Science.gov

Sample records for accurate time measurement

  1. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  2. Accurate time-of-flight measurement of particle based on ECL-TTL Timer

    NASA Astrophysics Data System (ADS)

    Li, Deping; Liu, Jianguo; Huang, Shuhua; Gui, Huaqiao; Cheng, Yin; Wang, Jie; Lu, Yihuai

    2014-11-01

    Because of its aerodynamic diameter of the aerosol particles are stranded in different parts of different human respiratory system, thus affecting human health. Therefore, how to continue to effectively monitor the aerosol particles become increasingly concerned about. Use flight time of aerosol particle beam spectroscopy of atmospheric aerosol particle size distribution is the typical method for monitoring atmospheric aerosol particle size and particle concentration measurement , and it is the key point to accurate measurement of aerosol particle size spectra that measurement of aerosol particle flight time. In order to achieve accurate measurements of aerosol particles in time-of-flight, this paper design an ECL-TTL high-speed timer with ECL counter and TTL counter. The high-speed timer includes a clock generation, high-speed timer and the control module. Clock Generation Module using a crystal plus multiplier design ideas, take advantage of the stability of the crystal to provide a stable 500MHz clock signal is high counter. High count module design using ECL and TTL counter mix design, timing accuracy while effectively maintaining , expanding the timing range, and simplifies circuit design . High-speed counter control module controls high-speed counter start, stop and reset timely based on aerosol particles time-of-flight, is a key part of the high-speed counting. The high-speed counting resolution of 4ns, the full scale of 4096ns, has been successfully applied Aerodynamic Particle Sizer, to meet the precise measurement of aerosol particles time-of-flight.

  3. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  4. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  5. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    SciTech Connect

    Atutov, S. N. Plekhanov, A. I.

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  6. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films. PMID:27475589

  7. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  8. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  9. The application of intraoperative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting

    PubMed Central

    Yu, Yang; Zhang, Fan; Gao, Ming-Xin; Li, Hai-Tao; Li, Jing-Xing; Song, Wei; Huang, Xin-Sheng; Gu, Cheng-Xiong

    2013-01-01

    OBJECTIVES Intraoperative transit time flow measurement (TTFM) is widely used to assess anastomotic quality in coronary artery bypass grafting (CABG). However, in sequential vein grafting, the flow characteristics collected by the conventional TTFM method are usually associated with total graft flow and might not accurately indicate the quality of every distal anastomosis in a sequential graft. The purpose of our study was to examine a new TTFM method that could assess the quality of each distal anastomosis in a sequential graft more reliably than the conventional TTFM approach. METHODS Two TTFM methods were tested in 84 patients who underwent sequential saphenous off-pump CABG in Beijing An Zhen Hospital between April and August 2012. In the conventional TTFM method, normal blood flow in the sequential graft was maintained during the measurement, and the flow probe was placed a few centimetres above the anastomosis to be evaluated. In the new method, blood flow in the sequential graft was temporarily reduced during the measurement by placing an atraumatic bulldog clamp at the graft a few centimetres distal to the anastomosis to be evaluated, while the position of the flow probe remained the same as in the conventional method. This new TTFM method was named the flow reduction TTFM. Graft flow parameters measured by both methods were compared. RESULTS Compared with the conventional TTFM, the flow reduction TTFM resulted in significantly lower mean graft blood flow (P < 0.05); in contrast, yielded significantly higher pulsatility index (P < 0.05). Diastolic filling was not significantly different between the two methods and was >50% in both cases. Interestingly, the flow reduction TTFM identified two defective middle distal anastomoses that the conventional TTFM failed to detect. Graft flows near the defective distal anastomoses were improved substantially after revision. CONCLUSIONS In this study, we found that temporary reduction of graft flow during TTFM seemed to

  10. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR.

    PubMed

    Ajaz, Saima; Czajka, Anna; Malik, Afshan

    2015-01-01

    We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481-492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.

  11. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  12. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  13. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  19. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  20. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  1. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  2. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  3. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  4. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators.

    PubMed

    Gyüre, B; Márkus, B G; Bernáth, B; Murányi, F; Simon, F

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation. PMID:26429462

  5. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  6. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  7. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  8. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  9. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  10. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  12. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  13. Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber

    SciTech Connect

    Shi, Wei; Zhang, Lin; Gui, Huaimeng; Hou, Lei; Xu, Ming; Qu, Guanghui

    2013-04-15

    An improved method is proposed to measure the jitter time of the photoconductive semiconductor switches (PCSSs). A one-to-two fiber is utilized to separate and guide the 1053 nm laser beam to trigger two identical 3-mm-gap GaAs PCSSs synchronously. The jitter time is derived from the time lags of two switches turn-on by the error transfer theory. At a bias voltage of 1 kV, the jitter time is measured as 14.41 ps, which is the lowest jitter of GaAs PCSS that has been reported so far.

  14. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  15. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  16. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P. J.; Sutton, A.J.; Harris, A.J.L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Ki??lauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s-1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements. ?? Springer-Verlag 2006.

  17. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  18. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  19. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  20. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  1. Accurate frequency noise measurement of free-running lasers.

    PubMed

    Schiemangk, Max; Spiessberger, Stefan; Wicht, Andreas; Erbert, Götz; Tränkle, Günther; Peters, Achim

    2014-10-20

    We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.

  2. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  3. A time-accurate multiple-grid algorithm

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1985-01-01

    A time-accurate multiple-grid algorithm is described. The algorithm allows one to take much larger time steps with an explicit time-marching scheme than would otherwise be the case. Sample calculations of a scalar advection equation and the Euler equations for an oscillating airfoil are shown. For the oscillating airfoil, time steps an order of magnitude larger than the single-grid algorithm are possible.

  4. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  5. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  6. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  7. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  8. New simple method for fast and accurate measurement of volumes

    NASA Astrophysics Data System (ADS)

    Frattolillo, Antonio

    2006-04-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  9. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  10. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  11. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  12. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  13. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  14. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  15. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  16. Toward more accurate loss tangent measurements in reentrant cavities

    SciTech Connect

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  17. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  18. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    NASA Astrophysics Data System (ADS)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  19. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  20. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  1. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  2. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  3. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  4. A method for accurate temperature measurement using infrared thermal camera.

    PubMed

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  5. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  6. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  7. Approaches for the accurate definition of geological time boundaries

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  8. Precise and accurate isotopic measurements using multiple-collector ICPMS

    NASA Astrophysics Data System (ADS)

    Albarède, F.; Telouk, Philippe; Blichert-Toft, Janne; Boyet, Maud; Agranier, Arnaud; Nelson, Bruce

    2004-06-01

    New techniques of isotopic measurements by a new generation of mass spectrometers equipped with an inductively-coupled-plasma source, a magnetic mass filter, and multiple collection (MC-ICPMS) are quickly developing. These techniques are valuable because of (1) the ability of ICP sources to ionize virtually every element in the periodic table, and (2) the large sample throughout. However, because of the complex trajectories of multiple ion beams produced in the plasma source whether from the same or different elements, the acquisition of precise and accurate isotopic data with this type of instrument still requires a good understanding of instrumental fractionation processes, both mass-dependent and mass-independent. Although physical processes responsible for the instrumental mass bias are still to be understood more fully, we here present a theoretical framework that allows for most of the analytical limitations to high precision and accuracy to be overcome. After a presentation of unifying phenomenological theory for mass-dependent fractionation in mass spectrometers, we show how this theory accounts for the techniques of standard bracketing and of isotopic normalization by a ratio of either the same or a different element, such as the use of Tl to correct mass bias on Pb. Accuracy is discussed with reference to the concept of cup efficiencies. Although these can be simply calibrated by analyzing standards, we derive a straightforward, very general method to calculate accurate isotopic ratios from dynamic measurements. In this study, we successfully applied the dynamic method to Nd and Pb as examples. We confirm that the assumption of identical mass bias for neighboring elements (notably Pb and Tl, and Yb and Lu) is both unnecessary and incorrect. We further discuss the dangers of straightforward standard-sample bracketing when chemical purification of the element to be analyzed is imperfect. Pooling runs to improve precision is acceptable provided the pooled

  9. Accurate and Timely Forecasting of CME-Driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.; Skov, T. M.

    2015-12-01

    Wide-spread and severe geomagnetic storms are primarily caused by theejecta of coronal mass ejections (CMEs) that impose long durations ofstrong southward interplanetary magnetic field (IMF) on themagnetosphere, the duration and magnitude of the southward IMF (Bs)being the main determinants of geoeffectiveness. Another importantquantity to forecast is the arrival time of the expected geoeffectiveCME ejecta. In order to accurately forecast these quantities in atimely manner (say, 24--48 hours of advance warning time), it isnecessary to calculate the evolving CME ejecta---its structure andmagnetic field vector in three dimensions---using remote sensing solardata alone. We discuss a method based on the validated erupting fluxrope (EFR) model of CME dynamics. It has been shown using STEREO datathat the model can calculate the correct size, magnetic field, and theplasma parameters of a CME ejecta detected at 1 AU, using the observedCME position-time data alone as input (Kunkel and Chen 2010). Onedisparity is in the arrival time, which is attributed to thesimplified geometry of circular toroidal axis of the CME flux rope.Accordingly, the model has been extended to self-consistently includethe transverse expansion of the flux rope (Kunkel 2012; Kunkel andChen 2015). We show that the extended formulation provides a betterprediction of arrival time even if the CME apex does not propagatedirectly toward the earth. We apply the new method to a number of CMEevents and compare predicted flux ropes at 1 AU to the observed ejectastructures inferred from in situ magnetic and plasma data. The EFRmodel also predicts the asymptotic ambient solar wind speed (Vsw) foreach event, which has not been validated yet. The predicted Vswvalues are tested using the ENLIL model. We discuss the minimum andsufficient required input data for an operational forecasting systemfor predicting the drivers of large geomagnetic storms.Kunkel, V., and Chen, J., ApJ Lett, 715, L80, 2010. Kunkel, V., Ph

  10. Dead time, pileup, and accurate gamma-ray spectrometry

    SciTech Connect

    Lindstrom, R.M.; Fleming, R.F.

    1995-12-31

    The accuracy of gamma-ray spectrometric measurements is ultimately limited by the precision of Poisson counting statistics. With careful attention to detail, all other sources of error in the ratio of activities of two sources of a radionuclide in small samples can be made insignificant, even when the statistical limit is well below one percent. An important source of error comes from the finite time required by the counting electronics to detect and process pulses. Dead-time losses (mostly in the analog-digital converter) are usually compensated very well by the pulse-height analyzer, but pileup losses (mostly in the amplifier) may not be. Errors of 10% or more may easily result. Several methods are available for detecting and correcting rate-related losses. These methods are sufficiently reliable and well understood that a decaying source can be measured with acceptably small errors even at count rates as high as tens of thousands per second.

  11. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  12. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  13. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  14. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  15. Influence of accurate and inaccurate 'split-time' feedback upon 10-mile time trial cycling performance.

    PubMed

    Wilson, Mathew G; Lane, Andy M; Beedie, Chris J; Farooq, Abdulaziz

    2012-01-01

    The objective of the study is to examine the impact of accurate and inaccurate 'split-time' feedback upon a 10-mile time trial (TT) performance and to quantify power output into a practically meaningful unit of variation. Seven well-trained cyclists completed four randomised bouts of a 10-mile TT on a SRM™ cycle ergometer. TTs were performed with (1) accurate performance feedback, (2) without performance feedback, (3) and (4) false negative and false positive 'split-time' feedback showing performance 5% slower or 5% faster than actual performance. There were no significant differences in completion time, average power output, heart rate or blood lactate between the four feedback conditions. There were significantly lower (p < 0.001) average [Formula: see text] (ml min(-1)) and [Formula: see text] (l min(-1)) scores in the false positive (3,485 ± 596; 119 ± 33) and accurate (3,471 ± 513; 117 ± 22) feedback conditions compared to the false negative (3,753 ± 410; 127 ± 27) and blind (3,772 ± 378; 124 ± 21) feedback conditions. Cyclists spent a greater amount of time in a '20 watt zone' 10 W either side of average power in the negative feedback condition (fastest) than the accurate feedback (slowest) condition (39.3 vs. 32.2%, p < 0.05). There were no significant differences in the 10-mile TT performance time between accurate and inaccurate feedback conditions, despite significantly lower average [Formula: see text] and [Formula: see text] scores in the false positive and accurate feedback conditions. Additionally, cycling with a small variation in power output (10 W either side of average power) produced the fastest TT. Further psycho-physiological research should examine the mechanism(s) why lower [Formula: see text] and [Formula: see text] scores are observed when cycling in a false positive or accurate feedback condition compared to a false negative or blind feedback condition.

  16. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  17. Accurate measurement of liquid transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-04-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

  18. Accurate measurement of liquid transport through nanoscale conduits.

    PubMed

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  19. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  20. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  1. Accurate MTF measurement in digital radiography using noise response

    PubMed Central

    Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel R.; Hoffmann, Kenneth R.; Rudin, Stephen

    2010-01-01

    an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. Conclusions: Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge. PMID:20229882

  2. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  3. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  4. An accurate and simple method for measurement of paw edema.

    PubMed

    Fereidoni, M; Ahmadiani, A; Semnanian, S; Javan, M

    2000-01-01

    Several methods for measuring inflammation are available that rely on the parameters changing during inflammation. The most commonly used methods estimate the volume of edema formed. In this study, we present a novel method for measuring the volume of pathologically or artificially induced edema. In this model, a liquid column is placed on a balance. When an object is immersed, the liquid applies a force F to attempt its expulsion. Physically, F is the weight (W) of the volume of liquid displaced by that part of the object inserted into the liquid. A balance is used to measure this force (F=W).Therefore, the partial or entire volume of any object, for example, the inflamed hind paw of a rat, can be calculated thus, using the specific gravity of the immersion liquid, at equilibrium mass/specific gravity=volume (V). The extent of edema at time t (measured as V) will be V(t)-V(o). This method is easy to use, materials are of low cost and readily available. It is important that the rat paw (or any object whose volume is being measured) is kept from contacting the wall of the column containing the fluid whilst the value on the balance is read.

  5. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  6. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  7. Improvements in Accurate GPS Positioning Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    Although the Global Positioning System (GPS) is used widely in car navigation systems, cell phones, surveying, and other areas, several issues still exist. We focus on the continuous data received in public use of GPS, and propose a new positioning algorithm that uses time series analysis. By fitting an autoregressive model to the time series model of the pseudorange, we propose an appropriate state-space model. We apply the Kalman filter to the state-space model and use the pseudorange estimated by the filter in our positioning calculations. The results of the authors' positioning experiment show that the accuracy of the proposed method is much better than that of the standard method. In addition, as we can obtain valid values estimated by time series analysis using the state-space model, the proposed state-space model can be applied to several other fields.

  8. Time-accurate Navier-Stokes calculations with multigrid acceleration

    NASA Technical Reports Server (NTRS)

    Melson, N. D.; Sanetrik, Mark D.; Atkins, Harold L.

    1993-01-01

    An efficient method for calculating unsteady flows is presented, with emphasis on a modified version of the thin-layer Navier-Stokes equations. Fourier stability analysis is used to illustrate the effect of treating the source term implicitly instead of explicity, as well as to illustrate other algorithmic choices. A 2D circular cylinder (with a Reynolds number of 1200 and a Mach number of 0.3) is calculated. The present scheme requires only about 10 percent of the computer time required by global minimum time stepping.

  9. A fast, time-accurate unsteady full potential scheme

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.; Osher, S.

    1985-01-01

    The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.

  10. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  11. Mobil unit provides fast and accurate Btu measurements

    SciTech Connect

    Lansing, J. )

    1991-05-01

    Southern California Gas Co. (SoCalGas) provides service to more than four million customers in a 23,000-plus square mile area. Some 95% of these customers fall under the residential category and the remaining customers are industrial and commercial. To ensure Btu value received from the supplier and delivered to the user is accounted for properly, SoCalGas has divided its service area into 47 districts according to the gas Btu content. The company obtains the information by collecting approximately 200 sample cylinders each week from field monitoring points and transporting them to one of four laboratories for analysis. For collecting the information from each lab site, SoCalGas uses a computerized Gas Quality Measurement System (GQMS) that utilizes a Hewlett-Packard 1000 computer. Information on all the gas sample analysis is transmitted each day to the company's measurement office. About two- thirds of the lab work is performed in Los Angeles and the remaining at three satellite laboratories. Sample points are strategically located to monitor gas entering each district. By measuring gas volumes at these key points, a volume- weighted average can be determined and the customers' monthly bills then can be adjusted for gas energy content by this volume-weighted four-week average. The engineering department uses sample-cylinder analysis data to establish and maintain correct Btu boundaries. However, the time it takes for this information to be processed makes it difficult for engineering to process the data.

  12. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  13. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  14. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    SciTech Connect

    Michael Gallis, Steve Plimpton

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners, and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.

  15. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners,more » and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.« less

  16. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    PubMed

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  17. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  18. Evaluating the capability of time-of-flight cameras for accurately imaging a cyclically loaded beam

    NASA Astrophysics Data System (ADS)

    Lahamy, Hervé; Lichti, Derek; El-Badry, Mamdouh; Qi, Xiaojuan; Detchev, Ivan; Steward, Jeremy; Moravvej, Mohammad

    2015-05-01

    Time-of-flight cameras are used for diverse applications ranging from human-machine interfaces and gaming to robotics and earth topography. This paper aims at evaluating the capability of the Mesa Imaging SR4000 and the Microsoft Kinect 2.0 time-of-flight cameras for accurately imaging the top surface of a concrete beam subjected to fatigue loading in laboratory conditions. Whereas previous work has demonstrated the success of such sensors for measuring the response at point locations, the aim here is to measure the entire beam surface in support of the overall objective of evaluating the effectiveness of concrete beam reinforcement with steel fibre reinforced polymer sheets. After applying corrections for lens distortions to the data and differencing images over time to remove systematic errors due to internal scattering, the periodic deflections experienced by the beam have been estimated for the entire top surface of the beam and at witness plates attached. The results have been assessed by comparison with measurements from highly-accurate laser displacement transducers. This study concludes that both the Microsoft Kinect 2.0 and the Mesa Imaging SR4000s are capable of sensing a moving surface with sub-millimeter accuracy once the image distortions have been modeled and removed.

  19. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  20. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  1. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  2. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  3. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  4. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  5. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    PubMed Central

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system. PMID:26543243

  6. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  7. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  8. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137

  9. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation.

  10. Measuring Fisher information accurately in correlated neural populations.

    PubMed

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Kohn, Adam; Pouget, Alexandre

    2015-06-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.

  11. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  12. Using Moon Phases to Measure Time

    ERIC Educational Resources Information Center

    Sharp, Janet; Lutz, Tracie; LaLonde, Donna E.

    2015-01-01

    Cultures need to accurately record dates and times for various societal purposes, ranging from knowing when to plant crops to planning travel. In ancient times, the sun and moon were used as measurement devices because of the scientific understanding of the physical world at that time. Ancient timekeepers monitored celestial events and either used…

  13. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  14. Inflation model building with an accurate measure of e -folding

    NASA Astrophysics Data System (ADS)

    Chongchitnan, Sirichai

    2016-08-01

    It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation, despite the well-known fact that this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to show how this approximation can be completely avoided using an alternative framework for inflation model building. We show that using the inverse Hubble radius, H =a H , as the key dynamical parameter, the correct number of e -folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  15. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  16. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  17. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  18. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  19. Accurate measurement of intestinal transit in the rat

    SciTech Connect

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  20. Accurate blood flow measurements: are artificial tracers necessary?

    PubMed

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  1. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  2. An approach for the accurate measurement of social morality levels.

    PubMed

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  3. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  4. Accurate Determination of Torsion and Pure Bending Moment for Viscoelastic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Ko, Chih-Chin; Shiau, Li-Ming

    Measurements of time-dependent material properties in the context of linear viscoelasticity, at a given frequency and temperature, require accurate determination of both loading and deformation that are subjected to the testing materials. A pendulum-type viscoelastic spectroscopy is developed to experimentally measure loss tangent and the magnitude of dynamic modulus of solid materials. The mechanical system of the device is based on the behavior of the cantilever beam, and torsion and pure bending moment are generated from the interaction between a permanent magnet and the Helmholtz coils. The strength of the magnetic interactions may be determined with a material with known mechanical properties, such as aluminum 6061T4 alloy. The sensitivity of the torque measurement is on the order of one micro N-m level. With the high accurate torque measurement and deformation detection from a laser-based displacement measurement system, viscoelastic properties of materials can be experimentally measured in different frequency regimes. Sinusoidal driving signals are adopted for measuring complex modulus in the sub-resonant regime, and dc bias driving for creep tests in the low frequency limit. At structural resonant frequencies, the full-width-at-half-maximum (FWHM) method or Lorentzian curve fitting method is adopted to extract material properties. The completion of determining material properties in the wide frequency spectrum may help to identify the deformation mechanisms of the material and to create better models for simulation work.

  5. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1). PMID:27285052

  6. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  7. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  8. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  9. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  10. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

    2001-01-01

    A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

  11. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  12. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

    2002-01-01

    Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

  13. [Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy].

    PubMed

    Wang, Dan; Hu, Ren-Zhi; Xie, Pin-Hua; Qin, Min; Ling, Liu-Yi; Duan, Jun

    2014-10-01

    Research is conducted to accurate and efficient algorithms for extracting ring-down time (r) in cavity ring-down spectroscopy (CRDS) which is used to measure NO3 radical in the atmosphere. Fast and accurate extraction of ring-down time guarantees more precise and higher speed of measurement. In this research, five kinds of commonly used algorithms are selected to extract ring-down time which respectively are fast Fourier transform (FFT) algorithm, discrete Fourier transform (DFT) algorithm, linear regression of the sum (LRS) algorithm, Levenberg-Marquardt (LM) algorithm and least squares (LS) algorithm. Simulated ring-down signals with various amplitude levels of white noises are fitted by using five kinds of the above-mentioned algorithms, and comparison and analysis is conducted to the fitting results of five kinds of algorithms from four respects: the vulnerability to noises, the accuracy and precision of the fitting, the speed of the fitting and preferable fitting ring-down signal waveform length The research results show that Levenberg-Marquardt algorithm and linear regression of the sum algorithm are able to provide more precise results and prove to have higher noises immunity, and by comparison, the fitting speed of Leven- berg-Marquardt algorithm turns out to be slower. In addition, by analysis of simulated ring-down signals, five to ten times of ring-down time is selected to be the best fitting waveform length because in this case, standard deviation of fitting results of five kinds of algorithms proves to be the minimum. External modulation diode laser and cavity which consists of two high reflectivity mirrors are used to construct a cavity ring-down spectroscopy detection system. According to our experimental conditions, in which the noise level is 0.2%, linear regression of the sum algorithm and Levenberg-Marquardt algorithm are selected to process experimental data. The experimental results show that the accuracy and precision of linear regression of

  14. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  15. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  16. Disambiguating past events: Accurate source memory for time and context depends on different retrieval processes.

    PubMed

    Persson, Bjorn M; Ainge, James A; O'Connor, Akira R

    2016-07-01

    Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. PMID:27174312

  17. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  18. Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.

    1993-01-01

    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.

  19. Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1988-01-01

    A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.

  20. A New Test Rig for Accurate Nonparametric Measurement and Characterization of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Montecucco, Andrea; Buckle, James; Siviter, Jonathan; Knox, Andrew R.

    2013-07-01

    Thermoelectric generators (TEGs) are increasingly employed in large-scale applications, therefore accurate performance data are necessary to permit precise designs and simulations. However, there is still no standardized method to test the electrical and thermal performance of TEGs. This paper presents an innovative test system to assess device performance in the "real world." The fixture allows the hot temperature to be increased up to 800°C with minimal thermal losses and thermal shock; the clamping load can be adjusted up to 5 kN, and the temperatures are sensed by thermocouples placed directly on the TEG's surfaces. A computer program controls all the instruments in order to minimize errors and to aid accurate measurement and test repeatability. The test rig can measure four TEGs simultaneously, each one individually controlled and heated by a maximum electrical power of 2 kW. This allows testing of the effects of series and parallel connection of TEGs under mismatched conditions, e.g., dimensions, clamping force, temperature, etc. The test rig can be employed both as a performance evaluator and as a quality control unit, due to the ability to provide nonparametric testing of four TEGs concurrently. It can also be used to rapidly characterize devices of different dimensions at the same time.

  1. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  2. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual.

    SciTech Connect

    Jones, Perry L.; Zayas, Jose R.; Ortiz-Moyet, Juan

    2004-02-01

    The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

  3. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  4. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  5. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  6. Easy and accurate calculation of programmed temperature gas chromatographic retention times by back-calculation of temperature and hold-up time profiles.

    PubMed

    Boswell, Paul G; Carr, Peter W; Cohen, Jerry D; Hegeman, Adrian D

    2012-11-01

    Linear retention indices are commonly used to identify compounds in programmed-temperature gas chromatography (GC), but they are unreliable unless the original experimental conditions used to measure them are stringently reproduced. However, differences in many experimental conditions may be properly taken into account by calculating programmed-temperature retention times of compounds from their measured isothermal retention vs. temperature relationships. We call this approach "retention projection". Until now, retention projection has been impractical because it required very precise, meticulous measurement of the temperature vs. time and hold-up time vs. temperature profiles actually produced by a specific GC instrument to be accurate. Here we present a new, easy-to-use methodology to precisely measure those profiles: we spike a sample with 25 n-alkanes and use their measured, programmed-temperature retention times to precisely back-calculate what the instrument profiles must have been. Then, when we use those back-calculated profiles to project retention times of 63 chemically diverse compounds, we found that the projections are extremely accurate (e.g. to ±0.9 s in a 40 min ramp). They remained accurate with different temperature programs, GC instruments, inlet pressures, flow rates, and with columns taken from different batches of stationary phase while the accuracy of retention indices became worse the more the experimental conditions were changed from the original ones used to measure them. We also developed new, open-source software (http://www.retentionprediction.org/gc) to demonstrate the system.

  7. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; He, Shenglai; Russakoff, Arthur; Varga, Kálmán

    2016-08-01

    An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS) equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta-based propagation of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-order Taylor propagation and predictor-corrector methods. The calculations show several computational and numerical advantages, including higher computational performance, greater stability, better accuracy, and faster convergence.

  8. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations.

    PubMed

    Li, Yonghui; He, Shenglai; Russakoff, Arthur; Varga, Kálmán

    2016-08-01

    An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS) equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta-based propagation of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-order Taylor propagation and predictor-corrector methods. The calculations show several computational and numerical advantages, including higher computational performance, greater stability, better accuracy, and faster convergence. PMID:27627419

  9. Highly accurate SNR measurement using the covariance of two SEM images with the identical view.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2012-01-01

    Quality of an SEM image is strongly influenced by the extent of noise. As a well-known method in the field of SEM, the covariance is applied to measure the signal-to-noise ratio (SNR). This method has potential ability for highly accurate measurement of the SNR, which is hardly known until now. If the precautions discussed in this article are adopted, that method can demonstrate its real ability. These precautions are strongly related to "proper acquisition of two images with the identical view," "alignment of an aperture diaphragm," "reduction of charging phenomena," "elimination of particular noises," and "accurate focusing," As necessary, characteristics in SEM signal and noise are investigated from a few standpoints. When using the maximum performance of this measurement, SNR of many SEM images obtained in a variety of the SEM operating conditions and specimens can be measured accurately.

  10. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  11. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  12. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  13. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  14. Time-Accurate Computational Fluid Dynamics Simulation of a Pair of Moving Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Williams, Brandon R.

    2011-01-01

    Since the Columbia accident, the threat to the Shuttle launch vehicle from debris during the liftoff timeframe has been assessed by the Liftoff Debris Team at NASA/MSFC. In addition to engineering methods of analysis, CFD-generated flow fields during the liftoff timeframe have been used in conjunction with 3-DOF debris transport methods to predict the motion of liftoff debris. Early models made use of a quasi-steady flow field approximation with the vehicle positioned at a fixed location relative to the ground; however, a moving overset mesh capability has recently been developed for the Loci/CHEM CFD software which enables higher-fidelity simulation of the Shuttle transient plume startup and liftoff environment. The present work details the simulation of the launch pad and mobile launch platform (MLP) with truncated solid rocket boosters (SRBs) moving in a prescribed liftoff trajectory derived from Shuttle flight measurements. Using Loci/CHEM, time-accurate RANS and hybrid RANS/LES simulations were performed for the timeframe T0+0 to T0+3.5 seconds, which consists of SRB startup to a vehicle altitude of approximately 90 feet above the MLP. Analysis of the transient flowfield focuses on the evolution of the SRB plumes in the MLP plume holes and the flame trench, impingement on the flame deflector, and especially impingment on the MLP deck resulting in upward flow which is a transport mechanism for debris. The results show excellent qualitative agreement with the visual record from past Shuttle flights, and comparisons to pressure measurements in the flame trench and on the MLP provide confidence in these simulation capabilities.

  15. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  16. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  17. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  18. Measures of time in astronomy.

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.

    1972-01-01

    Astronomically-important measures of time are discussed with their definitions, their intended purposes, and areas of viability or obsolescence. Several different kinds of year are defined. Earth rotation time is described in terms of sidereal and solar time and in terms of universal time (UT) for which four different levels are defined corresponding to different approximations of 'uniform' time. The formal definition of ephemeris time, consisting of a defined rate and epoch, is discussed and some unorthodox criticisms are presented. Uses of broadcast time are noted. In the discussion of what measure of time should be used in astronomical applications, it is stated that, at present, all dynamical applications should use a measure of time based on atomic clock time.

  19. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  20. Is the Posner Reaction Time Test More Accurate Than Clinical Tests in Detecting Left Neglect in Acute and Chronic Stroke?

    PubMed Central

    Rengachary, Jennifer; d'Avossa, Giovanni; Sapir, Ayelet; Shulman, Gordon L.; Corbetta, Maurizio

    2013-01-01

    Objective To compare the accuracy of common clinical tests for left neglect with that of a computerized reaction time Posner test in a stroke population. Design Neglect measures were collected longitudinally in stroke patients at the acute (≈2wk) and chronic (≈9mo) stage. Identical measures were collected in a healthy control group. Setting Inpatient and outpatient rehabilitation. Participants Acute stroke patients (n=59) with left neglect, 30 of whom were tested longitudinally; healthy age-matched controls (n=30). Interventions Not applicable. Main Outcome Measures A receiver operating characteristic analysis, ranking the measures' sensitivity and specificity using a single summary statistic. Results Most clinical tests were adequately accurate at the acute stage, but many were near chance at the chronic stage. The Posner test was the most sensitive test at both stages, the most sensitive variable being the reaction time difference for detecting targets appearing on the left compared to the right side. Conclusions Computerized reaction time tests can be used to screen for subtle but potentially clinically relevant left neglect, which may not be detectable by conventional clinical tests, especially at the chronic stage. Such tests may be useful to assess the severity of the patients' deficits and provide more accurate measures of the degree of recovery in clinical trials than established clinical measures. PMID:19969172

  1. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  2. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  3. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Liu, Nan-Suey

    1993-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  4. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  5. The quantum measurement of time

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1994-01-01

    Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.

  6. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  7. Toward Accurate Measurement of Participation: Rethinking the Conceptualization and Operationalization of Participatory Evaluation

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve

    2009-01-01

    While participatory evaluation (PE) constitutes an important trend in the field of evaluation, its ontology has not been systematically analyzed. As a result, the concept of PE is ambiguous and inadequately theorized. Furthermore, no existing instrument accurately measures stakeholder participation. First, this article attempts to overcome these…

  8. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    SciTech Connect

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-08-15

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput quantitative LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. In addition, we also report on the optimization of a reversed-phase LC method for the separation of lipids in these sample types.

  9. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  10. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  11. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection. PMID:27283884

  12. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.

  13. Accurate quantification of two key time points used in the determination of hydroxyl polyaluminum species by ferron timed spectrophotometry.

    PubMed

    Zhang, Jing; Yong, Xiaojing; Zhao, Dongyan; Shi, Qiuyi

    2015-01-01

    The content of mononuclear Al (Ala%) changed with its determination time (ta) under different dosages of Ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid, [Ferron]), and the change of Ala% with [Ferron] at different ta was systematically investigated for the first time. Thus, the most appropriate ta was found with the optimal [Ferron]. Also, the judgment of the platform (flat or level portion) of the complete reaction on the absorption-time curve determined in the hydroxyl polyaluminum solution by Ferron timed spectrophotometry (Ferron assay) was first digitized. The time point (tb) of complete reaction between the medium polyaluminum (Alb) and Ferron reagent depended on the reaction extent, and time could not be used only to judge. Thus, the tb was accurately determined and reduced to half of original, which improved the experiment efficiency significantly. The Ferron assay was completely optimized.

  14. Time accurate application of the MacCormack 2-4 scheme on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Hudson, Dale A.; Long, Lyle N.

    1995-01-01

    Many recent computational efforts in turbulence and acoustics research have used higher order numerical algorithms. One popular method has been the explicit MacCormack 2-4 scheme. The MacCormack 2-4 scheme is second order accurate in time and fourth order accurate in space, and is stable for CFL's below 2/3. Current research has shown that the method can give accurate results but does exhibit significant Gibbs phenomena at sharp discontinuities. The impact of adding Jameson type second, third, and fourth order artificial viscosity was examined here. Category 2 problems, the nonlinear traveling wave and the Riemann problem, were computed using a CFL number of 0.25. This research has found that dispersion errors can be significantly reduced or nearly eliminated by using a combination of second and third order terms in the damping. Use of second and fourth order terms reduced the magnitude of dispersion errors but not as effectively as the second and third order combination. The program was coded using Thinking Machine's CM Fortran, a variant of Fortran 90/High Performance Fortran, and was executed on a 2K CM-200. Simple extrapolation boundary conditions were used for both problems.

  15. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  16. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  17. Radiometer for accurate (+ or - 1%) measurement of solar irradiance equal to 10,000 solar constants

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1981-01-01

    The 10,000 solar constant radiometer was developed for the accurate (+ or - 1%) measurement of the irradiance produced in the image formed by a parabolic reflector or by a multiple mirror solar installation. This radiometer is water cooled, weighs about 1 kg, and is 5 cm (2 in.) in diameter by 10 cm (4 in.) long. A sting is provided for mounting the radiometer in the solar installation capable of measuring irradiances as high as 20,000 solar constants, the instrument is self calibrating. Its accuracy depends on the accurate determination of the cavity aperture, and absorptivity of the cavity, and accurate electrical measurements. The spectral response is flat over the entire spectrum from far UV to far IR. The radiometer responds to a measurement within 99.7% of the final value within 8 s. During a measurement of the 10,000 solar constant irradiance, the temperature rise of the water is about 20 C. The radiometer has perfect cosine response up to 60 deg off the radiometer axis.

  18. Nonlinear Aeroelastic Analysis Using a Time-Accurate Navier-Stokes Equations Solver

    NASA Technical Reports Server (NTRS)

    Kuruvila, Geojoe; Bartels, Robert E.; Hong, Moeljo S.; Bhatia, G.

    2007-01-01

    A method to simulate limit cycle oscillation (LCO) due to control surface freeplay using a modified CFL3D, a time-accurate Navier-Stokes computational fluid dynamics (CFD) analysis code with structural modeling capability, is presented. This approach can be used to analyze aeroelastic response of aircraft with structural behavior characterized by nonlinearity in the force verses displacement curve. A limited validation of the method, using very low Mach number experimental data for a three-degrees-of-freedom (pitch/plunge/flap deflection) airfoil model with flap freeplay, is also presented.

  19. Generation of accurate integral surfaces in time-dependent vector fields.

    PubMed

    Garth, Christoph; Krishnan, Han; Tricoche, Xavier; Bobach, Tom; Joy, Kenneth I

    2008-01-01

    We present a novel approach for the direct computation of integral surfaces in time-dependent vector fields. As opposed to previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages: surface approximation and generation of a graphical representation. This allows us to overcome several limitations of existing techniques. We first describe an algorithm for surface integration that approximates a series of time lines using iterative refinement and computes a skeleton of the integral surface. In a second step, we generate a well-conditioned triangulation. Our approach allows a highly accurate treatment of very large time-varying vector fields in an efficient, streaming fashion. We examine the properties of the presented methods on several example datasets and perform a numerical study of its correctness and accuracy. Finally, we investigate some visualization aspects of integral surfaces. PMID:18988990

  20. Practical do-it-yourself device for accurate volume measurement of breast.

    PubMed

    Tezel, E; Numanoğlu, A

    2000-03-01

    A simple and accurate method of measuring differences in breast volume based on Archimedes' principle is described. In this method, a plastic container is placed on the breast of the patient who is lying in supine position. While the breast occupies part of the container, the remaining part is filled with water and the volume is measured. This method allows the measurement of the volume differences of asymmetric breasts and also helps the surgeon to estimate the size of the prosthesis to be used in augmentation mammaplasty. PMID:10724264

  1. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  2. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  3. Time delay measurement in the frequency domain

    SciTech Connect

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.

  4. Time delay measurement in the frequency domain

    DOE PAGES

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  5. Time delay measurement in the frequency domain

    PubMed Central

    Durbin, Stephen M.; Liu, Shih-Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-01-01

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (∼100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ∼1 ps. Improved precision is possible by simply extending the data acquisition time. PMID:26289282

  6. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  7. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  8. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  9. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  10. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  11. A time-accurate implicit method for chemically reacting flows at all Mach numbers

    NASA Technical Reports Server (NTRS)

    Withington, J. P.; Yang, V.; Shuen, J. S.

    1991-01-01

    The objective of this work is to develop a unified solution algorithm capable of treating time-accurate chemically reacting flows at all Mach numbers, ranging from molecular diffusion velocities to supersonic speeds. A rescaled pressure term is used in the momentum equation to circumvent the singular behavior of pressure at low Mach numbers. A dual time-stepping integration procedure is established. The system eigenvalues become well behaved and have the same order of magnitude, even in the very low Mach number regime. The computational efficiency for moderate and high speed flow is competitive with the conventional density-based scheme. The capabilities of the algorithm are demonstrated by applying it to selected model problems including nozzle flows and flame dynamics.

  12. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  13. In-band asymmetry compensation for accurate time/phase transport over optical transport network.

    PubMed

    Siu, Sammy; Tseng, Wen-Hung; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain.

  14. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  15. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  16. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  17. Rec-DCM-Eigen: Reconstructing a Less Parsimonious but More Accurate Tree in Shorter Time

    PubMed Central

    Kang, Seunghwa; Tang, Jijun; Schaeffer, Stephen W.; Bader, David A.

    2011-01-01

    Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA . COGNAC clearly outperforms FastME in accuracy. COGNAC –using the new DCM–also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3. PMID:21887219

  18. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.

    PubMed

    Kang, Seunghwa; Tang, Jijun; Schaeffer, Stephen W; Bader, David A

    2011-01-01

    Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.

  19. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy.

    PubMed

    Bernard, Simon; Grimal, Quentin; Laugier, Pascal

    2013-02-01

    Resonant ultrasound spectroscopy (RUS) allows to accurately characterize the complete set of elastic constants of an anisotropic material from a set of measured mechanical resonant frequencies of a specimen. This method does not suffer from the drawbacks and limitations of the conventional sound velocity approach, but has been reported to fail to measure bone because of its strong viscoelastic damping. In this study, we take advantage of recent developments of RUS to overcome this limitation. The frequency response of a human cortical bone specimen (about 5 × 7 × 7 mm(3)) was measured between 100 and 280 kHz. Despite an important overlapping of the resonant peaks 20 resonant frequencies could be retrieved by using a dedicated signal processing method. The experimental frequencies were progressively matched to the frequencies predicted by a model of the sample whose elastic constants were adjusted. The determined diagonal elastic constants were in good agreement with concurrent sound velocity measurements performed in the principal directions of the specimen. This study demonstrates that RUS is suitable for an accurate measurement of cortical bone anisotropic elasticity. In particular, precision of measured Young and shear moduli is about 0.5%.

  20. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  1. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  2. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  3. 42 CFR 414.806 - Penalties associated with the failure to submit timely and accurate ASP data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... timely and accurate ASP data. 414.806 Section 414.806 Public Health CENTERS FOR MEDICARE & MEDICAID... Penalties associated with the failure to submit timely and accurate ASP data. Section 1847A(d)(4) specifies the penalties associated with misrepresentations associated with ASP data. If the Secretary...

  4. 42 CFR 414.806 - Penalties associated with the failure to submit timely and accurate ASP data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... timely and accurate ASP data. 414.806 Section 414.806 Public Health CENTERS FOR MEDICARE & MEDICAID... associated with the failure to submit timely and accurate ASP data. Section 1847A(d)(4) specifies the penalties associated with misrepresentations associated with ASP data. If the Secretary determines that...

  5. 42 CFR 414.806 - Penalties associated with the failure to submit timely and accurate ASP data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... timely and accurate ASP data. 414.806 Section 414.806 Public Health CENTERS FOR MEDICARE & MEDICAID... Penalties associated with the failure to submit timely and accurate ASP data. Section 1847A(d)(4) specifies the penalties associated with misrepresentations associated with ASP data. If the Secretary...

  6. 42 CFR 414.806 - Penalties associated with the failure to submit timely and accurate ASP data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... timely and accurate ASP data. 414.806 Section 414.806 Public Health CENTERS FOR MEDICARE & MEDICAID... associated with the failure to submit timely and accurate ASP data. Section 1847A(d)(4) specifies the penalties associated with misrepresentations associated with ASP data. If the Secretary determines that...

  7. 42 CFR 414.806 - Penalties associated with the failure to submit timely and accurate ASP data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... timely and accurate ASP data. 414.806 Section 414.806 Public Health CENTERS FOR MEDICARE & MEDICAID... Penalties associated with the failure to submit timely and accurate ASP data. Section 1847A(d)(4) specifies the penalties associated with misrepresentations associated with ASP data. If the Secretary...

  8. Measuring induction times and crystal nucleation rates.

    PubMed

    Brandel, Clément; ter Horst, Joop H

    2015-01-01

    A large variation is observed in induction times measured under equal conditions in 1 ml solutions. Ruling out experimental errors, this variation originates from the nucleation process. The induction time distribution is explained by the stochastic nature of nucleation if the number of nuclei formed is approaching 1 per vial. Accurate heterogeneous crystal nucleation rates were determined from the induction time distributions on a 1 ml scale for racemic diprophylline in two solvents. The difference in nucleation behaviour in the two solvents originates from the energy barrier for nucleation, which is much higher in the solvent in which induction times are much longer. In addition the pre-exponential factor for the crystal nucleation rate in both solvents is rather low compared to predictions using Classical Nucleation Theory. Unfortunately, concentration and surface characteristics of the effective heterogeneous particles are not known which clouds a further molecular interpretation.

  9. Material interactions with the low earth orbital environment Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Leger, L. J.

    1985-01-01

    Interactions between spacecraft surfaces and atomic oxygen within the low earth orbital (LEO) environment have been observed and measured during Space Shuttle flights over the past 3 yr. The results of these experiments have demonstrated that interaction rates for many materials proposed for spacecraft applications are high and that protective coatings must be developed to enable long-lived operation of spacecraft structures in the LEO environment. A flight experiment discussed herein uses the Space Shuttle as an orbiting exposure laboratory to obtain accurate reaction rate measurements for materials typically used in spacecraft construction. An ion-neutral mass spectrometer, installed in the Orbiter cargo bay, will measure diurnal ambient oxygen densities while material samples are exposed at low altitude (222 km) to the orbital environment. From in situ atomic oxygen density information and postflight material recession measurements, accurate reaction rates can be derived to update the Space Station materials interaction data base. Additionally, gases evolved from a limited number of material surfaces subjected to direct oxygen impingement will be identified using the mass spectrometer. These measurements will aid in mechanistic definitions of chemical reactions which cause atom-surface interactions and in validating results of upcoming degradation studies conducted in ground-based neutral beam laboratories.

  10. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  11. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  12. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  13. Numerical Methodology for Coupled Time-Accurate Simulations of Primary and Secondary Flowpaths in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.

  14. Time-accurate Navier-Stokes computations of classical two-dimensional edge tone flow fields

    NASA Technical Reports Server (NTRS)

    Liu, B. L.; O'Farrell, J. M.; Jones, Jess H.

    1990-01-01

    Time-accurate Navier-Stokes computations were performed to study a Class II (acoustic) whistle, the edge tone, and gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two-dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the edge. Flow speed was kept constant at 1750 cm/sec as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained results of Brown. Specific edge tone generated phenomena and further confirmation of certain theories concerning these phenomena were brought to light in this analytical simulation of edge tones.

  15. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  16. Accurate mass - time tag library for LC/MS-based metabolite profiling of medicinal plants

    PubMed Central

    Cuthbertson, Daniel J.; Johnson, Sean R.; Piljac-Žegarac, Jasenka; Kappel, Julia; Schäfer, Sarah; Wüst, Matthias; Ketchum, Raymond E. B.; Croteau, Rodney B.; Marques, Joaquim V.; Davin, Laurence B.; Lewis, Norman G.; Rolf, Megan; Kutchan, Toni M.; Soejarto, D. Doel; Lange, B. Markus

    2013-01-01

    We report the development and testing of an accurate mass – time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents. PMID:23597491

  17. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  18. Drastic Measures for Difficult Times

    ERIC Educational Resources Information Center

    Galuszka, Peter

    2008-01-01

    This article discusses how colleges and universities are taking drastic measure for difficult times. Hit hard by the global financial crisis, colleges are cutting their budgets in ways that prompt fears about access and retention for minority students. Schools are considering layoffs, unpaid furloughs for faculty and staff, hiring freezes and…

  19. A new carrier gas type for accurate measurement of N2O by GC-ECD

    NASA Astrophysics Data System (ADS)

    Wang, Yinghong; Wang, Yuesi; Ling, Hong

    2010-11-01

    The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.

  20. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  1. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Maloszewski, P.

    2013-05-01

    Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and have been used to solve entirely different problems. We show that by combining two classical models, namely the Boussinesq equation describing spring baseflow recession, and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean transit time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater transit time that can refine those obtained from tritium measurements. The approach is illustrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the actual time of trend reversal and the rate of change agreed extremely well with the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating a stronger influence of continuous groundwater recharge during the summer months.

  2. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Maloszewski, P.

    2012-12-01

    Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and were used to solve entirely different problems. We show that by combining two classical models, namely Boussinesq's Equation describing spring baseflow recession and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean residence time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater residence time that can refine those obtained from tritium measurements. This approach is demonstrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the best agreement between observed and predicted time of trend reversal was reached for the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating the stronger influence of continuous groundwater recharge during the dry period.

  3. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  4. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  5. Accurate screening for synthetic preservatives in beverage using high performance liquid chromatography with time-of-flight mass spectrometry.

    PubMed

    Li, Xiu Qin; Zhang, Feng; Sun, Yan Yan; Yong, Wei; Chu, Xiao Gang; Fang, Yan Yan; Zweigenbaum, Jerry

    2008-02-11

    In this study, liquid chromatography time-of-flight mass spectrometry (HPLC/TOF-MS) is applied to qualitation and quantitation of 18 synthetic preservatives in beverage. The identification by HPLC/TOF-MS is accomplished with the accurate mass (the subsequent generated empirical formula) of the protonated molecules [M+H]+ or the deprotonated molecules [M-H]-, along with the accurate mass of their main fragment ions. In order to obtain sufficient sensitivity for quantitation purposes (using the protonated or deprotonated molecule) and additional qualitative mass spectrum information provided by the fragments ions, segment program of fragmentor voltages is designed in positive and negative ion mode, respectively. Accurate mass measurements are highly useful in the complex sample analyses since they allow us to achieve a high degree of specificity, often needed when other interferents are present in the matrix. The mass accuracy typically obtained is routinely better than 3 ppm. The 18 compounds behave linearly in the 0.005-5.0mg.kg(-1) concentration range, with correlation coefficient >0.996. The recoveries at the tested concentrations of 1.0mg.kg(-1)-100mg.kg(-1) are 81-106%, with coefficients of variation <7.5%. Limits of detection (LODs) range from 0.0005 to 0.05 mg.kg(-1), which are far below the required maximum residue level (MRL) for these preservatives in foodstuff. The method is suitable for routine quantitative and qualitative analyses of synthetic preservatives in foodstuff.

  6. The road towards accurate optical width measurements at the industrial level

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  7. Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.

    2015-12-01

    Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.

  8. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  9. Radial artery blood pressure measurement in neonates: an accurate and convenient technique in clinical practice.

    PubMed

    Gevers, M; van Genderingen, H R; Lafeber, H N; Hack, W W

    1995-01-01

    To achieve accurate blood pressure measurement through radial artery catheters in infants, we previously developed an experimental high-fidelity catheter-manometer system (CMS). As this system lacks facilities for flushing and for blood sampling, we aimed to further develop this technique in order to make the system suitable for clinical practice. In addition, we aimed to develop methods to automate processing of the pressure wave forms. The high-fidelity system to be improved consisted of a 24 Gauge catheter, a threeway stopcock and a tip-manometer. We inserted this system in the catheter-manometer system as routinely used i.e. the remaining end of the stopcock was connected to the fluid-filled CMS as used routinely. This combined system became clinically applicable, since blood samples could be obtained and flushing could be performed. The measurement chain was completed by application of a modified physiological monitor and a computerized method to analyze pressure wave forms. In this manner accurate beat-to-beat pressure parameters were obtained. This technique was applied to 25 neonates admitted for intensive care and requiring arterial access. Gestational age of these infants ranged from 25-40 (median 29) weeks and birth weight ranges from 500-3375 (median 1060) grams. In all infants the technique was found to be convenient and the high-fidelity blood pressure measurements were performed without any problems. The advantage of the present system is the potential for both correct intermittent recordings of arterial wave forms in close relation to clinical condition and for the establishment of accurate radial artery beat-to-beat pressure values in clinical practice.

  10. Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Li, Mingxia; Feng, Zhihua

    2016-07-01

    This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.

  11. Guidelines for measuring reaction time.

    PubMed

    Crabtree, D A; Antrim, L R

    1988-04-01

    Although reaction time is one of the most common measures of neurological function, protocols often do not take into consideration many of the extraneous factors that may invalidate such assessments. This paper discusses several issues related to matters of instrumentation, subject control, design of assessment, and interpretation. Twenty recommendations are provided as a guideline for those who assess reaction time of clients or patients. While these suggestions are not proposed as definitive or complete, the points should serve as a guide to young researchers as well as a checklist for more seasoned experimenters.

  12. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  13. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  14. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%. PMID:24235293

  15. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  16. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

    PubMed

    Rodríguez-Cabo, Tamara; Moniruzzaman, Mohammed; Rodríguez, Isaac; Ramil, María; Cela, Rafael; Gan, Siew Hua

    2015-08-01

    Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds. PMID:26041455

  17. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.

    PubMed

    Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki

    2012-12-01

    Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance.

  18. Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes

    PubMed Central

    Sarabia, Esther G.; Llata, Jose R.; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P.

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  19. Accurate estimation of airborne ultrasonic time-of-flight for overlapping echoes.

    PubMed

    Sarabia, Esther G; Llata, Jose R; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  20. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.

    PubMed

    Agron, I A; Avtonomov, D M; Kononikhin, A S; Popov, I A; Moshkovskii, S A; Nikolaev, E N

    2010-05-01

    Information about peptides and proteins in urine can be used to search for biomarkers of early stages of various diseases. The main technology currently used for identification of peptides and proteins is tandem mass spectrometry, in which peptides are identified by mass spectra of their fragmentation products. However, the presence of the fragmentation stage decreases sensitivity of analysis and increases its duration. We have developed a method for identification of human urinary proteins and peptides. This method based on the accurate mass and time tag (AMT) method does not use tandem mass spectrometry. The database of AMT tags containing more than 1381 AMT tags of peptides has been constructed. The software for database filling with AMT tags, normalizing the chromatograms, database application for identification of proteins and peptides, and their quantitative estimation has been developed. The new procedures for peptide identification by tandem mass spectra and the AMT tag database are proposed. The paper also lists novel proteins that have been identified in human urine for the first time. PMID:20632944

  1. Accurate retention time determination of co-eluting proteins in analytical chromatography by means of spectral data.

    PubMed

    Dismer, Florian; Hansen, Sigrid; Oelmeier, Stefan Alexander; Hubbuch, Jürgen

    2013-03-01

    Chromatography is the method of choice for the separation of proteins, at both analytical and preparative scale. Orthogonal purification strategies for industrial use can easily be implemented by combining different modes of adsorption. Nevertheless, with flexibility comes the freedom of choice and optimal conditions for consecutive steps need to be identified in a robust and reproducible fashion. One way to address this issue is the use of mathematical models that allow for an in silico process optimization. Although this has been shown to work, model parameter estimation for complex feedstocks becomes the bottleneck in process development. An integral part of parameter assessment is the accurate measurement of retention times in a series of isocratic or gradient elution experiments. As high-resolution analytics that can differentiate between proteins are often not readily available, pure protein is mandatory for parameter determination. In this work, we present an approach that has the potential to solve this problem. Based on the uniqueness of UV absorption spectra of proteins, we were able to accurately measure retention times in systems of up to four co-eluting compounds. The presented approach is calibration-free, meaning that prior knowledge of pure component absorption spectra is not required. Actually, pure protein spectra can be determined from co-eluting proteins as part of the methodology. The approach was tested for size-exclusion chromatograms of 38 mixtures of co-eluting proteins. Retention times were determined with an average error of 0.6 s (1.6% of average peak width), approximated and measured pure component spectra showed an average coefficient of correlation of 0.992.

  2. Accurate Enumeration of Aspergillus brasiliensis in Hair Color and Mascara by Time-Lapse Shadow Image Analysis.

    PubMed

    Ogawa, Hiroyuki; Matsuoka, Hideaki; Saito, Mikako

    2015-01-01

    The growth of black mold (Aspergillus brasiliensis) in black-colored samples such as hair color and mascara was measured with an automatic count system based on time-lapse shadow image analysis (TSIA). A. brasiliensis suspended in a lecithin and polysorbate (LP) solution of each sample (hair color or mascara) was spread on a potato dextrose agar medium plate containing LP. The background image darkness of the agar plate could be adjusted to attain accurate colony counts. 95 colonies in hair color and 22 colonies in mascara could be automatically determined at 48 h. The accuracy of the colony counts could be confirmed from the timelapse image data. In contrast, conventional visual counting at a specified time could not determine the number of colonies or led to false colony counts.

  3. Object strength--an accurate measure for small objects that is insensitive to partial volume effects.

    PubMed

    Tofts, P S; Silver, N C; Barker, G J; Gass, A

    2005-07-01

    There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.

  4. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  5. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  6. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  7. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  8. TTVFast: An efficient and accurate code for transit timing inversion problems

    SciTech Connect

    Deck, Katherine M.; Agol, Eric; Holman, Matthew J.; Nesvorný, David

    2014-06-01

    Transit timing variations (TTVs) have proven to be a powerful technique for confirming Kepler planet candidates, for detecting non-transiting planets, and for constraining the masses and orbital elements of multi-planet systems. These TTV applications often require the numerical integration of orbits for computation of transit times (as well as impact parameters and durations); frequently tens of millions to billions of simulations are required when running statistical analyses of the planetary system properties. We have created a fast code for transit timing computation, TTVFast, which uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times. The speed comes at the expense of accuracy in the calculated times, but the accuracy lost is largely unnecessary, as transit times do not need to be calculated to accuracies significantly smaller than the measurement uncertainties on the times. The time step can be tuned to give sufficient precision for any particular system. We find a speed-up of at least an order of magnitude relative to dynamical integrations with high precision using a Bulirsch-Stoer integrator.

  9. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  10. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  11. Accurate and precise measurement of selenium by instrumental neutron activation analysis.

    PubMed

    Kim, In Jung; Watson, Russell P; Lindstrom, Richard M

    2011-05-01

    An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.

  12. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  13. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-08-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.

  14. Time domain phase measuring apparatus

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S. (Inventor)

    1978-01-01

    The phase and/or period stability of a device is determined by connecting the device in one orthogonal arm of a phase detector having a mixer. In the other arm is an adjustable, variable phase shift device. The output of the mixer is fed through an active low pass filter to derive a DC voltage indicative of the phase shift. The variable phase device is adjusted so that the DC voltage will nullify the phase shift of the tested device under normal conditions. The DC voltage level is converted into a time interval indicative of the phase change of the tested device by determining when the level equals the amplitude of a low frequency ramp voltage. The interval between adjacent equality points can be measured or the period between a reference point on the ramp voltage and the quality be measured.

  15. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  16. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  17. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  18. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  19. Accurate label-free reaction kinetics determination using initial rate heat measurements.

    PubMed

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.

  20. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  1. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    PubMed Central

    Doud, Michael B.; Bloom, Jesse D.

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  2. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1).

  3. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    PubMed

    Doud, Michael B; Bloom, Jesse D

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  4. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  5. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  6. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  7. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  8. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  9. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  10. Accurate measurement of intraarterial pressure through radial artery catheters in neonates.

    PubMed

    Hack, W W; Westerhof, N; Leenhoven, T; Okken, A

    1990-07-01

    A technique is described for accurate measurement of intraarterial pressure through radial artery catheters in neonates. The technique, which can be used for short-term monitoring, uses cannulation of the radial artery with a 24-gauge Teflon catheter, connected by a Luer-Lok fitting to a three-way stopcock and a high-fidelity tip transducer. In vitro studies showed that the system is linear and the frequency response is flat (+/- 3 dB) up to 50 Hz. The technique permits gathering of high-quality pressure data and can be used in the area of neonatal clinical research for short-term monitoring. It needs to be developed further before routine application in clinical practice can be recommended.

  11. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  12. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Spiridonov, Maxim; Toebaert, David

    2006-09-01

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  13. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy.

    PubMed

    Passeri, D; Rossi, M; Vlassak, J J

    2013-05-01

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious.

  14. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  15. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  16. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  17. TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY

    SciTech Connect

    Suyu, S. H.; Treu, T.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Marshall, P. J.; Tewes, M.; Courbin, F.; Meylan, G.; Fassnacht, C. D.; Koopmans, L. V. E.; Sluse, D.

    2013-04-01

    Strong gravitational lenses with measured time delays between the multiple images and models of the lens mass distribution allow a one-step determination of the time-delay distance, and thus a measure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131-1231 incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitoring of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new velocity-dispersion measurement of the lens galaxy of 323 {+-} 20 km s{sup -1} based on Keck spectroscopy, and (4) a characterization of the line-of-sight structures via observations of the lens' environment and ray tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological constraints for RXJ1131-1231 are H{sub 0}=80.0{sup +5.8}{sub -5.7} km s{sup -1} Mpc{sup -1}, {Omega}{sub de} = 0.79 {+-} 0.03, and w=-1.25{sup +0.17}{sub -0.21}. We find the results to be statistically consistent with those from the analysis of the gravitational lens B1608+656, permitting us to combine the inferences from these two lenses. The joint constraints from the two lenses and WMAP7 are H{sub 0}=75.2{sup +4.4}{sub -4.2} km s{sup -1} Mpc{sup -1}, {Omega}{sub de}=0.76{sup +0.02}{sub -0.03}, and w = -1.14{sup +0.17}{sub -0.20} in flat wCDM, and H{sub 0}=73.1{sup +2.4}{sub -3.6} km s{sup -1} Mpc{sup -1}, {Omega}{sub {Lambda}}=0.75{sup +0.01}{sub -0.02}, and {Omega}{sub k}=0.003{sup +0.005}{sub -0.006} in open {Lambda}CDM. Time-delay lenses constrain especially tightly the Hubble constant H{sub 0} (5.7% and 4.0% respectively in wCDM and open {Lambda}CDM) and curvature of the

  18. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-01

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  19. Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation

    NASA Astrophysics Data System (ADS)

    Wang, Guoming; Long, Shibing; Yu, Zhaoan; Zhang, Meiyun; Ye, Tianchun; Li, Yang; Xu, Dinglin; Lv, Hangbing; Liu, Qi; Wang, Ming; Xu, Xiaoxin; Liu, Hongtao; Yang, Baohe; Suñé, Jordi; Liu, Ming

    2015-03-01

    In this letter, the impact of stress time of pulse program operation on the resistance uniformity and endurance of resistive random access memory (RRAM) is investigated. A width-adjusting pulse operation (WAPO) method which can accurately setup and measure switching time is proposed for improving the uniformity and endurance of RRAM. Different from the traditional single pulse operation (TSPO) method in which only one wide pulse is applied in each switching cycle, WAPO method utilizes a series of pulses with the width increased gradually until a set or reset switching process is completely finished and no excessive stress is produced. Our program/erase (P/E) method can exactly control the switching time and the final resistance and can significantly improve the uniformity, stability, and endurance of RRAM device. Improving resistance uniformity by WAPO compared with TSPO method is explained through the interdependence between resistance state and switching time. The endurance improvement by WAPO operation stems from the effective avoidance of the overstress-induced progressive-breakdown and even hard-breakdown to the conductive soft-breakdown path.

  20. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  1. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time

  2. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  3. Maximum Mass of Strange Stars and Pulsars with the Most Accurately Measured Masses

    NASA Astrophysics Data System (ADS)

    Vartanyan, Yu. L.; Grigoryan, A. K.; Shahinyan, H. A.

    2015-06-01

    Strange quark matter (SQM) is studied using a bag model in which the transition to the SQM state takes place at energy densities of no more than twice the density in atomic nuclei. Thus, low mass neutron stars with a configuration consisting of SQM form a single family on a plot of the mass M of equilibrium superdense configurations as a function of central energy density ρ c (the M(ρ c ) curve). The bag model considered here depends on three constants: the vacuum pressure B, the quark-gluon interaction constant α c , and the strange quark mass m s . Sets of values of these constants are determined, which if used in the equation of state for SQM yield a maximal mass M max of the equilibrium quark configurations which exceeds the recently accurately determined mass of 2.01 M ⊙ for the binary radio pulsar PSR J0348+0432. The mass, radius, total baryon number, and red shift from the surface of the strange star are calculated for these configurations as a function of central energy density ρ c . The values of these integrated parameters are also calculated for each series with M max > 2.01 M ⊙ for superdense configurations with masses of 2.01, 1.97, and 1.44 solar masses, which have been determined with great accuracy from observations. It turns out that, according to the resulting equations of state, all of the three pulsars with the most accurately measured masses, may be possible candidate strange stars.

  4. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  5. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  6. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    NASA Astrophysics Data System (ADS)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  7. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.

    PubMed

    Bachir, Alexia I; Kolin, David L; Heinze, Katrin G; Hebert, Benedict; Wiseman, Paul W

    2008-06-14

    Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution

  8. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  9. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice. PMID:26749312

  10. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice.

  11. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik J.; Kober, Bernd; Dolgopolova, Alla; Gallagher, Kerry; Spiro, Baruch; Le Roux, Gaël; Mason, Thomas F. D.; Kylander, Malin; Coles, Barry J.

    2004-04-01

    Analytical protocols for accurate and precise Pb isotope ratio determinations in peat, lichen, vegetable, chimney dust, and ore-bearing granites using MC-ICP-MS and their application to environmental studies are presented. Acid dissolution of various matrix types was achieved using high temperature/high pressure microwave and hot plate digestion procedures. The digests were passed through a column packed with EiChrom Sr-resin employing only hydrochloric acid and one column passage. This simplified column chemistry allowed high sample throughput. Typically, internal precisions for approximately 30 ng Pb were below 100 ppm (+/-2[sigma]) on all Pb ratios in all matrices. Thallium was employed to correct for mass discrimination effects and the achieved accuracy was below 80 ppm for all ratios. This involved an optimization procedure for the 205Tl/203Tl ratio using least square fits relative to certified NIST-SRM 981 Pb values. The long-term reproducibility (+/-2[sigma]) for the NIST-SRM 981 Pb standard over a 5-month period (35 measurements) was better than 350 ppm for all ratios. Selected ore-bearing granites were measured with TIMS and MC-ICP-MS and showed good correlation (e.g., r=0.999 for 206Pb/207Pb ratios, slope=0.996, n=13). Mass bias and signal intensities of Tl spiked into natural (after matrix separation) and in synthetic samples did not differ significantly, indicating that any residual components of the complex peat and lichen matrix did not influence mass bias correction. Environmental samples with very different matrices were analyzed during two different studies: (i) lichens, vegetables, and chimney dust around a Cu smelter in the Urals, and (ii) peat samples from an ombrotrophic bog in the Faroe Islands. The presented procedure for sample preparation, mass spectrometry, and data processing tools resulted in accurate and precise Pb isotope data that allowed the reliable differentiation and identification of Pb sources with variations as small as 0

  12. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies.

    PubMed

    Wong, William W; Clarke, Lucinda L

    2012-11-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H(2)) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H(2)-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H(2)-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 (o)/oo and reproducible to within 4.0 (o)/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer.

  13. A Hydrogen Gas-Water Equilibration Method Produces Accurate and Precise Stable Hydrogen Isotope Ratio Measurements in Nutrition Studies12

    PubMed Central

    Wong, William W.; Clarke, Lucinda L.

    2012-01-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H2) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H2-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H2-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 o/oo and reproducible to within 4.0 o/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer. PMID:23014490

  14. Near real time, accurate, and sensitive microbiological safety monitoring using an all-fibre spectroscopic fluorescence system

    NASA Astrophysics Data System (ADS)

    Vanholsbeeck, F.; Swift, S.; Cheng, M.; Bogomolny, E.

    2013-11-01

    Enumeration of microorganisms is an essential microbiological task for many industrial sectors and research fields. Various tests for detection and counting of microorganisms are used today. However most of the current methods to enumerate bacteria require either long incubation time for limited accuracy, or use complicated protocols along with bulky equipment. We have developed an accurate, all-fibre spectroscopic system to measure fluorescence signal in-situ. In this paper, we examine the potential of this setup for near real time bacteria enumeration in aquatic environment. The concept is based on a well-known phenomenon that the fluorescence quantum yields of some nucleic acid stains significantly increase upon binding with nucleic acids of microorganisms. In addition we have used GFP labeled organisms. The fluorescence signal increase can be correlated to the amount of nucleic acid present in the sample. In addition we have used GFP labeled organisms. Our results show that we are able to detect a wide range of bacteria concentrations without dilution or filtration (1-108 CFU/ml) using different optical probes we designed. This high sensitivity is due to efficient light delivery with an appropriate collection volume and in situ fluorescence detection as well as the use of a sensitive CCD spectrometer. By monitoring the laser power, we can account for laser fluctuations while measuring the fluorescence signal which improves as well the system accuracy. A synchronized laser shutter allows us to achieve a high SNR with minimal integration time, thereby reducing the photobleaching effect. In summary, we conclude that our optical setup may offer a robust method for near real time bacterial detection in aquatic environment.

  15. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  16. An accurate mass and radius measurement for an ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Bergeron, P.; Copperwheat, C. M.; Dhillon, V. S.; Bento, J.; Littlefair, S. P.; Schreiber, M. R.

    2012-11-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find MWD = 0.529 ± 0.010 M⊙ and RWD = 0.0131 ± 0.0003 R⊙. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M⊙ and Rsec = 0.165 ± 0.001 R⊙, are in agreement with evolutionary models. We also find evidence that this >9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white dwarf atmospheric models.

  17. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  18. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  19. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  20. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  1. Accurate measurement of refraction and dispersion of a solid by a double-layer interferometer.

    PubMed

    Nassif, A Y

    1997-02-01

    A silica plate of plane-parallel faces is inserted into one gap of a double-layer interferometer that transmits white light to a prism spectrograph in order to produce elliptic rings of equal chromatic order (RECO's). The silica plate is rotated and the expanding RECO's are counted at their center while this center is coincident with a standard wavelength. An analytic formula that relates the fringe count to the rotated angle enables the refractive index of the rotated plate to be accurately determined for different wavelengths. The results are fitted to a single-term Sellmeier dispersion function to find the peak wavelength of the ultraviolet absorption band and the atomic number density for such a transition. The variation of either the dispersion coefficient or the group-velocity factor with wavelength is determined from either the displacement of the RECO center across the visible spectrum if one of the double-layer interferometer's mirrors is displaced parallel to itself or from measurements on the RECO diameters. PMID:18250738

  2. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-01

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  3. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  4. Accurate and in situ monitoring of bacterial concentration using a real time all-fibre spectroscopic device

    NASA Astrophysics Data System (ADS)

    Tao, W.; McGoverin, C.; Lydiard, S.; Song, Y.; Cheng, M.; Swift, S.; Singhal, N.; Vanholsbeeck, F.

    2015-07-01

    Accurate in situ monitoring of bacterial transport is important for increased understanding and improvement of bioremediation processes where microorganisms convert toxic compounds to more benign compounds. Bioremediation methods have become the preferred mechanism for the rehabilitation of hard to reach contaminated environments. In this study, we have used fluorescence spectroscopy to monitor the movement of fluorescently labelled bacteria (Rhodococcus erythropolis and Pseudomonas putida) within a bench-top column filled with a porous medium. In situ fluorescence measurements made using a fibre optic based instrument (`optrode') were compared to ex situ measurements made using a plate reader. In situ monitoring using this fibre optic based instrument is a promising alternative to ex situ measurements as the initial flow of bacteria is reliably observed. However, a greater understanding of the effect of the porous medium on fluorescence measurements is required to develop an accurate calibration for bacterial concentration based in situ measurements.

  5. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  6. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  7. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  8. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  9. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  10. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  11. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements.

    PubMed

    Kairn, T; Charles, P H; Cranmer-Sargison, G; Crowe, S B; Langton, C M; Thwaites, D I; Trapp, J V

    2015-06-01

    There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output

  12. Robust and accurate anomaly detection in ECG artifacts using time series motif discovery.

    PubMed

    Sivaraks, Haemwaan; Ratanamahatana, Chotirat Ann

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods.

  13. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools

    PubMed Central

    Cheon, Gyeong Woo; Huang, Yong; Cha, Jaepyeng; Gehlbach, Peter L.; Kang, Jin U.

    2015-01-01

    This paper presents a novel intuitive targeting and tracking scheme that utilizes a common-path swept source optical coherence tomography (CP-SSOCT) distal sensor integrated handheld microsurgical tool. To achieve micron-order precision control, a reliable and accurate OCT distal sensing method is required; simultaneously, a prediction algorithm is necessary to compensate for the system delay associated with the computational, mechanical and electronic latencies. Due to the multi-layered structure of retina, it is necessary to develop effective surface detection methods rather than simple peak detection. To achieve this, a shifted cross-correlation method is applied for surface detection in order to increase robustness and accuracy in distal sensing. A predictor based on Kalman filter was implemented for more precise motion compensation. The performance was first evaluated using an established dry phantom consisting of stacked cellophane tape. This was followed by evaluation in an ex-vivo bovine retina model to assess system accuracy and precision. The results demonstrate highly accurate depth targeting with less than 5 μm RMSE depth locking. PMID:26137393

  14. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  15. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer. PMID:27140564

  16. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  17. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    in the relative frame of reference; the boundary conditions for the computations were obtained from inlet flow measurements performed in the AFTRF. A complete turbine stage, including an NGV and a rotor row was simulated using the RANS solver with the SST kappa -- o turbulence model, with two different computational models for the interface between the rotating component and the stationary component. The first interface model, the circumferentially averaged mixing plane model, was solved for a fixed position of the rotor blades relative to the NGV in the stationary frame of reference. The information transferred between the NGV and rotor domains is obtained by averaging across the entire interface. The quasi-steady state flow characteristics of the AFTRF can be obtained from this interface model. After the model was validated with the existing experimental data, this model was not only used to investigate the flow characteristics in the turbine stage but also the effects of using pressure side rotor tip extensions. The tip leakage flow fields simulated from this model and from the linear cascade model show similar trends. More detailed understanding of unsteady characteristics of a turbine flow field can be obtained using the second type of interface model, the time accurate sliding mesh model. The potential flow interactions, wake characteristics, their effects on secondary flow formation, and the wake mixing process in a rotor passage were examined using this model. Furthermore, turbine stage efficiency and effects of tip clearance height on the turbine stage efficiency were also investigated. A comparison between the results from the circumferential average model and the time accurate flow model results is presented. It was found that the circumferential average model cannot accurately simulate flow interaction characteristics on the interface plane between the NGV trailing edge and the rotor leading edge. However, the circumferential average model does give

  18. Time, Frequency and Physical Measurement.

    ERIC Educational Resources Information Center

    Hellwig, Helmut; And Others

    1978-01-01

    Describes several developments in atomic clocks and frequency standards pointing out the feasibility and practicality in adopting a unified standard of time and frequency to replace other base standards of length, mass, and temperature. (GA)

  19. Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times Across Labs and Methods

    PubMed Central

    Abate-Pella, Daniel; Freund, Dana M.; Ma, Yan; Simón-Manso, Yamil; Hollender, Juliane; Broeckling, Corey D.; Huhman, David V.; Krokhin, Oleg V.; Stoll, Dwight R.; Hegeman, Adrian D.; Kind, Tobias; Fiehn, Oliver; Schymanski, Emma L.; Prenni, Jessica E.; Sumner, Lloyd W.; Boswell, Paul G.

    2015-01-01

    Identification of small molecules by liquid chromatography-mass spectrometry (LC-MS) can be greatly improved if the chromatographic retention information is used along with mass spectral information to narrow down the lists of candidates. Linear retention indexing remains the standard for sharing retention data across labs, but it is unreliable because it cannot properly account for differences in the experimental conditions used by various labs, even when the differences are relatively small and unintentional. On the other hand, an approach called “retention projection” properly accounts for many intentional differences in experimental conditions, and when combined with a “back-calculation” methodology described recently, it also accounts for unintentional differences. In this study, the accuracy of this methodology is compared with linear retention indexing across eight different labs. When each lab ran a test mixture under a range of multi-segment gradients and flow rates they selected independently, retention projections averaged 22-fold more accurate for uncharged compounds because they properly accounted for these intentional differences, which were more pronounced in steep gradients. When each lab ran the test mixture under nominally the same conditions, which is the ideal situation to reproduce linear retention indices, retention projections still averaged 2-fold more accurate because they properly accounted for many unintentional differences between the LC systems. To the best of our knowledge, this is the most successful study to date aiming to calculate (or even just to reproduce) LC gradient retention across labs, and it is the only study in which retention was reliably calculated under various multi-segment gradients and flow rates chosen independently by labs. PMID:26292625

  20. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  1. Exercise-induced hyperthermia may prevent accurate core temperature measurement by tympanic membrane thermometer.

    PubMed

    Yeo, S; Scarbough, M

    1996-01-01

    The purpose of this study was to assess the effect of exercise-induced hyperthermia on brain and deep trunk temperature measurement in order to determine the optimal temperature site of the body for varying nursing practices in outpatient clinical settings. Eight women, 18 to 50 years old (30.9 +/- 12.6; mean +/- SD), participated in the study. Subjects were asked to perform their regular aerobic exercise in a natural environment while body temperature (ear and rectal) and heart rate (HR) were measured simultaneously and repeatedly before, during, and after exercise. Glass mercury rectal thermometers were used for measurement of deep trunk temperature, an infrared tympanic membrane thermometer for measurement of brain temperature, and a portable heart rate monitor for monitoring heart rate. Rectal temperature was higher than ear temperature for all but one of the 40 pairs of observation. The time pattern varied for the two modes of temperature (F = 9.67; df 4,28; p < .001). Rectal temperature changed over time (F = 7.86; df 4,28; p < .002), and ear temperature did not (F = 1.5; df 4,28; p = .25), indicating that ear temperature did not respond to exercise. While rectal temperature was strongly correlated with HR (r = .60), ear temperature did not correlate either with rectal temperature (r = .02) or with HR (r = .08). Thus deep trunk temperature responds to exercise at moderate levels. On the other hand, ear temperature does not increase due to exercise. Ear temperature is not a valid indicator of trunk temperature during and immediately after exercise.

  2. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints. PMID:19518616

  3. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  4. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  5. How Accurate Are German Work-Time Data? A Comparison of Time-Diary Reports and Stylized Estimates

    ERIC Educational Resources Information Center

    Otterbach, Steffen; Sousa-Poza, Alfonso

    2010-01-01

    This study compares work time data collected by the German Time Use Survey (GTUS) using the diary method with stylized work time estimates from the GTUS, the German Socio-Economic Panel, and the German Microcensus. Although on average the differences between the time-diary data and the interview data is not large, our results show that significant…

  6. Accurate Detection of Interaural Time Differences by a Population of Slowly Integrating Neurons

    NASA Astrophysics Data System (ADS)

    Vasilkov, Viacheslav A.; Tikidji-Hamburyan, Ruben A.

    2012-03-01

    For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational evidence that a rather large population of slowly integrating neurons with inhibitory and excitatory inputs (EI neurons) can detect minute temporal disparities in input signals which are significantly less than any time constant in the system.

  7. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  8. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  9. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  10. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  11. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models.

    PubMed

    Suárez, Ernesto; Adelman, Joshua L; Zuckerman, Daniel M

    2016-08-01

    Because standard molecular dynamics (MD) simulations are unable to access time scales of interest in complex biomolecular systems, it is common to "stitch together" information from multiple shorter trajectories using approximate Markov state model (MSM) analysis. However, MSMs may require significant tuning and can yield biased results. Here, by analyzing some of the longest protein MD data sets available (>100 μs per protein), we show that estimators constructed based on exact non-Markovian (NM) principles can yield significantly improved mean first-passage times (MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an order of magnitude can be corrected when identical trajectory data are reanalyzed by non-Markovian approaches. The NM analysis includes "history" information, higher order time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the states used and works well when a fine time-discretization (i.e., small "lag time") is used. PMID:27340835

  12. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  13. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  14. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  15. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles. PMID:26699527

  16. PACE: Pattern Accurate Computationally Efficient Bootstrapping for Timely Discovery of Cyber-Security Concepts

    SciTech Connect

    McNeil, Nikki C; Bridges, Robert A; Iannacone, Michael D; Czejdo, Bogdan; Perez, Nicolas E; Goodall, John R

    2013-01-01

    Public disclosure of important security information, such as knowledge of vulnerabilities or exploits, often occurs in blogs, tweets, mailing lists, and other online sources significantly before proper classification into structured databases. In order to facilitate timely discovery of such knowledge, we propose a novel semi-supervised learning algorithm, PACE, for identifying and classifying relevant entities in text sources. The main contribution of this paper is an enhancement of the traditional bootstrapping method for entity extraction by employing a time-memory trade-off that simultaneously circumvents a costly corpus search while strengthening pattern nomination, which should increase accuracy. An implementation in the cyber-security domain is discussed as well as challenges to Natural Language Processing imposed by the security domain.

  17. WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio

    PubMed Central

    Lombardi, Michael A; Nelson, Glenn K

    2014-01-01

    In commemoration of its 50th anniversary of broadcasting from Fort Collins, Colorado, this paper provides a history of the National Institute of Standards and Technology (NIST) radio station WWVB. The narrative describes the evolution of the station, from its origins as a source of standard frequency, to its current role as the source of time-of-day synchronization for many millions of radio controlled clocks. PMID:26601026

  18. A simple accurate method to predict time of ponding under variable intensity rainfall

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Selker, J. S.; Parlange, J.-Y.

    2007-03-01

    The prediction of the time to ponding following commencement of rainfall is fundamental to hydrologic prediction of flood, erosion, and infiltration. Most of the studies to date have focused on prediction of ponding resulting from simple rainfall patterns. This approach was suitable to rainfall reported as average values over intervals of up to a day but does not take advantage of knowledge of the complex patterns of actual rainfall now commonly recorded electronically. A straightforward approach to include the instantaneous rainfall record in the prediction of ponding time and excess rainfall using only the infiltration capacity curve is presented. This method is tested against a numerical solution of the Richards equation on the basis of an actual rainfall record. The predicted time to ponding showed mean error ≤7% for a broad range of soils, with and without surface sealing. In contrast, the standard predictions had average errors of 87%, and worst-case errors exceeding a factor of 10. In addition to errors intrinsic in the modeling framework itself, errors that arise from averaging actual rainfall records over reporting intervals were evaluated. Averaging actual rainfall records observed in Israel over periods of as little as 5 min significantly reduced predicted runoff (75% for the sealed sandy loam and 46% for the silty clay loam), while hourly averaging gave complete lack of prediction of ponding in some of the cases.

  19. Study of time-accurate integration of the variable-density Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyi; Pantano, Carlos

    2015-11-01

    We present several theoretical elements that affect time-consistent integration of the low-Mach number approximation of variable-density Navier-Stokes equations. The goal is for velocity, pressure, density, and scalars to achieve uniform order of accuracy, consistent with the time integrator being used. We show examples of second-order (using Crank-Nicolson and Adams-Bashforth) and third-order (using additive semi-implicit Runge-Kutta) uniform convergence with the proposed conceptual framework. Furthermore, the consistent approach can be extended to other time integrators. In addition, the method is formulated using approximate/incomplete factorization methods for easy incorporation in existing solvers. One of the observed benefits of the proposed approach is improved stability, even for large density difference, in comparison with other existing formulations. A linearized stability analysis is also carried out for some test problems to better understand the behavior of the approach. This work was supported in part by the Department of Energy, National Nuclear Security Administration, under award no. DE-NA0002382 and the California Institute of Technology.

  20. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-01

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  1. A Simple Dewar/Cryostat for Thermally Equilibrating Samples at Known Temperatures for Accurate Cryogenic Luminescence Measurements.

    PubMed

    Weaver, Phoebe G; Jagow, Devin M; Portune, Cameron M; Kenney, John W

    2016-01-01

    The design and operation of a simple liquid nitrogen Dewar/cryostat apparatus based upon a small fused silica optical Dewar, a thermocouple assembly, and a CCD spectrograph are described. The experiments for which this Dewar/cryostat is designed require fast sample loading, fast sample freezing, fast alignment of the sample, accurate and stable sample temperatures, and small size and portability of the Dewar/cryostat cryogenic unit. When coupled with the fast data acquisition rates of the CCD spectrograph, this Dewar/cryostat is capable of supporting cryogenic luminescence spectroscopic measurements on luminescent samples at a series of known, stable temperatures in the 77-300 K range. A temperature-dependent study of the oxygen quenching of luminescence in a rhodium(III) transition metal complex is presented as an example of the type of investigation possible with this Dewar/cryostat. In the context of this apparatus, a stable temperature for cryogenic spectroscopy means a luminescent sample that is thermally equilibrated with either liquid nitrogen or gaseous nitrogen at a known measureable temperature that does not vary (ΔT < 0.1 K) during the short time scale (~1-10 sec) of the spectroscopic measurement by the CCD. The Dewar/cryostat works by taking advantage of the positive thermal gradient dT/dh that develops above liquid nitrogen level in the Dewar where h is the height of the sample above the liquid nitrogen level. The slow evaporation of the liquid nitrogen results in a slow increase in h over several hours and a consequent slow increase in the sample temperature T over this time period. A quickly acquired luminescence spectrum effectively catches the sample at a constant, thermally equilibrated temperature. PMID:27501355

  2. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

    PubMed Central

    Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  3. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

    PubMed

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  4. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  5. An adaptive grid method for computing time accurate solutions on structured grids

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Smith, Robert E.; Eiseman, Peter R.

    1991-01-01

    The solution method consists of three parts: a grid movement scheme; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the Euler solver. The grid movement scheme is an algebraic method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling is performed with a grid prediction correction procedure that is simple to implement and provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one dimensional shock tube and a two dimensional shock vortex iteraction.

  6. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions

    NASA Technical Reports Server (NTRS)

    Boretti, A. A.

    1990-01-01

    A numerical method useful to describe unsteady 3-D flow fields within turbomachinery stages is presented. The method solves the compressible, time dependent, Euler conservation equations with a finite volume, flux splitting, total variation diminishing, approximately factored, implicit scheme. Multiblock composite gridding is used to partition the flow field into a specified arrangement of blocks with static and dynamic interfaces. The code is optimized to take full advantage of the processing power and speed of the Cray Y/MP supercomputer. The method is applied to the computation of the flow field within a single stage, axial flow fan, thus reproducing the unsteady 3-D rotor-stator interaction.

  7. Hardware and Software Developments for the Accurate Time-Linked Data Acquisition System

    SciTech Connect

    BERG,DALE E.; RUMSEY,MARK A.; ZAYAS,JOSE R.

    1999-11-09

    Wind-energy researchers at Sandia National Laboratories have developed a new, light-weight, modular data acquisition system capable of acquiring long-term, continuous, multi-channel time-series data from operating wind-turbines. New hardware features have been added to this system to make it more flexible and permit programming via telemetry. User-friendly Windows-based software has been developed for programming the hardware and acquiring, storing, analyzing, and archiving the data. This paper briefly reviews the major components of the system, summarizes the recent hardware enhancements and operating experiences, and discusses the features and capabilities of the software programs that have been developed.

  8. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  9. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  10. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    SciTech Connect

    Hong Xinguo; Hao Quan

    2009-01-15

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  11. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses

    PubMed Central

    Saade, Fadi; Gorski, Stacey Ann; Petrovsky, Nikolai

    2013-01-01

    There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response – a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines. PMID:23252389

  12. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  13. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  14. Accurate measurement of the relative abundance of different DNA species in complex DNA mixtures.

    PubMed

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-06-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription.

  15. Accurate Measurement of the Relative Abundance of Different DNA Species in Complex DNA Mixtures

    PubMed Central

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-01-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription. PMID:22334570

  16. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  17. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    SciTech Connect

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-09-10

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10{sup -4} M {sub sun}, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  18. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  19. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  20. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  1. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  2. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  3. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  4. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  5. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  6. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  7. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  8. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  9. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  10. A Proposed Frequency Synthesis Approach to Accurately Measure the Angular Position of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Bagri, D. S.

    2005-01-01

    This article describes an approach for measuring the angular position of a spacecraft with reference to a nearby calibration source (quasar) with an accuracy of a few tenths of a nanoradian using a very long baseline interferometer of two antennas that measures the interferometer phase with a modest accuracy. It employs (1) radio frequency phase to determine the spacecraft position with high precision and (2) multiple delay measurements using either frequency tones or telemetry signals at different frequency spacings to resolve ambiguity of the location of the fringe (cycle) containing the direction of the spacecraft.

  11. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  12. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  13. On the accurate long-time solution of the wave equation in exterior domains: Asymptotic expansions and corrected boundary conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.

    1993-01-01

    We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.

  14. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  15. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  16. A more accurate method for measurement of tuberculocidal activity of disinfectants.

    PubMed Central

    Ascenzi, J M; Ezzell, R J; Wendt, T M

    1987-01-01

    The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves. PMID:3314707

  17. Relativistic effects in astronomical timing measurements

    NASA Technical Reports Server (NTRS)

    Hellings, R. W.

    1986-01-01

    In this paper the relativistic transformations that are necessary to transform the results of earth-based astronomical timing observations from the terrestrial frame in which the observations are made to the proper frame of the astronomical object being observed are derived. Two coordinate systems are considered, the first being the parametrized post-Newtonian coordinate system and the second being a coordinate system based on the use of temps dynamique barycentrique as a time coordinate. Effects due to propagation of signals through curved spacetime and due to the relativistic gravitational time dilation for the earth are derived in each system. The results are then applied to three modern accurate data types spacecraft ranging, pulsar timing, and VLBI. A new effect is found in the analysis of VLBI data, amounting to a rescaling of VLBI-determined baselines produced by the curvature of space in the neighborhood of the sun.

  18. Children’s Processing and Comprehension of Complex Sentences Containing Temporal Connectives: The Influence of Memory on the Time Course of Accurate Responses

    PubMed Central

    2016-01-01

    In a touch-screen paradigm, we recorded 3- to 7-year-olds’ (N = 108) accuracy and response times (RTs) to assess their comprehension of 2-clause sentences containing before and after. Children were influenced by order: performance was most accurate when the presentation order of the 2 clauses matched the chronological order of events: “She drank the juice, before she walked in the park” (chronological order) versus “Before she walked in the park, she drank the juice” (reverse order). Differences in RTs for correct responses varied by sentence type: accurate responses were made more speedily for sentences that afforded an incremental processing of meaning. An independent measure of memory predicted this pattern of performance. We discuss these findings in relation to children’s knowledge of connective meaning and the processing requirements of sentences containing temporal connectives. PMID:27690492

  19. Accurate GPS measurement of the location and orientation of a floating platform. [for sea floor geodesy

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    1990-01-01

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  20. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  1. Accurate measurement of body weight and food intake in environmentally enriched male Wistar rats.

    PubMed

    Beale, Kylie E L; Murphy, Kevin G; Harrison, Eleanor K; Kerton, Angela J; Ghatei, Mohammad A; Bloom, Stephen R; Smith, Kirsty L

    2011-08-01

    Laboratory animals are crucial in the study of energy homeostasis. In particular, rats are used to study alterations in food intake and body weight. To accurately record food intake or energy expenditure it is necessary to house rats individually, which can be stressful for social animals. Environmental enrichment may reduce stress and improve welfare in laboratory rodents. However, the effect of environmental enrichment on food intake and thus experimental outcome is unknown. We aimed to determine the effect of environmental enrichment on food intake, body weight, behavior and fecal and plasma stress hormones in male Wistar rats. Singly housed 5-7-week-old male rats were given either no environmental enrichment, chew sticks, a plastic tube of 67 mm internal diameter, or both chew sticks and a tube. No differences in body weight or food intake were seen over a 7-day period. Importantly, the refeeding response following a 24-h fast was unaffected by environmental enrichment. Rearing, a behavior often associated with stress, was significantly reduced in all enriched groups compared to controls. There was a significant increase in fecal immunoglobulin A (IgA) in animals housed with both forms of enrichment compared to controls at the termination of the study, suggesting enrichment reduces hypothalamo-pituitary-adrenal (HPA) axis activity in singly housed rats. In summary, environmental enrichment does not influence body weight and food intake in singly housed male Wistar rats and may therefore be used to refine the living conditions of animals used in the study of energy homeostasis without compromising experimental outcome.

  2. A method to measure the density of seawater accurately to the level of 10-6

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Wolf, Henning; Hassel, Egon

    2016-04-01

    A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.

  3. Accurate DOSY measure for out-of-equilibrium systems using permutated DOSY (p-DOSY).

    PubMed

    Oikonomou, Maria; Asencio-Hernández, Julia; Velders, Aldrik H; Delsuc, Marc-André

    2015-09-01

    NMR spectroscopy is a excellent tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed in out-of-equilibrium systems. On such a system, the evolution of the concentration of species interferes with the measurement process, and creates a bias on the diffusion coefficient determination that may lead to erroneous interpretations. We show that a random permutation of the series of gradient strengths used during the DOSY experiment allows to average out this bias. This approach, that we name p-DOSY does not require changes in the pulse sequences nor in the processing software, and restores completely the full accuracy of the measure. This technique is demonstrated on the monitoring of the anomerization reaction of α- to β-glucose.

  4. Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment.

    PubMed

    Martineau, Charlotte; Fayon, Franck; Legein, Christophe; Buzaré, Jean-Yves; Silly, Gilles; Massiot, Dominique

    2007-07-14

    A new solid-state MAS NMR experiment is proposed to accurately measure heteronuclear (19)F-(207)Pb J-coupling constants, even though these couplings are not visible on high speed (19)F 1D MAS spectra; in particular, we demonstrate that the J-resolved experiment combined with scalar multiple-quantum filtering considerably improves the resolution of J-multiplet patterns for dilute spin systems. PMID:17594032

  5. New insights for accurate chemically specific measurements of slow diffusing molecules.

    PubMed

    Hou, Jianbo; Madsen, Louis A

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using (2)H(2)O and obtain expected results, but we observe crippling artifacts when measuring (1)H-glycerol diffusion with the same experimental parameters. A mathematical analysis of (2)H(2)O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration. PMID:23406112

  6. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  7. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  8. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  9. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Silva, A; Cela, R

    2016-04-15

    The performance of gas chromatography (GC) with accurate, high resolution mass spectrometry (HRMS) for the determination of a group of 39 semi-volatile compounds related to wine quality (pesticide residues, phenolic off-flavours, phenolic pollutants and bioactive stilbenes) is investigated. Solid-phase extraction (SPE) was used as extraction technique, previously to acetylation (phenolic compounds) and dispersive liquid-liquid microextraction (DLLME) concentration. Compounds were determined by GC coupled to a quadrupole time-of-flight (QTOF) MS system through an electron ionization (EI) source. The final method attained limits of quantification (LOQs) at the very low ng mL(-1) level, covering the range of expected concentrations for target compounds in red and white wines. For 38 out of 39 compounds, performance of sample preparation and determination steps were hardly affected by the wine matrix; thus, accurate recoveries were achieved by using pseudo-external calibration. Levels of target compounds in a set of 25 wine samples are reported. The capabilities of the described approach for the post-run identification of species not considered during method development, without retention time information, are illustrated and discussed with selected examples of compounds from different classes.

  10. GAP on EJSM: an accelerometer for accurate gravity and atmospheric measurements of Ganymede

    NASA Astrophysics Data System (ADS)

    Lenoir, Benjamin; Christophe, Bruno

    2010-05-01

    The Gravity Advanced Package (GAP) is an electrostatic accelerometer with a bias calibration system proposed on EJSM Jupiter Ganymede Orbiter (JGO) for fundamental physics objectives - more precisely for testing the law of gravity at the scale of the solar system - and for planetary objectives. GAP can provide decisive information during the planetary phase of the mission. During the orbit of JGO around Ganymede or the flyby of Callisto, such an instrument will measure the non-gravitational forces acting on the spacecraft, mainly due to the atmosphere. By combining these measurements with the ones provided by the radio-science instrument, which measures the total acceleration of the spacecraft, the gravitational forces acting on the spacecraft can be derived without using any model of the atmosphere. This is a major contribution of GAP to the mission considering the low altitude and the size of the solar panel, which would otherwise require precise models. Indeed, the presence of the instrument on board would provide data to better understand the atmosphere and the gravity field of Ganymede and Callisto. This combination of measurements from the accelerometer and from radio-science is similar to what is currently done for determining precise model of the Earth gravity potential with CHAMP, GRACE and GOCE missions. The GAP instrument is proposed by the ONERA team which has already built the 9 accelerometers in orbit for these geodetic missions. The presentation will describe the scientific objectives of the instrument with a review of the impact of the non-gravitational forces on the gravity measurement of Jupiter's moons. Then, a description of the instrument with its performance will be given, as well as the requirements for its implementation in the spacecraft.

  11. Measuring Time: The Stability of Special Education Teacher Time Use

    ERIC Educational Resources Information Center

    Vannest, Kimberly J.; Parker, Richard I.

    2010-01-01

    Instructional time use is an intervention without equal. The measure of such has clear and important implications for special education practice and research. Although exhortations to maximize instruction and thereby student engagement exist throughout the literature, few studies discuss how special education teachers use their time, and none…

  12. Measurement of testicular volume in smaller testes: how accurate is the conventional orchidometer?

    PubMed

    Lin, Chih-Chieh; Huang, William J S; Chen, Kuang-Kuo

    2009-01-01

    The aim of this study was to evaluate the accuracy of different methods, including the Seager orchidometer (SO) and ultrasonography (US), for assessing testicular volume of smaller testes (testes volume less than 18 mL). Moreover, the equations used for the calculations--the Hansen formula (length [L] x width [W](2) x 0.52, equation A), the prolate ellipsoid formula (L x W x height [H] x 0.52, equation B), and the Lambert equation (L x W x H x 0.71, equation C)--were also examined and compared with the gold standard testicular volume obtained by water displacement (Archimedes principle). In this study, 30 testes from 15 men, mean age 75.3 (+/-8.3) years, were included. They all had advanced prostate cancer and were admitted for orchiectomy. Before the procedure, all the testes were assessed using SO and US. The dimensions were then input into each equation to obtain the volume estimates. The testicular volume by water displacement was 8.1 +/- 3.5 mL. Correlation coefficients (R(2)) of the 2 different methods (SO, US) to the gold standard were 0.70 and 0.85, respectively. The calculated testicular volumes were 9.2 +/- 3.9 mL (measured by SO, equation A), 11.9 +/- 5.2 mL (measured by SO, equation C), 7.3 +/- 4.2 mL (measured by US, equation A), 6.5 +/- 3.3 mL (measured by US, equation B) and 8.9 +/- 4.5 mL (measured by US, equation C). Only the mean size measured by US and volume calculated with the Hansen equation (equation A) and the mean size measured by US and volume calculated with the Lambert equation (equation C) showed no significant differences when compared with the volumes estimated by water displacement (mean difference 0.81 mL, P = .053, and 0.81 mL, P = .056, respectively). Based on our measurements, we categorized testicular volume by different cutoff values (7.0 mL, 7.5 mL, 8.0 mL, and 8.5 mL) to calculate a new constant for use in the Hansen equation. The new constant was 0.59. We then reexamined the equations using the new 0.59 constant, and found

  13. A step toward standardization: development of accurate measurements of X-ray absorption and fluorescence.

    PubMed

    Chantler, Christopher T; Barnea, Zwi; Tran, Chanh Q; Rae, Nicholas A; de Jonge, Martin D

    2012-11-01

    This paper explains how to take the counting precision available for XAFS (X-ray absorption fine structure) and attenuation measurements, of perhaps one part in 10(6) in special cases, to produce a local variance below 0.01% and an accuracy of attenuation of the order 0.01%, with an XAFS accuracy at a similar level leading to the determination of dynamical bond lengths to an accuracy similar to that obtained by standard and experienced crystallographic measurements. This includes the necessary corrections for the detector response to be linear, including a correction for dark current and air-path energy dependencies; a proper interpretation of the range of sample thicknesses for absorption experiments; developments of methods to measure and correct for harmonic contamination, especially at lower energies without mirrors; the significance of correcting for the actual bandwidth of the beam on target after monochromation, especially for the portability of results and edge structure from one beamline to another; definitions of precision, accuracy and XAFS accuracy suitable for theoretical model analysis; the role of additional and alternative high-accuracy procedures; and discusses some principles regarding data formats for XAFS and for the deposition of data sets with manuscripts or to a database. Increasingly, the insight of X-ray absorption and the standard of accuracy needed requires data with high intrinsic precision and therefore with allowance for a range of small but significant systematic effects. This is always crucial for absolute measurements of absorption, and is of equal importance but traditionally difficult for (usually relative) measurements of fluorescence XAFS or even absorption XAFS. Robust error analysis is crucial so that the significance of conclusions can be tested within the uncertainties of the measurements. Errors should not just include precision uncertainty but should attempt to include estimation of the most significant systematic error

  14. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  15. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.

    PubMed

    Allen, Kenneth W; Scott, Mark M; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10(-3) for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands. PMID:27250447

  16. Thermal lens measurements in liquids on a submicrosecond time scale

    SciTech Connect

    Isak, S. J.; Komorowski, S. J.; Merrow, C. N.; Poston, P. E.; Eyring, E. M.

    1989-03-01

    The use of the thermal lens method is shown to be quite suitable for kinetic studies of quenching on a submicrosecond time scale. The lower limit of time resolution that can be achieved is determined by the acoustic transit time, /tau//sub /ital a//, in the medium. A thermal lens signal with a 100-ns time constant due to the quenched triplet state of benzophenone is readily measured. The thermal lens method is superior to the photoacoustic (PA) method in the breadth of the accessible time range, and in the significantly fewer measurements required to obtain accurate data, including no requirement for a reference sample; it is also less sensitive to geometrical and laser power requirements than is the PA method.

  17. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  18. Accurate metrology of polarization curves measured at the speckle size of visible light scattering.

    PubMed

    Ghabbach, A; Zerrad, M; Soriano, G; Amra, C

    2014-06-16

    An optical procedure is presented to measure at the speckle size and with high accuracy, the polarization degree of patterns scattered by disordered media. Whole mappings of polarization ratio, polarimetric phase and polarization degree are pointed out. Scattered clouds are emphasized on the Poincaré sphere, and are completed by probability density functions of the polarization degree. A special care is attributed to the accuracy of data. The set-up provides additional signatures of scattering media.

  19. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  20. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  1. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  2. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  3. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required. PMID:18488965

  4. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  5. Speed of Gravity Measured for First Time

    NASA Astrophysics Data System (ADS)

    2003-01-01

    learn about this intriguing cosmic force and its relationship to the other forces in nature," Kopeikin said. This is not the first time that Jupiter has played a part in producing a measurement of a fundamental physical constant. In 1675, Olaf Roemer, a Danish astronomer working at the Paris Observatory, made the first reasonably accurate determination of the speed of light by observing eclipses of one of Jupiter's moons. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  7. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Sharp, W. D.; Ludwig, K. R.

    2012-04-01

    U-series isotope measurements by ICP-MS commonly utilize separate runs for U and Th and standard-sample bracketing to determine correction factors for mass fractionation and ion counter yields. Here we present an approach where all information necessary to calculate an age (aside from background/baseline levels) is determined while analyzing a single solution containing both U and Th. This internally calibrated procedure should reduce any bias caused by distinct behavior of sample versus standard solutions during analysis and offers advantages including simplicity of operation, calculation of preliminary ages in real time, and simplified analysis of errors and their sources. Hellstrom (2003) developed a single-solution, internally-calibrated technique for an ICP-MS with multiple ion counters, but to our knowledge no such technique is available for an ICP-MS with a single ion counter. We use a Thermo Neptune Plus multi-collector ICP-MS with eight movable Faraday cups and a fixed center cup/ion counter equipped with a high abundance-sensitivity filter (RPQ). We use Faraday cups to measure all masses except 230 and 234, which are measured on the ion counter with the RPQ detuned (i.e., Suppressor voltage = 9950 V). 238U is maintained in a cup throughout the analysis to avoid reflections and is used to normalize signal instabilities related to sample introduction. Each analysis has a three-part structure, i.e. 1) background/baseline levels, 2) sample composition, and 3) peak-tails are sequentially determined. In step 1, multiplier dark noise/Faraday baselines plus background intensities at each mass are determined while aspirating running solution. During sample measurement in step 2, ion counter yields for Th and U are determined using signals of 300-400 kcps for 229Th and 233U by measuring 229Th/238U and 233U/238U ratios first with the minor masses on the ion counter and then with both masses in cups. Mass bias can be determined using the 233U/236U ratio of the spike

  8. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  9. MRI-aided tissues interface characterization: An accurate signal propagation time calculation method for UWB breast tumor imaging

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Xiao, Xia; Kikkawa, Takamaro

    2016-12-01

    Radar-based ultrawideband (UWB) microwave imaging is expected to be a safe, low-cost tool for breast cancer detection. However, since radar wave travels at different speeds in different tissues, propagation time is hard to be estimated in heterogeneous breast. Wrongly estimated propagation time leads to error of tumor location in resulting image, aka imaging error. In this paper, we develop a magnetic resonance imaging-aided (MRI-aided) propagation time calculation technique which is independent from radar imaging system but can help decrease the imaging error. The technique can eliminate the influence of the rough interface between fat layer and gland layer in breast and get relative accurate thicknesses of two layers. The propagation time in each layer is calculated and summed. The summed propagation time is used in Confocal imaging algorithm to increase the accuracy of resulting image. 25 patients' breast models with glands of varying size are classified into four categories for imaging simulation tests. Imaging accuracy in terms of tumor location along x-direction has been improved for 21 among 25 cases, as a result, overall around 50% improvement compared to conventional UWB imaging.

  10. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  11. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery.

    PubMed

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  12. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations

    PubMed Central

    Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  13. Recent Advances in Highly Accurate Range Measurements with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, Michael; Balss, Ulrich; Gisinger, Christoph; Cong, Xiao Ying; Brcic, Ramon; Steigenberger, Peter

    2013-04-01

    Earth surface displacement measurement from space using Synthetic Aperture Radar (SAR) imagery is an interesting alternative to SAR interferometry (InSAR). The advantages are that 2D information can be retrieved (InSAR only 1D), absolute displacements can be retrieved (no reference point required) and it is very robust (phase unwrapping not required). On the other hand, the accuracy is limited by the pixel resolution, the object contrast, the orbit accuracy, by wave propagation distortion and by geodetic effects. Therefore the accuracy was more in the meter / decimeter level in the past, compared to millimeter accuracy of InSAR. During the recent years our team established a test and validation site at the geodetic observatory Wettzell, Germany and developed compensation methods to reduce the overall error of absolute range measurements from decimeters to only one centimeter. The methods include correction of dry and wet atmospheric delays, ionospheric corrections, solid earth tides, continental drift, atmospheric pressure loading and ocean tidal loading. For more one year a radar reflector was monitored and each image evaluated. Our presentation gives and overview of methods and achieved results. Futhermore, examples of real world applications and an outlook on more applications is given such as phase unwrapping augmentation.

  14. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  15. Surface EMG measurements during fMRI at 3T: accurate EMG recordings after artifact correction.

    PubMed

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, Hans; Maurits, Natasha

    2005-08-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s non-scanning), we were able to compare the mean amplitude of the undisturbed EMG (non-scanning) intervals with the mean amplitude of the EMG intervals during scanning, after MRI artifact correction. The agreement between the mean amplitudes of the corrected and the undisturbed EMG was excellent and the mean difference between the two amplitudes was not significantly different. Furthermore, there was no significant difference between the corrected and undisturbed amplitude at different force levels. In conclusion, we have shown that it is feasible to record surface EMG during scanning and that, after MRI artifact correction, the EMG recordings can be used to quantify isometric muscle activity, even at very low activation intensities.

  16. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  17. Circuit for measuring time differences among events

    DOEpatents

    Romrell, Delwin M.

    1977-01-01

    An electronic circuit has a plurality of input terminals. Application of a first input signal to any one of the terminals initiates a timing sequence. Later inputs to the same terminal are ignored but a later input to any other terminal of the plurality generates a signal which can be used to measure the time difference between the later input and the first input signal. Also, such time differences may be measured between the first input signal and an input signal to any other terminal of the plurality or the circuit may be reset at any time by an external reset signal.

  18. A feasibility study for measuring accurate tendon displacements using an audio-based Fourier analysis of pulsed-wave Doppler ultrasound signals.

    PubMed

    Stegman, K J; Podhorodeski, R P; Park, E J

    2009-01-01

    The accuracy of Pulsed-Wave Doppler Ultrasound displacement measurements of a slow moving "tendon-like" string was investigated in this study. This was accomplished by estimating string displacements using an audio-based Fourier analysis of a Pulsed-Wave Doppler signal from a commercial ultrasound scanner. Our feasibility study showed that the proposed technique is much more accurate at estimating the actual string displacement in comparison to the scanner's onboard software. Furthermore, this study also shows that a real-time Doppler data acquisition from an ultrasound scanner is possible for the ultimate purpose of real-time biological tendon displacement monitoring.

  19. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  20. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.

    PubMed

    Fisk, P H; Sellars, M J; Lawn, M A; Coles, G

    1997-01-01

    We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.

  1. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  2. Estimation of base station position using timing advance measurements

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Ali-Löytty, Simo; Wirola, Lauri

    2011-10-01

    Timing Advance is used in TDMA (Time Division Multiple Access) systems, such as GSM and LTE, to synchronize the mobile phone to the cellular BS (Base Station). Mobile phone positioning can use TA measurements if BS positions are known, but in many cases BS positions are not in the public domain. In this work we study how to use a set of TA measurements taken by mobile phones at known positions to estimate the position of a BS. This paper describes two methods -- GMF (Gaussian Mixture Filter) and PMF (Point Mass Filter) for estimation of the BS position. Positioning performance is evaluated using simulated and real measurements. In suburban field tests, TA measurements suffice to determine BS position with an error comparable to the TA granularity (550m). GMF computes BS position much faster than PMF and is only slightly less accurate.

  3. Inexpensive Time-of-Flight Velocity Measurements.

    ERIC Educational Resources Information Center

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  4. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain

    PubMed Central

    Varanytsia, Andrii; Nagai, Hama; Urayama, Kenji; Palffy-Muhoray, Peter

    2015-01-01

    We report wide range and reversible tuning of the selective reflection band of a single crystal cholesteric liquid crystal elastomer (CLCE). The tuning is the result of mechanical shortening of the helical pitch achieved by imposing a uniform uniaxial strain along the helical axis. On doping the CLCE sample with a laser dye, we observe lasing from the CLCE in both glassy and rubbery states. By changing the cholesteric pitch, mechanical compression provides tuning of the laser emission from the dye doped CLCE over a significant part of the fluorescence band of the laser dye. In this work we demonstrate for the first time that both the CLCE pitch and the lasing wavelength are linearly dependent on the strain imposed on the CLCE film. PMID:26634336

  5. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  6. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema.

    PubMed

    Sun, Fangdi; Skolny, Melissa N; Swaroop, Meyha N; Rawal, Bhupendra; Catalano, Paul J; Brunelle, Cheryl L; Miller, Cynthia L; Taghian, Alphonse G

    2016-06-01

    Breast cancer-related lymphedema (BCRL) is a feared outcome of breast cancer treatment, yet the push for early screening is hampered by a lack of standardized quantification. We sought to determine the necessity of preoperative baseline in accounting for temporal changes of upper extremity volume. 1028 women with unilateral breast cancer were prospectively screened for lymphedema by perometry. Thresholds were defined: relative volume change (RVC) ≥10 % for clinically significant lymphedema and ≥5 % including subclinical lymphedema. The first postoperative measurement (pseudo-baseline) simulated the case of no baseline. McNemar's test and binomial logistic regression models were used to analyze BCRL misdiagnoses. Preoperatively, 28.3 and 2.9 % of patients had arm asymmetry of ≥5 and 10 %, respectively. Without baseline, 41.6 % of patients were underdiagnosed and 40.1 % overdiagnosed at RVC ≥ 5 %, increasing to 50.0 and 54.8 % at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, increased weight change between baselines, hormonal therapy, dominant use of contralateral arm, and not receiving axillary lymph node dissection (ALND) were associated with increased risk of underdiagnosis at RVC ≥ 5 %; not receiving regional lymph node radiation was significant at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, not receiving ALND, and dominant use of ipsilateral arm were associated with overdiagnosis at RVC ≥ 5 %; increased pseudo-baseline asymmetry and not receiving ALND were significant at RVC ≥ 10 %. The use of a postoperative proxy even early after treatment results in poor sensitivity for identifying BCRL. Providers with access to patients before surgery should consider the consequent need for proper baseline, with specific strategy tailored by institution. PMID:27154787

  7. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    SciTech Connect

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  8. Correlation-timing-based erythrocyte velocity measurement using CCD imagery

    NASA Astrophysics Data System (ADS)

    O'Reilly, William J.; Hudetz, Anthony

    2001-05-01

    An automated correlation method is introduced to estimate erythrocyte velocity component of erythrocyte flux within the cerebral capillary network. Erythrocyte flux, defined as the number of red blood cells passing through a plane orthogonal to the axis of erythrocyte flow in a vessel per unit time, is considered to be the closest index of capillary flow. Introduced previously is the two-point cross-correlation method, a method whereby a video photometric analyzer captures the voltage produced from two electronic windows placed over a vessel of interest. In our new method, instead of using electronic windows, we use a CCD array, focused on a two- dimensional projection of the three-dimensional capillary structure. Simulations of this method yields accurate velocity measurements at a measured cell intensity of .2 standard deviations above mean noise values or cell counts fewer than 30 cells per minute for image sequences of 180 frames captured over a time interval of three seconds. We conclude that with proper reduction in the measured standard deviation of noise and by increasing the percentage of fluorscently labeled erythrocytes injected into the rat, the correlation timing method of estimating erythrocyte velocity is an accurate substitute for hand-measured velocity calculation.

  9. Time measurment system at the SSC

    SciTech Connect

    Arai, Yasuo

    1989-04-01

    A proposal of time measurement system at the SSC experiment is described. An example of a possible scheme for central tracking chambers is shown. Designs of a preamp/shaper/discri chip and a time digitizer chip are described. A method to distribute system clock and power/cooling problems are also discussed.

  10. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  11. This Saline Ice Thickness Retrieval Using Time Series C-Band Polarimetric Radar Measurments

    NASA Technical Reports Server (NTRS)

    Shih, S. E.; Ding, K. H.; Nghiem, S. V.; Hsu, C. C.; Kong, J. A.; Jordan, A. K.

    1996-01-01

    The application of time-series radar measurements to accurately invert the thickness of saline ice is presented in this study. We describe briefly some experimental observations from the CRRELEX 93 campaign of sea ice.

  12. A Two-Sinker Densimeter for Accurate Measurements of the Density of Natural Gases at Standard Conditions

    NASA Astrophysics Data System (ADS)

    Richter, Markus; Kleinrahm, Reiner; Glos, Stefan; Wagner, Wolfgang; Span, Roland; Schley, Peter; Uhrig, Martin

    2010-05-01

    A special reference densimeter has been developed for accurate measurements of densities of natural gases and multicomponent gas mixtures at standard conditions of temperature and pressure ( T s = 273.15 K and p s = 0.101325 MPa). The densimeter covers the range from 0.7 kg · m-3 to 1.3 kg · m-3; the total measurement uncertainty in density is 0.020 % (95 % level of confidence). The measurement principle used is the two-sinker method, which is based on the Archimedes buoyancy principle. The certified calibration laboratory of E.ON Ruhrgas AG, Germany, uses this densimeter to verify the standard densities of certified calibration gases (binary and multicomponent gas mixtures). Moreover, the densimeter is used to determine the compositions of commercially available binary gas mixtures with a small uncertainty of (0.01-0.03) mol%.

  13. Evaluation of the sample needed to accurately estimate outcome-based measurements of dairy welfare on farm.

    PubMed

    Endres, M I; Lobeck-Luchterhand, K M; Espejo, L A; Tucker, C B

    2014-01-01

    Dairy welfare assessment programs are becoming more common on US farms. Outcome-based measurements, such as locomotion, hock lesion, hygiene, and body condition scores (BCS), are included in these assessments. The objective of the current study was to investigate the proportion of cows in the pen or subsamples of pens on a farm needed to provide an accurate estimate of the previously mentioned measurements. In experiment 1, we evaluated cows in 52 high pens (50 farms) for lameness using a 1- to 5-scale locomotion scoring system (1 = normal and 5 = severely lame; 24.4 and 6% of animals were scored ≥ 3 or ≥ 4, respectively). Cows were also given a BCS using a 1- to 5-scale, where 1 = emaciated and 5 = obese; cows were rarely thin (BCS ≤ 2; 0.10% of cows) or fat (BCS ≥ 4; 0.11% of cows). Hygiene scores were assessed on a 1- to 5-scale with 1 = clean and 5 = severely dirty; 54.9% of cows had a hygiene score ≥ 3. Hock injuries were classified as 1 = no lesion, 2 = mild lesion, and 3 = severe lesion; 10.6% of cows had a score of 3. Subsets of data were created with 10 replicates of random sampling that represented 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5, and 3% of the cows measured/pen. In experiment 2, we scored the same outcome measures on all cows in lactating pens from 12 farms and evaluated using pen subsamples: high; high and fresh; high, fresh, and hospital; and high, low, and hospital. For both experiments, the association between the estimates derived from all subsamples and entire pen (experiment 1) or herd (experiment 2) prevalence was evaluated using linear regression. To be considered a good estimate, 3 criteria must be met: R(2)>0.9, slope = 1, and intercept = 0. In experiment 1, on average, recording 15% of the pen represented the percentage of clinically lame cows (score ≥ 3), whereas 30% needed to be measured to estimate severe lameness (score ≥ 4). Only 15% of the pen was needed to estimate the percentage of the herd with a hygiene

  14. Providing accurate near real-time fire alerts for Protected Areas through NASA FIRMS: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Ilavajhala, S.; Davies, D.; Schmaltz, J. E.; Wong, M.; Murphy, K. J.

    2013-12-01

    The NASA Fire Information for Resource Management System (FIRMS) is at the forefront of providing global near real-time (NRT) MODIS thermal anomalies / hotspot location data to end-users . FIRMS serves the data via an interactive Web GIS named Web Fire Mapper, downloads of NRT active fire, archive data downloads for MODIS hotspots dating back to 1999 and a hotspot email alert system The FIRMS Email Alerts system has been successfully alerting users of fires in their area of interest in near real-time and/or via daily and weekly email summaries, with an option to receive MODIS hotspot data as a text file (CSV) attachment. Currently, there are more than 7000 email alert subscriptions from more than 100 countries. Specifically, the email alerts system is designed to generate and send an email alert for any region or area on the globe, with a special focus on providing alerts for protected areas worldwide. For many protected areas, email alerts are particularly useful for early fire detection, monitoring on going fires, as well as allocating resources to protect wildlife and natural resources of particular value. For protected areas, FIRMS uses the World Database on Protected Areas (WDPA) supplied by United Nations Environment Program - World Conservation Monitoring Centre (UNEP-WCMC). Maintaining the most up-to-date, accurate boundary geometry for the protected areas for the email alerts is a challenge as the WDPA is continuously updated due to changing boundaries, merging or delisting of certain protected areas. Because of this dynamic nature of the protected areas database, the FIRMS protected areas database is frequently out-of-date with the most current version of WDPA database. To maintain the most up-to-date boundary information for protected areas and to be in compliance with the WDPA terms and conditions, FIRMS needs to constantly update its database of protected areas. Currently, FIRMS strives to keep its database up to date by downloading the most recent

  15. Transit time ultrasonic flow meters for natural gas measurement

    SciTech Connect

    Upp, E.L.; Warner, K.L.

    1996-12-31

    Transit-time ultrasonic flow meters for gas have gained a larger acceptance within the natural gas industry in recent years, and are now an option for custody transfer metering in several countries. Additionally, there are several varieties of less expensive transit-time ultrasonic flow meters which are excellent in check metering applications although limited in accuracy. The proper choice of ultrasonic flow meter normally depends on the absolute accuracy required, with the multipath configuration offering the best accuracy. Ultrasonic flow meters must be properly installed and the natural gas must be of good quality to achieve an accurate measurement, as with any type of gas flow meter. As experience grows within the measurement community, the use and applications for transit-time ultrasonic flow meters may expand greatly.

  16. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  17. Accurate identification of Candida parapsilosis (sensu lato) by use of mitochondrial DNA and real-time PCR.

    PubMed

    Souza, Ana Carolina R; Ferreira, Renata C; Gonçalves, Sarah S; Quindós, Guillermo; Eraso, Elena; Bizerra, Fernando C; Briones, Marcelo R S; Colombo, Arnaldo L

    2012-07-01

    Candida parapsilosis is the Candida species isolated the second most frequently from blood cultures in South America and some European countries, such as Spain. Since 2005, this species has been considered a complex of 3 closely related species: C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis. Here, we describe a real-time TaqMan-MGB PCR assay, using mitochondrial DNA (mtDNA) as the target, which readily distinguishes these 3 species. We first used comparative genomics to locate syntenic regions between these 3 mitochondrial genomes and then selected NADH5 as the target for the real-time PCR assay. Probes were designed to include a combination of different single-nucleotide polymorphisms that are able to differentiate each species within the C. parapsilosis complex. This new methodology was first tested using mtDNA and then genomic DNA from 4 reference and 5 clinical strains. For assay validation, a total of 96 clinical isolates and 4 American Type Culture Collection (ATCC) isolates previously identified by internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing were tested. Real-time PCR using genomic DNA was able to differentiate the 3 species with 100% accuracy. No amplification was observed when DNA from other species was used as the template. We observed 100% congruence with ITS rDNA sequencing identification, including for 30 strains used in blind testing. This novel method allows a quick and accurate intracomplex identification of C. parapsilosis and saves time compared with sequencing, which so far has been considered the "gold standard" for Candida yeast identification. In addition, this assay provides a useful tool for epidemiological and clinical studies of these emergent species.

  18. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  19. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  20. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  1. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  2. Tunneling Time and Weak Measurement in Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R.; Gordon, Daniel F.; Landsman, Alexandra S.

    2016-06-01

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  3. Tunneling Time and Weak Measurement in Strong Field Ionization.

    PubMed

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process. PMID:27341232

  4. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  5. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  6. Dyslexia and music: measuring musical timing skills.

    PubMed

    Overy, Katie; Nicolson, Roderick I; Fawcett, Angela J; Clarke, Eric F

    2003-02-01

    Over the last few decades, a growing amount of research has suggested that dyslexics have particular difficulties with skills involving accurate or rapid timing, including musical timing skills. It has been hypothesised that music training may be able to remediate such timing difficulties, and have a positive effect on fundamental perceptual skills that are important in the development of language and literacy skills (Overy, 2000). In order to explore this hypothesis further, the nature and extent of dyslexics' musical difficulties need to be examined in more detail. In the present study, a collection of musical aptitude tests (MATs) were designed specifically for dyslexic children, in order to distinguish between a variety of musical skills and sub-skills. 15 dyslexic children (age 7-11, mean age 9.0) and 11 control children (age 7-10, mean age 8.9) were tested on the MATs, and their scores were compared. Results showed that the dyslexic group scored higher than the control group on 3 tests of pitch skills (possibly attributable to slightly greater musical experience), but lower than the control group on 7 out of 9 tests of timing skills. Particular difficulties were noted on one of the tests involving rapid temporal processing, in which a subgroup of 5 of the dyslexic children (33%) (mean age 8.4) was found to account for all the significant error. Also, an interesting correlation was found between spelling ability and the skill of tapping out the rhythm of a song, which both involve the skill of syllable segmentation. These results support suggestions that timing is a difficulty area for dyslexic children, and suggest that rhythm skills and rapid skills may need particular attention in any form of musical training with dyslexics. PMID:12625374

  7. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  8. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  9. Time and Rate Measures in Choice Transitions

    ERIC Educational Resources Information Center

    Cerutti, D. T.; Staddon, J. E. R.

    2004-01-01

    Three experiments with pigeons studied the relation between time and rate measures of behavior under conditions of changing preference. Experiment 1 studied a concurrent chain schedule with random-interval initial links and fixed-interval terminal links; Experiment 2 studied a multiple chained random-interval fixed-interval schedule; and…

  10. Measurement of time by quantum clocks

    NASA Astrophysics Data System (ADS)

    Peres, Asher

    1980-07-01

    A clock is a dynamical system which passes through a succession of states at constant time intervals. If coupled to another system, it can measure the duration of a physical process and even keep a permanent record of it, such as in a time-of-flight experiment or in observing the lifetime of an unstable atom. A clock can also be used to control the duration of a process, e.g., the precession of a spin in a magnetic field which is turned on and off at prescribed times. This article shows how to construct time-independent Hamiltonians describing these possible uses of a quantum clock. As expected, a good time resolution entails a large energy exchange between the clock and the other system, thereby modifying the evolution of the latter. This evolution may even be halted by using a clock which is too precise (this is the quantum analog of Zeno's paradox).

  11. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  12. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  13. Time-Accurate Unsteady Flow Simulations Supporting the SRM T+68-Second Pressure Spike Anomaly Investigation (STS-54B)

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Burnette, D. W.; Holt, J. B.; Matienzo, Jose

    1993-01-01

    Time-accurate unsteady flow simulations are being performed supporting the SRM T+68sec pressure 'spike' anomaly investigation. The anomaly occurred in the RH SRM during the STS-54 flight (STS-54B) but not in the LH SRM (STS-54A) causing a momentary thrust mismatch approaching the allowable limit at that time into the flight. Full-motor internal flow simulations using the USA-2D axisymmetric code are in progress for the nominal propellant burn-back geometry and flow conditions at T+68-sec--Pc = 630 psi, gamma = 1.1381, T(sub c) = 6200 R, perfect gas without aluminum particulate. In a cooperative effort with other investigation team members, CFD-derived pressure loading on the NBR and castable inhibitors was used iteratively to obtain nominal deformed geometry of each inhibitor, and the deformed (bent back) inhibitor geometry was entered into this model. Deformed geometry was computed using structural finite-element models. A solution for the unsteady flow has been obtained for the nominal flow conditions (existing prior to the occurrence of the anomaly) showing sustained standing pressure oscillations at nominally 14.5 Hz in the motor IL acoustic mode that flight and static test data confirm to be normally present at this time. Average mass flow discharged from the nozzle was confirmed to be the nominal expected (9550 lbm/sec). The local inlet boundary condition is being perturbed at the location of the presumed reconstructed anomaly as identified by interior ballistics performance specialist team members. A time variation in local mass flow is used to simulate sudden increase in burning area due to localized propellant grain cracks. The solution will proceed to develop a pressure rise (proportional to total mass flow rate change squared). The volume-filling time constant (equivalent to 0.5 Hz) comes into play in shaping the rise rate of the developing pressure 'spike' as it propagates at the speed of sound in both directions to the motor head end and nozzle. The

  14. Boltzmann babies in the proper time measure

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Yang, I-S.

    2008-05-15

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  15. Boltzmann babies in the proper time measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Freivogel, Ben; Yang, I.-Sheng

    2008-05-01

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  16. Boltzmann babies in the proper time measure

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  17. Application of the energy reassignment method to measure accurate Rayleigh and Love wave group velocities from ambient seismic noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Witek, M.; Kang, T. S.; van der Lee, S.

    2015-12-01

    We have collected three-component data from 122 Korean accelerometer stations for the month of December in 2014. We apply similar techniques described by Zha et al. (2013) to retrieve accurate station orientation angles, in order to rotate the horizontal component data into the radial and transverse frame of reference, and for subsequent measurement of Love wave group velocity dispersion. We simultaneously normalize all three components of a daily noise record via the frequency-time normalization (FTN) method. Each component is divided by the average signal envelope in an effort to retain relative amplitude information between all three components. Station orientations are found by a grid search for the orientation azimuth which maximizes the coherency between the radial-vertical cross-correlation and the Hilbert transformed vertical-vertical cross-correlation. After measuring orientation angles, we cross-correlate and rotate the data. Typically, the group velocity dispersion curves are measured using the frequency time analysis technique (FTAN), effectively producing spectrograms with significant uncertainty in the time-frequency plane. The spectrogram approach retains only the amplitude information of the short-time Fourier transform (STFT). However, Kodera et al (1976) show that by taking into account the phase information, the concepts of instantaneous frequency and group-time delay can be used to compute the first moment of the signal power in the frequency and time domains. During energy reassignment, the signal power calculated using the STFT at a point (t0,f0t_0, f_0) is reassigned to the location of the first moment (t^g,f^ihat{t}_g,hat{f}_i), where t^ghat{t}_g is the group-time delay and f^ihat{f}_i is the instantaneous frequency. We apply the method of energy reassignment to produce precise Rayleigh and Love wave group velocity measurements in the frequency range 0.1 - 1.0 Hz. Tests on synthetic data show more accurate retrieval of group velocities at

  18. Setting Time Measurement Using Ultrasonic Wave Reflection

    SciTech Connect

    Chung, Chul-Woo; Suraneni, Prannoy; Popovics, John S.; Struble, Leslie J.

    2012-01-09

    Ultrasonic shear wave reflection was used to investigate setting times of cement pastes by measuring the reflection coefficient at the interface between hydrating cement pastes of varying water-to-cement ratio and an ultrasonic buffer material. Several different buffer materials were employed, and the choice of buffer was seen to strongly affect measurement sensitivity; high impact polystyrene showed the highest sensitivity to setting processes because it had the lowest acoustic impedance value. The results show that ultrasonic shear-wave reflection can be used successfully to monitor early setting processes of cement paste with good sensitivity when such a very low impedance buffer is employed. Criteria are proposed to define set times, and the resulting initial and final set times agreed broadly with those determined using the standard penetration resistance test.

  19. 34 CFR 462.41 - How must tests be administered in order to accurately measure educational gain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as soon as possible thereafter; (2) Administer the pre-test to students at a uniform time, according to its State's assessment policy; and (3) Administer pre-tests to students in the skill areas... post-test to measure a student's educational functioning level after a set time period or number...

  20. Species Distribution 2.0: An Accurate Time- and Cost-Effective Method of Prospection Using Street View Imagery

    PubMed Central

    Schwoertzig, Eugénie; Millon, Alexandre

    2016-01-01

    Species occurrence data provide crucial information for biodiversity studies in the current context of global environmental changes. Such studies often rely on a limited number of occurrence data collected in the field and on pseudo-absences arbitrarily chosen within the study area, which reduces the value of these studies. To overcome this issue, we propose an alternative method of prospection using geo-located street view imagery (SVI). Following a standardised protocol of virtual prospection using both vertical (aerial photographs) and horizontal (SVI) perceptions, we have surveyed 1097 randomly selected cells across Spain (0.1x0.1 degree, i.e. 20% of Spain) for the presence of Arundo donax L. (Poaceae). In total we have detected A. donax in 345 cells, thus substantially expanding beyond the now two-centuries-old field-derived record, which described A. donax only 216 cells. Among the field occurrence cells, 81.1% were confirmed by SVI prospection to be consistent with species presence. In addition, we recorded, by SVI prospection, 752 absences, i.e. cells where A. donax was considered absent. We have also compared the outcomes of climatic niche modeling based on SVI data against those based on field data. Using generalized linear models fitted with bioclimatic predictors, we have found SVI data to provide far more compelling results in terms of niche modeling than does field data as classically used in SDM. This original, cost- and time-effective method provides the means to accurately locate highly visible taxa, reinforce absence data, and predict species distribution without long and expensive in situ prospection. At this time, the majority of available SVI data is restricted to human-disturbed environments that have road networks. However, SVI is becoming increasingly available in natural areas, which means the technique has considerable potential to become an important factor in future biodiversity studies. PMID:26751565

  1. Accurate Time-Dependent Wave Packet Calculations for the O(+) + H2 → OH(+) + H Ion-Molecule Reaction.

    PubMed

    Bulut, N; Castillo, J F; Jambrina, P G; Kłos, J; Roncero, O; Aoiz, F J; Bañares, L

    2015-12-17

    Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martı́nez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.

  2. An Accurate, Flexible and Small Optical Fiber Sensor: A Novel Technological Breakthrough for Real-Time Analysis of Dynamic Blood Flow Data In Vivo

    PubMed Central

    Yuan, Qiao-ying; Zhang, Ling; Xiao, Dan; Zhao, Kun; Lin, Chun; Si, Liang-yi

    2014-01-01

    Because of the limitations of existing methods and techniques for directly obtaining real-time blood data, no accurate microflow in vivo real-time analysis method exists. To establish a novel technical platform for real-time in vivo detection and to analyze average blood pressure and other blood flow parameters, a small, accurate, flexible, and nontoxic Fabry-Perot fiber sensor was designed. The carotid sheath was implanted through intubation of the rabbit carotid artery (n = 8), and the blood pressure and other detection data were determined directly through the veins. The fiber detection results were compared with test results obtained using color Doppler ultrasound and a physiological pressure sensor recorder. Pairwise comparisons among the blood pressure results obtained using the three methods indicated that real-time blood pressure information obtained through the fiber sensor technique exhibited better correlation than the data obtained with the other techniques. The highest correlation (correlation coefficient of 0.86) was obtained between the fiber sensor and pressure sensor. The blood pressure values were positively related to the total cholesterol level, low-density lipoprotein level, number of red blood cells, and hemoglobin level, with correlation coefficients of 0.033, 0.129, 0.358, and 0.373, respectively. The blood pressure values had no obvious relationship with the number of white blood cells and high-density lipoprotein and had a negative relationship with triglyceride levels, with a correlation coefficient of –0.031. The average ambulatory blood pressure measured by the fiber sensor exhibited a negative correlation with the quantity of blood platelets (correlation coefficient of −0.839, P<0.05). The novel fiber sensor can thus obtain in vivo blood pressure data accurately, stably, and in real time; the sensor can also determine the content and status of the blood flow to some extent. Therefore, the fiber sensor can obtain partially real-time

  3. An accurate, flexible and small optical fiber sensor: a novel technological breakthrough for real-time analysis of dynamic blood flow data in vivo.

    PubMed

    Yuan, Qiao-ying; Zhang, Ling; Xiao, Dan; Zhao, Kun; Lin, Chun; Si, Liang-yi

    2014-01-01

    Because of the limitations of existing methods and techniques for directly obtaining real-time blood data, no accurate microflow in vivo real-time analysis method exists. To establish a novel technical platform for real-time in vivo detection and to analyze average blood pressure and other blood flow parameters, a small, accurate, flexible, and nontoxic Fabry-Perot fiber sensor was designed. The carotid sheath was implanted through intubation of the rabbit carotid artery (n = 8), and the blood pressure and other detection data were determined directly through the veins. The fiber detection results were compared with test results obtained using color Doppler ultrasound and a physiological pressure sensor recorder. Pairwise comparisons among the blood pressure results obtained using the three methods indicated that real-time blood pressure information obtained through the fiber sensor technique exhibited better correlation than the data obtained with the other techniques. The highest correlation (correlation coefficient of 0.86) was obtained between the fiber sensor and pressure sensor. The blood pressure values were positively related to the total cholesterol level, low-density lipoprotein level, number of red blood cells, and hemoglobin level, with correlation coefficients of 0.033, 0.129, 0.358, and 0.373, respectively. The blood pressure values had no obvious relationship with the number of white blood cells and high-density lipoprotein and had a negative relationship with triglyceride levels, with a correlation coefficient of -0.031. The average ambulatory blood pressure measured by the fiber sensor exhibited a negative correlation with the quantity of blood platelets (correlation coefficient of -0.839, P<0.05). The novel fiber sensor can thus obtain in vivo blood pressure data accurately, stably, and in real time; the sensor can also determine the content and status of the blood flow to some extent. Therefore, the fiber sensor can obtain partially real-time

  4. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    NASA Astrophysics Data System (ADS)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  5. High-speed amplified lightwave receiver for time domain measurements

    NASA Astrophysics Data System (ADS)

    Faller, Don

    1994-05-01

    The current trend of increasing data rates for fiber optics communications systems has created a demand for high-speed lightwave measurement instrumentation. For time domain measurements, a key element is a lightwave receiver for converting the optical signal to an electrical signal which can then be analyzed by conventional methods. The requirements for a high-speed lightwave receiver include DC-coupling, sufficient bandwidth to accurately reproduce the optical signal, frequency response flatness, sensitivity for measuring low signal levels, and linearity to avoid signal distortion. A receiver has been designed within Hewlett-Packard to meet these requirements for data rates up to 2.5 Gb/s. The receiver design consists of a high-bandwidth InP/InGaAs/InP p-i-n photodiode and a GaAs transimpedance amplifier. The photodiode has a bandwidth of 32 GHz with a responsivity greater than 0.5 A/W. The transimpedance amplifier has a gain of 600 ohms, flat frequency response, and a bandwidth of over 7 GHz. The combination results in a DC-coupled receiver with a bandwidth of over 4 GHz and a conversion gain of 330 V/W. The receiver provides accurate measurement capability for optical transmitters for both SONET and fibre channel communications systems.

  6. Using multiple quantum coherence to increase the 15N resolution in a three-dimensional TROSY HNCO experiment for accurate PRE and RDC measurements.

    PubMed

    Hu, Kaifeng; Doucleff, Michaeleen; Clore, G Marius

    2009-10-01

    We present a new version of the 3D TROSY HNCO pulse scheme, referred to as HR-TROSY HNCO, with comparable resolution in the (15)N dimension to a 2D (1)H-(15)N HSQC experiment. In the conventional 3D TROSY HNCO, the constant time period (1/2J(NC) approximately 32 ms) severely limits the maximum resolution in the (15)N dimension. In the HR-TROSY HNCO experiment presented here, both constant time periods (approximately 32 ms each) for coherence forward and backward transfer between (15)N and (13)C' are utilized to double the (15)N evolution time. This leads to a dramatic enhancement in peak separation along the (15)N dimension, making the HR-TROSY HNCO an ideal pulse scheme for accurate paramagnetic relaxation enhancement and residual dipolar coupling measurements. PMID:19615926

  7. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    SciTech Connect

    Minesaki, Yukitaka

    2013-08-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.

  8. Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI

    PubMed Central

    Merchant, Samer S.; Hsu, Edward W.

    2014-01-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  9. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  10. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  11. Space-time framework of internal measurement

    NASA Astrophysics Data System (ADS)

    Matsuno, Koichiro

    1998-07-01

    Measurement internal to material bodies is ubiquitous. The internal observer has its own local space-time framework that enables the observer to distinguish, even to a slightest degree, those material bodies fallen into that framework. Internal measurement proceeding among the internal observers come to negotiate a construction of more encompassing local framework of space and time. The construction takes place through friction among the internal observers. Emergent phenomena are related to an occurrence of enlarging the local space-time framework through the frictional negotiation among the material participants serving as the internal observers. Unless such a negotiation is obtained, the internal observers would have to move around in the local space-time frameworks of their own that are mutually incommensurable. Enhancement of material organization as demonstrated in biological evolutionary processes manifests an inexhaustible negotiation for enlarging the local space-time framework available to the internal observers. In contrast, Newtonian space-time framework, that remains absolute and all encompassing, is an asymptote at which no further emergent phenomena could be expected. It is thus ironical to expect something to emerge within the framework of Newtonian absolute space and time. Instead of being a complex and organized configuration of interaction to appear within the global space-time framework, emergent phenomena are a consequence of negotiation among the local space-time frameworks available to internal measurement. Most indicative of the negotiation of local space-time frameworks is emergence of a conscious self grounding upon the reflexive nature of perceptions, that is, a self-consciousness in short, that certainly goes beyond the Kantian transcendental subject. Accordingly, a synthetic discourse on securing consciousness upon the ground of self-consciousness can be developed, though linguistic exposition of consciousness upon self

  12. Measuring radiology's value in time saved.

    PubMed

    Lee, Christoph I; Enzmann, Dieter R

    2012-10-01

    Because radiology has historically not measured its added value to patient care and thus not communicated it in easily understood terms to all stakeholders, the specialty must correct this to prepare for the eventual transition from the current fee-for-service payment schedule to new value-based reimbursement systems. Given the increasing risk for marginalization, radiologists need to engage clinicians and managers to map the processes and associated costs of episodes of patient care to identify areas for providing and improving integrated diagnostic information and to measure the value thereof. In such time-driven, activity-based costing practices, radiologists should highlight how proper investments in the information generated by imaging and how radiologists' associated consultative and coordination of services can save greater resources downstream, especially in the nonrenewable resource of physician time, an increasingly scarce health care resource. Using physician time in the most efficient way will be a key element for decreasing health care costs at the aggregate level. Therefore, expressing radiology's contribution in terms of downstream physician time saved is a metric that can be easily understood by all stakeholders. In a conceptual framework centered on value, the specialty of radiology must focus more on its most important product, actionable information, rather than on imaging technologies themselves. Information, unlike imaging technologies, does not depreciate with time but rather increases in value the more it is used.

  13. Measuring radiology's value in time saved.

    PubMed

    Lee, Christoph I; Enzmann, Dieter R

    2012-10-01

    Because radiology has historically not measured its added value to patient care and thus not communicated it in easily understood terms to all stakeholders, the specialty must correct this to prepare for the eventual transition from the current fee-for-service payment schedule to new value-based reimbursement systems. Given the increasing risk for marginalization, radiologists need to engage clinicians and managers to map the processes and associated costs of episodes of patient care to identify areas for providing and improving integrated diagnostic information and to measure the value thereof. In such time-driven, activity-based costing practices, radiologists should highlight how proper investments in the information generated by imaging and how radiologists' associated consultative and coordination of services can save greater resources downstream, especially in the nonrenewable resource of physician time, an increasingly scarce health care resource. Using physician time in the most efficient way will be a key element for decreasing health care costs at the aggregate level. Therefore, expressing radiology's contribution in terms of downstream physician time saved is a metric that can be easily understood by all stakeholders. In a conceptual framework centered on value, the specialty of radiology must focus more on its most important product, actionable information, rather than on imaging technologies themselves. Information, unlike imaging technologies, does not depreciate with time but rather increases in value the more it is used. PMID:23025865

  14. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    PubMed

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-07-30

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

  15. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    PubMed

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-01-01

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming. PMID:27500543

  16. Relaxation time measurements by an electronic method.

    NASA Technical Reports Server (NTRS)

    Brousseau, R.; Vanier, J.

    1973-01-01

    Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.

  17. Time-resolved heat transfer and skin friction measurements in unsteady flow

    NASA Astrophysics Data System (ADS)

    Diller, T. E.; Telionis, D. P.

    A review of heat transfer and skin friction measurement methods is presented with particular emphasis on techniques that yield details of time-resolved properties. A description of the calibration methods necessary to insure accurate measurements is included. Examples of recent unsteady heat transfer and skin friction measurements with interpretations of the meaning and importance of the results are given.

  18. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Ramil, M; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-01

    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis. PMID:25127626

  19. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    NASA Technical Reports Server (NTRS)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  20. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    SciTech Connect

    Nigam, R.; Kosovichev, A. G. E-mail: sasha@quake.stanford.ed

    2010-01-10

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  1. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification.

    PubMed

    Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun

    2016-06-01

    Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach.

  2. Time and frequency-domain measurement of ground-state recovery times in red fluorescent proteins.

    PubMed

    Manna, Premashis; Jimenez, Ralph

    2015-04-16

    The field of bioimaging and biosensors has been revolutionized by the discovery of fluorescent proteins (FPs) and their use in live cells. FPs are characterized with rich photodynamics due to the presence of nonfluorescent or dark states which are responsible for fluorescence intermittency or "blinking", which has been exploited in several localization-based super-resolution techniques that surpass the diffraction-limited resolution of conventional microscopy. Molecules that convert to these dark states recover to the ground states either spontaneously or upon absorption of another photon, depending on the particular FP and the structural transition that is involved. In this work, we demonstrate time- and frequency-domain methods for the measurement of the ground-state recovery (GSR) times of FPs both in live cells and in solutions. In the time-domain method, we excited the sample with millisecond pulses at varying dark times to obtain percent-recovery. In the frequency-domain method, dark-state hysteresis was employed to obtain the positive phase shift or "phase advance". We extracted the GSR time constants from our measurements using calculations and simulations based on a three-state model system. The GSR time constants of the red FPs studied in these experiments fall in the range from μs to msec time-scales. We find that the time- and frequency-domain techniques are complementary to each other. While accurate GSR times can be extracted from the time-domain technique, frequency-domain measurements are primarily sensitive to the rates of dark-state conversion (DSC) processes. A correlation between GSR times, DSC, and photobleaching rates for the red FPs mCherry, TagRFP-T, and Kriek were observed. These time- and frequency-domain methods can be used in high-throughput screening and sorting of FPs clones based on GSR time constant and photostability and will therefore be valuable for the development of new photoswitchable or photoactivatable FPs.

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  4. Accurate characterization of delay discounting: a multiple model approach using approximate Bayesian model selection and a unified discounting measure.

    PubMed

    Franck, Christopher T; Koffarnus, Mikhail N; House, Leanna L; Bickel, Warren K

    2015-01-01

    The study of delay discounting, or valuation of future rewards as a function of delay, has contributed to understanding the behavioral economics of addiction. Accurate characterization of discounting can be furthered by statistical model selection given that many functions have been proposed to measure future valuation of rewards. The present study provides a convenient Bayesian model selection algorithm that selects the most probable discounting model among a set of candidate models chosen by the researcher. The approach assigns the most probable model for each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying measure that is computable for and comparable between a number of popular functions, including both one- and two-parameter models. The combined model selection/ED50 approach is illustrated using empirical discounting data collected from a sample of 111 undergraduate students with models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection approach outperforms the single model approach when data truly arise from multiple models. When a single model underlies all participant data, the simulation suggests that the proposed approach fares no worse than the single model approach.

  5. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  6. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  7. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  8. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  9. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  10. Direct measurement meter indicates real-time energy flow

    SciTech Connect

    Heyden, W.H.V. )

    1991-05-01

    The increased activity in transporting gas and the use of natural gas from widely varying sources has created a need to simplify measurement of energy transfers in natural gas operations. The natural gas industry requires an energy measurement device that is simple, cost effective and accurate. Such a device must be a direct measurement meter, easy to install, and one which will measure energy transfers in natural gas regardless of volume, composition, heating value, supercompressibility, inert fractions and temperature. These and other factors that are required for what presently is and remains, a calculation of energy in natural gas. The need then, is for a flow device which will measure and indicate direct, real-time energy flow and perform at pipe line conditions. A flow meter has been under development for seven years and has been in field testing for three years at 4 different sites under a Gas Research Institute (GRI) sponsored program. The field test objective is to measure and verify the meter's technical properties under actual field service conditions. In each field test site, the meter is continuously compared to existing gas flow measurement devices. Eact test site has different meter configurations which allow a broad scope of comparison and testing experience.

  11. Time Resolved Deposition Measurements in NSTX

    SciTech Connect

    C.H. Skinner; H. Kugel; A.L. Roquemore; J. Hogan; W.R. Wampler; the NSTX team

    2004-08-03

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 {micro}g/cm{sup 2} of deposition, however surprisingly, 15.9 {micro}g/cm{sup 2} of material loss occurred at 7 discharges. The net deposited mass of 13.3 {micro}g/cm{sup 2} matched the mass of 13.5 {micro}g/cm{sup 2} measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition.

  12. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  13. Measuring the RC time constant with Arduino

    NASA Astrophysics Data System (ADS)

    Pereira, N. S. A.

    2016-11-01

    In this work we use the Arduino UNO R3 open source hardware platform to assemble an experimental apparatus for the measurement of the time constant of an RC circuit. With adequate programming, the Arduino is used as a signal generator, a data acquisition system and a basic signal visualisation tool. Theoretical calculations are compared with direct observations from an analogue oscilloscope. Data processing and curve fitting is performed on a spreadsheet. The results obtained for the six RC test circuits are within the expected interval of values defined by the tolerance of the components. The hardware and software prove to be adequate to the proposed measurements and therefore adaptable to a laboratorial teaching and learning context.

  14. Method and apparatus for measuring response time

    DOEpatents

    Johanson, E.W.; August, C.

    1983-08-11

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  15. Method and apparatus for measuring response time

    DOEpatents

    Johanson, Edward W.; August, Charles

    1985-01-01

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  16. Shock timing measurements in DT ice layers

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  18. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    SciTech Connect

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  19. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  20. CMS High Level Trigger Timing Measurements

    NASA Astrophysics Data System (ADS)

    Richardson, Clint

    2015-12-01

    The two-level trigger system employed by CMS consists of the Level 1 (L1) Trigger, which is implemented using custom-built electronics, and the High Level Trigger (HLT), a farm of commercial CPUs running a streamlined version of the offline CMS reconstruction software. The operational L1 output rate of 100 kHz, together with the number of CPUs in the HLT farm, imposes a fundamental constraint on the amount of time available for the HLT to process events. Exceeding this limit impacts the experiment's ability to collect data efficiently. Hence, there is a critical need to characterize the performance of the HLT farm as well as the algorithms run prior to start up in order to ensure optimal data taking. Additional complications arise from the fact that the HLT farm consists of multiple generations of hardware and there can be subtleties in machine performance. We present our methods of measuring the timing performance of the CMS HLT, including the challenges of making such measurements. Results for the performance of various Intel Xeon architectures from 2009-2014 and different data taking scenarios are also presented.