimensional Poisson equation in the beam frame and then transforming back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and summed together. Image-charge effects from conducting photocathode are also included efficiently using a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated Green function method is used to solve the three-dimensional Poisson equation. Using this model, we studied beam transport in one Linac Coherent Light Sources photoinjector design through the first traveling wave linac with initial misalignment with respect to the accelerating axis.

  14. High-precision spectroscopy of late-type stars with three-dimensional model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Collet, Remo

    2015-08-01

    Classical spectroscopic analyses of late-type stars generally rely on the use of synthetic spectra computed with stationary, one-dimensional (1D), hydrostatic model stellar atmospheres to quantitatively interpret observations. Recent years, however, have seen a rapid development in the field of three-dimensional (3D) hydrodynamical modelling of stellar atmospheres and stellar spectra.In this contribution, I will present results from realistic, time-dependent, hydrodynamical 3D simulations of stellar atmospheres of solar- and late-type stars, covering a wide range of stellar parameters and compositions, from main sequence to red giant branch and with metallicities from [Fe/H]=+0.5 down to [Fe/H]=-4. These 3D model atmospheres have been generated using a custom version of the radiation-magnetohydrodynamics Stagger-Code which implements state-of-the-art input micro-physics, equation of state and opacity data, and a realistic treatment of non-grey radiative transfer.I will describe the main properties of the simulations and discuss the application of 3D model atmospheres to spectral line-formation calculations and high-precision spectroscopy of late-type stars. I will illustrate the main effects of 3D modelling of stellar atmospheres and stellar spectra on the predicted strengths and shapes of spectral lines, highlighting the systematic differences with respect to calculations based on classical, 1D, hydrostatic models.In particular, I will present the results of spectroscopic carbon, nitrogen and oxygen abundance determinations based on the analysis of CH, NH, CN and OH molecular bands with 3D model stellar atmospheres. I will show that the differences with respect to classical analyses based on 1D models can be significant and of the order of 0.5 to 1 dex in terms of logarithmic abundances of these important elements.Finally, I will also discuss the application of 3D models to the analysis and interpretation of data from large-scale space-born and ground

  15. Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java

    NASA Astrophysics Data System (ADS)

    Beauducel, FrançOis; Cornet, FrançOis H.

    1999-01-01

    We study here the deformations associated with the November 1996 to March 1997 eruption period at Mount Merapi (Central Java), one of the most active volcanoes in Indonesia. This activity period includes a vertical explosion on January 17 and an increase of the lava dome volume by about 3×106 m3. Two Global Positioning System (GPS) campaigns have been carried out on a six-benchmark network at the beginning and at the end of the period. Relative displacements with respect to the reference point show an average subsidence of 6.5 cm. A multicomponent tilt station installed on the southeast flank, 3 km from the summit, recorded a tilt of 11.1 ± 0.7 μrad in the tangential direction and 0.9 ± 0.4 μrad in the radial direction. These data are interpreted using a three-dimensional (3-D) elastic model based on the mixed boundary element method and a near-neighbor Monte Carlo inversion. Interpretation of tilt data requires an accurate mesh for discretizing the 3-D topography. The final result supports a horizontal elliptic magma source located 8.5 ± 0.4 km below the summit and 2 ± 0.4 km to the east of it. In particular, the data cannot be consistent with the location of a magma chamber determined from seismic activity analysis (i.e., 2 km below the summit). The computed depth depends strongly on the source shape and cannot be constrained properly because of the small amount of data. The computed deflation of 11 ± 2×106 m3 is about 3 times larger than the observed increase in the lava dome volume. This difference is attributed to rock avalanches and pyroclastic flows on the flanks of the volcano.

  16. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  17. A novel deployment scheme based on three-dimensional coverage model for wireless sensor networks.

    PubMed

    Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan

    2014-01-01

    Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747

  18. About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model

    NASA Astrophysics Data System (ADS)

    Fiscaletti, Davide

    2016-06-01

    A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space-time similar to the curvature produced by a "dark energy" density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.

  19. Three-dimensional modeling of heat transfer from slab floors. Final report

    SciTech Connect

    Bahnfleth, W.P.

    1989-07-01

    Earth-coupled heat-transfer processes have been recognized in recent years as a potential source of significant energy savings in both conventional and earth-sheltered designs, Because of the complexity of the building/soil/atmosphere interaction, however, important aspects of earth-coupled heat transfer are not well understood. There is a particular lack of three-dimensional foundation heat-loss data. In this study, a detailed three-dimensional finite-difference model of a slab floor was used to generate 93 annual simulations in parametric groups focusing on effects of size and shape, soil properties, boundary conditions, climate, insulation, and building shadow. These results indicate that soil thermal conductivity, ground surface conditions, foundation design, and floor shape/size are essential elements of a general change in heat-transfer rate.

  20. Testing and benchmarking of a three-dimensional groundwater flow and solute transport model

    SciTech Connect

    Sims, P.N.; Andersen, P.F.; Faust, C.R.; Stephenson, D.E.

    1988-12-31

    A three-dimensional finite-difference model was developed to simulate groundwater flow and solute transport. The model is intended for application to a variety of groundwater resource and solute migration evaluations, including several complex sites at the Savannah River Plant (SRP). Because the model, FTWORK, is relatively new, there is a need to provide confidence in the model results. Methodologies that test models include comparisons with analytical solutions, comparisons with empirical data, and checking that conservation properties hold. Another level of testing is the comparison of one code against another. This paper describes the testing and benchmarking procedure used to verify the validate FTWORK.

  1. Three-dimensional modeling of flow and deformation in idealized mild and moderate arterial vessels.

    PubMed

    Gu, Xi; Yeoh, Guan Heng; Timchenko, Victoria

    2016-10-01

    Three-dimensional numerical calculations of mild and moderate stenosed blood vessels have been performed. Large eddy simulation through a dynamic subgrid scale Smagorinsky model is applied to model the transitional and turbulent pulsatile flow. For the compliant stenosed model, fluid-structure interaction is realized through a two-way coupling between the fluid flow and the deforming vessel through the change in the external diameter due to the increment of circumferential pressure via a novel moving boundary approach. Model predictions compare very well against measured and numerical data for the centerline velocities, thickness of the flow separation zones and radial wall displacements. PMID:26863528

  2. Explorable Three-Dimensional Digital Model of the Female Pelvis, Pelvic Contents, and Perineum for Anatomical Education

    ERIC Educational Resources Information Center

    Sergovich, Aimee; Johnson, Marjorie; Wilson, Timothy D.

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using…

  3. Three-dimensional forward modelling and inversion of complex resistivity based on the improved quasi-linear approximation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, T.; Zhu, C.; Zhang, R.; Wu, Y.

    2015-12-01

    Three-dimensional (3-D) electromagnetic (EM) forward modelling and inversion continues to be an important issue for the correct interpretation of EM data.To this end,approximate solutions have been developed that allow the construction of relatively fast forward modelling and inversion schemes.We have developed an improved quasi-linear approximation which is more appropriate in solving the linear equation for greatly shortening calculation time.We achieved this by using green's function properties.Then we introduced the improved quasi-linear approximation to spectral induced polarization (SIP) to tackle the problem of the resolution and the efficiency.The localized quasi-linear (LQL) approximation theory is appropriate for multisource array-type surveys assuming that the normal field is slowly varying within the inhomogeneity domain.However,the normal field of attenuates severely which dose not satisfy the assumption of the LQL approximation.As a consenquence,the imaginary part is not accurate when LQL approximation is adopted for the simulation.The improved quasi-linear approximation provide a new approach with the same resolution of QL approximation and much less calculation time.We have also constructed three-dimensional SIP forward modeling based on improved quasi-linear approximation method.It only takes 0.8s for forward modeling when inhomogeneity domain is divided into 2000 blocks.Beyond that, we have introduced the Cole-Cole model to the algorithm and complete the three-dimensional complex resistivity conjugate gradient inversion with parameter restraint.The model trial results show that this method can obtain good inversion results in physical parameters such as zero frequency resistivity, polarization.The results demonstrate the stability and the efficiency of the improved quasi-linear approximation and the method may be a practical solution for3-D EM forward modelling and inversion of SIP.

  4. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  5. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  6. Three-Dimensional GIS for the storage, analysis, and visualization of large complex models

    NASA Astrophysics Data System (ADS)

    Marc, W. S.; Keating, G. S.; Riggs, T. L.; Rich, P. M.

    2002-12-01

    Large, complex numerical models are typically composed of many different input data sources and produce results that are in a variety of data formats not easily integrated into a single visualization environment. Results from geologic models, groundwater models, digital elevation models (DEMs), and microclimate models are examples of such model data. Through the use of a three-dimensional geographic information system (3DGIS), all model (both model inputs and outputs), field and experimental data can be effectively integrated on one platform. We employ a 3DGIS comprised of a Raid storage device, an Oracle database, a spatial database engine (SDE), GIS software, and custom GIS tools for three-dimensional (3D) analysis. We create tables within the Oracle database that can be assembled to store model components, including information about nodes, elements, and calculations at a given time step. This allows for efficient query of the model within the 3DGIS visualization environment. Effective database storage with access via SDE, and coupled with spatial analysis tools, provide key capabilities for addressing complex problems. Because our 3DGIS is enterprise capable (connected through a series of high-speed networks and accessible concurrently) many users can access and share the same data. By integrating the latest GIS technologies with 3D numerical modeling techniques, we provide effective means to analyze, store, and visualize model results.

  7. Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras

    2016-04-01

    into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.

  8. Derivation of a three dimensional numerical water quality model for estuary and continental shelf application

    NASA Technical Reports Server (NTRS)

    Spaulding, M.

    1973-01-01

    A derivation is given for a three dimensional mass transport equation which is appropriate for numerical modeling of estuary and continental shelf water quality variations for both the time dependent and steady state cases. A finite difference approximation to the derived equation is presented and a solution scheme for the resulting equations outlined. Preliminary results are obtained using the model for the extremely simple problems which have analytical solutions. The numerical model, as presented, will provide a scheme to study water quality problems in coastal waters for both steady state and time dependent cases.

  9. A three-dimensional tight-binding model for trans-polyacetylene

    SciTech Connect

    Wang, X.; Campbell, D.K.; Lin, H.Q. ); Vogl, P. . Physikdepartment)

    1990-01-01

    We develop a three-dimensional (3-D) generalization of the one-dimensional (1-D), tight-binding Su-Schrieffer-Heeger (SSH) model for trans-(CH){sub x}. Importantly, the model faithfully reflects the 3-D character of the band-edge states as found in ab initio Local-Density-Approximation (LDA) calculations but remains simple enough to be analytically solvable for the dimerized ground state. We examine the density of states and the optical absorption predicted within this model, paying special attention to the roles of the transverse coupling and the polarization of the probing field.

  10. Three-dimensional model for simulating atmospheric dispersion of heavy-gases over complex terrain

    SciTech Connect

    Chan, S.T.

    1997-09-01

    To help understand heavy gas releases and simulate the resultant dispersion, we have developed a three-dimensional finite element model called FEM3 and an improved version names FEM3A for solving the time dependent conservation equations based on generalized anelastic approximation. Recent enhancements to the model to include the treatment of dispersion scenarios involving density variations much larger than the liquefied natural gas range and an advanced turbulence submodel based on the buoyancy-extended transport equations. This paper presents the main features of the present model FEM3C and numerical results from the simulations of a field-scale LNG spill experiment.

  11. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  12. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    SciTech Connect

    Mark, J.W.K.; Krafft, G.A.; Wang, T.S.F.

    1981-12-01

    A hydrodynamic model is used to help isolate possible three dimensional space charge instabilities in beam plasmas of concern in designing heavy ion accelerators for inertial confinement fusion energy applications. The model provides an economic means for searching the large parameter space relevant to problems in which coupling of longitudinal and transverse motions is allowed. It is shown that the equilibrium axial hydrodynamic pressure of the beam plasma has a significant effect on the stability boundaries of a two-rotating-stream instability. When considering the resistive wall effect, this model shows a kink instability. The growth rate of some modes could be enhanced by increasing the equilibrium axial pressure.

  13. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery.

    PubMed

    Mavili, Mehmet Emin; Canter, Halil Ibrahim; Saglam-Aydinatay, Banu; Kamaci, Soner; Kocadereli, Ilken

    2007-07-01

    Stereolithographic (medical rapid prototyping) biomodeling allows three-dimensional computed tomography to be used to generate solid plastic replicas of anatomic structures. Reports in the literature suggest that such biomodels may have a use in maxillofacial surgery, craniofacial surgery, orthopedics, neurosurgery, otology, vascular, and nasal research. A prospective trial to assess the usefulness of biomodeling in orthognathic surgery has been performed. In 12 patients with mandibular prognathism and/or maxillary retrusion, in addition to routine preoperative cephalometric analysis, preoperative high-resolution (cutting slice thickness of 1 mm) three-dimensional computed tomography scan of the patients was obtained. Raw data obtained from computed tomography scanning was processed with a Mimics 9.22 Software (Materialise's Interactive Medical Image Control System, Belgium). Fabrication of three-dimensional medical models was obtained through a process called powder depositional modeling by use of a Spectrum Z 510 3D Color Printer (Z Corporation, Burlington, MA). Alveolar arches of the maxilla and mandibula of the models were replaced with orthodontic dental cast models. Temporomandibular joints of the models were fixed with Kirschner wire. Maxillary and mandibular bony segments were mobilized according to preoperative orthodontic planning done by analysis of cephalometric plain radiographs. The relation between proximal and distal mandibular segments after bilateral sagittal split osteotomies were evaluated on models preoperatively. The same surgeon had a role in both model cutting preoperatively and as an instructor preoperatively. The same bony relation was observed both in preoperative modelsand in the perioperative surgical field in all patients. Condylar malpositioning was not observed in any of the patients. Studying preoperative planned movements of osteotomized bone segments and observing relations of osteotomized segments of mandibula and maxilla in

  14. A three-dimensional shock loss model applied to an aft-swept, transonic compressor rotor

    SciTech Connect

    Puterbaugh, S.L.; Copenhaver, W.W.; Hah, C.; Wennerstrom, A.J.

    1997-07-01

    An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model underpredicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor are also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/s/m{sup 2} (43.98 lbm/sec/ft{sup 2}), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip speed was 457.2 m/s (1,500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91%. At this operating condition the stall margin was 11%.

  15. Heterocercal tail function in leopard sharks: a three-dimensional kinematic analysis of two models

    PubMed

    Ferry; Lauder

    1996-01-01

    Two different models have been proposed to explain the function of the heterocercal tail in shark locomotion. The classical model proposes that, as a result of lift generated by the tail as it beats, the net force acting on the tail is directed dorsally and anteriorly. In contrast, Thomson's model suggests that the tail generates a net force directed through the shark's center of gravity, i.e. ventrally and anteriorly. In this study, we evaluate these two models by describing the three-dimensional kinematics of the heterocercal tail in the leopard shark Triakis semifasciata during swimming. Lateral and posterior views of the tail were examined from four individuals swimming in a flow tank at 1.2 L s-1 (where L is total length) using two high-speed video cameras filming simultaneously at 250 fields s-1. These two simultaneous views allowed eight landmarks on the tail to be followed in three dimensions through time. These landmarks allowed the tail to be divided into separate surfaces whose orientation over time was calculated. Points located anteriorly on the tail go through significantly smaller excursions and reach their maximum lateral excursion significantly earlier in the beat cycle than points on the trailing edge of the tail. Three-dimensional angle calculations show that the terminal lobe leads the ventral lobe through a beat, as predicted by the classical model. Dye-stream visualizations confirmed that this pattern of movement deflects water ventrally and posteriorly to the moving tail, providing strong support for the classical model. Additionally, our results show that a three-dimensional analysis is critical to understanding the function of the heterocercal tail. PMID:9320170

  16. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    PubMed

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  17. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  18. Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Zahiri, S. H.; Phan, T. D.; Masood, S. H.; Jahedi, M.

    2014-08-01

    A three-dimensional, computational fluid dynamics (CFD) model is developed to estimate cold spray gas conditions. This model is calibrated and validated with respect to thermal history of a substrate exposed to the cold spray supersonic jet. The proposed holistic model is important to track state of gas and particles from injection point to the substrate surface with significant benefits for optimization of very rapid "nanoseconds" cold spray deposition. The three-dimensional model is developed with careful attention with respect to computation time to benefit broader cold spray industry with limited access to supercomputers. The k-ɛ-type CFD model is evaluated using measured temperature for a titanium substrate exposed to cold spray nitrogen at 800 °C and 3 MPa. The model important parameters are detailed including domain meshing method with turbulence, and dissipation coefficients during spraying. Heat transfer and radiation are considered for the de Laval nozzle used in experiments. The calibrated holistic model successfully estimated state of the gas for chosen high temperature and high pressure cold spray parameters used in this study. Further to this, the holistic model predictions with respect to the substrate maximum temperature had a good agreement with earlier findings in the literature.

  19. Use of a Three Dimensional Printed Cardiac Model to Assess Suitability for Biventricular Repair.

    PubMed

    Farooqi, Kanwal M; Gonzalez-Lengua, Carlos; Shenoy, Rajesh; Sanz, Javier; Nguyen, Khanh

    2016-05-01

    Three dimensional (3D) printing is rapidly gaining interest in the medical field for use in presurgical planning. We present the case of a seven-year-old boy with double outlet right ventricle who underwent a bidirectional Glenn anastomosis. We used a 3D cardiac model to assess his suitability for a biventricular repair. He underwent a left ventricle-to-aorta baffle with a right ventricle-to-pulmonary artery conduit placement. He did well postoperatively and was discharged home with no evidence of baffle obstruction and good biventricular function. A 3D printed model can provide invaluable intracardiac spatial information in these complex patients. PMID:27009890

  20. Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron

    SciTech Connect

    Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.; Pusch, G.D.

    1994-07-01

    A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.

  1. Three dimensional Rayleigh wave velocity model using multimode surface wave tomography of Eastern Asia

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yuan, X.; Debayle, E.; Priestley, K. F.; Kind, R.; Li, X.

    2010-12-01

    The collision of the Eurasian plate, Indian plate and Philippine sea plate resulted in the tectonic feature of todays; like mountain ranges, fold belts, sedimentary basins and high plateaus in China and the surrounding region. In the Northern part this region is supposed to get some resistance from the Siberian shield. But the collision of Indian plate has left its major imprints and the consequence of this was the uplift of Himalayan Mountain and Tibetan Plateau. This triple junction scenario is the main cause for many inter and intra-plate earthquake in this region. It is generally agreed that the lithosphere is thick in west China while much of the lithospheric root was lost beneath some cratons in east China. Still it's an open debate whether the lithosphere beneath the Tibetan plateau has doubled its thickness as did the crust above or much of the thickened lithosphere was removed by mantle convection and delamination. In our study we try to determine the three dimensional Sv wave speed and azimuthal anisotropy model by analyzing the vertical component multimode Rayleigh wave seismogram. The data which we used are from broadband stations from in and around China. We construct the three dimensional model in two step procedure. In the first step we use the automated version of the Cara and Leveque [1987] waveform inversion technique in terms of secondary observables for modeling each multimode Rayleigh waveform to determine the path-average mantle Sv wave speed structure. In the second stage we combine the 1-D velocity models in a tomographic inversion to obtain the three dimensional Sv wave speed structure and the azimuthal anisotropy as a function of depth. We have taken a source region specific velocity structure from the three dimensional model 3SMAC to improve the source excitation computation. We analyzed the seismograms using a modified (smoothed) version of PREM for the upper mantle velocity structure both for the reference model used in extracting the

  2. Prediction of the three-dimensional structure of human interleukin-7 by homology modeling.

    PubMed

    Kroemer, R T; Doughty, S W; Robinson, A J; Richards, W G

    1996-06-01

    The three-dimensional structure of human interleukin (IL)-7 has been predicted based on homology to human IL-2, IL-4, granulocyte-macrophage colony stimulating factor and growth hormone. The model has a topology common to other cytokines and displays a unique disulfide pattern. Knowledge of the tertiary structure of IL-7 has implications for analysis of key binding regions, suggestions for mutagenesis experiments and design of (ant)agonists. In this context, the model is discussed and compared with other cytokine structures. PMID:8862549

  3. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  4. Third-harmonic exponent in three-dimensional N-vector models

    NASA Astrophysics Data System (ADS)

    de Prato, Martino; Pelissetto, Andrea; Vicari, Ettore

    2003-09-01

    We compute the crossover exponent associated with the spin-3 operator in three-dimensional O(N) models. A six-loop field-theoretical calculation in the fixed-dimension approach and a five-loop calculation in ɛ expansion give φ3=0.600(10) for the experimentally relevant case N=2 (XY model). The corresponding exponent β3=1.414(10) is compared with the experimental estimates obtained in materials undergoing a normal-incommensurate structural transition and in liquid crystals at the smectic-A hexatic-B phase transition, finding good agreement.

  5. Three-Dimensional Model for Preservation and Restoration of Architectural Heritage

    NASA Technical Reports Server (NTRS)

    Marchis, Elena

    2011-01-01

    Thc aim of the research will be to create a model, three-dimensional mathematical. implementation. consultation and assistance to "large" restoration projects that will assist the structural analysis, allowing easier display of dynamic strain. analysis and lighting noise. It could also be a valuable tool for decision support. therefore. may simulate several possible scenarios for intervention, This model appears therefore an excellent support for recovering. ordering and monitoring information about materials and data (stage of restoration. photographs. sampling points. results of diagnostic tests, etc.) collected dynamically during the "life" of the cultural heritage. allowing to document its complete history

  6. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria.

    PubMed

    Seemann, Gunnar; Höper, Christine; Sachse, Frank B; Dössel, Olaf; Holden, Arun V; Zhang, Henggui

    2006-06-15

    Investigating the mechanisms underlying the genesis and conduction of electrical excitation in the atria at physiological and pathological states is of great importance. To provide knowledge concerning the mechanisms of excitation, we constructed a biophysical detailed and anatomically accurate computer model of human atria that incorporates both structural and electrophysiological heterogeneities. The three-dimensional geometry was extracted from the visible female dataset. The sinoatrial node (SAN) and atrium, including crista terminalis (CT), pectinate muscles (PM), appendages (APG) and Bachmann's bundle (BB) were segmented in this work. Fibre orientation in CT, PM and BB was set to local longitudinal direction. Descriptions for all used cell types were based on modifications of the Courtemanche et al. model of a human atrial cell. Maximum conductances of Ito, IKr and ICa,L were modified for PM, CT, APG and atrioventricular ring to reproduce measured action potentials (AP). Pacemaker activity in the human SAN was reproduced by removing IK1, but including If, ICa,T, and gradients of channel conductances as described in previous studies for heterogeneous rabbit SAN. Anisotropic conduction was computed with a monodomain model using the finite element method. The transversal to longitudinal ratio of conductivity for PM, CT and BB was 1:9. Atrial working myocardium (AWM) was set to be isotropic. Simulation of atrial electrophysiology showed initiation of APs in the SAN centre. The excitation spread afterwards to the periphery near to the region of the CT and preferentially towards the atrioventricular region. The excitation extends over the right atrium along PM. Both CT and PM activated the right AWM. Earliest activation of the left atrium was through BB and excitation spread over to the APG. The conduction velocities were 0.6ms-1 for AWM, 1.2ms-1 for CT, 1.6ms-1 for PM and 1.1ms-1 for BB at a rate of 63bpm. The simulations revealed that bundles form dominant

  7. Modeling flow and shear stress fields over unsteady three dimensional dunes

    NASA Astrophysics Data System (ADS)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim

    2014-05-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  8. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  9. Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Pinto, L.; Fortunato, A. B.; Zhang, Y.; Oliveira, A.; Sancho, F. E. P.

    2012-11-01

    The morphology of estuaries and rivers changes constantly due to the dynamic imbalance between the forcing actions (e.g. river flow, tides, surface waves and wind) and the sedimentary reactions. Understanding and predicting these changes are very important for an scientific-based, sustained management of these systems. Morphodynamic process-based numerical models can be used for this purpose. The development and validation of a new three-dimensional unstructured grid morphodynamic modelling system, MORSELFE, aiming at simulating short-term morphological evolutions of estuaries and sandy rivers (temporal scale of days to month), are presented. MORSELFE couples a three-dimensional hydrodynamic model, with an advection-diffusion transport model for the suspended sediments, an empirical formula for the bed load, and a bed updating module. The model considers the simulation of non-cohesive sediment and does not account for wave effects. A new approach is proposed to compute the erosive fluxes, which adapts them to the vertical grid resolution. The use of unstructured grids and the implementation in parallel mode make MORSELFE particularly adapted to engineering applications. The model was assessed and validated against analytical and experimental test cases, also allowing the inference on the optimum choice of the model parameters and variables.

  10. Three-dimensional gravity modeling of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.

    1988-11-10

    A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A ''best fitting'' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes--Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile. copyright American Geophysical Union 1988

  11. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  12. Three-dimensional model simulations for the north coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Ballantyne, V. A.; Foreman, M. G. G.; Crawford, W. R.; Jacques, R.

    1996-11-01

    A three-dimensional finite element model is used to calculate the barotropic tides and buoyancy-driven flows along the north coast of British Columbia. The model tides are compared to historical constituent harmonics and results from a previous two-dimensional model for the same region. Apart from improvements due to the inclusion of a bottom Ekman layer, the three-dimensional tidal accuracy is essentially the same as that for the two-dimensional model. However, the tidal residual currents are shown to correspond more closely to observations both around Cape St. James and in Dixon Entrance. The diagnostic, buoyancy-driven calculations are forced with the density fields arising from six water property surveys in Dixon Entrance. The model currents are shown to compare favourably with low-pass filtered current meter observations and velocities deduced from drifter tracks. The Rose Spit Eddy is shown to be a consistent feature in all seasons and, as suggested by Bowman et al., its origin appears to arise from a combination of buoyancy-driven and tidally rectified forcing.

  13. Semi-Empirical Modeling of Two-Dimensional and Three-Dimensional Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Modarres, Ramin

    Helicopters are generally limited in their performance by the phenomenon of dynamic stall. The purpose of this work is to develop a method for modeling dynamic stall that is appropriate to preliminary design and flight simulator applications. Unlike other semi-empirical dynamic stall models, the model developed in this thesis, not only counts for the well-known, three-dimensional flow effects on the stalled loads but also captures the secondary vortex-shedding phenomenon that has been seen in experiments. The fundamental physics that modify dynamic-stall behavior and that have been extended from two-dimensional to three-dimensional flow are, namely: 1.) yawed flow, 2.) time-varying velocity, 3.) the rotational environment and 4.) the radial blade coupling. For the reduced-order modeling, extra nonlinear states have been added to the dynamic stall model in order to simulate the double-dynamic-stall phenomenon. The results of this study will have practical applications to aerospace systems, such as compliant or morphing surfaces in rotary-wing systems that encounter transient or periodic separation and reattachment during phenomena such as dynamic stall.

  14. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.

    1977-01-01

    The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.

  15. Interactive computer graphic surface modeling of three-dimensional solid domains for boundary element analysis

    NASA Technical Reports Server (NTRS)

    Perucchio, R.; Ingraffea, A. R.

    1984-01-01

    The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.

  16. Three-Dimensional Numerical Modeling of Initial Mixing of Thermal Discharges at Real-Life Configurations

    SciTech Connect

    Tang, Hansong; Paik, Joongcheol; Sotiropoulos, Fotis; Khangaonkar, Tarang P.

    2008-09-01

    A three-dimensional Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) model is developed for simulating turbulent mixing in the near-field of thermal discharge at real-life geometrical configurations. The domain decomposition method with the multi-level embedded overset grids is employed to handle the complexity of real-life diffusers as well as to efficiently account for the large disparity of length scales arising from the relative size of the ambient river reach and the typical diffuser diameter.

  17. Three-dimensional reconstruction of subsurface defects using finite-difference modeling on pulsed thermography.

    PubMed

    Ramirez-Granados, J C; Paez, G; Strojnik, M

    2012-06-01

    We develop a technique to analyze pulsed thermography videos in order to detect and reconstruct subsurface defects in homogeneous and layered objects. The technique is based on the analysis of the thermal response of an object to a heat pulse. This thermal response is compared to the predictions of a finite-difference model that is systematically and progressively adjusted to minimize a cost function. With this minimization process, we obtain a depth and a thickness function that allow us to determine the three-dimensional shape, size, depth, thickness, and location of internal defects. The detected defects are reliably reconstructed with graphics of easy interpretation. PMID:22695546

  18. Finite-size scaling and the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Bhanot, G.; Duke, D.; Salvador, R.

    1986-06-01

    We give results of an extensive finite-size-scaling analysis of the three-dimensional Ising model on lattices of size up to 443. Contrary to the results of Barber et al.

    [Phys. Rev. B 32, 1720 (1720)]
    , our data show a smooth approach to the thermodynamic limit for all the lattice sizes we studied. We estimate from our data that γ/ν=1.964(3). We also describe a method to implement the Metropolis algorithm using only logical commands. Our program currently achieves a speed of one spin update approximately every 11 nsec (93 million updates per second) on a 2-pipe CDC CYBER 205.

  19. Three-dimensional model of x-ray induced microchannel plate output

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.

    2006-10-01

    Microchannel plates are an important component in a type of imaging diagnostic known as an x-ray framing camera, used in x-ray radiography of high-energy-density physics experiments. A microchannel plate is responsible for detecting x rays and then converting them into amplified bursts of electrons, which are then imaged onto a phosphor-coated fiber optic screen. We present the preliminary development of a three-dimensional model of a single microchannel plate channel in attempt to simulate the pulse height distribution of the microchannel plate electron output. Using a novel technique, initial simulations are compared with experimental data from an ungated x-ray framing camera.

  20. Three-dimensional model of x-ray induced microchannel plate output

    SciTech Connect

    Harding, E. C.; Drake, R. P.

    2006-10-15

    Microchannel plates are an important component in a type of imaging diagnostic known as an x-ray framing camera, used in x-ray radiography of high-energy-density physics experiments. A microchannel plate is responsible for detecting x rays and then converting them into amplified bursts of electrons, which are then imaged onto a phosphor-coated fiber optic screen. We present the preliminary development of a three-dimensional model of a single microchannel plate channel in attempt to simulate the pulse height distribution of the microchannel plate electron output. Using a novel technique, initial simulations are compared with experimental data from an ungated x-ray framing camera.

  1. Optical asymmetric cryptography using a three-dimensional space-based model

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-07-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method.

  2. Mechanisms of finite-temperature magnetism in the three-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Hirschmeier, Daniel; Hafermann, Hartmut; Gull, Emanuel; Lichtenstein, Alexander I.; Antipov, Andrey E.

    We examine the nature of the transition to the antiferromagnetically ordered state in the half-filled three-dimensional Hubbard model using the dual-fermion multiscale approach. Consistent with analytics, in the weak-coupling regime we find that spin-flip excitations across the Fermi surface are important, and that the strong coupling regime is described by Heisenberg physics. In the intermediate interaction, strong correlation regime we find aspects of both local and non-local correlations. We analyze the critical exponents of the transition in the strong coupling regime and find them to be consistent with Heisenberg physics down to an interaction of U/t=10.

  3. Tomoeye: A Matlab package for visualization of three-dimensional tomographic models

    NASA Astrophysics Data System (ADS)

    Gorbatov, A.; Limaye, A.; Sambridge, M.

    2004-04-01

    The use of seismic imaging techniques is widespread. Numerous three-dimensional (3-D) tomographic models have been presented over the last 30 years and subsequently analyzed by a wider community of seismologists, geodynamicists, mineral physicists, and geochemists. However, platform-independent, open source, user-friendly software for interactive exploration of tomographic models does not exist. Here, we present a package for interactive visualization, analysis, and presentation of tomographic models. Using a set of four Matlab programs, multiscale tomographic models can be explored in Cartesian or spherical coordinate systems; data subsets can be extracted and combined; publication-quality figures can be produced; and Virtual Reality Modeling Language (VRML) models can be produced for 3-D visualization and publication on the World Wide Web. This type of freely available software package will encourage the distribution of tomographic models in a standardized form for independent peer review by the research community.

  4. Measurement of three-dimensional stress field of RP model having a notch by using digital holography

    NASA Astrophysics Data System (ADS)

    Tanak, Y.; Murata, S.

    2010-06-01

    We measure three-dimensional stress field of RP model having a V-notch. RP model (Elastic modulues E = 3317 MPa, 9.3 × 7.7 × 50 mm3 having a V-notch) is made of acrylic transparent resin and tracer particle (averaged diameter: 60μm) are dispersed. The model is subjected to the static load (100 N) at the middle. Firstly, three-dimensional deflection is measured by using digital holographic PTV (Particle Tracking Velocimetry). Finally, three-dimensional stress field of RP model is visualized as a differential value of the deflection field.

  5. Experiment and simulation study on construction of a three-dimensional network model

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Li, Zhenquan; Zhang, Sunkang; Cao, Xulong; Song, Xinwang; Gao, Debo

    2008-11-01

    The construction of a network model is one of the key techniques in organic combination of microscopic flow experiment and simulation. The construction method of a three-dimensional network model is presented on the basis of CT scanning images in this paper. A series of CT slice images describing microscopic pore structure and fluid distribution of actual rock is obtained with the help of the industrial microfocus CT system. Based on the extraction of pore space skeleton, pore and throat information, the corresponding network model is established, and the conversion from three-dimensional CT image information to pore-throat size distribution and topological information is also achieved. The feature of this method lies in the fact that complicated pore space of rock may be characterized by pores and throats with a simple shape while keeping the geometry and flow characteristics. It is indicated that the calculated results of porosity, permeability, relative permeability curve and microscopic remaining oil distribution match very well the experimental results of water flooding and polymer flooding. This network model may fairly well characterize the rock microscopic pore-throat size and topological characteristics.

  6. Role of Topological Defects in the Phase Transition of the Three-Dimensional Heisenberg Model.

    NASA Astrophysics Data System (ADS)

    Lau, Manhot

    The role of topological point defects (hedgehogs) in the phase transition of the classical Heisenberg model in three dimensions is investigated by using Monte Carlo simulations. Simulations of the behavior of the defects near the phase transition show that the number density of defects increases sharply and defect pairs with separations comparable to the sample size begin to appear as the temperature is increased through the transition temperature. In simulations in a restricted ensemble in which spin configurations containing defects are not allowed, the system appears to remain ordered at all temperatures. Simulations in which the spin-spin interaction is set equal to zero and the number density of defects is controlled by varying a 'chemical potential' term indicate that the system is ordered if the number density of defect pairs is sufficiently small. These results show that topological defects play a crucial role in the three-dimensional Heisenberg transition in the sense that configurations containing defect pairs are necessary for the transition from the ferromagnetic to paramagnetic phase to occur. Such a conclusion is also consistent with a Renormalization Group study of the O(n) model, which suggests that topological defects should be explicitly taken into account for a correct description of the critical behavior in models including the three-dimensional Heisenberg model.

  7. Three dimensional electromechanical model of porcine heart with penetrating wound injury.

    PubMed

    Usyk, Taras; Kerckhoffs, Roy

    2005-01-01

    The aim of this study is development a prototype computational model of the pig heart that can be used to predict physiological responses to a penetrating wound injury. The pig has been chosen for this model studies because it shares many anatomical similarities with humans. Three-dimensional cubic Hermite finite element meshes based on detailed measurements of porcine anatomy combined into an integrated anatomic model. The pig ventricular model includes detailed left and right ventricular geometry and myofiber and laminar sheet orientations throughout the mesh. The cardiac mesh was refined and monodomain equations for action potential propagation solved using well-established collocation-Galerkin finite element methods. The membrane kinetic equations for the action potential model was based on detailed cellular models of transmembrane ionic fluxes and intracellular calcium fluxes in canine ventricular myocytes and human atrial myocytes. We modified the anisotropic myocardial conductivity tensor on the endocardial surface of the ventricles by making use of a surface model fitted to measured of Purkinje fiber network anatomy. The mechanical model compute regional three-dimensional stress and strain distributions using anisotropic constitutive laws referred to local material coordinate axes defined by local myofiber and laminar sheet orientations. Passive myocardial mechanics modeled using exponential orthotropic strain energy functions. Active systolic myocardial stresses computed from a multi-scale model that uses crossbridge theory to predict calcium-activated sarcomere length- and velocity-dependent tension filament tension. Since the electrical and mechanical models use a common finite element mesh as the parent parametric framework and both models are solved within our custom finite element package, it is straightforward to couple these models, as we have recently done for a model of coupled ventricular electromechanics. We apply the coupled electromechanical

  8. Three-dimensional lithostratigraphic model at Yucca Mountain, Nevada: A framework for fluid transport modeling and engineering design

    SciTech Connect

    Buesch, D.C.; Spengler, R.W.; Nelson, J.E.; Dickerson, R.P.

    1993-12-31

    A three-dimensional lithostratigraphic model of the central block of Yucca MounEain. Nevada, illustrates how some activities can serve both site characterization and dcsign and construction of the Exploratory Studies Facility (ESF). Site-characterization activities supported bv this model include characterizing the three-dimensional geometry of lithologic units and faults, and providing boundary conditions for geostatistical models and site-scale fluid flow modeling. The model supports the conceptual design as construction efforts for the proposed ramps of the ESF and potential high-level nuclear waste repository.

  9. A microstructurally informed model for the mechanical response of three-dimensional actin networks

    PubMed Central

    KWON, R.Y.; LEW, A.J.; JACOBS, C.R.

    2008-01-01

    We propose a class of microstructurally informed models for the linear elastic mechanical behavior of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behavior resulting from anisotropic filament distributions, and a power-law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modeled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behavior of the networks over a wide range of filament densities and degrees of anisotropy. PMID:18568835

  10. Experimental validation of a three-dimensional reduced-order continuum model of phonation.

    PubMed

    Farahani, Mehrdad H; Zhang, Zhaoyan

    2016-08-01

    Due to the complex nature of the phonation process, a one-dimensional (1D) glottal flow description is often used in current phonation models. Although widely used in voice research, these 1D flow-based phonation models have not been rigorously validated against experiments. In this study, a 1D glottal flow model is coupled with a three-dimensional nonlinear continuum model of the vocal fold and its predictions are compared to physical model experiments. The results show that the 1D flow-based model is able to predict the phonation threshold pressure and onset frequency within reasonable accuracy and to reproduce major vibratory features observed in the experiments. PMID:27586776

  11. Comparison of three-dimensional parameters of Halo CMEs using three cone models

    NASA Astrophysics Data System (ADS)

    Na, H.; Moon, Y.; Jang, S.; Lee, K.

    2012-12-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.

  12. Investigating the three-dimensional flow separation induced by a model vocal fold polyp.

    PubMed

    Stewart, Kelley C; Erath, Byron D; Plesniak, Michael W

    2014-01-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. PMID:24513707

  13. THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502

    SciTech Connect

    Garcia, M L; Tarver, C M

    2006-06-20

    The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.

  14. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue.

    PubMed

    Ng, K T; Yan, R

    2003-11-01

    Various investigators have used the monodomain model to study cardiac propagation behaviour. In many cases, the governing non-linear parabolic equation is solved using the finite-difference method. An adequate discretisation of cardiac tissue with realistic dimensions, however, often leads to a large model size that is computationally demanding. Recently, it has been demonstrated, for a two-dimensional homogeneous monodomain, that the Chebyshev pseudospectral method can offer higher computational efficiency than the finite-difference technique. Here, an extension of the pseudospectral approach to a three-dimensional inhomogeneous case with fibre rotation is presented. The unknown transmembrane potential is expanded in terms of Chebyshev polynomial trial functions, and the monodomain equation is enforced at the Gauss-Lobatto node points. The forward Euler technique is used to advance the solution in time. Numerical results are presented that demonstrate that the Chebyshev pseudospectral method offered an even larger improvement in computational performance over the finite-difference method in the three-dimensional case. Specifically, the pseudospectral method allowed the number of nodes to be reduced by approximately 85 times, while the same solution accuracy was maintained. Depending on the model size, simulations were performed with approximately 18-41 times less memory and approximately 99-169 times less CPU time. PMID:14686586

  15. A simple model for calculating the kinetics of protein folding from three-dimensional structures.

    PubMed

    Muñoz, V; Eaton, W A

    1999-09-28

    An elementary statistical mechanical model was used to calculate the folding rates for 22 proteins from their known three-dimensional structures. In this model, residues come into contact only after all of the intervening chain is in the native conformation. An additional simplifying assumption is that native structure grows from localized regions that then fuse to form the complete native molecule. The free energy function for this model contains just two contributions-conformational entropy of the backbone and the energy of the inter-residue contacts. The matrix of inter-residue interactions is obtained from the atomic coordinates of the three-dimensional structure. For the 18 proteins that exhibit two-state equilibrium and kinetic behavior, profiles of the free energy versus the number of native peptide bonds show two deep minima, corresponding to the native and denatured states. For four proteins known to exhibit intermediates in folding, the free energy profiles show additional deep minima. The calculated rates of folding the two-state proteins, obtained by solving a diffusion equation for motion on the free energy profiles, reproduce the experimentally determined values surprisingly well. The success of these calculations suggests that folding speed is largely determined by the distribution and strength of contacts in the native structure. We also calculated the effect of mutations on the folding kinetics of chymotrypsin inhibitor 2, the most intensively studied two-state protein, with some success. PMID:10500173

  16. Investigating the Three-dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    PubMed Central

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2014-01-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. PMID:24513707

  17. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    DOE PAGESBeta

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

  18. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    NASA Astrophysics Data System (ADS)

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-09-01

    In this paper we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

  19. An Improved Arrhenius Constitutive Model and Three-Dimensional Processing Map of a Solution-Treated Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Li, Hong-Bin; Feng, Yun-Li

    2016-01-01

    The hot deformation behaviors of a solution-treated Ni-based superalloy are investigated by hot compression tests over wide ranges of strain rate and forming temperature. Based on the experimental data, the effects of forming temperature and strain rate on the hot deformation behaviors are discussed in detail. Considering the effects of strain on material constants, comprehensive constitutive models are developed to describe the relationships between the flow stress, strain rate and forming temperature for the studied superalloy. The three-dimensional processing map is constructed to optimize the hot working parameters. Meanwhile, the microstructures are analyzed to correlate with the processing map. It is found that the flow stress is sensitive to the forming temperature, strain rate and deformation degree. With the increase of forming temperature or the decrease of strain rate, the flow stress significantly decreases. The predicted flow stresses agree well with experimentally measured results, which confirm that the developed constitutive model can accurately estimate the flow stress of the studied superalloy. The three-dimensional processing map shows that the optimum deformation windows for hot working are the domains with 980-1,040°C or 0.001-0.1 s^{-1} when the strain is 0.6. Also, it is found that the dynamically recrystallized grain size increases with the increase of forming temperature or the decrease of strain rate.

  20. An Improved Arrhenius Constitutive Model and Three-Dimensional Processing Map of a Solution-Treated Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Li, Hong-Bin; Feng, Yun-Li

    2016-01-01

    The hot deformation behaviors of a solution-treated Ni-based superalloy are investigated by hot compression tests over wide ranges of strain rate and forming temperature. Based on the experimental data, the effects of forming temperature and strain rate on the hot deformation behaviors are discussed in detail. Considering the effects of strain on material constants, comprehensive constitutive models are developed to describe the relationships between the flow stress, strain rate and forming temperature for the studied superalloy. The three-dimensional processing map is constructed to optimize the hot working parameters. Meanwhile, the microstructures are analyzed to correlate with the processing map. It is found that the flow stress is sensitive to the forming temperature, strain rate and deformation degree. With the increase of forming temperature or the decrease of strain rate, the flow stress significantly decreases. The predicted flow stresses agree well with experimentally measured results, which confirm that the developed constitutive model can accurately estimate the flow stress of the studied superalloy. The three-dimensional processing map shows that the optimum deformation windows for hot working are the domains with 980-1,040°C or 0.001-0.1 {s}^{-1} when the strain is 0.6. Also, it is found that the dynamically recrystallized grain size increases with the increase of forming temperature or the decrease of strain rate.

  1. Generalization of the CCLADS method for modeling anisotropic diffusion tensors on three-dimensional finite-volume grids

    NASA Astrophysics Data System (ADS)

    Provost, A.; Langevin, C.

    2012-12-01

    A number of numerical methods exist for incorporating anisotropic diffusion tensors, such as hydraulic or thermal conductivity, into two- and three-dimensional numerical models. The methods vary in mathematical approach, complexity, performance, and applicability to different types of model grids. The CCLADS variant of the CCLAD (Cell-Centered LAgrangian Diffusion) method of Maire & Breil (2011) is applicable to two-dimensional, unstructured, cell-centered finite-volume grids. It has a local stencil and exhibits nearly second-order accuracy on smooth distorted grids. As originally derived, CCLADS is not directly generalizable to three dimensions, and the derivation breaks down when adjacent cell edges meet at 180 degrees. Here, we rederive CCLADS to overcome these limitations and investigate the performance of the generalized method in a suite of three-dimensional test problems on structured, rectangular grids. As in two dimensions, the generalized method should be applicable to unstructured grids. Maire, P.-H., and Breil J., 2012, A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids, J. Comput. Phys., 231 (5), 2259-2299.

  2. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions.

    PubMed

    Kim, Jiwon; Wu, Biming; Niedzielski, Steven M; Hill, Matthew T; Coleman, Rhima M; Ono, Akira; Shikanov, Ariella

    2015-08-01

    Hydrogels have been used in regenerative medicine because they provide a three-dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell-cell and cell-matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T-cells and stromal cells in immune response. To model T-cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin-collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin-collagen in terms of network formation and promotion of T-cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T-cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T-cell zones of the lymph nodes in vivo. Our results suggest that the constructed three-dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T-cell interaction in SLOs. PMID:25649205

  3. A hybrid framework for improving recharge and discharge estimation for a three-dimensional groundwater flow model.

    PubMed

    Meyer, Scott C; Lin, Yu-Feng; Roadcap, George S

    2012-01-01

    We employed the ArcGIS plug-in package PRO-GRADE (Lin et al. 2009), developed for zonation of recharge/discharge (R/D) for modeling two-dimensional aquifer systems, to develop alternative R/D zonations for an existing three-dimensional groundwater flow model of a complex hydrogeologic setting. Our process began by intersecting PRO-GRADE output with the existing model's 4-zone R/D representation to develop a model having 12 R/D zones (R12) and then calibrating the resulting model using PEST. We then revised the R12 zonation using supplementary GIS data to develop a 51-zone R/D zonation (R51). From R51, we developed a series of daughter models having 40, 30, 28, and 18 R/D zones by removing zones from R51 if calibration resulted in little change in the zone's starting R/D rate and/or if the model was insensitive to the zone's R/D rate. For these models (R40N, R30N, R28N, and R18N), we used the ArcGIS Nibble tool to rapidly and consistently reassign model cells within eliminated zones of R51 to the zone of the nearest model cell in a retained zone having the same starting value. R12, R51, R40N, R30N, R28N, and R18N are all more accurate than the original model (R4), although improvements relative to stream discharge targets exceeded improvements relative to head targets. The models also executed with better numerical stability and less mass balance discrepancy than R4. These improvements demonstrate that R/D estimation in a complex shallow three-dimensional steady-state model can be improved with PRO-GRADE estimates of R/D when guided by calibration statistics and supplemental geographic data. PMID:21797853

  4. Groundwater Remediation Design Using a Three-Dimensional Simulation Model and Mixed-Integer Programming

    NASA Astrophysics Data System (ADS)

    Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.

    1995-05-01

    A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.

  5. Interplay between sign problem and Z3 symmetry in three-dimensional Potts models

    NASA Astrophysics Data System (ADS)

    Hirakida, Takehiro; Kouno, Hiroaki; Takahashi, Junichi; Yahiro, Masanobu

    2016-07-01

    We construct four kinds of Z3 -symmetric three-dimensional (3D) Potts models, each with a different number of states at each site on a 3D lattice, by extending the 3D 3-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the μ -κ plane as the number of states increases, where μ (κ ) plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger μ dependence with respect to increasing the number of states.

  6. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  7. A three-dimensional chemical transport model of the stratosphere: Midlatitude results

    NASA Astrophysics Data System (ADS)

    KamińSki, Jacek W.; McConnell, John C.; Boville, Byron A.

    1996-12-01

    A prototype robust three-dimensional global chemical transport model (CTM) has been developed in order to facilitate a realistic simulation of stratospheric chemistry and dynamics. The current application is for a 100-day run from August 10 to November 17 using the average (ensemble) of 10 dynamical runs (realizations) of the CCMl. The CTM results are compared with observations and two-dimensional model results. A comparison of the midlatitude model results with satellite observations, stratospheric and mesospheric sounder (SAMS) and Halogen Occultation Experiment (HALOE), showed that the model can simulate relatively well, at least on the timescale of the simulation, the distribution and formation of long-lived species (N2O, CH4, and H20). The distribution of short-lived species was compared with some satellite measurements, limb infrared monitor of the stratosphere (LIMS) and Stratospheric Aerosol and Gas Experiment (SAGE II), and two-dimensional model results, and was found to be consistent.

  8. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    SciTech Connect

    Rautman, C.A.; McKenna, S.A.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area.

  9. Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure

    SciTech Connect

    Xue, H.; Kang, Z.J.; Bong, T.Y.

    1999-11-12

    Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters, such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.

  10. Three-dimensional model and simulation of vacuum arcs under axial magnetic fields

    SciTech Connect

    Wang Lijun; Jia Shenli; Zhou Xin; Wang Haijing; Shi Zongqian

    2012-01-15

    In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.

  11. Interactive Three-Dimensional Display And Interpretation Of A Complex Physical Model

    NASA Astrophysics Data System (ADS)

    Fisher, David; Gardner, G. H. F.; Nelson, H. R.; Verm, Richard

    1983-04-01

    Seismic data for a three-dimensional (3-D) marine survey were simulated with a scaled physical modeling system and used to illustrate an interpretational procedure based on a vector refresh graphics system. The physical model included stratigraphic and structural features. A 3-D migration of the raw data formed the main data base for interpretation. Interpretation progressed by displaying seismic sections (vertical and horizontal) on a graphics screen in raster format and drawing interpretational lines using a data tablet controlled cursor in a vector format. The accumulated line drawings were displayed as a rotatable, 3-D drawing from which the three-dimensional aspects of the geologic features could be appreciated. Selected drawings and raster displays were produced in real time on an electrostatic plotter; color prints and high resolution sections were output through the host computer as batch jobs. An important element in the procedure was the number of grey levels used for the displays. Using two grey levels (sign-bit sampling) the whole data volume can be scanned rapidly. Using 64 grey levels each image is full of detail, but the cycle time to a new image is long.

  12. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  13. Three-dimensional Delayed-Detonation Model of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Gamezo, Vadim N.; Khokhlov, Alexei M.; Oran, Elaine S.

    2005-04-01

    We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an inhomogeneous mixture of unburned carbon and oxygen with intermediate-mass and iron-group elements in central parts of the star. During the subsequent detonation stage, a supersonic detonation wave propagates through the material unburned by the deflagration. The total energy released in this delayed-detonation process, (1.3-1.6)×1051 ergs, is consistent with a typical range of kinetic energies obtained from observations. In contrast to the deflagration model, which releases only about 0.6×1051 ergs, the delayed-detonation model does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between three-dimensional simulations and observations, and makes a delayed detonation the mostly likely mechanism for Type Ia supernova explosions.

  14. Modeling self-excited combustion instabilities using a combination of two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Harvazinski, Matthew Evan

    Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is

  15. Implementation of Localized Ensemble Assimilation for a Three-Dimensional Radiation Belt Model (Invited)

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Chen, Y.; Kellerman, A. C.; Subbotin, D.; Shprits, Y.

    2013-12-01

    Earth's outer radiation belt is very dynamic and energetic electrons therein undergo constant changes due to acceleration, loss, and trans- port processes. In this work we improve the accuracy of simulated electron phase space density (PSD) of the Versatile Electron Radiation Belt (VERB) code, a three-dimensional radiation belt model, by implementing the localized ensemble transform Kalman filter (LETKF) assimilation method. Assimilation methods based on Kalman filtering have been successfully applied to one-dimensional radial diffusion radiation belt models, where it has been shown to greatly improve the model estimation of electron phase space density (PSD). This work expands upon previous research by implementing the LETKF method to assimilate observed electron density into VERB, a three-dimensional radiation belt model. In particular, the LETKF will perform the assimilation locally, where the size of the local region is defined by the diffusion of electrons in the model. This will enable the optimal assimilation of data throughout the model consistently with the flow of electrons. Two sets of assimilation experiments are presented. The first is an identical-twin experiment, where artificial data is generated from the same model, with the purpose of verifying the assimilation method. In the second set of experiments, real PSD observational data from missions such as CRRES and/or the Van Allen Probes are assimilated into VERB. The results show that data assimilation significantly improves the accuracy of the VERB model by efficiently including the available observations at the appropriate pitch angles, energy levels, and L-shell regions throughout the model.

  16. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  17. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.

    PubMed

    Dias, Cristiano L; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S; Karttunen, Mikko

    2011-02-14

    We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model. PMID:21322739

  18. Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S.; Karttunen, Mikko

    2011-02-01

    We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.

  19. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  20. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  1. Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Vilanova, Guillermo; Colominas, Ignasi; Gomez, Hector

    2014-03-01

    The growth of new vascular networks from pre-existing capillaries (angiogenesis) plays a pivotal role in tumor development. Mathematical modeling of tumor-induced angiogenesis may help understand the underlying biology of the process and provide new hypotheses for experimentation. Here, we couple an existing deterministic continuum theory with a discrete random walk, proposing a new model that accounts for chemotactic and haptotactic cellular migration. We propose an efficient numerical method to approximate the solution of the model. The accuracy, stability and effectiveness of our algorithms permitted us to perform large-scale three-dimensional simulations which, in contrast to two-dimensional calculations, show a topological complexity similar to that found in experiments. Finally, we use our model and simulations to investigate the role of haptotaxis and chemotaxis in the mobility of tip endothelial cells and its influence in the final vascular patterns.

  2. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals. PMID:19257039

  3. The influence of polar heterogeneous processes on reactive chlorine at middle latitudes - Three dimensional model implications

    NASA Astrophysics Data System (ADS)

    Douglass, Anne R.; Rood, Richard B.; Kaye, Jack A.; Stolarki, Richard S.; Allen, Dale J.

    1991-01-01

    Three-dimensional model calculations with the NASA/GSFC chemistry and transport model have been designed to consider the impact of heterogeneous processes occurring on polar stratospheric clouds (PSCs) in the Arctic vortex on the HCl distribution. By examining the HCl concentration for a calculation with PSCs relative to a calculation with gas phase chemistry only, the impact of polar processing on reactive chlorine species at middle latitudes is inferred. Results from the chemistry and transport model reproduce basic features of the ClO measurements (Toohey et al., 1991), which were made on the ferry flights of the ER-2 from Stavanger, Norway to Moffett Field, California via Wallops Island, Virginia on February 20 and 21, 1989. The model indicates that perturbed air which is contained within the polar vortex during winter is not homogeneously mixed, and that the ferry flights were made through air with the largest conversion of HCl to reactive chlorine that is seen at middle latitudes.

  4. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  5. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    SciTech Connect

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  6. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  7. Exactly solvable models of spin liquids with spinons, and of three-dimensional topological paramagnets

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Daniel; Das, Diptarka; McGreevy, John

    2016-04-01

    We develop a scheme to make exactly solvable gauge theories whose electric flux lines host (1+1)-dimensional topological phases. We use this exact "decorated-string-net" framework to construct several classes of interesting models. In particular, we construct an exactly solvable model of a quantum spin liquid whose (gapped) elementary excitations form doublets under an internal symmetry, and hence may be regarded as spin-carrying spinons. The model may be formulated, and is solvable, in any number of dimensions on any bipartite graph. Another example, in any dimension, has Z2 topological order and anyons which are Kramers' doublets of time-reversal symmetry. Further, we make exactly solvable models of three-dimensional topological paramagnets.

  8. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    DOE PAGESBeta

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore » investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less

  9. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  10. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Fink, Michael; Hillebrandt, Wolfgang; Kromer, Markus; Pakmor, Rüdiger; Ruiter, Ashley J.; Sim, Stuart A.; Taubenberger, Stefan

    2013-02-01

    We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 109 g cm-3, as well as one high central density (5.5 × 109 g cm-3) and one low central density (1.0 × 109 g cm-3) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding the white dwarf, producing a range of 56Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (˜3000-10 000 km s-1) in a shell surrounding a 56Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s-1, respectively.

  12. Coupled Three-Dimensional Fracture Stimulation and Prediction Model for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Gutierrez, M.

    2013-12-01

    The paper presents development of a three-dimensional fracture stimulation and prediction model using the Boundary Element Method (BEM) for Enhanced Geothermal Systems (EGS). The BEM method results in a numerical procedure which eliminates discretization of complete reservoir domain; hence, only the fracture surface discretization is required. The Displacement Discontinuity Method which is an invariant of the BEM was used to model the fracture geometry (e.g., fracture width, length and elongation), fluid pressure and stress distribution around the fracture. The main feature of the model is that it is able to handle true three-dimensional fractures that can twist turn and not just planar or pseudo three-dimensional fracture geometries. The numerical aspects of various mechanisms involved in the hydraulic fracturing process in the EGS such as fracture deformation, fluid flow and heat flow, fracture initiation and propagation were addressed. The laminar fracture fluid flow and transient heat flow were modeled using the Finite Element Method. The non-Newtonian fluid flow behavior was assumed. Temperature-dependent fluid and rock physical properties were used. The fracture same mesh was used to model for the fracture deformation, fluid flow and heat flow processes. The fracture surface was discretized using 4-node rectangular elements. The important numerical issues of the BEM implementation for the fracture modeling such as near singular, hypersingular cases and crack tip singularity were taken into account. The processes involved in hydraulic fracturing are interdependent. The fracture aperture strongly influences the fluid flow rate inside the fracture, as the fluid velocity is proportional to its width. Thermal-induced stresses effects the fracture aperture. These fully coupled processes of fluid flow, heat flow, and fracture deformation were solved in a coupled manner using iterative method. One of the main challenges of this research was to couple the thermal

  13. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape

    PubMed Central

    Scherer, Ronald C.; Torkaman, Saeed; Kucinschi, Bogdan R.; Afjeh, Abdollah A.

    2010-01-01

    This study used a symmetric, three-dimensional, physical model of the larynx called M6 in which the transverse plane of the glottis is formed by sinusoidal arcs for each medial vocal fold surface, creating a maximum glottal width of 0.16 cm at the location of the minimal glottal area. Three glottal angles were studied: convergent 10°, uniform (0°), and divergent 10°. Fourteen pressure taps were incorporated in the upstream-downstream direction on the vocal fold surface at three coronal locations, at the one-fourth, one-half, and three-fourths distances in the anterior-posterior direction of the glottis. The computational software FLUENT was used to compare and augment the data for these cases. Near the glottal entrance, the pressures were similar across the three locations for the uniform case; however, for the convergent case the middle pressure distribution was lower by 4% of the transglottal pressure, and lower by about 2% for the divergent case. Also, there were significant secondary velocities toward the center from both the anterior commissure and vocal process regions (of as much as approximately 10% of the axial velocities). Thus, the three dimensionality created relatively small pressure gradients and significant secondary velocities anteriorly-posteriorly within the glottis. PMID:20707452

  14. Model calculations for three-dimensional heat conduction in a real tooth

    NASA Astrophysics Data System (ADS)

    Foth, Hans-Jochen; Luke, Manfred

    2003-06-01

    To generate the three-dimensional grid net for a real tooth, an extracted tooth was grinded in steps of some millimetres from the top to the root. After each grinding step the displayed cross section was documented by photography showing clearly all transition lines between enamel, dentin and the pulp. The photographic reprints were used to determine the x-y-z-coordinates of selected points to represent the transition lines. In a fairly large-scale procedure these points were combined to a three dimensional net. FEM calculations were carried out to solve the heat equation numerically for the boundary condition that an IR laser pulse hits the surface for laser ablation. Since all the information of the various types of tissue is included in this model, the results give a huge variety of information. For example: the outer shell of enamel could be displayed exclusively to show its inner surface and which temperature distribution as well as mechanical stress got build up there.

  15. Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Prévost, Jean H.; Sukumar, N.

    2016-01-01

    Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

  16. Three-dimensional models of HDL apoA-I: implications for its assembly and function*

    PubMed Central

    Thomas, Michael J.; Bhat, Shaila; Sorci-Thomas, Mary G.

    2008-01-01

    The purpose of this review is to highlight recent advances toward the refinement of a three-dimensional structure for lipid-bound apolipoprotein A-I (apoA-I) on recombinant HDL. Recently, X-ray crystallography has yielded a new structure for full-length, lipid-free apoA-I. Although this approach has not yet been successful in solving the three-dimensional structure of lipid-bound apoA-I, analysis of the X-ray structures has been of immense help in the interpretation of structural data obtained from other methods that yield structural information. Recent studies emphasize the use of mass spectrometry to unambiguously identify cross-linked peptides or to quantify solvent accessibility using hydrogen-deuterium exchange. The combination of mass spectrometry, molecular modeling, molecular dynamic analysis, and small-angle X-ray diffraction has provided additional structural information on apoA-I folding that complements previous approaches. PMID:18515783

  17. Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles

    PubMed Central

    Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.

    2015-01-01

    We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures. PMID:26462469

  18. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    PubMed

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component. PMID:15735327

  19. Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles

    NASA Astrophysics Data System (ADS)

    Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.

    2015-10-01

    We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures.

  20. Three-dimensional mathematical modeling of fluid flow in slab tundishes and its verification with water model experiments

    NASA Astrophysics Data System (ADS)

    Yeh, J.-L.; Hwang, W.-S.; Chou, C.-L.

    1992-10-01

    A three-dimensional mathematical model has been developed based on the incorporation of a computational fluid dynamics technique, called SOLA-SURF, and the K-ɛ turbulence model. Numerical solutions of the three-dimensional turbulent Navier-Stokes equations and the K and ɛ equations together with the free surface treatment are presented to study the turbulent flow behavior of molten steel in tundishes. Computed results describing the three-dimensional flow field, particle path lines, residence time distribution curve during steady-state operation are presented. The values of t min, t peak, and t mean derived from the residence time distribution curve are used to evaluate the effects of using various combinations of flow control devices such as dams, weirs, and dams with a hole in the flow field. The computed results were compared with the experimental data obtained from a full-scale plexiglas/water model of tundish. The comparisons exhibited good consistency.

  1. Three-fluid, Three-dimensional Magnetohydrodynamic Solar Wind Model with Eddy Viscosity and Turbulent Resistivity

    NASA Astrophysics Data System (ADS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2014-06-01

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  2. Three-dimensional reservoir geological modeling of the Cano Limon Field, Colombia

    SciTech Connect

    Budding, M.C.; Paardekam, A.H.M. ); Flint, S.S. ); Dubrule, O.R.F. )

    1990-05-01

    The Cano Limon field is located in Colombia, and had a STOIP of 2 bbl. A three-dimensional geological reservoir model has been constructed with the computer program MONARCH, on the basis of data from 24 wells, The model includes the high net/gross fluvio-deltaic M1 reservoir, and the overlying C5 reservoir, which consists of an undeveloped low net/gross coastal plain sequence. The modeling project was restricted to an area of 9 x 3 km. The Cano Limon model is represented by a matrix of 1.75 million volume elements (voxels) each measuring 50 x 50 m horizontally and 0.6 m vertically. At each voxel the model indicates whether shale or sand is present. If sand is present, MONARCH differentiates between three types of genetic sand body types: channel, mouth bars, and crevasse splays. Correlatable sands are mapped using a deterministic approach and the lateral extent of noncorrelatable sand bodies is derived using statistical distributions of width-thickness ratios. These distributions are directly derived from the information given by Cano Limon well data about the degree of correlativity of the sand bodies. MONARCH combines structural information, as derived from seismic, with information about sand body orientation as provided by dipmeter data oriented cores, and seismic amplitude maps. In the case of Cano Limon which is produced by a strong natural water drive with an unfavorable mobility ratio of 11, this level of integration helps provide reliable guidelines regarding the development of the field. Although the upper C5 reservoir is yet undeveloped, the 24 production wells can hypothetically be completed in the MONARCH models. Calculations indicate that 60% of the total oil-bearing reservoir volume in the C5 reservoir is connected to 23 of the 24 wells. MONARCH allows the geologist to input as much geological knowledge as is appropriate in the three-dimensional reservoir model.

  3. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    SciTech Connect

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  4. Three-dimensional modelling of mercury cycling in the Gulf of Trieste.

    PubMed

    Rajar, R; Zagar, D; Sirca, A; Horvat, M

    2000-10-01

    The Gulf of Trieste (Northern Adriatic) is subject to mercury pollution from a former mercury mine in Idrija, located along a river which transports mercury-contaminated sediments into the Gulf. Concentrations in suspended and bottom sediments are up to two orders of magnitude higher than in the central and southern Adriatic. Extensive research has been carried out on measurements and modelling of the transport and fate of mercury in the Gulf. Two- and three-dimensional models have been developed to include the influence of the significant advective transport due to currents. Wind, thermohaline forcing, and the Soca river momentum are the most important forcing factors. A two-dimensional model simulated the transport of non-methylated and methylated mercury in dissolved, particulate and plankton fractions. Mercury processes included the input of atmospheric mercury, sedimentation, reduction, methylation and demethylation. The model simulations gave basically what were proper trends of the phenomena; quantitatively the measured and computed results are mainly within a factor of three. To simulate the non-uniform distribution of parameters over the depth, an existing three-dimensional (3D) hydrodynamic and transport-dispersion (TD) model, PCFLOW3D, was adapted and applied. As it was found that most mercury transport is related to suspended sediment particles, a new 3D sediment transport module was also developed and included in the model. Three cases are presented: one describing the simulation of TD of dissolved total mercury; another the simulation of the TD of particulate mercury in the Gulf during a river flood; and the third simulating sediment transport in the Gulf during a period of strong ENE wind. Comparison with measurements was only partly possible, but mainly the computed and measured results were within a factor of two and proper trends of the phenomena were obtained by the simulations. The combination of modelling and measurements has resulted in some

  5. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  6. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  7. Quasi-Three-Dimensional Mathematical Modeling of Morphological Processes Based on Equilibrium Sediment Transport

    NASA Astrophysics Data System (ADS)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.

  8. An unstructured grid, three-dimensional model based on the shallow water equations

    USGS Publications Warehouse

    Casulli, V.; Walters, R.A.

    2000-01-01

    A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.

  9. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    NASA Astrophysics Data System (ADS)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  10. Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling.

    PubMed

    Pinson, Samuel; Cordioli, Julio; Guillon, Laurent

    2016-08-01

    In the context of sediment characterization, layer interface roughnesses may be responsible for sound-speed profile measurement uncertainties. To study the roughness influence, a three-dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or computationally expensive techniques (finite difference or finite element method). In this work, it is demonstrated that the wave reflection over a layered medium with irregular interfaces can be modeled as a sum of integrals over each interface. The main approximations of the method are the tangent-plane approximation, the Born approximation (multiple reflection between interfaces are neglected) and flat-interface approximation for the transmitted waves into the sediment. The integration over layer interfaces results in a method with reasonable computation cost. PMID:27586741

  11. An eddy-current model for three-dimensional nondestructive evaluation of advanced composites

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2015-03-01

    We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.

  12. Evaluation of two radiative parameterizations using a three-dimensional large-eddy simulation microphysical model

    SciTech Connect

    Kogan, Y.L.; Kogan, Z.N.; Lilly, D.K.; Khairoutdinov, M.F.

    1995-04-01

    Stratocumulus clouds in the marine boundary layer exert a tremendous impact on the planetary radiation balance because of their persistence and large cover. Even small biases in the representation of their radiative parameters can produce large errors in the simulated planetary radiation balance. General circulation models (GCMs) and climate models most commonly use two parameterizations of cloud optical depth. The first employs as input parameters the climatological or in some other way averaged cloud droplet effective radius and liquid water path. The second concerns droplet concentration, mean droplet radius and cloud geometrical thickness. Both parameterizations are obtained from a general theoretical expression for cloud optical depth. This paper contrasts these two parameterizations with the general theoretical definition, using a set of cloud drop distribution functions generated by the CIMMS three-dimensional large-eddy simulation (LES) stratocumulus cloud microphysical model.

  13. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets

    PubMed Central

    Crivoi, A.; Duan, Fei

    2014-01-01

    The residual deposits usually left near the contact line after pinned sessile colloidal droplet evaporation are commonly known as a “coffee-ring” effect. However, there were scarce attempts to simulate the effect, and the realistic fully three-dimensional (3D) model is lacking since the complex drying process seems to limit the further investigation. Here we develop a stochastic method to model the particle deposition in evaporating a pinned sessile colloidal droplet. The 3D Monte Carlo model is developed in the spherical-cap-shaped droplet. In the algorithm, the analytical equations of fluid flow are used to calculate the probability distributions for the biased random walk, associated with the drift-diffusion equations. We obtain the 3D coffee-ring structures as the final results of the simulation and analyze the dependence of the ring profile on the particle volumetric concentration and sticking probability. PMID:24603647

  14. A three-dimensional finite element model of near-field scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin

    2012-10-01

    A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.

  15. Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur

    2005-04-01

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

  16. Conversion of the West Hackberry geological site characterization report to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur; Snider, Anna C.

    2004-08-01

    The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

  17. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  18. A Mathematical Model of Collective Cell Migration in a Three-Dimensional, Heterogeneous Environment

    PubMed Central

    Stonko, David P.; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E.

    2015-01-01

    Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest. PMID:25875645

  19. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  20. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  1. Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas

    USGS Publications Warehouse

    Qi, L.; Carr, T.R.; Goldstein, R.H.

    2007-01-01

    In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (<4 m; <13.1 ft) oolitic deposits within the St. Louis Limestone have produced more than 300 million bbl of oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  2. Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.

  3. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model.

    PubMed

    Nath, Sritama; Devi, Gayathri R

    2016-07-01

    Cancer cells propagated in three-dimensional (3D) culture systems exhibit physiologically relevant cell-cell and cell-matrix interactions, gene expression and signaling pathway profiles, heterogeneity and structural complexity that reflect in vivo tumors. In recent years, development of various 3D models has improved the study of host-tumor interaction and use of high-throughput screening platforms for anti-cancer drug discovery and development. This review attempts to summarize the various 3D culture systems, with an emphasis on the most well characterized and widely applied model - multicellular tumor spheroids. This review also highlights the various techniques to generate tumor spheroids, methods to characterize them, and its applicability in cancer research. PMID:27063403

  4. A three-dimensional time-dependent model of the polar wind

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1989-01-01

    A time-dependent three-dimensional multiion model of the polar wind was developed, which covers the altitude range of from 120 to 9000 km and takes into account supersonic ion outflow, shock formation, and ion energization during plasma expansion events. The model was used to study the temporal response of global polar wind to changing magnetospheric conditions, for the winter solstice and for solar-minimum conditions in the northern polar region. Graphs illustrating temporal changes with changes in T(e), T(i), and T(n) along the dawn, the trough, and the dusk convection trajectories and in the O(+), O, and H densities along the same convection trajectories are presented together with conntours of the H(+) and the O(+) densities along the three convection trajectories.

  5. A three-dimensional model of domain III of the Escherichia coli small ribosomal subunit.

    PubMed

    Elson, D; Spitnik-Elson, P

    1987-09-01

    A three-dimensional model of domain III (nucleotides 920 to 1395) of the 30S ribosomal subunit of E. coli is proposed. The data used as a guide in folding the secondary structure of the RNA into a tertiary structure are four long range RNA-RNA interactions proposed by us on the basis of experiments performed in this laboratory plus two sets of data from other laboratories: protein-RNA cross-linking sites for proteins S1, S3, S7, S10 and S12, and the interprotein distances determined by neutron scattering. The model is consistent with nearly all of the published experimental findings on the structure of domain III. PMID:2450593

  6. Wind-Tunnel Calibration and Correction Procedures for Three-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Gillis, Clarence L

    1944-01-01

    Detailed methods are presented for determining the corrections to results from wind-tunnel tests of three-dimensional models for the effects of the model-support system, the nonuniform air flow in the tunnel, and the tunnel walls or jet boundaries. The procedures for determining the corrections are illustrated by equations and the required tests are discussed. Particular attention is given to the parts of the procedures dealing with drag measurements. Two general methods that are used for determining and applying the corrections to force tests are discussed. Some discussion is also included of the correction procedures to be used for wake survey tests. The methods described in this report apply only to tests at subcritical speeds. (author)

  7. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.

    PubMed

    Menegaldo, Luciano Luporini; de Toledo Fleury, Agenor; Weber, Hans Ingo

    2004-09-01

    This paper presents a set of polynomial expressions that can be used as regression equations to estimate length and three-dimensional moment arms of 43 lower-limb musculotendon actuators. These equations allow one to find, at a low computational cost, the musculotendon geometric parameters required for numerical simulation of large musculoskeletal models. Nominal values for these biomechanical parameters were established using a public-domain musculoskeletal model of the lower limb (IEEE Trans. Biomed. Eng. 37 (1990) 757). To fit these nominal values, regression equations with different levels of complexity were generated, based on the number of generalized coordinates of the joints spanned by each musculotendon actuator. Least squares fitting was used to identify regression equation coefficients. The goodness of the fit and confidence intervals were assessed, and the best fitting equations selected. PMID:15275854

  8. Experiment and modeling of paired effect on evacuation from a three-dimensional space

    NASA Astrophysics Data System (ADS)

    Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu

    2014-10-01

    A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation.

  9. Three-dimensional finite-element modeling of wave propagation in a transversely isotropic medium

    SciTech Connect

    Sun, Y.F.; Teng, Y.C.

    1994-12-31

    In this research, the authors present the numerical results of three-dimensional finite element modeling of elastic wave propagation in a half space of a transversely isotropic medium. The input physical parameters are taken from the physical model used by Chang and Gardner (1992). The synthetic seismograms of the three displacement components along the axis at an azimuth of 45{degree} to the fracture orientation on the surface are shown. Snapshots taken on the free surface are illustrated which are the displacement fields with polarization in the direction perpendicular to the fracture orientation. These snapshots show clearly the elliptical patterns demonstrating the effects of anisotropy on wave propagation. Four waves, namely, the fast and slow S-waves and the fast and slow P-waves, can be clearly observed.

  10. Three-dimensional analytical model for isotope effects in the photofragmentation of triatomic molecules

    NASA Astrophysics Data System (ADS)

    Atabek, O.; Bourgeois, M. T.; Jacon, M.

    1987-11-01

    A three-dimensional analytical Franck-Condon model is presented for the interpretation of intramolecular isotope effects in the photofragmentation of a symmetric triatomic system when the dissociation occurs on a repulsive surface with a single saddle-point. The role of the geometry and force constants of the ground and excited surfaces, of the intermode coupling known as the Duschinsky effect, and of the initial vibrational energy content is discussed in relation with the dissociation cross sections and branching ratios measuring the competition between different isotope fragmentation arrangements. Recent ion-ion coincidence measurements on doubly-charged deuterated water cations show that the formation of H(+) is five times more frequent than that of D(+) in two-body fragmentations. The interpretation of such an important hydrogen-deuterium isotope effect seems to be possible by the use of this analytical model.

  11. Advances in electromagnetic models for three-dimensional nondestructive evaluation of advanced composites

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2016-02-01

    In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.

  12. Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution

    SciTech Connect

    Hu, X.; Cao, J.; Li, M.; Ye, Z.; Miyawaki, M.; Ho, K. M.

    2008-05-13

    We derive a light-intensity-dependent dielectric constant for a gain medium based on the conventional rate equation model. A scattering-matrix method in conjunction with an efficient iteration procedure is proposed to simulate photonic crystal lasers (PCLs). The light output vs pumping (L-I) curve, lasing mode profile, and chirping effect of the lasing wavelength {lambda}{sub L} can be calculated. We check our method in a one dimensional distributed Bragg reflector laser and simulate a complex three dimensional woodpile PCL to test the capabilities of our model. We found that PCLs with a more uniform field distribution in the gain media will have higher L-I slope efficiencies as well as more stable lasing wavelengths {lambda}{sub L}.

  13. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  14. Three phases in the three-dimensional Abelian-Higgs model with nonlocal gauge interactions

    SciTech Connect

    Takashima, Shunsuke; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko

    2006-08-15

    We study the phase structure of the three-dimensional (3D) nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by Monte Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. In contrast to the 3D local Abelian-Higgs model having only the confinement phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is relevant not only to the 3D massless QED coupled with a Higgs field but also to electron fractionalization phenomena in strongly correlated electron systems like the high-T{sub c} superconductors and the fractional quantum Hall effect.

  15. Petroleum migration pathways and charge concentration: A three-dimensional model

    SciTech Connect

    Hindle, A.D.

    1997-09-01

    Petroleum migration pathways through a basin are determined by the three-dimensional distribution of discontinuous sealing surfaces, which are usually parallel to bedding. The petroleum migrates below the sealing surface, taking the structurally most advantageous route. The three-dimensional distribution of migration pathways within the petroleum system can be modeled on a personal computer using a program based on the parameters discussed in this paper. Application of the model to the Paris and Williston basins demonstrates that a good correlation between predicted pathways and discovered accumulations can be made using simple models. Pathways form a dense network overlying generating areas in the central parts of basins. Toward the basin margins these routes commonly become increasingly focused into discrete pathways by the sealing-surface morphologies. Eventually, these pathways may reach the surface as seepages. It is important to integrate surface outcrops of migration routes (surface seepages) into migration modeling. Deflection of the pathways from the structurally most advantageous route below the sealing surface may be caused by lateral sealing barriers due to faces variation in the carrier rock below the seal, fault juxtaposition, or cross-formational seals such as salt intrusions. Deflection of pathways also occurs where there are hydrodynamic conditions in response to topography-driven groundwater flow. Zones of vertical migration are associated with facies changes along the horizon of the sealing surface into a nonsealing facies, or juxtaposition to nonsealing strata by faults. Vertical migration from either normally or abnormally pressured strata is most likely to occur into normally or lesser pressured strata at intrabasinal highs where hydrocarbons can be stored and transferred at times of temporary seal rupture.

  16. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.

    PubMed

    Bae, Tae Soo; Loan, Peter; Choi, Kuiwon; Hong, Daehie; Mun, Mu Seong

    2010-12-01

    When car crash experiments are performed using cadavers or dummies, the active muscles' reaction on crash situations cannot be observed. The aim of this study is to estimate muscles' response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles' responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles' response at elbow, knee, and ankle joints, should be considered. PMID:21142325

  17. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  18. A simple three-dimensional model of thermo-chemical convection in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Honda, Satoru; Gerya, Taras; Zhu, Guizhi

    2010-02-01

    In order to understand the possible existence of small-scale convection in the mantle wedge, we have constructed a simple three-dimensional model of convection driven by both thermal and chemical buoyancies above the subducting slab. In this model, a chemical agent, which affects both the density and the viscosity of mantle, is introduced from the top of the subducting slab and the associated density and viscosity decreases are treated as parameters. The model does not include the along-arc variation of the source of the chemical agent. We found that the major effects of low density chemical anomaly are to suppress the three-dimensional instability and make the flow two-dimensional, i.e., the flow velocity is normal to the plate boundary. The chemically polluted region tends to stay in the corner of the mantle wedge because of its low density and this results in the low temperature zone there. This suggests the importance of chemical buoyancy on the origin of cold mantle part or "nose" in the corner of the mantle wedge. We also studied the hybrid case: The region closer to the trench is in the low density and viscosity state and the region in the back arc is in the low viscosity state only. This case shows the existence of the low temperature nose and the small-scale thermally driven convection in the back arc. We also investigated the nature of the flip-flop phenomenon of the thermally driven convection and found that the thickness of the thermal boundary layer under the back arc controls it. This flow pattern in the back arc may have a close connection with the temporal and spatial variation of volcano distribution.

  19. Three-dimensional spheroid cell model of in vitro adipocyte inflammation.

    PubMed

    Turner, Paul A; Tang, Yi; Weiss, Stephen J; Janorkar, Amol V

    2015-06-01

    To improve treatment of obesity, a contributing factor to multiple systemic and metabolic diseases, a better understanding of metabolic state and environmental stress at the cellular level is essential. This work presents development of a three-dimensional (3D) in vitro model of adipose tissue displaying induced lipid accumulation as a function of fatty acid supplementation that, subsequently, investigates cellular responses to a pro-inflammatory stimulus, thereby recapitulating key stages of obesity progression. Three-dimensional spheroid organization of adipose cells was induced by culturing 3T3-L1 mouse preadipocytes on an elastin-like polypeptide-polyethyleneimine (ELP-PEI)-coated surface. Results indicate a more differentiated phenotype in 3D spheroid cultures relative to two-dimensional (2D) monolayer analogues based on triglyceride accumulation, CD36 and CD40 protein expression, and peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin mRNA expression. The 3T3-L1 adipocyte spheroid model was then used to test the effects of a pro-inflammatory microenvironment, namely maturation in the presence of elevated fatty acid levels followed by acute exposure to tumor necrosis factor alpha (TNF-α). Under these conditions, we demonstrate that metabolic function was reduced across all cultures exposed to TNF-α, especially so when pre-exposed to linoleic acid. Further, in response to TNF-α, enhanced lipolysis, monitored as increased extracellular glycerol and fatty acids levels, was observed in adipocytes cultured in the presence of exogenous fatty acids. Taken together, our 3D spheroid model showed enhanced adipogenic differentiation and presents a platform for elucidating the key phenotypic responses that occur in pro-inflammatory microenvironments that characterize obesogenic states. PMID:25781458

  20. Vortical flow in human elbow joints: a three-dimensional computed tomography modeling study.

    PubMed

    Adikrishna, Arnold; Kekatpure, Aashay L; Tan, Jun; Lee, Hyun-Joo; Deslivia, Maria Florencia; Jeon, In-Ho

    2014-10-01

    The human elbow joint has been regarded as a loose hinge joint, with a unique helical motion of the axis during extension-flexion. This study was designed to identify the helical axis in the ulnohumeral joint during elbow extension-flexion by tracking the midpoint between the coronoid tip and the olecranon tip of the proximal ulna in a three-dimensional (3D) computed tomography (CT) image model. The elbows of four volunteers were CT-scanned at four flexion angles (0°, 45°, 90°, and 130°) at neutral rotation with a custom-made holding device to control any motion during scanning. Three-dimensional models of each elbow were reconstructed and a 3D ulnohumeral joint at 45°, 90°, and 130° was superimposed onto a fully extended joint (0°) by rotating and translating each 3D ulnohumeral joint along the axes. The midpoints of the olecranon and coronoid tips were interpolated using cubic spline technique and the dynamic elbow motion was plotted to determine the motion of the helical axis. The means and standard deviations were subsequently calculated. The average midpoint pattern of joint motion from extension to flexion was elliptical-orbit-like when projected onto a sagittal plane and continuously translated a mean 2.14 ± 0.34 mm (range, 1.83-2.52 mm) to the lateral side during elbow extension-flexion. In 3D space, the average midpoint pattern of the ulnohumeral joint resembles a vortical flow, spinning along an imaginary axis, with an inconsistent radius from 0° to 130° flexion. The ulnohumeral joint axis both rotates and translates during elbow extension-flexion, with a vortex-flow motion occurring during flexion in 3D model analysis. This motion should be considered when performing hinged external fixation, total elbow replacement and medial collateral ligament reconstruction surgery. PMID:25100632

  1. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    ERIC Educational Resources Information Center

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  2. Three-Dimensional Virtual Model of the Human Temporal Bone: A Stand-Alone, Downloadable Teaching Tool

    PubMed Central

    Wang, Haobing; Northrop, Clarinda; Burgess, Barbara; Liberman, M. Charles; Merchant, Saumil N.

    2007-01-01

    Objective To develop a three-dimensional virtual model of a human temporal bone based on serial histologic sections. Background The three-dimensional anatomy of the human temporal bone is complex, and learning it is a challenge for students in basic science and in clinical medicine. Methods Every fifth histologic section from a 14-year-old male was digitized and imported into a general purpose three-dimensional rendering and analysis software package called Amira (version 3.1). The sections were aligned, and anatomic structures of interest were segmented. Results The three-dimensional model is a surface rendering of these structures of interest, which currently includes the bone and air spaces of the temporal bone; the perilymph and endolymph spaces; the sensory epithelia of the cochlear and vestibular labyrinths; the ossicles and tympanic membrane; the middle ear muscles; the carotid artery; and the cochlear, vestibular, and facial nerves. For each structure, the surface transparency can be individually controlled, thereby revealing the three-dimensional relations between surface landmarks and underlying structures. The three-dimensional surface model can also be “sliced open” at any section and the appropriate raw histologic image superimposed on the cleavage plane. The image stack can also be resectioned in any arbitrary plane. Conclusion This model is a powerful teaching tool for learning the complex anatomy of the human temporal bone and for relating the two-dimensional morphology seen in a histologic section to the three-dimensional anatomy. The model can be downloaded from the Eaton-Peabody Laboratory web site, packaged within a cross-platform freeware three-dimensional viewer, which allows full rotation and transparency control. PMID:16791035

  3. Simulation of synthetic aperture imaging ladar (SAIL) for three-dimensional target model

    NASA Astrophysics Data System (ADS)

    Yi, Ning; Wu, Zhen-Sen

    2010-11-01

    In conventional imaging laser radar, the resolution of target is constrained by the diffraction-limited, which includes the beamwidth of the laser in the target plane and the telescope's aperture. Synthetic aperture imaging Ladar (SAIL) is an imaging technique which employs aperture synthesis with coherent laser radar, the resolution is determined by the total frequency spread of the source and is independent of range, so can achieve fine resolution in long range. Ray tracing is utilized here to obtain two-dimensional scattering properties from three-dimensional geometric model of actual target, and range-doppler algorithm is used for synthetic aperture process in laser image simulation. The results show that the SAIL can support better resolution.

  4. Aerodynamic study of three-dimensional larynx models using finite element methods

    NASA Astrophysics Data System (ADS)

    de Oliveira Rosa, Marcelo; Pereira, José Carlos

    2008-03-01

    The airflow velocities and pressures are calculated from a three-dimensional model of the human larynx by using the finite element method. The laryngeal airflow is assumed to be incompressible, isothermal, steady, and created by fixed pressure drops. The influence of different laryngeal profiles (convergent, parallel, and divergent), glottal area, and dimensions of false vocal folds in the airflow are investigated. The results indicate that vertical and horizontal phase differences in the laryngeal tissue movements are influenced by the nonlinear pressure distribution across the glottal channel, and the glottal entrance shape influences the air pressure distribution inside the glottis. Additionally, the false vocal folds increase the glottal duct pressure drop by creating a new constricted channel in the larynx, and alter the airflow vortexes formed after the true vocal folds.

  5. Three-dimensional numerical simulation of a bird model in unsteady flight

    NASA Astrophysics Data System (ADS)

    Lin-Lin, Zhu; Hui, Guan; Chui-Jie, Wu

    2016-07-01

    In this paper, a type of numerical simulation of a three-dimensional (3D) bionic bird with flapping wings in a viscous flow is studied. The model is a self-propelled flying bird capable of free rotation and translation whose flying motion follows the laws of conservation of momentum and angular momentum. The bird is propelled and lifted through flapping and rotating wings and most of thrust force and lift force are exerted on both wings. Both the vortex structures and the flight characteristics are also presented. The relationship between both wings' movement and the vortex structures as well as that between both wings' movement and flight characteristics are also analyzed in this paper. The study uses a 3D computational fluid dynamics package that includes the combined immersed boundary method, volume of fluid method, adaptive multigrid finite volume method, and control strategy for swimming and flying.

  6. Chemistry of the 1991-1992 stratospheric winter: Three-dimensional model simulations

    SciTech Connect

    Lefevre, F.; Simon, P.; Brasseur, G.P.

    1994-04-20

    A three-dimensional chemistry-transport model of the stratosphere is used to simulate the evolution of trace constituents during the 1991-1992 Arctic winter. It is shown that heterogeneous reactions on polar stratospheric clouds led in early January to almost complete activation of atmospheric chlorine inside the polar vortex, in remarkable coincidence with observations by the ER-2 aircraft and the microwave limb sounder on the Upper Atmosphere Research Satellite. Sulfate aerosols resulting from the eruption of Mount Pinatubo also produced a significant increase in chlorine monoxide (ClO) concentrations at middle and high latitudes. The net chemical destruction of ozone found in the vortex at the end of the simulation (25% at 50 hPa and 25 DU), although substantial, was limited by available sunlight and the short period during which stratospheric clouds occurred.

  7. Fitting three-dimensional models to stereo images using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Nagao, Tomoharu; Agui, Takeshi; Nagahashi, Hiroshi

    1995-04-01

    A method to determine positions and rotational angles of 3D objects in stereo images is proposed in this paper. First, range data of edge points of a left image are calculated by a stereo matching method. Next, a three dimensional model is rotated, translated and projected to a 2D plane, and the edges of the projected image are compared with those of the left image. The space transformation parameters which give the maximum matching ratio are searched by a Genetic Algorithm;GA. In the searching process of the proposed method, a set of space transformation parameters is regarded as chromosome of an individual, and a randomly generated population is evolved according to GA rules. Principle of the method and several experimental results are described.

  8. Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki

    2003-05-01

    Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.

  9. Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides

    NASA Astrophysics Data System (ADS)

    Krasavin, A. V.; Zayats, A. V.

    2008-07-01

    Using full three-dimensional numerical modeling, we demonstrate highly efficient passive and active photonic circuit elements based on dielectric-loaded surface plasmon polariton waveguides (DLSPPWs). Highly confined surface plasmon polariton (SPP) mode having subwavelength cross section allows high level of integration of DLSPPW circuitry. We demonstrate very efficient guiding and routing of SPP signals with the passive waveguide elements such as bends, splitters, and Bragg reflectors, having a functional size of just a few microns at telecommunication wavelengths. Introducing a gain in the dielectric, we have found the requirement for lossless waveguiding and estimated the performance of DLSPPW lossless and active elements. DLSPPW based components have prospective implementation in photonic integrated chips, hybrid optical-electronic circuits, and lab-on-a-chip applications.

  10. Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel

    NASA Astrophysics Data System (ADS)

    Cho, Hoon-Hwe; Kim, Dong-Wan; Hong, Sung-Tae; Jeong, Yong-Ha; Lee, Keunho; Cho, Yi-Gil; Kang, Suk Hoon; Han, Heung Nam

    2015-12-01

    A three-dimensional (3D) thermo-mechanical model is developed considering the phase transformation occurring during the friction stir welding (FSW) of steel, and the simulated result is compared with both the measured temperature distribution during FSW and the microstructural changes after FSW. The austenite grain size (AGS) decreases significantly because of the frictional heat and severe plastic deformation generated during FSW, and the decreased AGS accelerates the diffusional phase transformation during FSW. The ferrite phase, one of the diffusional phases, is developed mainly in mild steel, whereas the bainite phase transformation occurs significantly in high-strength steel with large hardenability. Additionally, transformation-induced heat is observed mainly in the stir zone during FSW. The measured temperature distribution and phase fraction agree fairly well with the predicted data.

  11. Three-Dimensional Human Skin Models to Understand Staphylococcus aureus Skin Colonization and Infection

    PubMed Central

    Popov, Lauren; Kovalski, Joanna; Grandi, Guido; Bagnoli, Fabio; Amieva, Manuel R.

    2014-01-01

    Staphylococcus aureus is both a major bacterial pathogen as well as a common member of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin colonizer and its importance as a source of skin and soft tissue infections, an improved understanding of how S. aureus attaches to, grows within, and breaches the stratified layers of the epidermis is of critical importance. Three-dimensional organotypic human skin culture models are informative and tractable experimental systems for future investigations of the interactions between S. aureus and the multi-faceted skin tissue. We propose that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of invasive infections, play alternative roles in promoting asymptomatic bacterial growth within the skin. Experimental manipulations of these cultures will provide insight into the many poorly understood molecular interactions occurring at the interface between S. aureus and stratified human skin tissue. PMID:24567733

  12. Three-dimensional organotypic culture: experimental models of mammalian biology and disease

    PubMed Central

    Shamir, Eliah R.; Ewald, Andrew J.

    2015-01-01

    Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells. PMID:25237826

  13. Simulation of dilute polymeric fluids in a three-dimensional contraction using a multiscale FENE model

    SciTech Connect

    Griebel, M. E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A. E-mail: ruettgers@ins.uni-bonn.de

    2014-05-15

    The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced. Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.

  14. The use of computer-generated three-dimensional models in orbital reconstruction.

    PubMed

    Perry, M; Banks, P; Richards, R; Friedman, E P; Shaw, P

    1998-08-01

    In this paper we describe the application of three-dimensional (3D) imaging and computer-generated models in the management of orbital deformity. The technique was found to be particularly useful in posttraumatic deformity and fibrous dysplasia involving the orbit. Further application was found in cases of radiation hypoplasia, high facial cleft, and facial atrophy. Funding restrictions necessitate appropriate selection of cases when using new and expensive 3D imaging rather than traditional and less expensive methods. To remain within a realistic budget only those patients who will clearly benefit from the third dimension compared with traditional methods of assessment and management should be selected. These include patients requiring precise reduction or secondary reconstruction in which there is a matched normal anatomical component for comparison. This application is also only beneficial where the planned reconstruction is dimensionally stable. PMID:9762455

  15. Corrections to vibrational transition probabilities calculated from a three-dimensional model.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1972-01-01

    Corrections to the collision-induced vibration transition probability calculated by Hansen and Pearson from a three-dimensional semiclassical model are examined. These corrections come from the retention of higher order terms in the expansion of the interaction potential and the use of the actual value of the deflection angle in the calculation of the transition probability. It is found that the contribution to the transition cross section from previously neglected potential terms can be significant for short range potentials and for the large relative collision velocities encountered at high temperatures. The correction to the transition cross section obtained from the use of actual deflection angles will not be appreciable unless the change in the rotational quantum number is large.

  16. Three-dimensional numerical simulation of a bird model in unsteady flight

    NASA Astrophysics Data System (ADS)

    Lin-Lin, Zhu; Hui, Guan; Chui-Jie, Wu

    2016-05-01

    In this paper, a type of numerical simulation of a three-dimensional (3D) bionic bird with flapping wings in a viscous flow is studied. The model is a self-propelled flying bird capable of free rotation and translation whose flying motion follows the laws of conservation of momentum and angular momentum. The bird is propelled and lifted through flapping and rotating wings and most of thrust force and lift force are exerted on both wings. Both the vortex structures and the flight characteristics are also presented. The relationship between both wings' movement and the vortex structures as well as that between both wings' movement and flight characteristics are also analyzed in this paper. The study uses a 3D computational fluid dynamics package that includes the combined immersed boundary method, volume of fluid method, adaptive multigrid finite volume method, and control strategy for swimming and flying.

  17. Transport model based on three-dimensional cross-section generation for TRIGA core analysis

    SciTech Connect

    Kriangchaiporn, N.; Ivanov, K.; Haghighat, A.; Sears, C. F.

    2006-07-01

    The development of a three-dimensional (3-D) transport model for TRIGA core analysis based on the discrete ordinates (S{sub n}) method has been conducted. The effective fine- and broad- group structures for the TRIGA cross-section libraries were selected based on CPXSD (Contribution and Point-wise Cross-Section Driven) methodology. Different 3-D pin/core configurations are used to verify and validate the selected effective group structures. Thirteen-group structure was finally selected to be used for core analysis. The results agree with continuous energy cross-section Monte Carlo calculations for eigenvalues and normalized pin power distributions, which are used as a reference in this research. (authors)

  18. Tooth crazing associated with threaded pins: a three-dimensional model.

    PubMed

    Webb, E L; Straka, W F; Phillips, C L

    1989-05-01

    A model for observing the three-dimensional pattern of cracking associated with placement of self-threading retentive pins was developed. Four sizes of self-threading pins were placed in extracted posterior tooth samples. The pins were subsequently removed and the samples coated with butyl acetate lacquer except for the pin channel orifice. Samples were immersed in dye solution followed by a demineralization and dehydration process. Samples were placed in methyl salicylate until cleared. Cleared samples were examined for dye penetration into the pin channel and communication with the pulp chamber. Comparisons were made of the patterns created by the four sizes of retentive pins. Results showed that more extensive cracks occurred with the larger size pins and that crack communication with the pulp chamber occurred more frequently with the larger pins. PMID:2664149

  19. Three-Dimensional Human Skin Models to Understand Staphylococcus aureus Skin Colonization and Infection.

    PubMed

    Popov, Lauren; Kovalski, Joanna; Grandi, Guido; Bagnoli, Fabio; Amieva, Manuel R

    2014-01-01

    Staphylococcus aureus is both a major bacterial pathogen as well as a common member of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin colonizer and its importance as a source of skin and soft tissue infections, an improved understanding of how S. aureus attaches to, grows within, and breaches the stratified layers of the epidermis is of critical importance. Three-dimensional organotypic human skin culture models are informative and tractable experimental systems for future investigations of the interactions between S. aureus and the multi-faceted skin tissue. We propose that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of invasive infections, play alternative roles in promoting asymptomatic bacterial growth within the skin. Experimental manipulations of these cultures will provide insight into the many poorly understood molecular interactions occurring at the interface between S. aureus and stratified human skin tissue. PMID:24567733

  20. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy.

    PubMed

    Rypina, I I; Pratt, L J; Wang, P; Özgökmen, T M; Mezic, I

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations. PMID:26328572

  1. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.

    1988-01-01

    The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.

  2. Periodic standing-wave approximation: Overview and three-dimensional scalar models

    SciTech Connect

    Andrade, Zeferino; Beetle, Christopher; Blinov, Alexey; Bromley, Benjamin; Burko, Lior M.; Cranor, Maria; Price, Richard H.; Owen, Robert

    2004-09-15

    The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the 'mixed' partial differential equations to be solved (ii) the meaning of standing waves in the method (iii) computational difficulties, and (iv) the 'effective linearity' that ultimately justifies the approximation. The method is applied to three-dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.

  3. Three-dimensional resistivity modeling of GREATEM survey data from Ontake Volcano, northwest Japan

    NASA Astrophysics Data System (ADS)

    Abd Allah, Sabry; Mogi, Toru

    2016-05-01

    Ontake Volcano is located in central Japan, 200 km northwest of Tokyo and erupted on September 27, 2014. To study the structure of Ontake Volcano and discuss the process of its phreatic eruption, which can help in future eruptions mitigation, airborne electromagnetic (AEM) surveys using the grounded electrical-source airborne transient electromagnetic (GREATEM) system were conducted over Ontake Volcano. Field measurements and data analysis were done by OYO Company under the Sabo project managed by the Ministry of Land, Infrastructure, Transport and Tourism. Processed data and 1D resistivity models were provided by this project. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model that fits the GREATEM data where a composite of 1D resistivity models was used as the starting model. A 3D electromagnetic forward-modeling scheme based on a staggered-grid finite-difference method was modified and used to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of magnetic-transient responses between the field data and 3D forward-model computed data. The preferred 3D resistivity models show that a moderately resistive structure (30-200 Ω m) is characteristic of most of the volcano, and were able to delineate a hydrothermal zone within the volcanic edifice. This hydrothermal zone may be caused by a previous large sector collapse.

  4. Conversion of the Bayou Choctaw geological site characterization report to a three-dimensional model.

    SciTech Connect

    Stein, Joshua S.; Rautman, Christopher Arthur

    2004-02-01

    The geologic model implicit in the original site characterization report for the Bayou Choctaw Strategic Petroleum Reserve Site near Baton Rouge, Louisiana, has been converted to a numerical, computer-based three-dimensional model. The original site characterization model was successfully converted with minimal modifications and use of new information. The geometries of the salt diapir, selected adjacent sedimentary horizons, and a number of faults have been modeled. Models of a partial set of the several storage caverns that have been solution-mined within the salt mass are also included. Collectively, the converted model appears to be a relatively realistic representation of the geology of the Bayou Choctaw site as known from existing data. A small number of geometric inconsistencies and other problems inherent in 2-D vs. 3-D modeling have been noted. Most of the major inconsistencies involve faults inferred from drill hole data only. Modem computer software allows visualization of the resulting site model and its component submodels with a degree of detail and flexibility that was not possible with conventional, two-dimensional and paper-based geologic maps and cross sections. The enhanced visualizations may be of particular value in conveying geologic concepts involved in the Bayou Choctaw Strategic Petroleum Reserve site to a lay audience. A Microsoft WindowsTM PC-based viewer and user-manipulable model files illustrating selected features of the converted model are included in this report.

  5. Three-dimensional detailed numerical model of a field-scale rotary kiln incinerator

    SciTech Connect

    Leger, C.B.; Cundy, V.A.; Sterling, A.M. )

    1993-04-01

    A detailed three-dimensional numerical model of baseline (support burners only) operation in a rotary kiln incinerator is presented. The focus of this model is on gas-phase fluid mechanics, neglecting solid waste combustion and radiative heat transfer. The model is compared to experimental data, and although relatively crude, it demonstrates remarkably good qualitative and quantitative predictive capability. The model demonstrates that thermal buoyancy is the cause of observed vertical stratification near the exit of the modeled kiln. The model also suggests that the addition of turbulence mixing air actually increases the degree of stratification rather than augmenting mixing, as had been previously suggested. Elucidating the mechanism by which this occurs has resulted in a reinterpretation of the experimental data. The model also suggests that there is probably a zone of recirculation across the kiln exit plane. A parametric study using the model shows that the location and quantity of leak air into the kiln have a major influence on the flow inside the kiln. The study suggests that preheating turbulence air may have little effect on gas-phase mixing. Overall, this modeling study has demonstrated that a relatively simple numerical model of a rotary kiln incinerator can provide valuable insight into the process, especially when used in conjunction with experimental data. 21 refs., 17 figs., 3 tabs.

  6. Preliminary three-dimensional discrete fracture model, Tiva Canyon tuff, Yucca Mountain area, Nye County, Nevada

    SciTech Connect

    Anna, L.O.

    1998-09-01

    A three-dimensional discrete fracture model was completed to investigate the potential effects of fractures on the flow of water at Yucca Mountain, Nye County, Nevada. A fracture network of the Exploratory Studies Facility starter tunnel area was simulated and calibrated with field data. Two modeled volumes were used to simulate three-dimensional fracture networks of the Tiva Canyon tuff. One volume had a width and length of 150 meters, and the other had a width and length of 200 meters; both volumes were 60 meters thick. The analysis shows that the fracture system in the Exploratory Studies Facility starter tunnel area has numerous connected fractures that have relatively large permeabilities. However, pathway analysis between three radial boreholes indicated there were few pathways and little connection, which is consistent with results of cross-boreholes pressure testing. Pathway analysis also showed that at the scales used there was only one pathway connecting one end of the flow box to the opposite end. The usual vertical pathway was along one large fracture, whereas in four horizontal directions the pathway was from multiple fracture connections. As a result, the fracture network can be considered sparse. The fracture network was refined by eliminating nonconductive fractures determined from field-derived permeabilities. Small fractures were truncated from the simulated network without any effect on the overall connectivity. Fractures as long as 1.25 meters were eliminated (a large percentage of the total number of fractures) from the network without altering the number of pathways. Five directional permeabilities were computed for the 150- and 200-meter-scale flow box areas. Permeabilities for the 150-meter scale vary by almost two orders of magnitude, with the principal permeability direction being easterly. At the 200-meter scale, however, the flow box permeabilities only vary by a factor of four, with the principal permeability direction being vertical.

  7. Investigation on a gas-liquid ejector using three-dimensional CFD model

    NASA Astrophysics Data System (ADS)

    Kang, S. H.; Song, X. G.; Park, Y. C.

    2012-11-01

    This paper is focusing on the numeral study of a gas-liquid ejector used for ballast water treatment. The gasliquid ejector is investigated through steady three-dimensional multiphase CFD analysis with commercial software ANSYS-CFX 13.0. Water as the primary fluid is driven through the driving nozzle and air is ejected into as the second gas instead of the ozone in real application. Several turbulence models such as Standard k-ɛ model, RNG k-ɛ model, SST model and k-ω model, and different mesh size and compared extensively with the experimental results to eliminate the influence of the auxiliary system, turbulence models and mesh generation. The appropriate numerical model in terms of the best combination of turbulence model and mesh size are used in the subsequent research the study the influence of the operating condition such as the driving pressure/velocity and the back pressure of the ejector on its performance. The results provide deep insight on the influence of various factors on the performance of gas-liquid ejector. And the proposed numerical model will be very helpful in the further design optimization of the gas-liquid ejectors.

  8. A data-constrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhou, Yufen; Jiang, Chaowei; Feng, Xueshang; Wu, Chin-Chun; Hu, Qiang

    2016-02-01

    In this study, we present a three-dimensional magnetohydrodynamic model based on an observed eruptive twisted flux rope (sigmoid) deduced from solar vector magnetograms. This model is a combination of our two very well tested MHD models: (i) data-driven 3-D magnetohydrodynamic (MHD) active region evolution (MHD-DARE) model for the reconstruction of the observed flux rope and (ii) 3-D MHD global coronal-heliosphere evolution (MHD-GCHE) model to track the propagation of the observed flux rope. The 6 September 2011, AR11283, event is used to test this model. First, the formation of the flux rope (sigmoid) from AR11283 is reproduced by the MHD-DARE model with input from the measured vector magnetograms given by Solar Dynamics Observatory/Helioseismic and Magnetic Imager. Second, these results are used as the initial boundary condition for our MHD-GCHE model for the initiation of a coronal mass ejection (CME) as observed. The model output indicates that the flux rope resulting from MHD-DARE produces the physical properties of a CME, and the morphology resembles the observations made by STEREO/COR-1.

  9. Application of three-dimensional computer modeling for reservoir and ore-body analysis

    SciTech Connect

    Hamilton, D.E.; Marie, J.L.; Moon, G.M.; Moretti, F.J.; Ryman, W.P.; Didur, R.S.

    1985-02-01

    Three-dimensional computer modeling of reservoirs and ore bodies aids in understanding and exploiting these resources. This modeling tool enables the geologist and engineer to correlate in 3 dimensions, experiment with various geologic interpretations, combine variables to enhance certain geologic attributes, test for reservoir heterogeneities and continuity, select drill sites or perforation zones, determine volumes, plan production, generate geologic parameters for input to flow simulators, calculate tonnages and ore-waste ratios, and test sensitivity of reserves to various ore-grade cutoffs and economic parameters. All applications benefit from the ability to update rapidly the 3-dimensional computer models when new data are collected. Two 3-dimensional computer modeling projects demonstrate these capabilities. The first project involves modeling porosity, permeability, and water saturation in a Malaysian reservoir. The models were used to analyze the relationship between water saturation and porosity and to generate geologic parameters for input to a flow simulator. The second project involves modeling copper, zinc, silver, gold, and specific gravity in a massive sulfide ore body in British Columbia. The 4 metal models were combined into one copper-equivalence model and evaluated for tonnage, stripping ratio, and sensitivity to variations of ore-grade cutoff.

  10. Three-dimensional seasonal deformations induced by underground gas storage. Monitoring by PSI and modeling by FE

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Lovison, A.; Janna, C.; Ferretti, A.

    2012-04-01

    Land subsidence and uplift due to the production/injection of fluids from/into the subsurface have been widely observed worldwide over the last decades and occur for a variety of purposes such as groundwater pumping, aquifer system recharge, gas/oil field development, enhanced oil recovery, geologic CO2 sequestration, underground gas storage and waste disposal. The need for a reliable prediction of these processes has led to a continuous improvement of the numerical tools employed in poromechanics. However, although sophisticated poro-visco-plastic 3D codes have been developed, the lack of accurate measurements of the ground surface displacements has rarely allowed an accurate calibration of the geomechanical models. Recently, advanced Persistent Scatterer Interferometry data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D transversally isotropic poromechanical finite-element model which satisfactorily reproduces the seasonal deformation due to gas injection/removal. An accurate calibration of the finite element model to the interferometry data is performed by combining metamodeling techniques such as Kriging and global optimization strategies specifically designed for handling uncertain measurements. Furthermore, it is also possible to estimate the functional dependence of physically relevant quantities, e.g., the maximum vertical seasonal displacement, with respect to operational parameters (e

  11. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    PubMed

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  12. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    PubMed Central

    Drummond, Coyne G.

    2015-01-01

    ABSTRACT Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and

  13. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Allan, Mathew G.; Hamilton, David P.; Trolle, Dennis; Muraoka, Kohji; McBride, Christopher

    2016-08-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. The retrieved skin water temperatures were validated using a high-frequency temperature sensor deployed from a monitoring buoy at the water surface of Lake Rotorua. The most accurate atmospheric correction method was with Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric profile data (root-mean-square-error, RMSE, 0.48 K), followed by radiosonde (0.52 K), Atmospheric Infrared Sounder (AIRS) Level 3 (0.54 K), and the NASA atmospheric correction parameter calculator (0.94 K). Retrieved water temperature was used for assessing spatial heterogeneity and accuracy of surface water temperature simulated with a three-dimensional (3-D) hydrodynamic model of Lake Rotoehu, located approximately 20 km east of Lake Rotorua. This comparison indicated that the model was suitable for reproducing the dominant horizontal variations in surface water temperature in the lake. This study demonstrated the potential of accurate satellite-based thermal monitoring to validate temperature outputs from 3-D hydrodynamic model simulations. It also provided atmospheric correction options for local and global applications of Landsat thermal data.

  14. Development and validation of a three-dimensional ring-based structural tyre model

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Sas, P.; Desmet, W.

    2009-10-01

    This paper presents a structural model for an unloaded tyre, based on a three-dimensional flexible ring on an elastic foundation. The ring represents the belt and the elastic foundation represents the tyre sidewall. The model is valid up to 300 Hz and includes a submodel of the wheel and the air cavity. This makes the model potentially suitable for the prediction of structure-borne interior noise. Unlike most ring models, which only consider in-plane modes, the presented model also predicts the modes that involve torsion of the belt in circumferential direction. The parameterization of the model, which does not require detailed knowledge of the tyre construction, is based on the main geometrical properties of the tyre and a limited modal test. Comparison between measured and calculated responses shows that the tyre-wheel model describes the dynamic behaviour with acceptable accuracy. Since the model is physical, it can be applied to describe other operational conditions such as loading and rotation.

  15. Automated calibration of a three-dimensional ground water flow model

    SciTech Connect

    Baker, F.G.; Guo, X.; Zigich, D.

    1996-12-31

    A three-dimensional ground water flow model was developed and calibrated for use as a quantitative tool for the evaluation of several potential ground water remedial alternatives during the On-Post Feasibility Study for the Rocky Mountain Arsenal. The USGS MODFLOW code was implemented and calibrated for steady-state conditions over the entire model area and for transient conditions where local pumping test data were available. Strict modeling goals and calibration criteria were established before modeling was initiated and formed a basis to guide the modeling process as it proceeded. The modeling effort utilized a non-traditional optimization technique to assist in model calibration. During calibration, this practical and systematic parameter adjustment procedure was used where parameter change was tightly constrained by preset geologic and hydrogeologic conditions. Hydraulic conductivity parameter was adjusted based on frequent comparison of calculated head to observed head conditions. The driving parameter was adjusted within limits until the calibration criteria achieved predetermined calibration targets. The paper presents the calibration approach and discusses the model application for evaluation of alternatives.

  16. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine

    PubMed Central

    Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu

    2008-01-01

    Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results. PMID:18247063

  17. The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth

    PubMed Central

    Berg, C. van den; Ellington, C.P.

    1997-01-01

    Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading-edge vortex and a pronounced three-dimensional flow. Details of this flow pattern were studied with a scaled-up, robotic insect ('the flapper') that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading-edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 per cent of the wing length, its diameter increased approximately from 10 to 50 per cent of the wing chord. The leading-edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 per cent of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading-edge vortex were fully used for lift generation, it could support up to two-thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.

  18. Thermal Pollution Mathematical Model. Volume 5: User's Manual for Three-Dimensional Rigid-Lid Model. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    A user's manual for a three dimensional, rigid lid model used for hydrothermal predictions of closed basins subjected to a heated discharge together with various other inflows and outflows is presented. The model has the capability to predict (1) wind driven circulation; (2) the circulation caused by inflows and outflows to the domain; and (3) the thermal effects in the domain, and to combine the above processes. The calibration procedure consists of comparing ground truth corrected airborne radiometer data with surface isotherms predicted by the model. The model was verified for accuracy at various sites and results are found to be fairly accurate in all verification runs.

  19. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer

    PubMed Central

    KONDO, Kosuke; NEMOTO, Masaaki; MASUDA, Hiroyuki; OKONOGI, Shinichi; NOMOTO, Jun; HARADA, Naoyuki; SUGO, Nobuo; MIYAZAKI, Chikao

    We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p < 0.001). A significant difference was also noted in the longitudinal diameter of the cerebral aneurysm (p < 0.01). Regarding the CTA image as the gold standard, reproducibility of the microsurgical anatomy of skull bone and main arteries was favorable in the rapid prototyping models prepared using a 3D printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors. PMID:26119896

  20. A three-dimensional model of vocal fold abductionÕadduction

    PubMed Central

    Hunter, Eric J.; Titze, Ingo R.; Alipour, Fariborz

    2006-01-01

    A three-dimensional biomechanical model of tissue deformation was developed to simulate dynamic vocal fold abduction and adduction. The model was made of 1721 nearly incompressible finite elements. The cricoarytenoid joint was modeled as a rocking–sliding motion, similar to two concentric cylinders. The vocal ligament and the thyroarytenoid muscle’s fiber characteristics were implemented as a fiber–gel composite made of an isotropic ground substance imbedded with fibers. These fibers had contractile and/or passive nonlinear stress–strain characteristics. The verification of the model was made by comparing the range and speed of motion to published vocal fold kinematic data. The model simulated abduction to a maximum glottal angle of about 31°. Using the posterior-cricoarytenoid muscle, the model produced an angular abduction speed of 405° per second. The system mechanics seemed to favor abduction over adduction in both peak speed and response time, even when all intrinsic muscle properties were kept identical. The model also verified the notion that the vocalis and muscularis portions of the thyroarytenoid muscle play significantly different roles in posturing, with the muscularis portion having the larger effect on arytenoid movement. Other insights into the mechanisms of abduction/adduction were given. PMID:15101653

  1. THERMAL AND ELECTROCHEMICAL THREE DIMENSIONAL CFD MODEL OF A PLANAR SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant Hawkes; Jim O'Brien; Carl Stoots; Steve Herring; Mehrdad Shahnam

    2005-07-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec , Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

  2. Constructing three-dimensional detachable and composable computer models of the head and neck.

    PubMed

    Fan, Min; Dai, Peishan; Zheng, Buhong; Li, Xinchun

    2015-06-01

    The head and neck region has a complex spatial and topological structure, three-dimensional (3D) computer model of the region can be used in anatomical education, radiotherapy planning and surgical training. However, most of the current models only consist of a few parts of the head and neck, and the 3D models are not detachable and composable. In this study, a high-resolution 3D detachable and composable model of the head and neck was constructed based on computed tomography (CT) serial images. First, fine CT serial images of the head and neck were obtained. Then, a color lookup table was created for 58 structures, which was used to create anatomical atlases of the head and neck. Then, surface and volume rendering methods were used to reconstruct 3D models of the head and neck. Smoothing and polygon reduction steps were added to improve 3D rendering effects. 3D computer models of the head and neck, including the sinus, pharynx, vasculature, nervous system, endocrine system and glands, muscles, bones and skin, were reconstructed. The models consisted of 58 anatomical detachable and composable structures and each structure can be displayed individually or together with other structures. PMID:26091713

  3. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.

    2010-01-01

    A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  4. Three-dimensional aortic aneurysm model and endovascular repair: An educational tool for surgical trainees

    PubMed Central

    Wilasrusmee, Chumpon; Suvikrom, Jesada; Suthakorn, Jackrit; Lertsithichai, Panuwat; Sitthiseriprapip, Kriskrai; Proprom, Napaphat; Kittur, Dilip S

    2008-01-01

    OBJECTIVES: Endovascular aortic aneurysm repair (EVAR) is a current valid treatment option for patients with abdominal aortic aneurysms (AAAs). The success of EVAR depends on the selection of appropriate patients, which requires detailed knowledge of the patient’s vascular anatomy and preoperative planning. Three-dimensional (3D) models of AAA using a rapid prototyping technique were developed to help surgical trainees learn how to plan for EVAR more effectively. METHOD: Four cases of AAA were used as prototypes for the models. Nine questions associated with preoperative planning for EVAR were developed by a group of experts in the field of endovascular surgery. Forty-three postgraduate trainees in general surgery participated in the present study. The participants were randomly assigned into two groups. The ‘intervention’ group was provided with the rapid prototyping AAA models along with 3D computed tomography (CT) corresponding to the cases of the test, while the control group was provided with 3D CTs only. RESULTS: Differences in the scores between the groups were tested using the unpaired t test. The mean test scores were consistently and significantly higher in the 3D CT group with models compared with the 3D CT group without models for all four cases. Age, year of training, sex and previous EVAR experience had no effect on the scores. CONCLUSION: The 3D aortic aneurysm model constructed using the rapid prototype technique may significantly improve the ability of trainees to properly plan for EVAR. PMID:22477415

  5. Adjoint sensitivity analysis for a three-dimensional photochemical model: implementation and method comparison.

    PubMed

    Martien, Philip T; Harley, Robert A; Cacuci, Dan G

    2006-04-15

    Photochemical air pollution forms when emissions of nitrogen oxides (NO(x)) and volatile organic compounds (VOC) react in the atmosphere in the presence of sunlight. The goal of applying three-dimensional photochemical air quality models is usually to conduct sensitivity analysis: for example, to predict changes in an ozone response due to changes in NO(x) and VOC emissions or other model data. Forward sensitivity analysis methods are best suited to investigating sensitivities of many model responses to changes in a few inputs or parameters. Here we develop a continuous adjoint model and demonstrate an adjoint sensitivity analysis procedure that is well-suited to the complementary case of determining sensitivity of a small number of model responses to many parameters. Sensitivities generated using the adjoint method agree with those generated using other methods. Compared to the forward method, the adjoint method had large disk storage requirements but was more efficient in terms of computer processor time for receptor-based investigations focused on a single response at a specified site and time. The adjoint method also generates sensitivity apportionment fields, which reveal when and where model data are important to the target response. PMID:16683606

  6. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  7. Microstructure Analysis and Multi-Unit Cell Model of Three Dimensionally Four-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Qian, Xiaomei

    2015-02-01

    In this paper, a new multi-unit cell model of three dimensionally braided composites is presented on the basis of the microstructure analysis of 3D braided preforms produced by four-step 1 × 1 method. According to a new unit cell partition scheme, the multi-unit cell model possesses five kinds of unit cells, namely interior, exterior surface, interior surface, exterior corner and interior corner unit cells. Each type of the representative volume cell has unique microstructure and volume fraction in braided composites. On the basis of these five unit cell models, the structural geometry parameters of the preforms are analyzed and the relationship between the structural parameters and the braiding parameters in different regions are derived in detail, such as the braiding angles, fiber volume fraction, yarn packing factor, braiding pitch and so on. Finally, by using the multi-unit cell model, the main structural parameters of braided composites specimens are calculated to validate the effectiveness of the model. The results are in good agreement with the available experimental data. In addition, the effect of braiding angle on the squeezing condition of braiding yarn is analyzed. The variations of the volume proportion of five unit cells to the whole specimen with rows and columns are discussed, respectively. The presented multi-unit cell model can be adopted to design 3D braided composites and predict their mechanical properties.

  8. Loop braiding statistics in exactly soluble three-dimensional lattice models

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hung; Levin, Michael

    2015-07-01

    We construct two exactly soluble lattice spin models that demonstrate the importance of three-loop braiding statistics for the classification of three-dimensional gapped quantum phases. The two models are superficially similar: both are gapped and both support particlelike and looplike excitations similar to those of charges and vortex lines in a Z2×Z2 gauge theory. Furthermore, in both models the particle excitations are bosons, and in both models the particle and loop excitations have the same mutual braiding statistics. The difference between the two models is only apparent when one considers the recently proposed three-loop braiding process in which one loop is braided around another while both are linked to a third loop. We find that the statistical phase associated with this process is different in the two models, thus proving that they belong to two distinct phases. An important feature of this work is that we derive our results using a concrete approach: we construct string and membrane operators that create and move the particle and loop excitations and then we extract the braiding statistics from the commutation algebra of these operators.

  9. A reliable method for evaluating upper molar distalization: Superimposition of three-dimensional digital models

    PubMed Central

    Nalcaci, Ruhi; Bicakci, Ali Altug; Ozturk, Firat; Babacan, Hasan

    2015-01-01

    Objective The aim of this study was to evaluate the reliability of measurements obtained after the superimposition of three-dimensional (3D) digital models by comparing them with those obtained from lateral cephalometric radiographs and photocopies of plaster models for the evaluation of upper molar distalization. Methods Data were collected from plaster models and lateral cephalometric radiographs of 20 Class II patients whose maxillary first molars were distalized with an intraoral distalizer. The posterior movements of the maxillary first molars were evaluated using lateral cephalometric radiographs (group CP), photocopies of plaster models (group PH), and digitized 3D models (group TD). Additionally, distalization and expansion of the other teeth and the degrees of molar rotation were measured in group PH and group TD and compared between the two groups. Results No significant difference was observed regarding the amount of molar distalization among the three groups. A comparison of the aforementioned parameters between group PH and group TD did not reveal any significant difference. Conclusions 3D digital models are reliable to assess the results of upper molar distalization and can be considered a valid alternative to conventional measurement methods. PMID:25798414

  10. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  11. Development of a percentile based three-dimensional model of the buttocks in computer system

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; He, Xueli; Li, Hongpeng

    2016-04-01

    There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.

  12. Development of a percentile based three-dimensional model of the buttocks in computer system

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; He, Xueli; Li, Hongpeng

    2016-05-01

    There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.

  13. Application of a three-dimensional, prognostic model to Mexico City air quality studies

    SciTech Connect

    Williams, M.D.; Porch, W.M.

    1991-01-01

    Los Alamos National Laboratory and Instituto Mexicano del Petroleo have embarked on a joint study of options for improving air quality in Mexico City. One of the first steps in the process is to develop an understanding of the existing air quality situation. In this context we have begun by modifying a three-dimensional, prognostic, higher order turbulence model for atmospheric circulation (HOTMAC) to threat domains which include an urbanized area. This sophisticated meteorological model is required because of the complexity of the terrain and the relative paucity of meteorological data. The basic model (HOTMAC) was modified to include an urban canopy and urban heat sources. HOTMAC has been used to drive a Monte-Carlo kernel dispersion code (RAPTAD). RAPTAD was used to model the flow of carbon monoxide and sulfur dioxide, and the results have been compared to measurements. In addition the modeled wind fields which are based on upper-level winds from the airport are compared to the measured low-level winds. Also, a four year history of temperature structure obtained from the rawinsode at the airport has been related to mixing parameters and less reactive pollutant measurements (such as carbon monoxide). 10 refs., 15 figs.

  14. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    SciTech Connect

    Touqan, Abdul Razzaq

    2008-07-08

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is 'a dynamic punch', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction.

  15. Three-dimensional unstructured-mesh eutrophication model and its application to the Xiangxi River, China.

    PubMed

    Li, Jian; Li, Danxun; Wang, Xingkui

    2012-01-01

    The Xiangxi River is one of the main tributaries in the Three Gorges reservoir, with the shortest distance to the Three Gorges Project Dam. Severe and frequent algal bloom events have occurred frequently in the Xiangxi River in recent years. Therefore, the current study develops a three-dimensional unstructured-mesh model to investigate the dynamic process of algal bloom. The developed model comprises three modules, namely, hydrodynamics, nutrient cycles, and phytoplankton ecological dynamics. A number of factors, including hydrodynamic condition, nutrient concentration, temperature, and light illumination, that would affect the evolution of phytoplankton were considered. Moreover, the wave equation was used to solve the free surface fluctuations and vertical Z-coordinates with adjustable layered thicknesses. These values, in turn, are suitable for solving the algal bloom problems that occurred in the river style reservoir that has a complex boundary and dramatically changing hydrodynamic conditions. The comparisons between the modeling results and field data of years 2007 and 2008 indicate that the developed model is capable of simulating the algal bloom process in the Xiangxi River with reasonable accuracy. However, hydrodynamic force and external pollution loads affect the concentrations of nutrients, which, along with the underwater light intensity, could consequently affect phytoplankton evolution. Thus, flow velocity cannot be ignored in the analysis of river algal bloom. Based on the modeling results, building an impounding reservoir and increasing the releasing discharge at appropriate times are effective ways for controlling algal bloom. PMID:23520863

  16. Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies

    NASA Astrophysics Data System (ADS)

    Wang, Xiping; Guo, Yan; Li, Baoguo; Wang, Xiyong; Ma, Yuntao

    2006-07-01

    Diffuse photosynthetically active radiation (DPAR) is important during overcast days and for plant parts shaded from the direct beam radiation. Simulation of DPAR interception by individual plant parts of a canopy, separately from direct beam photosynthetically active radiation (PAR), may give important insights into plant ecology. This paper presents a model to simulate the interception of DPAR in plant canopies. A sub-model of a virtual maize canopy was reconstructed. Plant surfaces were represented as small triangular facets positioned according to three-dimensionally (3D) digitized data collected in the field. Then a second sub-model to simulate the 3D DPAR distribution in the canopy was developed by dividing the sky hemisphere into a grid of fine cells that allowed for the anisotropic distribution of DPAR over the sky hemisphere. This model, DSHP (Dividing Sky Hemisphere with Projecting), simulates which DSH (Divided Sky Hemisphere) cells are directly visible from a facet in the virtual canopy, i.e. not obscured by other facets. The DPAR reaching the center of a facet was calculated by summing the amounts of DPAR present in every DSH cell. The distribution of DPAR in a canopy was obtained from the calculated DPARs intercepted by all facets in the canopy. This DSHP model was validated against DPAR measurements made in an actual maize ( Zea mays L.) canopy over selected days during the early filling stage. The simulated and measured DPAR at different canopy depths showed a good agreement with a R 2 equaling 0.78 ( n=120).

  17. Three-Dimensional Model for the Crust and Upper Mantle in the Barents Sea Region

    NASA Astrophysics Data System (ADS)

    Bungum, H.; Ritzmann, O.; Maercklin, N.; Faleide, J.-I.; Mooney, W. D.; Detweiler, S. T.

    2005-04-01

    The Barents Sea and its surroundings is an epicontinental region which previously has been difficult to access, partly because of its remote Arctic location (Figure 1) and partly because the region has been politically sensitive. Now, however, this region, and in particular its western parts, has been very well surveyed with a variety of geophysical studies, motivated in part by exploration for hydrocarbon resources. Since this region is interesting geophysically as well as for seismic verification, a major study [Bungum et al., 2004] was initiated in 2003 to develop a three-dimensional (3-D) seismic velocity model for the crust and upper mantle, using a grid density of 50 km. This study, in cooperation between NORSAR, the University of Oslo (UiO), and the United States Geological Survey (USGS), has led to the construction of a higher-resolution, regional lithospheric model based on a comprehensive compilation of available seismological and geophysical data. Following the methodology employed in making the global crustal model CRUST5.1 [Mooney et al., 1998], the new model consists of five crustal layers: soft and hard sediments, and crystalline upper, middle, and lower crust. Both P- and S-wave velocities and densities are specified in each layer. In addition, the density and seismic velocity structure of the uppermost mantle, essential for Pn and Sn travel time modeling, are included.

  18. Computational Study of Effects of Tension Imbalance on Phonation in a Three Dimensional Tubular Larynx Model

    PubMed Central

    Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steve

    2014-01-01

    Summary Objective The current study explores the use of a continuum based computational model to investigate the effect of left right tension imbalance on vocal fold vibrations and glottal aerodynamics, as well as its implication on phonation. The study allows us to gain new insights into the underlying physical mechanism of irregularities induced by vocal fold tension imbalance associated with unilateral cricothyroid muscle paralysis. Method A three dimensional simulation of glottal flow and vocal fold dynamics in a tubular laryngeal model with tension imbalance was conducted by using a coupled flow-structure interaction computational model. Tension imbalance was modeled by reducing by 20% the Young’s modulus of one of the vocal folds, while holding vocal fold length constant. Effects of tension imbalance on vibratory characteristic of the vocal folds and on the time-varying properties of glottal airflow as well as the aerodynamic energy transfer are comprehensively analyzed. Results and Conclusions The analysis demonstrates that the continuum based biomechanical model can provide a good description of phonatory dynamics in tension imbalance conditions. It is found that while 20% tension imbalance does not have noticeable effects on the fundamental frequency, it does lead to a larger glottal flow leakage and asymmetric vibrations of the two vocal folds. A detailed analysis of the energy transfer suggests that the majority of the energy is consumed by the lateral motion of the vocal folds and the net energy transferred to the softer fold is less than the one transferred to the normal fold. PMID:24725589

  19. Use of a three-dimensional humanized liver model for the study of viral gene vectors.

    PubMed

    Wagner, Anke; Röhrs, Viola; Materne, Eva-Maria; Hiller, Thomas; Kedzierski, Radoslaw; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2015-10-20

    Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo. PMID:26356676

  20. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  1. Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque.

    SciTech Connect

    Haines, B. M.; Aranson, I. S.; Berlyand, L.; Karpeev, D. A.

    2012-01-01

    We present a PDE model for dilute suspensions of swimming bacteria in a three-dimensional Stokesian fluid. This model is used to calculate the statistically-stationary bulk deviatoric stress and effective viscosity of the suspension from the microscopic details of the interaction of an elongated body with the background flow. A bacterium is modeled as an impenetrable prolate spheroid with self-propulsion provided by a point force, which appears in the model as an inhomogeneous delta function in the PDE. The bacterium is also subject to a stochastic torque in order to model tumbling (random reorientation). Due to a bacterium's asymmetric shape, interactions with prescribed generic planar background flows, such as a pure straining or planar shear flow, cause the bacterium to preferentially align in certain directions. Due to the stochastic torque, the steady-state distribution of orientations is unique for a given background flow. Under this distribution of orientations, self-propulsion produces a reduction in the effective viscosity. For sufficiently weak background flows, the effect of self-propulsion on the effective viscosity dominates all other contributions, leading to an effective viscosity of the suspension that is lower than the viscosity of the ambient fluid. This is in qualitative agreement with recent experiments on suspensions of Bacillus subtilis.

  2. Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks

    SciTech Connect

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

    2008-07-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

  3. Development and validation of a three-dimensional finite element model of the face.

    PubMed

    Barbarino, G G; Jabareen, M; Trzewik, J; Nkengne, A; Stamatas, G; Mazza, E

    2009-04-01

    A detailed three-dimensional finite element model of the face is presented in this paper. Bones, muscles, skin, fat, and superficial muscoloaponeurotic system were reconstructed from magnetic resonance images and modeled according to anatomical, plastic, and reconstructive surgery literature. The finite element mesh, composed of hexahedron elements, was generated through a semi-automatic procedure with an effective compromise between the detailed representation of anatomical parts and the limitation of the computational time. Nonlinear constitutive equations are implemented in the finite element model. The corresponding model parameters were selected according to previous work with mechanical measurements on soft facial tissue, or based on reasonable assumptions. Model assumptions concerning tissue geometry, interactions, mechanical properties, and the boundary conditions were validated through comparison with experiments. The calculated response of facial tissues to gravity loads, to the application of a pressure inside the oral cavity and to the application of an imposed displacement was shown to be in good agreement with the data from corresponding magnetic resonance images and holographic measurements. As a first application, gravimetric soft tissue descent was calculated from the long time action of gravity on the face in the erect position, with tissue aging leading to a loss of stiffness. Aging predictions are compared with the observations from an "aging database" with frontal photos of volunteers at different age ranges (i.e., 20-40 years and 50-70 years). PMID:19275435

  4. A Downloadable Three-Dimensional Virtual Model of the Visible Ear

    PubMed Central

    Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.

    2008-01-01

    Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433

  5. A Three-Dimensional Multi-Mesh Lattice Boltzmann Model for Multiphysics Simulations

    NASA Astrophysics Data System (ADS)

    Hashemi, Amirreza; Eshraghi, Mohsen; Felicelli, Sergio

    2015-11-01

    The lattice Boltzmann method (LBM) is known as an attractive computational method for modeling fluid flow and, more recently, transport phenomena. As any numerical method, the computational cost of LBM simulations depends on the density of the computational grids. The cost of simulations can become enormous when multiple equations are solved in three dimensions. In this work, the development of a multi-block multi-grid LBM model is discussed for three-dimensional (3D) multiphysics simulations. In a system of multiple coupled equations with different length scales, a multi-block mesh with different grids for each model would enhance the computational efficiency and stability of the model. Embedded-type grids facilitate the transfer of information between lattices while allowing larger time steps. In addition, a non-uniform mesh is considered within each mode that allows mesh refinement within each physical model when required. The multi-mesh method was developed to solve for transport phenomena including fluid flow, mass and heat transfer. The huge memory demands of LBM simulations in 3D was significantly reduced using this scheme. Moreover, by reducing the number of lattice points, cost communication in parallel processing was largely decreased.

  6. A three-dimensional in vitro model to quantify inflammatory response to biomaterials.

    PubMed

    Parks, Abigail C; Sung, Kevin; Wu, Benjamin M

    2014-11-01

    In vivo models are the gold standard for predicting the clinical biomaterial-host response due to the scarcity of in vitro model systems that recapitulate physiological settings. However, the simplicity, control and relatively lower cost of in vitro models make them more appropriate to quantify the contribution by each cell, material and molecule within the healing environment. In this study, human fibroblasts and monocytes are co-cultured in a three-dimensional (3-D) tissue model to study foreign body response by observing morphological changes and monitoring inflammatory cytokine production with multiplex quantitative protein analysis. While control monocultures of either cell type alone produced low levels of cytokines, their interactions in co-culture led to morphological changes and increased release of inflammatory cytokines. When challenged with a well-characterized biopolymer, poly(lactic-co-glycolic acid), the co-cultured human cells secreted elevated levels of IL-1β, IL-6, GM-CSF and TNF-α. This 3-D in vitro co-culture model may serve as a building block towards a versatile platform to study mechanisms of material-host interactions by co-culturing cells with engineered phenotypes and reporter systems, or predict patient-specific biocompatibility by using the individual patients' cells. PMID:25091291

  7. Three dimensional numerical simulation of the April 2000 CME event with a magnetized plasma blob model

    NASA Astrophysics Data System (ADS)

    Shen, Fang

    A three-dimensional time-dependent, numerical magnetohydrodynamic (MHD) model, with the asynchronous and parallel time-marching method is used to investigate the propagation of coronal mass ejections (CMEs) in the nonhomogenous background solar wind flow. The solar wind background with a self-consistent source surface structures as initial-boundary conditions is first presented, from the source surface of 2.5 Rs to the Earth's orbit (215 Rs) and beyond. The CMEs are simulated by means of a very simple flux rope model: a high density and high velocity magnetized plasma blob is superposed on a background steady state solar wind model with an initial velocity and launch direction. The dynamical interaction of a CME with the background solar wind flow between 2.5 and 220 Rs is investigated. We have chosen the well-defined halo-CME event of 4-6 April 2000 as a test case. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, the self-consistent source surface and the simple flux rope model, provides a relatively satisfactory comparison with the ACE spacecraft observations at L1 point.

  8. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    USGS Publications Warehouse

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  9. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike

  10. Three-dimensional Numerical Models of Slab Edges: Implications for Mantle Upwelling and Anomalous Volcanism

    NASA Astrophysics Data System (ADS)

    Jadamec, M.; Moresi, L. N.; Durance-Sie, P. M.; Mclean, K. A.

    2013-05-01

    Adakitic volcanics associated with slab edges have been identified in numerous localities (Defant and Drummond (1990); Yogodzinski et al. (2001); Durance et al. (2012)). However, there is a range in composition as well as hypothesized petrogenetic formation for the samples worldwide designated as adakites (e.g., Yogodzinski and Kelemen (1998); Thorkelson and Breitsprecher (2005); Castillo (2012)). Three-dimensional (3D) models investigating the solid state flow in the mantle due to subduction with a slab edge predict toroidal flow around the slab edge and an associated upward component of flow that may be important for the generation of adakites (Schellart (2004); Piromallo et al. (2006); Jadamec and Billen (2010); Schellart (2010); Jadamec and Billen (2012)). However, the position of the slab edge at depth and associated location of upwelling in the mantle relative to the location of the observed anomalous volcanics on the surface have not been studied in detail. Three-dimensional high-resolution numerical models of subduction are used to investigate slab edge associated mantle upwelling and the potential links to the formation of adakites. The numerical models are geographically referenced to specific subduction zone settings and are constructed with SlabGenerator (Jadamec and Billen, 2010, 2012). The mantle convection code CitcomCU is used to solve for the viscous flow (Moresi and Solomatov, 1995; Moresi and Gurnis, 1996; Zhong, 2006). Specific slab edges settings investigated are the Antilles subduction zone in the eastern Caribbean, the Scotia subduction zone-back arc spreading system, the eastern Alaska subduction-transform system, and the eastern New Hebrides slab edge-back arc spreading system. The models suggest upwelling associated with the return flow around the slab edge can lead to decompression melting located within several hundred kilometers outward of the slab edge, and thus contribute to melting of the slab edge and the formation of adakites. In

  11. A three-dimensional constitutive model for the stress relaxation of articular ligaments.

    PubMed

    Davis, Frances M; De Vita, Raffaella

    2014-06-01

    A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress-stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757-763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67-76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model. PMID:23990018

  12. A three-dimensional model of an underground excavation and comparison with in situ measurements

    NASA Astrophysics Data System (ADS)

    Exadaktylos, G.; Tsouvala, S.; Liolios, P.; Barakos, G.

    2007-03-01

    In this paper we make the first attempt to construct a three-dimensional (3D) distinct element model (DEM) of an underground room with a central pillar in Dionysos marble deposit. This model can be employed in the future by the quarrymen to improve the design of the underground quarry. In order to decrease the effort and time of the simulations, the approach followed here is first to upscale intact rock properties to the size of the pillar considering also secondary joints, and next to model explicitly the major joint sets that transect the marble by virtue of a 3D DEM. The estimation of the effective marble properties is based on the concept of damage as it is defined in damage mechanics theory, the phenomenon of the size effect of strength of intact rocks and the Rock Mass Rating (RMR) classification. Furthermore, a pre-processor has been written in C language for the efficient transfer of the large number of successive excavations around the central pillar to the 3D numerical model. Finally, the validity of this first series of numerical simulations, results and inherent assumptions are checked against in situ stress and deformation measurements inside the underground quarry. Copyright

  13. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies.

    PubMed

    Wang, Hujun; Liu, Jinghua; Zheng, Xu; Rong, Xiaohui; Zheng, Xuwei; Peng, Hongyu; Silber-Li, Zhanghua; Li, Mujun; Liu, Liyu

    2015-01-01

    Percutaneous coronary intervention (PCI), especially coronary stent implantation, has been shown to be an effective treatment for coronary artery disease. However, in-stent restenosis is one of the longstanding unsolvable problems following PCI. Although stents implanted inside narrowed vessels recover normal flux of blood flows, they instantaneously change the wall shear stress (WSS) distribution on the vessel surface. Improper stent implantation positions bring high possibilities of restenosis as it enlarges the low WSS regions and subsequently stimulates more epithelial cell outgrowth on vessel walls. To optimize the stent position for lowering the risk of restenosis, we successfully established a digital three-dimensional (3-D) model based on a real clinical coronary artery and analysed the optimal stenting strategies by computational simulation. Via microfabrication and 3-D printing technology, the digital model was also converted into in vitro microfluidic models with 3-D micro channels. Simultaneously, physicians placed real stents inside them; i.e., they performed "virtual surgeries". The hydrodynamic experimental results showed that the microfluidic models highly inosculated the simulations. Therefore, our study not only demonstrated that the half-cross stenting strategy could maximally reduce restenosis risks but also indicated that 3-D printing combined with clinical image reconstruction is a promising method for future angiocardiopathy research. PMID:26042609

  14. A three-dimensional gravity model of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.; Goldstein, N.E.

    1987-03-01

    Several attempts to define and interpret this anomaly have been made in the past using 2-D and 3-D models. None of the previous interpretations have yielded definitive results, but in fairness, the interpretation here has benefited from a larger gravity data base and more subsurface control than available to previous workers. All published 3-D models simplistically assumed constant density of fill. All 2-D models suffered from the inherent three-dimensionality of the complicated density structure of Long Valley caldera. In addition, previous interpreters have lacked access to geological data, such as well lithologies and density logs, seismic refraction interpretations, suface geology, and structural geology interpretations. The purpose of this study is to use all available gravity data and geological information to constrain a multi-unit, 3-D density model based on the geology of Long Valley caldera and its vicinity. Insights on the geologic structure of the caldera fill can help other geophysical interpretations in determining near-surface effects so that deeper structure may be resolved. With adequate control on the structure of the caldera fill, we are able to examine the gravity data for the presence of deeper density anomalies in the crust. 20 refs., 7 figs.

  15. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    PubMed

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation. PMID:25669871

  16. Three-dimensional model of a selective theophylline-binding RNA molecule

    SciTech Connect

    Tung, Chang-Shung; Oprea, T.I.; Hummer, G.; Garcia, A.E.

    1995-07-01

    We propose a three-dimensional (3D) model for an RNA molecule that selectively binds theophylline but not caffeine. This RNA, which was found using SELEX [Jenison, R.D., et al., Science (1994) 263:1425] is 10,000 times more specific for theophylline (Kd=320 nM) than for caffeine (Kd=3.5 mM), although the two ligands are identical except for a methyl group substituted at N7 (present only in caffeine). The binding affinity for ten xanthine-based ligands was used to derive a Comparative Molecular Field Analysis (CoMFA) model (R{sup 2} = 0.93 for 3 components, with cross-validated R{sup 2} of 0.73), using the SYBYL and GOLPE programs. A pharmacophoric map was generated to locate steric and electrostatic interactions between theophylline and the RNA binding site. This information was used to identify putative functional groups of the binding pocket and to generate distance constraints. Based on a model for the secondary structure (Jenison et al., idem), the 3D structure of this RNA was then generated using the following method: each helical region of the RNA molecule was treated as a rigid body; single-stranded loops with specific end-to-end distances were generated. The structures of RNA-xanthine complexes were studied using a modified Monte Carlo algorithm. The detailed structure of an RNA-ligand complex model, as well as possible explanations for the theophylline selectivity will be discussed.

  17. Three-dimensional kinetic modeling of the near coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Tenishev, Valeriy; Fougere, Nicolas; Bieler, Andre; Combi, Michael R.; Gombosi, Tamas; Hansen, Kenneth; Altwegg, Kathrin; Rubin, Martin

    2014-11-01

    Rosetta is the first mission that escorts a comet along its way through the Solar system for an extended amount of time. As a result, the target of the mission, comet 67P/Churyumov-Gerasimenko, becomes an object of the increased scientific interest. Interpretation of the already obtained observations as well as planning of the new measurements requires detailed modeling of the coma constrained by physical quantities measured by the instruments onboard the spacecraft.The primary difficulties of such modeling are the kinetic nature of the dusty gas flow in the coma as well as the complexity of the nucleus shape as shown by the recent Rosetta images. Here we present the first results of the fully three-dimensional simulation of the near coma of comet 67P/Churyumov-Gerasimenko performed with our Adaptive Mesh Particle Simulator (AMPS) code. The simulation is performed using a realistic nucleus shape model based on Rosetta observations for modeling the coma and calculation of the synthetic images.

  18. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  19. Monte Carlo Three-dimensional Radiative Transfer Modelling of Off Axis Situations

    NASA Astrophysics Data System (ADS)

    Friedeburg, C. V.; Morgner, A.; Wagner, T.; Wenig, M.; Platt, U.

    Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.

  20. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies

    NASA Astrophysics Data System (ADS)

    Wang, Hujun; Liu, Jinghua; Zheng, Xu; Rong, Xiaohui; Zheng, Xuwei; Peng, Hongyu; Silber-Li, Zhanghua; Li, Mujun; Liu, Liyu

    2015-06-01

    Percutaneous coronary intervention (PCI), especially coronary stent implantation, has been shown to be an effective treatment for coronary artery disease. However, in-stent restenosis is one of the longstanding unsolvable problems following PCI. Although stents implanted inside narrowed vessels recover normal flux of blood flows, they instantaneously change the wall shear stress (WSS) distribution on the vessel surface. Improper stent implantation positions bring high possibilities of restenosis as it enlarges the low WSS regions and subsequently stimulates more epithelial cell outgrowth on vessel walls. To optimize the stent position for lowering the risk of restenosis, we successfully established a digital three-dimensional (3-D) model based on a real clinical coronary artery and analysed the optimal stenting strategies by computational simulation. Via microfabrication and 3-D printing technology, the digital model was also converted into in vitro microfluidic models with 3-D micro channels. Simultaneously, physicians placed real stents inside them; i.e., they performed “virtual surgeries”. The hydrodynamic experimental results showed that the microfluidic models highly inosculated the simulations. Therefore, our study not only demonstrated that the half-cross stenting strategy could maximally reduce restenosis risks but also indicated that 3-D printing combined with clinical image reconstruction is a promising method for future angiocardiopathy research.