Sample records for accurate transport models

  1. Model Comparison for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  2. Assessment of applications of transport models on regional scale solute transport

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  3. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  4. A Mercury Model of Atmospheric Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Alex B.; Chodash, Perry A.; Procassini, R. J.

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  5. Accurate modeling of defects in graphene transport calculations

    NASA Astrophysics Data System (ADS)

    Linhart, Lukas; Burgdörfer, Joachim; Libisch, Florian

    2018-01-01

    We present an approach for embedding defect structures modeled by density functional theory into large-scale tight-binding simulations. We extract local tight-binding parameters for the vicinity of the defect site using Wannier functions. In the transition region between the bulk lattice and the defect the tight-binding parameters are continuously adjusted to approach the bulk limit far away from the defect. This embedding approach allows for an accurate high-level treatment of the defect orbitals using as many as ten nearest neighbors while keeping a small number of nearest neighbors in the bulk to render the overall computational cost reasonable. As an example of our approach, we consider an extended graphene lattice decorated with Stone-Wales defects, flower defects, double vacancies, or silicon substitutes. We predict distinct scattering patterns mirroring the defect symmetries and magnitude that should be experimentally accessible.

  6. Community Sediment Transport Model

    DTIC Science & Technology

    2007-01-01

    Woods Hole, MA 02543-1598 Phone: (508) 457-2269 Fax: (508) 457-2310 email: csherwood@usgs.gov Timothy Keen Naval Research Laboratory, Code...intended to be used as both a research tool and for practical applications. An accurate and useful model will require coupling sediment-transport with...and time steps range from seconds to minutes. We include higher-resolution sediment- transport calculation modules for research problems but, for

  7. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  8. Quantifying errors in trace species transport modeling.

    PubMed

    Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M

    2008-12-16

    One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.

  9. Revisiting low-fidelity two-fluid models for gas-solids transport

    NASA Astrophysics Data System (ADS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  10. Revisiting low-fidelity two-fluid models for gas–solids transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The modelmore » equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.« less

  11. A streamline splitting pore-network approach for computationally inexpensive and accurate simulation of transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmani, Yashar; Oostrom, Martinus; Balhoff, Matthew

    2014-03-20

    Several approaches have been developed in the literature for solving flow and transport at the pore-scale. Some authors use a direct modeling approach where the fundamental flow and transport equations are solved on the actual pore-space geometry. Such direct modeling, while very accurate, comes at a great computational cost. Network models are computationally more efficient because the pore-space morphology is approximated. Typically, a mixed cell method (MCM) is employed for solving the flow and transport system which assumes pore-level perfect mixing. This assumption is invalid at moderate to high Peclet regimes. In this work, a novel Eulerian perspective on modelingmore » flow and transport at the pore-scale is developed. The new streamline splitting method (SSM) allows for circumventing the pore-level perfect mixing assumption, while maintaining the computational efficiency of pore-network models. SSM was verified with direct simulations and excellent matches were obtained against micromodel experiments across a wide range of pore-structure and fluid-flow parameters. The increase in the computational cost from MCM to SSM is shown to be minimal, while the accuracy of SSM is much higher than that of MCM and comparable to direct modeling approaches. Therefore, SSM can be regarded as an appropriate balance between incorporating detailed physics and controlling computational cost. The truly predictive capability of the model allows for the study of pore-level interactions of fluid flow and transport in different porous materials. In this paper, we apply SSM and MCM to study the effects of pore-level mixing on transverse dispersion in 3D disordered granular media.« less

  12. A deterministic model of electron transport for electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  13. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  14. Accurate transport properties for H–CO and H–CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagdigian, Paul J., E-mail: pjdagdigian@jhu.edu

    2015-08-07

    Transport properties for collisions of hydrogen atoms with CO and CO{sub 2} have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES’s) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H–CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H–CO{sub 2} was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were foundmore » to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.« less

  15. Studies of Trace Gas Chemical Cycles Using Observations, Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2001-01-01

    For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).

  16. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  17. Can contaminant transport models predict breakthrough?

    USGS Publications Warehouse

    Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.

    2000-01-01

    A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.

  18. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  19. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y; Glascoe, L

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirementsmore » of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.« less

  20. Effective Stochastic Model for Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.

    2017-12-01

    We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.

  1. Transport Properties for Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.; Bastein, L.; Price, P.N.

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecularmore » forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most

  2. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  3. Mental models accurately predict emotion transitions.

    PubMed

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  4. Mental models accurately predict emotion transitions

    PubMed Central

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  5. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  6. The Importance of Protons in Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  7. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG

  8. Modeling Electronic Quantum Transport with Machine Learning

    DOE PAGES

    Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.

    2014-06-11

    We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less

  9. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.; ,

    1985-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.

  10. A coupled upland-erosion and instream hydrodynamic-sediment transport model for evaluating sediment transport in forested watersheds

    Treesearch

    W. J. Conroy; R. H. Hotchkiss; W. J. Elliot

    2006-01-01

    This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of...

  11. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  12. RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING

    EPA Science Inventory

    The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...

  13. Can the three pore model correctly describe peritoneal transport of protein?

    PubMed

    Waniewski, Jacek; Poleszczuk, Jan; Antosiewicz, Stefan; Baczynński, Daniel; Gałach, Magda; Pietribiasi, Mauro; Wanńkowicz, Zofia

    2014-01-01

    The three pore model (3PM) includes large pores for the description of protein leak to the peritoneal cavity during peritoneal dialysis. However, the reliability of this description has been not fully tested against clinical data yet. Peritoneal transport parameters were estimated using 3PM, extended 3p model (with estimation of fraction of large pores, ext3PM), ext3PM with modified size of pores and proteins (mext3PM), and simplified two pore (2PM, small and ultrasmall pores) models for 32 patients on peritoneal dialysis investigated using the sequential peritoneal equilibration test (consecutive peritoneal equilibration test [PET]: glucose 2.27%, 4 h, and miniPET: glucose 3.86%, 1 h). Urea, creatinine, glucose, sodium, phosphate, albumin, and IgM concentrations were measured in dialysis fluid and plasma. Ext3PM and mext3PM, with large pore fraction of about 0.14, provided a good description of fluid and small solute kinetics, but their predictions for albumin transport were less accurate. Two pore model precisely described the data on fluid and small solute transport. The 3p models could not describe the diffusive-convective transport of albumin as precisely as the transport of fluid, small solutes, and IgM. The 2p model (not applicable for proteins) was an efficient tool for modeling fluid and small solute transport.

  14. Modeling flow and transport in fracture networks using graphs

    NASA Astrophysics Data System (ADS)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  15. Modeling flow and transport in fracture networks using graphs.

    PubMed

    Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times

  16. Modeling flow and transport in fracture networks using graphs

    DOE PAGES

    Karra, S.; O'Malley, D.; Hyman, J. D.; ...

    2018-03-09

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4

  17. Modeling flow and transport in fracture networks using graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karra, S.; O'Malley, D.; Hyman, J. D.

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4

  18. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juxiu Tong; Bill X. Hu; Hai Huang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less

  19. A reduced-dimensional model for near-wall transport in cardiovascular flows

    PubMed Central

    Hansen, Kirk B.

    2015-01-01

    Near-wall mass transport plays an important role in many cardiovascular processes, including the initiation of atherosclerosis, endothelial cell vasoregulation, and thrombogenesis. These problems are characterized by large Péclet and Schmidt numbers as well as a wide range of spatial and temporal scales, all of which impose computational difficulties. In this work, we develop an analytical relationship between the flow field and near-wall mass transport for high-Schmidt-number flows. This allows for the development of a wall-shear-stress-driven transport equation that lies on a codimension-one vessel-wall surface, significantly reducing computational cost in solving the transport problem. Separate versions of this equation are developed for the reaction-rate-limited and transport-limited cases, and numerical results in an idealized abdominal aortic aneurysm are compared to those obtained by solving the full transport equations over the entire domain. The reaction-rate-limited model matches the expected results well. The transport-limited model is accurate in the developed flow regions, but overpredicts wall flux at entry regions and reattachment points in the flow. PMID:26298313

  20. A Lagrangian stochastic model for aerial spray transport above an oak forest

    USGS Publications Warehouse

    Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.

    1995-01-01

    An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.

  1. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  2. Accurate lithography simulation model based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  3. Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Davis, Joshua; Allred, Bradley

    2009-01-01

    The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This

  4. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  5. In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network

    PubMed Central

    Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948

  6. Low-dimensional, morphologically accurate models of subthreshold membrane potential

    PubMed Central

    Kellems, Anthony R.; Roos, Derrick; Xiao, Nan; Cox, Steven J.

    2009-01-01

    The accurate simulation of a neuron’s ability to integrate distributed synaptic input typically requires the simultaneous solution of tens of thousands of ordinary differential equations. For, in order to understand how a cell distinguishes between input patterns we apparently need a model that is biophysically accurate down to the space scale of a single spine, i.e., 1 μm. We argue here that one can retain this highly detailed input structure while dramatically reducing the overall system dimension if one is content to accurately reproduce the associated membrane potential at a small number of places, e.g., at the site of action potential initiation, under subthreshold stimulation. The latter hypothesis permits us to approximate the active cell model with an associated quasi-active model, which in turn we reduce by both time-domain (Balanced Truncation) and frequency-domain (ℋ2 approximation of the transfer function) methods. We apply and contrast these methods on a suite of typical cells, achieving up to four orders of magnitude in dimension reduction and an associated speed-up in the simulation of dendritic democratization and resonance. We also append a threshold mechanism and indicate that this reduction has the potential to deliver an accurate quasi-integrate and fire model. PMID:19172386

  7. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  8. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  9. Consistency between 2D-3D Sediment Transport models

    NASA Astrophysics Data System (ADS)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  10. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  11. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    NASA Astrophysics Data System (ADS)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  12. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  13. An efficient transport solver for tokamak plasmas

    DOE PAGES

    Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...

    2017-01-03

    A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.

  14. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  15. Estimation and upscaling of dual-permeability model parameters for the transport of E.coli D21g in soils with preferential flow

    USDA-ARS?s Scientific Manuscript database

    Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of mi...

  16. Accommodating permafrost in contaminant transport modeling, a preliminary approach to modify the TREECS modeling tools

    NASA Astrophysics Data System (ADS)

    Ryder, J. L.; Dortch, M. S.; Johnson, B. E.

    2017-12-01

    Efforts are underway to adapt TREECS (Training Range Environmental Evaluation and Characterization System) for use in arctic or subarctic conditions where the extent and duration of snowpack and frozen ground may influence the development and concentration of contaminant plumes. TREECS is a multi-media model designed to aid facility managers in the long term stewardship of Army properties. TREECS includes sub-models for mass loading, soil, vadose zone, aquifer, and stream transport. Potential changes to the sub-models to improve the ability to model contaminant transport in areas with permafrost include accurately representing the dissolution of contaminants over a wider range of temperatures, estimating snow depth and ablation for both the hydrology and thermal conditions, determining ground freeze/thaw state and an average active layer depth, a more precise method to estimate a vertical transport time to a water table, and a soil interflow routine that adapts for permafrost condition. In this presentation we will show three sub-model comparisons 1) the use of the National Weather Service SNOW-17 model and the current TREECS snowmelt routines for input hydrology, 2) a Continuous Frozen Ground Index (CFGI) model and the Geophysical Institute Permafrost Lab model (GIPL 1.0) for determining active layer depth and summer season length, and 3) the use of HYDRUS-1D and the current TREECS vadose zone model for transport to the water table. The performance vs input needs, assumptions, and limitations of each approach, as well as the physical system uncertainties will also be discussed.

  17. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  18. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  19. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  20. Accurate temperature measurement by temperature field analysis in diamond anvil cell for thermal transport study of matter under high pressures

    NASA Astrophysics Data System (ADS)

    Yue, Donghui; Ji, Tingting; Qin, Tianru; Wang, Jia; Liu, Cailong; Jiao, Hui; Zhao, Lin; Han, Yonghao; Gao, Chunxiao

    2018-02-01

    The study on the thermal transport properties of matter under high pressure is important but is hard to fulfill in a diamond anvil cell (DAC) because the accurate measurement of the temperature gradient within the sample of DAC is very difficult. In most cases, the sample temperature can be read accurately from the thermocouples that are directly attached to the lateral edges of diamond anvils because both the sample and diamond anvils can be uniformly heated up to a given temperature. But for the thermal transport property studies in DAC, an artificial temperature distribution along the compression axis is a prerequisite. Obviously, the temperature of the top or bottom surface of the sample cannot be substituted by that of diamond anvils although diamond anvils can be considered as a good medium for heat conduction. With temperature field simulation by finite element analysis, it is found that big measurement errors can occur and are fatal to the correct analysis of thermal transport properties of materials. Thus, a method of combining both the four-thermocouple configuration and temperature field analysis is presented for the accurate temperature distribution measurement in DAC, which is based on the single-function relationship between temperature distribution and sample thermal conductivity.

  1. A model of stratospheric chemistry and transport on an isentropic surface

    NASA Technical Reports Server (NTRS)

    Austin, John; Holton, James R.

    1990-01-01

    This paper presents a new photochemical transport model designed to simulate the behavior of stratospheric trace species in the middle stratosphere. The model has an Eulerian grid with the latitude and longitude coordinates on a single isentropic surface (hemispheric or global), in which both the dynamical and the photochemical processes can be accurately represented. The model is intgegrated for 12 days with winds and temperatures supplied by three-dimensional integration of an idealized wavenumber-one disturbance. The results for the long-lived tracers such as N2O showed excellent correlation with the potential vorticity distribution, validating the transport scheme. Calculations with zonally averaged wind and temperature fields showed that discrepancies in the calculation of the zonal mean were less than 10 percent for O3 and HNO3, compared with the zonal mean of the previous results.

  2. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  3. Modeling of transport phenomena in tokamak plasmas with neural networks

    DOE PAGES

    Meneghini, Orso; Luna, Christopher J.; Smith, Sterling P.; ...

    2014-06-23

    A new transport model that uses neural networks (NNs) to yield electron and ion heat ux pro les has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest delity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport pro les. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range ofmore » plasma regimes. Although each radial location is calculated independently from the others, the heat ux pro les are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-de ned, non-stochastic relationship between the input parameters and the experimentally measured transport uxes. Finally, the numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.« less

  4. Comparison of transport properties models for numerical simulations of Mars entry vehicles

    NASA Astrophysics Data System (ADS)

    Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2017-01-01

    Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.

  5. Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications

    USGS Publications Warehouse

    Apotsos, Alex; Buckley, Mark; Gelfenbaum, Guy; Jaffe, Bruce; Vatvani, Deepak

    2011-01-01

    Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.

  6. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    NASA Astrophysics Data System (ADS)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  7. Secondary electron generation, emission and transport: Effects on spacecraft charging and NASCAP models

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn

    1987-01-01

    Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.

  8. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    PubMed

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  9. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    NASA Astrophysics Data System (ADS)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  10. Modeling radium and radon transport through soil and vegetation

    USGS Publications Warehouse

    Kozak, J.A.; Reeves, H.W.; Lewis, B.A.

    2003-01-01

    A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.

  11. Accurate Modeling Method for Cu Interconnect

    NASA Astrophysics Data System (ADS)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  12. Advective transport in heterogeneous aquifers: Are proxy models predictive?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Zarlenga, A.; Gotovac, H.; Jankovic, I.; Volpi, E.; Cvetkovic, V.; Dagan, G.

    2015-12-01

    We examine the prediction capability of two approximate models (Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW)) of non-Fickian transport, by comparison with accurate 2-D and 3-D numerical simulations. Both nonlocal in time approaches circumvent the need to solve the flow and transport equations by using proxy models to advection, providing the breakthrough curves (BTC) at control planes at any x, depending on a vector of five unknown parameters. Although underlain by different mechanisms, the two models have an identical structure in the Laplace Transform domain and have the Markovian property of independent transitions. We show that also the numerical BTCs enjoy the Markovian property. Following the procedure recommended in the literature, along a practitioner perspective, we first calibrate the parameters values by a best fit with the numerical BTC at a control plane at x1, close to the injection plane, and subsequently use it for prediction at further control planes for a few values of σY2≤8. Due to a similar structure and Markovian property, the two methods perform equally well in matching the numerical BTC. The identified parameters are generally not unique, making their identification somewhat arbitrary. The inverse Gaussian model and the recently developed Multi-Indicator Model (MIM), which does not require any fitting as it relates the BTC to the permeability structure, are also discussed. The application of the proxy models for prediction requires carrying out transport field tests of large plumes for a long duration.

  13. Studies of HZE particle interactions and transport for space radiation protection purposes

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn

    1987-01-01

    The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.

  14. Radiation Transport in Type IA Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, R

    1999-11-16

    It has been said more than once that the critical link between explosion models and observations is the ability to accurately simulate cooling and radiation transport in the expanding ejecta of Type Ia supernovae. It is perhaps frustrating to some of the theorists who study explosion mechanisms, and to some of the observers too, that more definitive conclusions have not been reached about the agreement, or lack thereof, between various Type Ia supernova models and the data. Although claims of superlative accuracy in transport simulations are sometimes made, I will argue here that there are outstanding issues of critical importancemore » and in need of addressing before radiation transport calculations are accurate enough to discriminate between subtly different explosion models.« less

  15. Assessing the value of different data sets and modeling schemes for flow and transport simulations

    NASA Astrophysics Data System (ADS)

    Hyndman, D. W.; Dogan, M.; Van Dam, R. L.; Meerschaert, M. M.; Butler, J. J., Jr.; Benson, D. A.

    2014-12-01

    Accurate modeling of contaminant transport has been hampered by an inability to characterize subsurface flow and transport properties at a sufficiently high resolution. However mathematical extrapolation combined with different measurement methods can provide realistic three-dimensional fields of highly heterogeneous hydraulic conductivity (K). This study demonstrates an approach to evaluate the time, cost, and efficiency of subsurface K characterization. We quantify the value of different data sets at the highly heterogeneous Macro Dispersion Experiment (MADE) Site in Mississippi, which is a flagship test site that has been used for several macro- and small-scale tracer tests that revealed non-Gaussian tracer behavior. Tracer data collected at the site are compared to models that are based on different types and resolution of geophysical and hydrologic data. We present a cost-benefit analysis of several techniques including: 1) flowmeter K data, 2) direct-push K data, 3) ground penetrating radar, and 4) two stochastic methods to generate K fields. This research provides an initial assessment of the level of data necessary to accurately simulate solute transport with the traditional advection dispersion equation; it also provides a basis to design lower cost and more efficient remediation schemes at highly heterogeneous sites.

  16. 3ARM: A Fast, Accurate Radiative Transfer Model for Use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  17. 3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  18. 3ARM: A Fast, Accurate Radiative Transfer Model For Use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  19. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model

    NASA Astrophysics Data System (ADS)

    Ribera, Maria

    This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction

  20. Simulations of eddy kinetic energy transport in barotropic turbulence

    NASA Astrophysics Data System (ADS)

    Grooms, Ian

    2017-11-01

    Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.

  1. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    NASA Technical Reports Server (NTRS)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  2. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  3. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection

  4. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  5. Using a Magnetic Flux Transport Model to Predict the Solar Cycle

    NASA Technical Reports Server (NTRS)

    Lyatskaya, S.; Hathaway, D.; Winebarger, A.

    2007-01-01

    We present the results of an investigation into the use of a magnetic flux transport model to predict the amplitude of future solar cycles. Recently Dikpati, de Toma, & Gilman (2006) showed how their dynamo model could be used to accurately predict the amplitudes of the last eight solar cycles and offered a prediction for the next solar cycle - a large amplitude cycle. Cameron & Schussler (2007) found that they could reproduce this predictive skill with a simple 1-dimensional surface flux transport model - provided they used the same parameters and data as Dikpati, de Toma, & Gilman. However, when they tried incorporating the data in what they argued was a more realistic manner, they found that the predictive skill dropped dramatically. We have written our own code for examining this problem and have incorporated updated and corrected data for the source terms - the emergence of magnetic flux in active regions. We present both the model itself and our results from it - in particular our tests of its effectiveness at predicting solar cycles.

  6. Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling.

    PubMed

    Nir, Oded; Marvin, Esra; Lahav, Ori

    2014-11-01

    Measuring and modeling pH in concentrated aqueous solutions in an accurate and consistent manner is of paramount importance to many R&D and industrial applications, including RO desalination. Nevertheless, unified definitions and standard procedures have yet to be developed for solutions with ionic strength higher than ∼0.7 M, while implementation of conventional pH determination approaches may lead to significant errors. In this work a systematic yet simple methodology for measuring pH in concentrated solutions (dominated by Na(+)/Cl(-)) was developed and evaluated, with the aim of achieving consistency with the Pitzer ion-interaction approach. Results indicate that the addition of 0.75 M of NaCl to NIST buffers, followed by assigning a new standard pH (calculated based on the Pitzer approach), enabled reducing measured errors to below 0.03 pH units in seawater RO brines (ionic strength up to 2 M). To facilitate its use, the method was developed to be both conceptually and practically analogous to the conventional pH measurement procedure. The method was used to measure the pH of seawater RO retentates obtained at varying recovery ratios. The results matched better the pH values predicted by an accurate RO transport model. Calibrating the model by the measured pH values enabled better boron transport prediction. A Donnan-induced phenomenon, affecting pH in both retentate and permeate streams, was identified and quantified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors

    NASA Astrophysics Data System (ADS)

    Shen, Yanfei; Cui, Jie; Mohammadi, Saeed

    2017-05-01

    A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.

  8. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS

    USGS Publications Warehouse

    Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.

    2013-01-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.

  9. A comparison of total reaction cross section models used in particle and heavy ion transport codes

    NASA Astrophysics Data System (ADS)

    Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.

    To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.

  10. Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers

    NASA Astrophysics Data System (ADS)

    Li, Shuangcai; Duffy, Christopher J.

    2011-03-01

    Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.

  11. Evaluating the accuracy of recent electron transport models at predicting Hall thruster plasma dynamics

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark; Young, Christopher

    2016-10-01

    We present continued efforts towards introducing physical models for cross-magnetic field electron transport into Hall thruster discharge simulations. In particular, we seek to evaluate whether such models accurately capture ion dynamics, both averaged and resolved in time, through comparisons with measured ion velocity distributions which are now becoming available for several devices. Here, we describe a turbulent electron transport model that is integrated into 2-D hybrid fluid/PIC simulations of a 72 mm diameter laboratory thruster operating at 400 W. We also compare this model's predictions with one recently proposed by Lafluer et al.. Introducing these models into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. The models are tested for their ability to capture the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. Model predictions are also more rigorously evaluated against recent laser-induced fluorescence measurements of time-resolved ion velocity distributions.

  12. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of

  13. A new multiscale air quality transport model (Fluidity, 4.1.9) using fully unstructured anisotropic adaptive mesh technology

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-06-01

    A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.

  14. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.

    PubMed

    Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju

    2017-06-01

    All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scalingmore » that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.« less

  16. A finite-volume ELLAM for three-dimensional solute-transport modeling

    USGS Publications Warehouse

    Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.

    2003-01-01

    A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.

  17. Hot Oxygen Transport Model for Martian Coronal Retrievals with MAVEN's IUVS Instrument

    NASA Astrophysics Data System (ADS)

    Deighan, Justin; Stewart, I.; Schneider, N.

    2013-10-01

    One of the primary goals of the upcoming Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is the study of non-thermal escape of atomic oxygen to space. In support of this goal, the Imaging Ultraviolet Spectrograph (IUVS) instrument will make regular observations of the gravitationally bound O corona surrounding the planet. Interpreting these measurements requires a computationally efficient forward model to calculate collisional transport of hot O through the exosphere. To accurately treat the strong forward scattering of O at energies of a few eV, we are developing a model which applies the δ-M approximation from radiative transport theory. This method consolidates the strong forward peak of the scattering phase function into a δ-function, leaving the residual as a sum of smoothly varying Legendre polynomials. Preliminary Monte Carlo results with this approach show great promise, producing coronal O densities and escape rates with accuracies of ~5% or better. Our objective is to integrate this δ-M technique into a Markov-Chain transport model. The Markov-Chain method produces hot O particle densities and velocity distributions as a function of altitude by quantizing all possible particle states and calculating the probabilities of state transition, then solving for equilibrium using standard matrix routines. This allows for forward model run-times on the order of seconds, enabling real-time pipeline retrievals from IUVS measurements. The general method is applicable to rapidly calculating the transport of any strongly forward scattering species through a background medium.

  18. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.

    PubMed

    Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W

    2013-03-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  19. Multi-model ensemble estimation of volume transport through the straits of the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Han, Sooyeon; Hirose, Naoki; Usui, Norihisa; Miyazawa, Yasumasa

    2016-01-01

    The volume transports measured at the Korea/Tsushima, Tsugaru, and Soya/La Perouse Straits remain quantitatively inconsistent. However, data assimilation models at least provide a self-consistent budget despite subtle differences among the models. This study examined the seasonal variation of the volume transport using the multiple linear regression and ridge regression of multi-model ensemble (MME) methods to estimate more accurately transport at these straits by using four different data assimilation models. The MME outperformed all of the single models by reducing uncertainties, especially the multicollinearity problem with the ridge regression. However, the regression constants turned out to be inconsistent with each other if the MME was applied separately for each strait. The MME for a connected system was thus performed to find common constants for these straits. The estimation of this MME was found to be similar to the MME result of sea level difference (SLD). The estimated mean transport (2.43 Sv) was smaller than the measurement data at the Korea/Tsushima Strait, but the calibrated transport of the Tsugaru Strait (1.63 Sv) was larger than the observed data. The MME results of transport and SLD also suggested that the standard deviation (STD) of the Korea/Tsushima Strait is larger than the STD of the observation, whereas the estimated results were almost identical to that observed for the Tsugaru and Soya/La Perouse Straits. The similarity between MME results enhances the reliability of the present MME estimation.

  20. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  1. A Simple and Accurate Rate-Driven Infiltration Model

    NASA Astrophysics Data System (ADS)

    Cui, G.; Zhu, J.

    2017-12-01

    In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.

  2. Accurate electromagnetic modeling of terahertz detectors

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; McGrath, William R.

    2004-01-01

    Twin slot antennas coupled to superconducting devices have been developed over the years as single pixel detectors in the terahertz (THz) frequency range for space-based and astronomy applications. Used either for mixing or direct detection, they have been object of several investigations, and are currently being developed for several missions funded or co-funded by NASA. Although they have shown promising performance in terms of noise and sensitivity, so far they have usually also shown a considerable disagreement in terms of performance between calculations and measurements, especially when considering center frequency and bandwidth. In this paper we present a thorough and accurate electromagnetic model of complete detector and we compare the results of calculations with measurements. Starting from a model of the embedding circuit, the effect of all the other elements in the detector in the coupled power have been analyzed. An extensive variety of measured and calculated data, as presented in this paper, demonstrates the effectiveness and reliability of the electromagnetic model at frequencies between 600 GHz and 2.5THz.

  3. Dense granular flow rheology in turbulent bedload transport: from particle-scale simulations to continuous modelling

    NASA Astrophysics Data System (ADS)

    Maurin, R.; Chauchat, J.; Frey, P.

    2016-12-01

    Considering a granular bed submitted to a surface fluid flow, bedload transport is classically defined by opposition to suspension and aeolian saltation, as the part of the load in contact with the granular bed. The granular rheology in bedload transport is characteristic of the granular bed response to the fluid shear stress, and is fundamental both for the phenomenon understanding and for upscaling in the framework of two-phase continuous modelling. Using a validated coupled fluid-Discrete Element Model for turbulent bedload transport, the granular rheology is characterized by computing locally the granular stress tensor as a function of the depth for a serie of simulations varying the Shields number, the particle diameter and the specific density. The obtained results are analyzed in the framework of the mu(I) rheology and exhibit a collapse of the data over a wide range of inertial numbers. This shows the relevancy in modelling the granular phase in bedload transport using the mu(I) rheology. By pragmatically fitting the classical expression of the solid volume fraction and the shear to normal granular stress ratio with the results obtained, a parametrization of the mu(I) rheology is proposed for bedload transport, and tested using a 1D two-phase continuous model. The latter is shown to reproduce accurately the dense granular depth profiles, and the classical behavior in terms of dimensionless sediment transport rate as a function of the Shields number. The proposed rheology therefore represents an important step for upscaling in the framework of two-phase continuous modelling of bedload transport.

  4. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false

  5. A Systems Approach to Scalable Transportation Network Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less

  6. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    DTIC Science & Technology

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  7. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, Leonard F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  8. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  9. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  10. Electronic transport in VO 2 —Experimentally calibrated Boltzmann transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinaci, Alper; Kado, Motohisa; Rosenmann, Daniel

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high qualitymore » VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.« less

  11. Transport Studies and Modeling in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these

  12. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    PubMed

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  13. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  14. Allele-sharing models: LOD scores and accurate linkage tests.

    PubMed

    Kong, A; Cox, N J

    1997-11-01

    Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested.

  15. Allele-sharing models: LOD scores and accurate linkage tests.

    PubMed Central

    Kong, A; Cox, N J

    1997-01-01

    Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested. PMID:9345087

  16. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  17. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  18. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    NASA Astrophysics Data System (ADS)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  19. Exchanging transportation networks between two GISs via the SDTS

    DOT National Transportation Integrated Search

    1997-05-01

    Performing meaningful network analyses is greatly dependent upon accurate and : complete transportation network models, which are digitized into a Geographic : Information System (GIS) or, more often, imported from another GIS. : Transportation netwo...

  20. A Transportation Modeling Primer

    DOT National Transportation Integrated Search

    2006-06-01

    This primer is intended to explain the urban transportation modeling process works, the assumptions made and the steps used to forecast travel demand for urban transportation planning. This is done in order to help to understand the process and its i...

  1. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    NASA Astrophysics Data System (ADS)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  2. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this

  3. Improving Representation of Convective Transport for Scale-Aware Parameterization, Part II: Analysis of Cloud-Resolving Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.

    2015-04-27

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraftmore » eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.« less

  4. Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman

    2015-01-01

    The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.

  5. Sustainable intermodal freight transportation: Applying the geospatial intermodal freight transport model

    NASA Astrophysics Data System (ADS)

    Comer, Bryan

    To study the energy and environmental impacts of emissions associated with freight transportation, the Geospatial Intermodal Freight Transport (GIFT) model was created as a joint research collaborative between the Rochester Institute of Technology (RIT) and the University of Delaware (UD). The GIFT model is a Geographic Information Systems (GIS) based model that links the U.S. and Canadian water, rail, and road transportation networks through intermodal transfer facilities to create an intermodal network. The purpose of my thesis is to apply the GIFT model to examine potential public policies related to intermodal freight transportation in the Great Lakes region of the United States. My thesis will consist of two papers. The first paper will examine the environmental, economic, and time-of-delivery tradeoffs associated with freight transportation in the Great Lakes region and examine opportunities for marine vessels to replace a portion of heavy-duty trucks for containerized freight transport. The second paper will explore the potential benefits of using the Great Lakes as a corridor for short-sea shipping as part of a longer intermodal route. The intent of my thesis is to shed light on the current issues associated with freight transport in the Great Lakes region and present public policy alternatives to address said issues. Ideally, this thesis will better inform policymakers on the impacts and tradeoffs associated with freight transportation.

  6. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  7. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between

  8. Evaluation of Tropical Transport in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; DaSilva, A. M.; Lin, S.-J.; Pawson, S.; Rood, R. B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Observations of constituents from satellite, aircraft and sondes can be utilized to develop diagnostics of various aspects of tropical transport. These include tropical mid-latitude isolation, the seasonal transport from the upper tropical troposphere to the mid-latitude lowermost stratosphere, the seasonal cycle of the tropical total ozone and its variability. These diagnostics will be applied to constituent fields from an off-line chemistry and transport model (CTM) driven by winds from two sources. These are the Finite Volume Community Climate Model (FV-CCM), a general circulation model that uses the NCAR CCM physics and the Lin and Rood dynamical core, and an assimilation system developed by the Data Assimilation Office at the Goddard Space Flight Center that uses the FV-CCM at its core. Signatures of the quasi-biennial oscillation present in the observations will be emphasized to understand differences between the two model transports and the transport inferred from the observations.

  9. Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images

    NASA Technical Reports Server (NTRS)

    Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.

    1999-01-01

    Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.

  10. Radiation Transport and Shielding for Space Exploration and High Speed Flight Transportation

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Trapathi, R. K.

    1997-01-01

    Transportation of ions and neutrons in matter is of direct interest in several technologically important and scientific areas, including space radiation, cosmic ray propagation studies in galactic medium, nuclear power plants and radiological effects that impact industrial and public health. For the proper assessment of radiation exposure, both reliable transport codes and accurate data are needed. Nuclear cross section data is one of the essential inputs into the transport codes. In order to obtain an accurate parametrization of cross section data, theoretical input is indispensable especially for processes where there is little or no experimental data available. In this grant period work has been done on the studies of the use of relativistic equations and their one-body limits. The results will be useful in choosing appropriate effective one-body equation for reaction calculations. Work has also been done to improve upon the data base needed for the transport codes used in the studies of radiation transport and shielding for space exploration and high speed flight transportation. A phenomenological model was developed for the total absorption cross sections valid for any system of charged and/or uncharged collision pairs for the entire energy range. The success of the model is gratifying. It is being used by other federal agencies, national labs and universities. A list of publications based on the work during the grant period is given below and copies are enclosed with this report.

  11. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  12. Uncertainty in tsunami sediment transport modeling

    USGS Publications Warehouse

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  13. Mathematical Model Formulation And Validation Of Water And Solute Transport In Whole Hamster Pancreatic Islets

    PubMed Central

    Benson, Charles T.; Critser, John K.

    2014-01-01

    Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat and mass transport. Model selection often depends on the configuration of the tissue. Here, a mathematical and conceptual model of water and solute transport for whole hamster pancreatic islets has been developed and experimentally validated incorporating fundamental biophysical data from previous studies on individual hamster islet cells while retaining whole-islet structural information. It describes coupled transport of water and solutes through the islet by three methods: intracellularly, intercellularly, and in combination. In particular we use domain decomposition techniques to couple a transmembrane flux model with an interstitial mass transfer model. The only significant undetermined variable is the cellular surface area which is in contact with the intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3 × 3 factorial experimental design blocked for experimental day. Whole islet physical experiments were compared with model predictions at three temperatures, three perfusing solutions, and three islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to correlate with a coefficient of determination of 0.87 ± 0.06 (mean ± S.D.). Only the treatment variable of perfusing solution was found to be significant (p < 0.05). We have devised a model that retains much of the intrinsic geometric configuration of the system, and thus fewer laboratory experiments are needed to determine model parameters and thus to develop new optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other concentric tissue structures may be made. PMID:24950195

  14. Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.

    2005-05-01

    Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system

  15. Parameterization and Modeling of Coupled Heat and Mass Transport in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Yang, Z.

    2016-12-01

    The coupled heat and mass transport in the vadose zone is essentially a multiphysics issue. Addressing this issue appropriately has remarkable impacts on soil physical, chemical and biological processes. To data, most coupled heat and water transport modeling has focused on the interactions between liquid water, water vapor and heat transport in homogeneous and layered soils. Comparatively little work has been done on structured soils where preferential infiltration and evaporation flow occurs. Moreover, the traditional coupled heat and water model usually neglects the nonwetting phase air flow, which was found to be significant in the state-of-the-art modeling framework for coupled heat and water transport investigation. However, the parameterizations for the nonwetting phase air permeability largely remain elusive so far. In order to address the above mentioned limitations, this study aims to develop and validate a predictive multiphysics modeling framework for coupled soil heat and water transport in the heterogeneous shallow subsurface. To this end, the following research work is specifically conducted: (a) propose an improved parameterization to better predict the nonwetting phase relative permeability; (b) determine the dynamics, characteristics and processes of simultaneous soil moisture and heat movement in homogeneous and layered soils; and (c) develop a nonisothermal dual permeability model for heterogeneous structured soils. The results of our studies showed that: (a) the proposed modified nonwetting phase relative permeability models are much more accurate, which can be adopted for better parameterization in the subsequent nonisothermal two phase flow models; (b) the isothermal liquid film flow, nonwetting phase gas flow and liquid-vapor phase change non-equilibrium effects are significant in the arid and semiarid environments (Riverside, California and Audubon, Arizona); and (c) the developed nonisothermal dual permeability model is capable of

  16. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1; The Numerical Model

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Petrosian, Vahe; Mariska, John T.

    2009-01-01

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

  17. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Petrosian, Vahe; Mariska, John T.

    2009-09-10

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated themore » simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.« less

  18. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    PubMed

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  19. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

    DOE PAGES

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...

    2015-10-26

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less

  20. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  1. Understanding Transportation Systems : An Integrated Approach to Modeling Complex Transportation Systems

    DOT National Transportation Integrated Search

    2013-01-01

    The ability to model and understand the complex dynamics of intelligent agents as they interact within a transportation system could lead to revolutionary advances in transportation engineering and intermodal surface transportation in the United Stat...

  2. High-frequency fluctuations in Denmark Strait transport

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.

    2010-07-01

    Denmark Strait ocean current transport exhibits quasi-regular fluctuations immediately south of the sill with periods of 2-4 days. The transport variability is similar to the mean transport itself. Using a circulation model we explore prospects to monitor the fluctuations. The model has realistic transport and shows water leaving Denmark Strait in equivalent-barotropic cyclones that are nearly geostrophic and correlate with sea-surface height (SSH). Existing satellite altimeter observations of SSH have adequate space/time sampling to reconstruct the transport fluctuations using a regression developed from the model results, but measurement error overwhelms the signal. From the model results, the pending Surface Water and Ocean Topography (SWOT) wide-swath altimeter appears accurate enough, and with good-enough coverage, to allow the transport fluctuations to be reconstructed. Bottom pressure recorders at the exit of the Denmark Strait can also reproduce the transport variability.

  3. Modeling sediment transport as a spatio-temporal Markov process.

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Ancey, Christophe

    2014-05-01

    Despite a century of research about sediment transport by bedload occuring in rivers, its constitutive laws remain largely unknown. The proof being that our ability to predict mid-to-long term transported volumes within reasonable confidence interval is almost null. The intrinsic fluctuating nature of bedload transport may be one of the most important reasons why classical approaches fail. Microscopic probabilistic framework has the advantage of taking into account these fluctuations at the particle scale, to understand their effect on the macroscopic variables such as sediment flux. In this framework, bedload transport is seen as the random motion of particles (sand, gravel, pebbles...) over a two-dimensional surface (the river bed). The number of particles in motion, as well as their velocities, are random variables. In this talk, we show how a simple birth-death Markov model governing particle motion on a regular lattice accurately reproduces the spatio-temporal correlations observed at the macroscopic level. Entrainment, deposition and transport of particles by the turbulent fluid (air or water) are supposed to be independent and memoryless processes that modify the number of particles in motion. By means of the Poisson representation, we obtained a Fokker-Planck equation that is exactly equivalent to the master equation and thus valid for all cell sizes. The analysis shows that the number of moving particles evolves locally far from thermodynamic equilibrium. Several analytical results are presented and compared to experimental data. The index of dispersion (or variance over mean ratio) is proved to grow from unity at small scales to larger values at larger scales confirming the non Poisonnian behavior of bedload transport. Also, we study the one and two dimensional K-function, which gives the average number of moving particles located in a ball centered at a particle centroid function of the ball's radius.

  4. Modeling particle transport and discoloration risk in drinking water distribution networks

    NASA Astrophysics Data System (ADS)

    van Summeren, Joost; Blokker, Mirjam

    2017-10-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  5. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  6. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  7. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE PAGES

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; ...

    2018-05-20

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  8. Accurate modeling of the hose instability in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  9. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  10. Accurate analytical modeling of junctionless DG-MOSFET by green's function approach

    NASA Astrophysics Data System (ADS)

    Nandi, Ashutosh; Pandey, Nilesh

    2017-11-01

    An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.

  11. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  12. A bilayer model for bedload sediment transport as generalization of Exner models

    NASA Astrophysics Data System (ADS)

    Escalante, Cipriano; Fernandez-Nieto, Enrique; Morales de Luna, Tomas; Narbona Reina, Gladys

    2017-04-01

    Sediment can be transported in several ways by the action of a river. During low transport stages, particles move by sliding and rolling over the surface of the bed. This type of transport is usually called bedload transport. The usual approach to model these phenomena is to use the Saint-Venant-Exner model (SVE) which consists in a shallow water model coupled with a morphodynamical component for the bedload transport. The bedload transport depends on an empirical flux. Nevertheless, this approach presents some drawbacks, for instance, gravitational effects for bedload transport is neglected and the momentum equation for the sediment is missing. In this work we present a two-layer shallow water type model in order to better describe bedload transport. We consider an upper layer consisting in clear water and a lower layer which accounts for the sediment material. This allows to better describe the phenomena. The key point is the definition of the friction laws between the two layers. The model is a generalization of classic models as it allows to recover SVE system when the ratio between the hydrodynamic and morphodynamic time scales is small, as commonly done to derive SVE models.

  13. Mathematical model formulation and validation of water and solute transport in whole hamster pancreatic islets.

    PubMed

    Benson, James D; Benson, Charles T; Critser, John K

    2014-08-01

    Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat and mass transport. Model selection often depends on the configuration of the tissue. Here, a mathematical and conceptual model of water and solute transport for whole hamster pancreatic islets has been developed and experimentally validated incorporating fundamental biophysical data from previous studies on individual hamster islet cells while retaining whole-islet structural information. It describes coupled transport of water and solutes through the islet by three methods: intracellularly, intercellularly, and in combination. In particular we use domain decomposition techniques to couple a transmembrane flux model with an interstitial mass transfer model. The only significant undetermined variable is the cellular surface area which is in contact with the intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3×3 factorial experimental design blocked for experimental day. Whole islet physical experiments were compared with model predictions at three temperatures, three perfusing solutions, and three islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to correlate with a coefficient of determination of 0.87±0.06 (mean ± SD). Only the treatment variable of perfusing solution was found to be significant (p<0.05). We have devised a model that retains much of the intrinsic geometric configuration of the system, and thus fewer laboratory experiments are needed to determine model parameters and thus to develop new optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other concentric tissue structures may be made. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  15. A new accurate quadratic equation model for isothermal gas chromatography and its comparison with the linear model

    PubMed Central

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489

  16. Hydraulic experiment on formation mechanism of tsunami deposit and verification of sediment transport model for tsunamis

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but

  17. Transport and Reactive Flow Modelling Using A Particle Tracking Method Based on Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2017-12-01

    Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in

  18. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood.

    PubMed

    Lv, Dayu; Kulkarni, Sandip D; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P; Farhi, Leon S; Breton, Marc D

    2015-07-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. © 2015 Diabetes Technology Society.

  19. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  20. Coupled Neutron Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.

    2009-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  1. Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights

    NASA Astrophysics Data System (ADS)

    Rasmuson, J. A.; Johnson, W. P.

    2017-12-01

    surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.

  2. Pesticide transport with runoff from turf: observations compared with TurfPQ model simulations.

    PubMed

    Kramer, Kirsten E; Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L; King, Kevin W

    2009-01-01

    Pesticides applied to turf grass have been detected in surface waters raising concerns of their effect on water quality and interest in their source, hydrological transport and use of models to predict transport. TurfPQ, a pesticide runoff model for turf grass, predicts pesticide transport but has not been rigorously validated for larger storms. The objective of this study was to determine TurfPQ's ability to accurately predict the transport of pesticides with runoff following more intense precipitation. The study was conducted with creeping bentgrass [Agrostis palustris Huds.] turf managed as a golf course fairway. A pesticide mixture containing dicamba, 2,4-D, MCPP, flutolanil, and chlorpyrifos was applied to six adjacent 24.4 by 6.1 m plots. Controlled rainfall simulations were conducted using a rainfall simulator designed to deliver water droplets similar to natural rain. Runoff flow rates and volume were measured and water samples were collected for analysis of pesticide concentrations. Six simulations yielded 13 events with which to test TurfPQ. Measured mean percentage of applied pesticide recovered in the runoff for dicamba, 2,4-D, MCPP, flutolanil, and chlorpyrifos was 24.6, 20.7, 14.9, 5.9, and 0.8%, respectively. The predicted mean values produced by TurfPQ were 13.7, 15.6, 15.5, 2.5, and 0.2%, respectively. The model produced correlations of r=0.56 and 0.64 for curve number hydrology and measured hydrology, respectively. Comparisons of the model estimates with our field observations indicate that TurfPQ under predicted pesticide runoff during 69.5+/-11.4 mm, 1.9+/-0.2 h, simulated storms.

  3. Accurate monoenergetic electron parameters of laser wakefield in a bubble model

    NASA Astrophysics Data System (ADS)

    Raheli, A.; Rahmatallahpur, S. H.

    2012-11-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.

  4. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    NASA Astrophysics Data System (ADS)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  5. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  6. Recalibration and predictive reliability of a solute-transport model of an irrigated stream-aquifer system

    USGS Publications Warehouse

    Person, M.; Konikow, Leonard F.

    1986-01-01

    A solute-transport model of an irrigated stream-aquifer system was recalibrated because of discrepancies between prior predictions of ground-water salinity trends during 1971-1982 and the observed outcome in February 1982. The original model was calibrated with a 1-year record of data collected during 1971-1972 in an 18-km reach of the Arkansas River Valley in southeastern Colorado. The model is improved by incorporating additional hydrologic processes (salt transport through the unsaturated zone) and through reexamination of the reliability of some input data (regression relationship used to estimate salinity from specific conductance data). Extended simulations using the recalibrated model are made to investigate the usefulness of the model for predicting long-term trends of salinity and water levels within the study area. Predicted ground-water levels during 1971-1982 are in good agreement with the observed, indicating that the original 1971-1972 study period was sufficient to calibrate the flow model. However, long-term simulations using the recalibrated model based on recycling the 1971-1972 data alone yield an average ground-water salinity for 1982 that is too low by about 10%. Simulations that incorporate observed surface-water salinity variations yield better results, in that the calculated average ground-water salinity for 1982 is within 3% of the observed value. Statistical analysis of temporal salinity variations of the applied surface water indicates that at least a 4-year sampling period is needed to accurately calibrate the transport model. ?? 1986.

  7. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    PubMed

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  8. Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model

    NASA Astrophysics Data System (ADS)

    Toro, J.; Padilla, I. Y.

    2017-12-01

    Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.

  9. A pairwise maximum entropy model accurately describes resting-state human brain networks

    PubMed Central

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410

  10. Accurate Modeling of the Terrestrial Gamma-Ray Background for Homeland Security Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandness, Gerald A.; Schweppe, John E.; Hensley, Walter K.

    2009-10-24

    Abstract–The Pacific Northwest National Laboratory has developed computer models to simulate the use of radiation portal monitors to screen vehicles and cargo for the presence of illicit radioactive material. The gamma radiation emitted by the vehicles or cargo containers must often be measured in the presence of a relatively large gamma-ray background mainly due to the presence of potassium, uranium, and thorium (and progeny isotopes) in the soil and surrounding building materials. This large background is often a significant limit to the detection sensitivity for items of interest and must be modeled accurately for analyzing homeland security situations. Calculations ofmore » the expected gamma-ray emission from a disk of soil and asphalt were made using the Monte Carlo transport code MCNP and were compared to measurements made at a seaport with a high-purity germanium detector. Analysis revealed that the energy spectrum of the measured background could not be reproduced unless the model included gamma rays coming from the ground out to distances of at least 300 m. The contribution from beyond about 50 m was primarily due to gamma rays that scattered in the air before entering the detectors rather than passing directly from the ground to the detectors. These skyshine gamma rays contribute tens of percent to the total gamma-ray spectrum, primarily at energies below a few hundred keV. The techniques that were developed to efficiently calculate the contributions from a large soil disk and a large air volume in a Monte Carlo simulation are described and the implications of skyshine in portal monitoring applications are discussed.« less

  11. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchan, A.G., E-mail: andrew.buchan@imperial.ac.uk; Calloo, A.A.; Goffin, M.G.

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead theymore » are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.« less

  12. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  13. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  14. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil.

    PubMed

    Bhavsar, Satyendra P; Gandhi, Nilima; Diamond, Miriam L

    2008-01-01

    Atmospheric deposition of metals emitted from mining operations has raised metal concentrations in the surrounding soils. This repository may be remobilized and act as a source of metals to nearby surface aquatic systems. It is important to understand metal dynamics and the impact of various chemistry and fate parameters on metal movement in the soil environment in order to evaluate risk associated with metals in terrestrial ecosystems and accurately establish critical discharge limits that are protective of aquatic biota. Here we extend our previously developed coupled multispecies metal fate-TRANsport and SPECiation/complexation (TRANSPEC) model, which was applicable to surface aquatic systems. The extended TRANSPEC, termed TRANSPEC-II, estimates the partition coefficient, K(d), between the soil-solid and -soluble phases using site-specific data and a semi-empirical regression model obtained from literature. A geochemical model calculates metal and species fractions in the dissolved and colloidal phases of the soil solution. The multispecies fugacity/aquivalence based fate-transport model then estimates inter-media transport rates such as leaching from soil, soil runoff, and water-sediment exchanges of each metal species. The model is illustratively applied to Ni in the Kelly Lake watershed (Sudbury, Ontario, Canada), where several mining operations are located. The model results suggest that the current atmospheric fallout supplies only 4% of Ni removed from soil through soil runoff and leaching. Soil runoff contributes about 20% of Ni entering into Kelly Lake with the rest coming from other sources. Leaching to groundwater, apart from runoff, is also a major loss process for Ni in the soil. A sensitivity analysis indicates that raising soil pH to above 6 may substantially reduce metal runoff and improve water quality of nearby water bodies that are impacted by runoff.

  15. Freight Transportation Energy Use : Appendix. Transportation Network Model Output.

    DOT National Transportation Integrated Search

    1978-07-01

    The overall design of the TSC Freight Energy Model is presented. A hierarchical modeling strategy is used, in which detailed modal simulators estimate the performance characteristics of transportation network elements, and the estimates are input to ...

  16. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  17. Applying Simulation and Logistics Modeling to Transportation Issues

    DOT National Transportation Integrated Search

    1995-08-15

    This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...

  18. Modeling the transport of cryoprotective agents in articular cartilage for cryopreservation

    NASA Astrophysics Data System (ADS)

    Torqabeh, Alireza Abazari

    Loading vitrifiable concentrations of cryoprotective agents is an important step for cryopreservation of biological tissues by vitrification for research and transplantation purposes. This may be done by immersing the tissue in a cryoprotective agent (CPA) solution, and increasing the concentration, continuously or in multiple steps, and simultaneously decreasing the temperature to decrease the toxicity effects of the cryoprotective agent on the tissue cellular system. During cryoprotective agent loading, osmotic water movement from the tissue to the surrounding solution, and the resultant tissue shrinkage and stress-strain in the tissue matrix as well as on the cellular system can significantly alter the outcome of the cryopreservation protocol. In this thesis, a biomechanical model for articular cartilage is developed to account for the transport of the cryoprotective agent, the nonideal-nondilute properties of the vitrifiable solutions, the osmotic water movement and the resultant tissue shrinkage and stress-strain in the tissue matrix, and the osmotic volume change of the chondrocytes, during cryoprotective agent loading in the cartilage matrix. Four essential transport parameters needed for the model were specified, the values of which were obtained uniquely by fitting the model to experimental data from porcine articular cartilage. Then, it was shown that using real nonuniform initial distributions of water and fixed charges in cartilage, measured separately in this thesis using MRI, in the model can significantly affect the model predictions. The model predictions for dimethyl sulfoxide diffusion in porcine articular cartilage were verified by comparing to spatially and temporally resolved measurements of dimethyl sulfoxide concentration in porcine articular cartilage using a spectral MRI technique, developed for this purpose and novel to the field of cryobiology. It was demonstrated in this thesis that the developed mathematical model provides a novel tool

  19. Dissipative transport in superlattices within the Wigner function formalism

    DOE PAGES

    Jonasson, O.; Knezevic, I.

    2015-07-30

    Here, we employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.

  20. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  1. Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments

    NASA Astrophysics Data System (ADS)

    Javernick, Luke; Redolfi, Marco; Bertoldi, Walter

    2018-05-01

    New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.

  2. An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

    NASA Astrophysics Data System (ADS)

    Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.

    2016-02-01

    As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.

  3. Uncertain Representations of Sub-Grid Pollutant Transport in Chemistry-Transport Models and Impacts on Long-Range Transport and Global Composition

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Zhu, Z.; Ott, L. E.; Molod, A.; Duncan, B. N.; Nielsen, J. E.

    2009-01-01

    Sub-grid transport, by convection and turbulence, is known to play an important role in lofting pollutants from their source regions. Consequently, the long-range transport and climatology of simulated atmospheric composition are impacted. This study uses the Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric model to study pollutant transport. The baseline model uses a Relaxed Arakawa-Schubert (RAS) scheme that represents convection through a sequence of linearly entraining cloud plumes characterized by unique detrainment levels. Thermodynamics, moisture and trace gases are transported in the same manner. Various approximate forms of trace-gas transport are implemented, in which the box-averaged cloud mass fluxes from RAS are used with different numerical approaches. Substantial impacts on forward-model simulations of CO (using a linearized chemistry) are evident. In particular, some aspects of simulations using a diffusive form of sub-grid transport bear more resemblance to space-biased CO observations than do the baseline simulations with RAS transport. Implications for transport in the real atmosphere will be discussed. Another issue of importance is that many adjoint/inversion computations use simplified representations of sub-grid transport that may be inconsistent with the forward models: implications will be discussed. Finally, simulations using a complex chemistry model in GEOS-5 (in place of the linearized CO model) are underway: noteworthy results from this simulation will be mentioned.

  4. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways

    PubMed Central

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-01-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 μm aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301

  5. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    PubMed

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  6. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport

  7. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  8. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  9. Transportation Sector Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. Themore » current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic

  10. Scaling laws and reduced-order models for mixing and reactive-transport in heterogeneous anisotropic porous media

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Karra, S.; Nakshatrala, K. B.

    2016-12-01

    Fundamental to enhancement and control of the macroscopic spreading, mixing, and dilution of solute plumes in porous media structures is the topology of flow field and underlying heterogeneity and anisotropy contrast of porous media. Traditionally, in literature, the main focus was limited to the shearing effects of flow field (i.e., flow has zero helical density, meaning that flow is always perpendicular to vorticity vector) on scalar mixing [2]. However, the combined effect of anisotropy of the porous media and the helical structure (or chaotic nature) of the flow field on the species reactive-transport and mixing has been rarely studied. Recently, it has been experimentally shown that there is an irrefutable evidence that chaotic advection and helical flows are inherent in porous media flows [1,2]. In this poster presentation, we present a non-intrusive physics-based model-order reduction framework to quantify the effects of species mixing in-terms of reduced-order models (ROMs) and scaling laws. The ROM framework is constructed based on the recent advancements in non-negative formulations for reactive-transport in heterogeneous anisotropic porous media [3] and non-intrusive ROM methods [4]. The objective is to generate computationally efficient and accurate ROMs for species mixing for different values of input data and reactive-transport model parameters. This is achieved by using multiple ROMs, which is a way to determine the robustness of the proposed framework. Sensitivity analysis is performed to identify the important parameters. Representative numerical examples from reactive-transport are presented to illustrate the importance of the proposed ROMs to accurately describe mixing process in porous media. [1] Lester, Metcalfe, and Trefry, "Is chaotic advection inherent to porous media flow?," PRL, 2013. [2] Ye, Chiogna, Cirpka, Grathwohl, and Rolle, "Experimental evidence of helical flow in porous media," PRL, 2015. [3] Mudunuru, and Nakshatrala, "On

  11. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  12. How Accurate Is A Hydraulic Model? | Science Inventory | US ...

    EPA Pesticide Factsheets

    Symposium paper Network hydraulic models are widely used, but their overall accuracy is often unknown. Models are developed to give utilities better insight into system hydraulic behavior, and increasingly the ability to predict the fate and transport of chemicals. Without an accessible and consistent means of validating a given model against the system it is meant to represent, the value of those supposed benefits should be questioned. Supervisory Control And Data Acquisition (SCADA) databases, though ubiquitous, are underused data sources for this type of task. Integrating a network model with a measurement database would offer professionals the ability to assess the model’s assumptions in an automated fashion by leveraging enormous amounts of data.

  13. Constraint-Based Routing Models for the Transport of Radioactive Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway,more » highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via

  14. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  15. A Benchmarking Initiative for Reactive Transport Modeling Applied to Subsurface Environmental Applications

    NASA Astrophysics Data System (ADS)

    Steefel, C. I.

    2015-12-01

    Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.

  16. Modeling transport phenomena and uncertainty quantification in solidification processes

    NASA Astrophysics Data System (ADS)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification

  17. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  18. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330

  20. Reactive transport modeling

    USDA-ARS?s Scientific Manuscript database

    This special section in the Vadose Zone Journal focusing on reactive transport modeling was developed from a special symposium jointly sponsored by the Soil Physics and Soil Chemistry Divisions of the Soil Science Society of America at the 2010 annual meetings held in Long Beach, CA. It contains eig...

  1. Initial sediment transport model of the mining-affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  2. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    NASA Astrophysics Data System (ADS)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  3. Parameter optimization for surface flux transport models

    NASA Astrophysics Data System (ADS)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  4. Object-oriented data model of the municipal transportation

    NASA Astrophysics Data System (ADS)

    Pan, Yuqing; Sheng, Yehua; Zhang, Guiying

    2008-10-01

    The transportation problem is always one of main questions each big city all over the world faces. Managing the municipal transportation using GIS is becoming the important trend. And the data model is the transportation information system foundation. The organization and storage of the data must consider well in the system design. The data model not only needs to meet the demand that the transportation navigates, but also needs to achieve the good visual effects, also can carry on the management and the maintenance to the traffic information. According to the object-oriented theory and the method, the road is divided into segment, intersection. This paper analyzed the driveway, marking, sign and other transportation facilities and the relationship with the segment, intersection and constructed the municipal transportation data model which is adequate to the demand of vehicles navigation, visual and management. The paper also schemes the the all kinds of transportation data. The practice proves that this data model can satisfy the application demands of traffic management system.

  5. A dental vision system for accurate 3D tooth modeling.

    PubMed

    Zhang, Li; Alemzadeh, K

    2006-01-01

    This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.

  6. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  7. Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    NASA Astrophysics Data System (ADS)

    Khan, Tanvir R.; Perlinger, Judith A.

    2017-10-01

    Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of

  8. Towards Accurate Modelling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-04-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  9. Uncertainty in the Modeling of Tsunami Sediment Transport

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Sugawara, D.; Goto, K.; Gelfenbaum, G. R.; La Selle, S.

    2016-12-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. A recent study (Jaffe et al., 2016) explores sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami properties, study site characteristics, available input data, sediment grain size, and the model used. Although uncertainty has the potential to be large, case studies for both forward and inverse models have shown that sediment transport modeling provides useful information on tsunami inundation and hydrodynamics that can be used to improve tsunami hazard assessment. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and the development of hybrid modeling approaches to exploit the strengths of forward and inverse models. As uncertainty in tsunami sediment transport modeling is reduced, and with increased ability to quantify uncertainty, the geologic record of tsunamis will become more valuable in the assessment of tsunami hazard. Jaffe, B., Goto, K., Sugawara, D., Gelfenbaum, G., and La Selle, S., "Uncertainty in Tsunami Sediment Transport Modeling", Journal of Disaster Research Vol. 11 No. 4, pp. 647-661, 2016, doi: 10.20965/jdr.2016.p0647 https://www.fujipress.jp/jdr/dr/dsstr001100040647/

  10. Accurate vehicle classification including motorcycles using piezoelectric sensors.

    DOT National Transportation Integrated Search

    2013-03-01

    State and federal departments of transportation are charged with classifying vehicles and monitoring mileage traveled. Accurate data reporting enables suitable roadway design for safety and capacity. Vehicle classifiers currently employ inductive loo...

  11. Role of solute-transport models in the analysis of groundwater salinity problems in agricultural areas

    USGS Publications Warehouse

    Konikow, Leonard F.

    1981-01-01

    Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.

  12. Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution

    USGS Publications Warehouse

    Breshears, D.D.; Kirchner, T.B.; Whicker, J.J.; Field, J.P.; Allen, Craig D.

    2012-01-01

    Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies.

  13. A three-dimensional finite-volume Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for solute-transport modeling

    USGS Publications Warehouse

    Heberton, C.I.; Russell, T.F.; Konikow, Leonard F.; Hornberger, G.Z.

    2000-01-01

    This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.

  14. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  15. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    PubMed Central

    Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-01-01

    Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical

  17. Workshop discusses community models for coastal sediment transport

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Signell, Richard P.; Harris, Courtney K.; Butman, Bradford

    Numerical models of coastal sediment transport are increasingly used to address problems ranging from remediation of contaminated sediments, to siting of sewage outfalls and disposal sites, to evaluating impacts of coastal development. They are also used as a test bed for sediment-transport algorithms, to provide realistic settings for biological and geochemical models, and for a variety of other research, both fundamental and applied. However, there are few full-featured, publicly available coastal sediment-transport models, and fewer still that are well tested and have been widely applied.This was the motivation for a workshop in Woods Hole, Massachusetts, on June 22-23, 2000, that explored the establishment of community models for coastal sediment-transport processes.

  18. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  19. Faster and More Accurate Transport Procedures for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.

    2010-01-01

    Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.

  20. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    PubMed

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  2. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  3. Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data

    DOE PAGES

    Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...

    2010-12-08

    We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less

  4. Accurate modeling and evaluation of microstructures in complex materials

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman

    2018-02-01

    Accurate characterization of heterogeneous materials is of great importance for different fields of science and engineering. Such a goal can be achieved through imaging. Acquiring three- or two-dimensional images under different conditions is not, however, always plausible. On the other hand, accurate characterization of complex and multiphase materials requires various digital images (I) under different conditions. An ensemble method is presented that can take one single (or a set of) I(s) and stochastically produce several similar models of the given disordered material. The method is based on a successive calculating of a conditional probability by which the initial stochastic models are produced. Then, a graph formulation is utilized for removing unrealistic structures. A distance transform function for the Is with highly connected microstructure and long-range features is considered which results in a new I that is more informative. Reproduction of the I is also considered through a histogram matching approach in an iterative framework. Such an iterative algorithm avoids reproduction of unrealistic structures. Furthermore, a multiscale approach, based on pyramid representation of the large Is, is presented that can produce materials with millions of pixels in a matter of seconds. Finally, the nonstationary systems—those for which the distribution of data varies spatially—are studied using two different methods. The method is tested on several complex and large examples of microstructures. The produced results are all in excellent agreement with the utilized Is and the similarities are quantified using various correlation functions.

  5. Towards accurate modelling of galaxy clustering on small scales: testing the standard ΛCDM + halo model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-07-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter haloes. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the `accurate' regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard Λ cold dark matter (ΛCDM) + halo model against the clustering of Sloan Digital Sky Survey (SDSS) seventh data release (DR7) galaxies. Specifically, we use the projected correlation function, group multiplicity function, and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir haloes) matches the clustering of low-luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the `standard' halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  6. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Modeling and analysis of transport in the mammary glands

    NASA Astrophysics Data System (ADS)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  8. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  9. On extracting sediment transport information from measurements of luminescence in river sediment

    USGS Publications Warehouse

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  10. Computational models for predicting interactions with membrane transporters.

    PubMed

    Xu, Y; Shen, Q; Liu, X; Lu, J; Li, S; Luo, C; Gong, L; Luo, X; Zheng, M; Jiang, H

    2013-01-01

    Membrane transporters, including two members: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are proteins that play important roles to facilitate molecules into and out of cells. Consequently, these transporters can be major determinants of the therapeutic efficacy, toxicity and pharmacokinetics of a variety of drugs. Considering the time and expense of bio-experiments taking, research should be driven by evaluation of efficacy and safety. Computational methods arise to be a complementary choice. In this article, we provide an overview of the contribution that computational methods made in transporters field in the past decades. At the beginning, we present a brief introduction about the structure and function of major members of two families in transporters. In the second part, we focus on widely used computational methods in different aspects of transporters research. In the absence of a high-resolution structure of most of transporters, homology modeling is a useful tool to interpret experimental data and potentially guide experimental studies. We summarize reported homology modeling in this review. Researches in computational methods cover major members of transporters and a variety of topics including the classification of substrates and/or inhibitors, prediction of protein-ligand interactions, constitution of binding pocket, phenotype of non-synonymous single-nucleotide polymorphisms, and the conformation analysis that try to explain the mechanism of action. As an example, one of the most important transporters P-gp is elaborated to explain the differences and advantages of various computational models. In the third part, the challenges of developing computational methods to get reliable prediction, as well as the potential future directions in transporter related modeling are discussed.

  11. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Jou, David; Wang, Moran

    2016-01-01

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  12. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    PubMed

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  13. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  14. Modeling stable isotope transport in metamorphic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.

    2007-12-01

    Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope

  15. Attribution of future US ozone pollution to regional emissions, climate change, long-range transport, and model deficiency

    NASA Astrophysics Data System (ADS)

    He, H.; Liang, X.-Z.; Lei, H.; Wuebbles, D. J.

    2014-10-01

    A regional chemical transport model (CTM) is used to quantify the relative contributions of future US ozone pollution from regional emissions, climate change, long-range transport (LRT) of pollutants, and model deficiency. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, the representation of present-day US ozone pollution is notably improved. This nested system projects substantial surface ozone trends for 2050's: 6-10 ppbv decreases under the "clean" A1B scenario and ~15 ppbv increases under the "dirty" A1Fi scenario. Among the total trends, regional emissions changes dominate, contributing negative 20-50% in A1B and positive 20-40% in A1Fi, while LRT effects through chemical LBCs and climate changes account for respectively 15-50% and 10-30% in both scenarios. The projection uncertainty due to model biases is region dependent, ranging from -10 to 50%. It is shown that model biases of present-day simulations can propagate into future projections systematically but nonlinearly, and the accurate specification of LBCs is essential for US ozone projections.

  16. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.

    PubMed

    Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen

    2018-02-02

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.

  17. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware

    PubMed Central

    Municio, Esteban; Van de Velde, Bruno; Latré, Steven

    2018-01-01

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks. PMID:29393900

  18. Modeling flow and solute transport in irrigation furrows

    USDA-ARS?s Scientific Manuscript database

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  19. Model simulations of a field experiment on cation exchange-affected multicomponent solute transport in a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Bjerg, Poul L.; Ammentorp, Hans C.; Christensen, Thomas H.

    1993-04-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic strength. Information on geology, hydrogeology and the transient conservative solute transport behaviour was obtained from a dispersion study in the same aquifer. The geochemical input parameters were carefully examined. CEC and selectivity coefficients were determined on the actual aquifer material by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with KCa selectivity coefficients indicating dependency on equivalent fraction and K + concentration in the aqueous phase. The model simulations over a distance of 35 m and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K +.

  20. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  1. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  2. Mathematical modeling of kidney transport.

    PubMed

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  3. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  4. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  5. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  6. Faster and more accurate transport procedures for HZETRN

    NASA Astrophysics Data System (ADS)

    Slaba, T. C.; Blattnig, S. R.; Badavi, F. F.

    2010-12-01

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle ( A ⩽ 4) and heavy ion ( A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10

  7. Faster and more accurate transport procedures for HZETRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaba, T.C., E-mail: Tony.C.Slaba@nasa.go; Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.go; Badavi, F.F., E-mail: Francis.F.Badavi@nasa.go

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A {<=} 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete descriptionmore » of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm{sup 2} in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm{sup 2} of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations

  8. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    DOE PAGES

    Sentis, Manuel Lorenzo; Gable, Carl W.

    2017-06-15

    Furthermore, there are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools willmore » provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less

  9. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    NASA Astrophysics Data System (ADS)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  10. Impact of Transport Zone Number in Simulation Models on Cost-Benefit Analysis Results in Transport Investments

    NASA Astrophysics Data System (ADS)

    Chmielewski, Jacek

    2017-10-01

    Nowadays, feasibility studies need to be prepared for all planned transport investments, mainly those co-financed with UE grants. One of the fundamental aspect of feasibility study is the economic justification of an investment, evaluated in an area of so called cost-benefit analysis (CBA). The main goal of CBA calculation is to prove that a transport investment is really important for the society and should be implemented as economically efficient one. It can be said that the number of hours (PH - passengers hours) in trips and travelled kilometres (PK - passengers kilometres) are the most important for CBA results. The differences between PH and PK calculated for particular investment scenarios are the base for benefits calculation. Typically, transport simulation models are the best source for such data. Transport simulation models are one of the most powerful tools for transport network planning. They make it possible to evaluate forecast traffic volume and passenger flows in a public transport system for defined scenarios of transport and area development. There are many different transport models. Their construction is often similar, and they mainly differ in the level of their accuracy. Even models for the same area may differ in this matter. Typically, such differences come from the accuracy of supply side representation: road and public transport network representation. In many cases only main roads and a public transport network are represented, while local and service roads are eliminated as a way of reality simplification. This also enables a faster and more effective calculation process. On the other hand, the description of demand part of these models based on transport zones is often stable. Difficulties with data collection, mainly data on land use, resulted in the lack of changes in the analysed land division into so called transport zones. In this paper the author presents an influence of land division on the results of traffic analyses, and hence

  11. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    PubMed

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  12. Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

    2012-01-01

    Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

  13. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  14. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  15. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    NASA Astrophysics Data System (ADS)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  16. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium.

    PubMed

    Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T

    2014-11-01

    Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

  17. A SPH elastic-viscoplastic model for granular flows and bed-load transport

    NASA Astrophysics Data System (ADS)

    Ghaïtanellis, Alex; Violeau, Damien; Ferrand, Martin; Abderrezzak, Kamal El Kadi; Leroy, Agnès; Joly, Antoine

    2018-01-01

    An elastic-viscoplastic model (Ulrich, 2013) is combined to a multi-phase SPH formulation (Hu and Adams, 2006; Ghaitanellis et al., 2015) to model granular flows and non-cohesive sediment transport. The soil is treated as a continuum exhibiting a viscoplastic behaviour. Thus, below a critical shear stress (i.e. the yield stress), the soil is assumed to behave as an isotropic linear-elastic solid. When the yield stress is exceeded, the soil flows and behaves as a shear-thinning fluid. A liquid-solid transition threshold based on the granular material properties is proposed, so as to make the model free of numerical parameter. The yield stress is obtained from Drucker-Prager criterion that requires an accurate computation of the effective stress in the soil. A novel method is proposed to compute the effective stress in SPH, solving a Laplace equation. The model is applied to a two-dimensional soil collapse (Bui et al., 2008) and a dam break over mobile beds (Spinewine and Zech, 2007). Results are compared with experimental data and a good agreement is obtained.

  18. Validation metrics for turbulent plasma transport

    DOE PAGES

    Holland, C.

    2016-06-22

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less

  19. Validation metrics for turbulent plasma transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, C.

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less

  20. Application of model abstraction techniques to simulate transport in soils

    USDA-ARS?s Scientific Manuscript database

    Successful understanding and modeling of contaminant transport in soils is the precondition of risk-informed predictions of the subsurface contaminant transport. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing th...

  1. Velocity Resolved---Scalar Modeled Simulations of High Schmidt Number Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha

    The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc " 1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc . Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor

  2. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  3. Development of Atmospheric Chemistry-Aerosol Transport Model for Bioavailable Iron From Dust and Combustion Source

    NASA Astrophysics Data System (ADS)

    Ito, A.; Feng, Y.

    2009-12-01

    An accurate prediction of bioavailable iron fraction for ocean biota is hampered by uncertainties in modeling soluble iron fractions in atmospheric aerosols. It has been proposed that atmospheric processing of mineral aerosols by anthropogenic pollutants may be a key pathway to transform insoluble iron into soluble forms. The dissolution of dust minerals strongly depends on solution pH, which is sensitive to the heterogeneous uptake of soluble gases by the dust particle. Due to the complexity, previous model assessments generally use a common assumption in thermodynamical equilibrium between gas and aerosol phases. Here, we compiled an emission inventory of iron from combustion and dust source, and incorporated a dust iron dissolution scheme in a global chemistry-aerosol transport model (IMPACT). We will examine and discuss the uncertainties in estimation of dissolved iron as well as comparisons of the model results with available observations.

  4. Component Design Report: International Transportation Energy Demand Determinants Model

    EIA Publications

    2017-01-01

    This Component Design Report discusses working design elements for a new model to replace the International Transportation Model (ITran) in the World Energy Projection System Plus (WEPS ) that is maintained by the U.S. Energy Information Administration. The key objective of the new International Transportation Energy Demand Determinants (ITEDD) model is to enable more rigorous, quantitative research related to energy consumption in the international transportation sectors.

  5. Machine learning to construct reduced-order models and scaling laws for reactive-transport applications

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Karra, S.; Vesselinov, V. V.

    2017-12-01

    The efficiency of many hydrogeological applications such as reactive-transport and contaminant remediation vastly depends on the macroscopic mixing occurring in the aquifer. In the case of remediation activities, it is fundamental to enhancement and control of the mixing through impact of the structure of flow field which is impacted by groundwater pumping/extraction, heterogeneity, and anisotropy of the flow medium. However, the relative importance of these hydrogeological parameters to understand mixing process is not well studied. This is partially because to understand and quantify mixing, one needs to perform multiple runs of high-fidelity numerical simulations for various subsurface model inputs. Typically, high-fidelity simulations of existing subsurface models take hours to complete on several thousands of processors. As a result, they may not be feasible to study the importance and impact of model inputs on mixing. Hence, there is a pressing need to develop computationally efficient models to accurately predict the desired QoIs for remediation and reactive-transport applications. An attractive way to construct computationally efficient models is through reduced-order modeling using machine learning. These approaches can substantially improve our capabilities to model and predict remediation process. Reduced-Order Models (ROMs) are similar to analytical solutions or lookup tables. However, the method in which ROMs are constructed is different. Here, we present a physics-informed ML framework to construct ROMs based on high-fidelity numerical simulations. First, random forests, F-test, and mutual information are used to evaluate the importance of model inputs. Second, SVMs are used to construct ROMs based on these inputs. These ROMs are then used to understand mixing under perturbed vortex flows. Finally, we construct scaling laws for certain important QoIs such as degree of mixing and product yield. Scaling law parameters dependence on model inputs are

  6. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  7. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy

  8. Accurate and scalable social recommendation using mixed-membership stochastic block models.

    PubMed

    Godoy-Lorite, Antonia; Guimerà, Roger; Moore, Cristopher; Sales-Pardo, Marta

    2016-12-13

    With increasing amounts of information available, modeling and predicting user preferences-for books or articles, for example-are becoming more important. We present a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of users' ratings. Like previous approaches, we assume that there are groups of users and of items and that the rating a user gives an item is determined by their respective group memberships. However, we allow each user and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches such as matrix factorization, we do not assume that users in each group prefer a single group of items. In particular, we do not assume that ratings depend linearly on a measure of similarity, but allow probability distributions of ratings to depend freely on the user's and item's groups. The resulting overlapping groups and predicted ratings can be inferred with an expectation-maximization algorithm whose running time scales linearly with the number of observed ratings. Our approach enables us to predict user preferences in large datasets and is considerably more accurate than the current algorithms for such large datasets.

  9. Accurate and scalable social recommendation using mixed-membership stochastic block models

    PubMed Central

    Godoy-Lorite, Antonia; Moore, Cristopher

    2016-01-01

    With increasing amounts of information available, modeling and predicting user preferences—for books or articles, for example—are becoming more important. We present a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of users’ ratings. Like previous approaches, we assume that there are groups of users and of items and that the rating a user gives an item is determined by their respective group memberships. However, we allow each user and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches such as matrix factorization, we do not assume that users in each group prefer a single group of items. In particular, we do not assume that ratings depend linearly on a measure of similarity, but allow probability distributions of ratings to depend freely on the user’s and item’s groups. The resulting overlapping groups and predicted ratings can be inferred with an expectation-maximization algorithm whose running time scales linearly with the number of observed ratings. Our approach enables us to predict user preferences in large datasets and is considerably more accurate than the current algorithms for such large datasets. PMID:27911773

  10. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  11. Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkan; Zhang, Ye

    2015-03-01

    A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems

  12. Particle Transport through Scattering Regions with Clear Layers and Inclusions

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume

    2002-08-01

    This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.

  13. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic

  14. Use of Models in Urban Transportation Planning

    DOT National Transportation Integrated Search

    1973-04-01

    The report describes the most commonly used models in urban transportation planning. A background on urban transportation planning is given including changes in planning objectives and the effects of Federal legislation. General concepts and problems...

  15. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  16. Analytical mesoscale modeling of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Lämmel, Marc; Kroy, Klaus

    2017-11-01

    The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this most enigmatic emergent aeolian scale.

  17. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  18. Constraining heat-transport models by comparison to experimental data in a NIF hohlraum

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Jones, O. S.; Barrios Garcia, M. A.; Koning, J. M.; Kerbel, G. D.; Strozzi, D. J.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Moore, A. S.; Landen, O. L.

    2017-10-01

    The accurate simulation of hohlraum plasma conditions is important for predicting the partition of energy and the symmetry of the x-ray field within a hohlraum. Electron heat transport within the hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, we report simulation results using the radiation-hydrodynamic code, HYDRA, utilizing various physics packages (e.g., nonlocal Schurtz model, MHD, flux limiters) and compare to data from hohlraum plasma experiments which contain a Mn-Co tracer dot. In these experiments, the dot is placed in various positions in the hohlraum in order to assess the spatial variation of plasma conditions. Simulated data is compared to a variety of experimental diagnostics. Conclusions are given concerning how the experimental data does and does not constrain the physics models examined. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. A Lagrangian mixing frequency model for transported PDF modeling

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  20. Getting a Picture that Is Both Accurate and Stable: Situation Models and Epistemic Validation

    ERIC Educational Resources Information Center

    Schroeder, Sascha; Richter, Tobias; Hoever, Inga

    2008-01-01

    Text comprehension entails the construction of a situation model that prepares individuals for situated action. In order to meet this function, situation model representations are required to be both accurate and stable. We propose a framework according to which comprehenders rely on epistemic validation to prevent inaccurate information from…

  1. Accurate Treatment of Collision and Water-Delivery in Models of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Maindl, T. I.; Schaefer, C. M.; Wandel, O.

    2017-08-01

    We have developed a comprehensive approach in simulating collisions and growth of embryos to terrestrial planets where we use a combination of SPH and N-body codes to model collisions and the transfer of water and chemical compounds accurately.

  2. Anomalous Transport in High Beta Poloidal DIII-D Discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A.; Garofalo, A.; Kritz, A.; Rafiq, T.; Weiland, J.

    2016-10-01

    Dominant instabilities that drive anomalous transport in high beta poloidal DIII-D discharges are investigated using the MMM7.1, and TGLF models in the predictive integrated modeling TRANSP code. The ion thermal transport is found to be strongly reduced in these discharges, but turbulence driven by the ITG modes along with the neoclassical transport still play a role in determining the ion temperature profiles. The electron thermal transport driven by the ETG modes impact the electron temperature profiles. The E × B flow shear is found to have a small effect in reducing the electron thermal transport. The Shafranov shift is found to strongly reduce the anomalous transport in the high beta poloidal DIII-D discharges. The reduction of Shafranov shift can destroy the ion internal transport barrier and can result in significantly lower core temperatures. The MMM7.1 model predicts electron and ion temperature profiles reasonably well, but it fails to accurately predict the properties of electron internal transport barrier, which indicates that the ETG model in MMM7.1 needs to be improved in the high beta poloidal operational regime. Research supported by the Office of Science, US DOE.

  3. Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters.

    PubMed

    Tieleman, D Peter

    2006-10-01

    A key function of biological membranes is to provide mechanisms for the controlled transport of ions, nutrients, metabolites, peptides and proteins between a cell and its environment. We are using computer simulations to study several processes involved in transport. In model membranes, the distribution of small molecules can be accurately calculated; we are making progress towards understanding the factors that determine the partitioning behaviour in the inhomogeneous lipid environment, with implications for drug distribution, membrane protein folding and the energetics of voltage gating. Lipid bilayers can be simulated at a scale that is sufficiently large to study significant defects, such as those caused by electroporation. Computer simulations of complex membrane proteins, such as potassium channels and ATP-binding cassette (ABC) transporters, can give detailed information about the atomistic dynamics that form the basis of ion transport, selectivity, conformational change and the molecular mechanism of ATP-driven transport. This is illustrated in the present review with recent simulation studies of the voltage-gated potassium channel KvAP and the ABC transporter BtuCD.

  4. The accuracy of temperature distributions used to derive the net transport for a zonally averaged model

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.; Bhatt, Praful P.

    1994-01-01

    Comparisons of satellite-derived temperatures with correlative temperatures indicate that the LIMS temperatures are accurate and contain more of the needed vertical resolution for calculating a residual mean circulation for transporting tracer-like species. Generally, the LIMS temperatures are accurate to at least 2 K. Other satellite data sets are comprised of temperatures with coarser vertical resolution, leading to biases that occur with an error pattern that is characteristic of their resolution. Their biases exceed 2 K at some altitudes. Retrievals of species using an infrared limb emission technique are sensitive to any temperature bias. Generally, the IMS comparisons with other data sets for ozone and water vapor are good to better than 20 percent; this represents an independent confirmation of the quality of LIMS and temperatures. Zonal mean comparisons between LIMS and SAMS temperatures also indicate agreement to better than 2 K from about 7 to 2hPa. Therefore, we are confident that SAMS N2O and CH4 are relatively free of temperature bias in that region. These factors support the generally good agreement in G90 between model N2O transported using a LIMS-derived RMC and the N2O contours from SAMS.

  5. Modeling of capacitor charging dynamics in an energy harvesting system considering accurate electromechanical coupling effects

    NASA Astrophysics Data System (ADS)

    Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin

    2018-06-01

    This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.

  6. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  7. Large-Scale Experiments in Microbially Induced Calcite Precipitation (MICP): Reactive Transport Model Development and Prediction

    NASA Astrophysics Data System (ADS)

    Nassar, Mohamed K.; Gurung, Deviyani; Bastani, Mehrdad; Ginn, Timothy R.; Shafei, Babak; Gomez, Michael G.; Graddy, Charles M. R.; Nelson, Doug C.; DeJong, Jason T.

    2018-01-01

    Design of in situ microbially induced calcite precipitation (MICP) strategies relies on a predictive capability. To date much of the mathematical modeling of MICP has focused on small-scale experiments and/or one-dimensional flow in porous media, and successful parameterizations of models in these settings may not pertain to larger scales or to nonuniform, transient flows. Our objective in this article is to report on modeling to test our ability to predict behavior of MICP under controlled conditions in a meter-scale tank experiment with transient nonuniform transport in a natural soil, using independently determined parameters. Flow in the tank was controlled by three wells, via a complex cycle of injection/withdrawals followed by no-flow intervals. Different injection solution recipes were used in sequence for transport characterization, biostimulation, cementation, and groundwater rinse phases of the 17 day experiment. Reaction kinetics were calibrated using separate column experiments designed with a similar sequence of phases. This allowed for a parsimonious modeling approach with zero fitting parameters for the tank experiment. These experiments and data were simulated using PHT3-D, involving transient nonuniform flow, alternating low and high Damköhler reactive transport, and combined equilibrium and kinetically controlled biogeochemical reactions. The assumption that microbes mediating the reaction were exclusively sessile, and with constant activity, in conjunction with the foregoing treatment of the reaction network, provided for efficient and accurate modeling of the entire process leading to nonuniform calcite precipitation. This analysis suggests that under the biostimulation conditions applied here the assumption of steady state sessile biocatalyst suffices to describe the microbially mediated calcite precipitation.

  8. Towards a new method for modeling multicomponent, multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.

    2016-12-01

    The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic

  9. Network aggregation in transportation planning models

    DOT National Transportation Integrated Search

    1979-06-01

    This report contains six papers addressed at mathematical and computation aspects of an extraction aggregation model often employed in transportation planning studies. This model concerns the optimal flowing of an extracted subnetwork of a given netw...

  10. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  11. PconsD: ultra rapid, accurate model quality assessment for protein structure prediction.

    PubMed

    Skwark, Marcin J; Elofsson, Arne

    2013-07-15

    Clustering methods are often needed for accurately assessing the quality of modeled protein structures. Recent blind evaluation of quality assessment methods in CASP10 showed that there is little difference between many different methods as far as ranking models and selecting best model are concerned. When comparing many models, the computational cost of the model comparison can become significant. Here, we present PconsD, a fast, stream-computing method for distance-driven model quality assessment that runs on consumer hardware. PconsD is at least one order of magnitude faster than other methods of comparable accuracy. The source code for PconsD is freely available at http://d.pcons.net/. Supplementary benchmarking data are also available there. arne@bioinfo.se Supplementary data are available at Bioinformatics online.

  12. Integrated urban systems model with multiple transportation supply agents.

    DOT National Transportation Integrated Search

    2012-10-01

    This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...

  13. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport.

    PubMed

    Xiong, Qingrong; Baychev, Todor G; Jivkov, Andrey P

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Numerical modeling of physical vapor transport under microgravity conditions: Effect of thermal creep and stress

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1993-01-01

    One of the most promising applications of microgravity (micro-g) environments is the manufacture of exotic and high-quality crystals in closed cylindrical ampoules using physical vapor transport (PVT) processes. The quality enhancements are believed to be due to the absence of buoyant convection in the weightless environment - resulting in diffusion-limited transport of the vapor. In a typical experiment, solid-phase sample material is initially contained at one end of the ampoule. The sample is made to sublime into the vapor phase and deposit onto the opposite end by maintaining the source at an elevated temperature with respect to the deposit. Identification of the physical factors governing both the rates and uniformity of crystal growth, and the optimization of the micro-g technology, will require an accurate modeling of the vapor transport within the ampoule. Previous micro-g modeling efforts have approached the problem from a 'classical' convective/diffusion formulation, in which convection is driven by the action of buoyancy on thermal and solutal density differences. The general conclusion of these works have been that in low gravity environments the effect of buoyancy on vapor transport is negligible, and vapor transport occurs in a diffusion-limited mode. However, it has been recently recognized than in the non-isothermal (and often low total pressure) conditions encountered in ampoules, the commonly-assumed no-slip boundary condition to the differential equations governing fluid motion can be grossly unrepresentative of the actual situation. Specifically, the temperature gradients can give rise to thermal creep flows at the ampoule side walls. In addition, temperature gradients in the vapor itself can, through the action of thermal stress, lead to bulk fluid convection.

  15. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    PubMed Central

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774

  16. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  17. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  18. Transport properties of initially neutral gas disturbed by intense electron beam

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Swanekamp, Steve; Schumer, Joseph; Mosher, Dave; Ottinger, Paul

    2013-10-01

    The behavior of intense electron beams (those with current densities on the order of hundreds of kA/cm2 and beam rise times on the order of 100 ns) traveling through gaseous mediums depends strongly on the transport properties of the medium. For example, the conductivity of the medium, which is very sensitive to the ionization state and temperature of the gas, has a strong influence on the beam behavior through the plasma return current. Since the beam is responsible for ionizing and heating the gas, self-consistently solving for the gas transport properties and the beam propagation is essential for an accurate description of the system. An advanced gas chemistry model to describe the transport properties of a strongly disturbed gaseous system is presented in this work. A focal point of this work is an accurate description of the medium's conductivity as the gas progresses from its weakly ionized state, where swarm models are valid, to a strongly ionized state where the Spitzer-Harm model applies. NRL Karle Fellowship

  19. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  20. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF.more » We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.« less

  1. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  2. A three-dimensional transport model for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.

    1994-01-01

    In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative

  3. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  4. Clinton River Sediment Transport Modeling Study

    EPA Pesticide Factsheets

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  5. Validation metrics for turbulent plasma transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, C., E-mail: chholland@ucsd.edu

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.« less

  6. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  7. Turbulent transport models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1984-01-01

    Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.

  8. A new turbulence-based model for sand transport

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  9. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    DOE PAGES

    Dittrich, T. M.; Reimus, P. W.

    2015-02-12

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system.

  10. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    NASA Astrophysics Data System (ADS)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  11. Process based modeling of total longshore sediment transport

    USGS Publications Warehouse

    Haas, K.A.; Hanes, D.M.

    2004-01-01

    Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.

  12. An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates

    PubMed Central

    Khan, Usman; Falconi, Christian

    2014-01-01

    Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214

  13. TACD: a transportable ant colony discrimination model for corporate bankruptcy prediction

    NASA Astrophysics Data System (ADS)

    Lalbakhsh, Pooia; Chen, Yi-Ping Phoebe

    2017-05-01

    This paper presents a transportable ant colony discrimination strategy (TACD) to predict corporate bankruptcy, a topic of vital importance that is attracting increasing interest in the field of economics. The proposed algorithm uses financial ratios to build a binary prediction model for companies with the two statuses of bankrupt and non-bankrupt. The algorithm takes advantage of an improved version of continuous ant colony optimisation (CACO) at the core, which is used to create an accurate, simple and understandable linear model for discrimination. This also enables the algorithm to work with continuous values, leading to more efficient learning and adaption by avoiding data discretisation. We conduct a comprehensive performance evaluation on three real-world data sets under a stratified cross-validation strategy. In three different scenarios, TACD is compared with 11 other bankruptcy prediction strategies. We also discuss the efficiency of the attribute selection methods used in the experiments. In addition to its simplicity and understandability, statistical significance tests prove the efficiency of TACD against the other prediction algorithms in both measures of AUC and accuracy.

  14. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  15. A model of axonal transport drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey V.

    2012-04-01

    In this paper a model of targeted drug delivery by means of active (motor-driven) axonal transport is developed. The model is motivated by recent experimental research by Filler et al. (A.G. Filler, G.T. Whiteside, M. Bacon, M. Frederickson, F.A. Howe, M.D. Rabinowitz, A.J. Sokoloff, T.W. Deacon, C. Abell, R. Munglani, J.R. Griffiths, B.A. Bell, A.M.L. Lever, Tri-partite complex for axonal transport drug delivery achieves pharmacological effect, Bmc Neuroscience 11 (2010) 8) that reported synthesis and pharmacological efficiency tests of a tri-partite complex designed for axonal transport drug delivery. The developed model accounts for two populations of pharmaceutical agent complexes (PACs): PACs that are transported retrogradely by dynein motors and PACs that are accumulated in the axon at the Nodes of Ranvier. The transitions between these two populations of PACs are described by first-order reactions. An analytical solution of the coupled system of transient equations describing conservations of these two populations of PACs is obtained by using Laplace transform. Numerical results for various combinations of parameter values are presented and their physical significance is discussed.

  16. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    PubMed

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  17. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  18. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  19. Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.

    2005-12-01

    Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and

  20. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  1. Characterization of chemical agent transport in paints.

    PubMed

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.

  2. Simulation of solute transport across low-permeability barrier walls

    USGS Publications Warehouse

    Harte, P.T.; Konikow, Leonard F.; Hornberger, G.Z.

    2006-01-01

    Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases. ?? 2006.

  3. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    PubMed

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  4. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    PubMed Central

    2010-01-01

    between the experimental results and those obtained from the First-Order Upwind and Power Law schemes, respectively. However, both the Second-Order upwind and QUICK schemes accurately predict species concentration under high Peclet number, convection-dominated flow conditions. Conclusion Convection-diffusion discretisation scheme selection has a strong influence on resultant species concentration fields, as determined by CFD. Furthermore, either the Second-Order or QUICK discretisation schemes should be implemented when numerically modelling convection-dominated mass-transport conditions. Finally, care should be taken not to utilize computationally inexpensive discretisation schemes at the cost of accuracy in resultant species concentration. PMID:20642816

  5. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    NASA Astrophysics Data System (ADS)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  6. Integrating wildfire plume rises within atmospheric transport models

    NASA Astrophysics Data System (ADS)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  7. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  8. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    NASA Astrophysics Data System (ADS)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  9. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Adamo, Giuseppe, E-mail: giuseppe.dadamo@sissa.it; Pelissetto, Andrea, E-mail: andrea.pelissetto@roma1.infn.it; Pierleoni, Carlo, E-mail: carlo.pierleoni@aquila.infn.it

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmannmore » inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.« less

  10. Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections

    NASA Astrophysics Data System (ADS)

    White, R. D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; de Urquijo, J.; González-Magaña, O.; McEachran, R. P.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Dujko, S.; Petrovic, Z. Lj

    2018-05-01

    Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i) the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron transport in these gaseous and soft-condensed phases. In this study we present progress towards the provision of self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experiment. Water–argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section set proposed in de Urquijo et al (2014 J. Chem. Phys. 141 014308). Modelling of electron transport in liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation to account for spatial-temporal correlations and screening of the electron potential. The ab initio formalism is applied to electron transport in atomic liquids and compared with available experimental swarm data for these noble liquids. Issues on the applicability of the ab initio formalism for krypton are discussed and addressed through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping (into bubble/cluster states/solvation) in some liquids requires a reformulation of the governing Boltzmann equation to account for the combined localised–delocalised nature of the resulting electron transport. A generalised Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid systems.

  11. Modeling Transportation Systems : an Overview

    DOT National Transportation Integrated Search

    1971-06-01

    The purpose of this report is to outline the role of systems analysis and mathematical modeling in the planning of transportation systems. The planning process is divided into three sectors (demand, supply, and policy) reflecting the demand for trans...

  12. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  13. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    USGS Publications Warehouse

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  14. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    DOE PAGES

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally

  15. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    DTIC Science & Technology

    2017-02-01

    ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  16. Visualization and modeling of smoke transport over landscape scales

    Treesearch

    Glenn P. Forney; William Mell

    2007-01-01

    Computational tools have been developed at the National Institute of Standards and Technology (NIST) for modeling fire spread and smoke transport. These tools have been adapted to address fire scenarios that occur in the wildland urban interface (WUI) over kilometer-scale distances. These models include the smoke plume transport model ALOFT (A Large Open Fire plume...

  17. Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven

    2002-01-01

    A general circulation model (GCM) relies on various physical parameterizations and provides a solution to the atmospheric equations of motion. A data assimilation system (DAS) combines information from observations with a GCM forecast and produces analyzed meteorological fields that represent the observed atmospheric state. An off-line chemistry and transport model (CTM) can use winds and temperatures from a either a GCM or a DAS. The latter application is in common usage for interpretation of observations from various platforms under the assumption that the DAS transport represents the actual atmospheric transport. Here we compare the transport produced by a DAS with that produced by the particular GCM that is combined with observations to produce the analyzed fields. We focus on transport in the tropics and middle latitudes by comparing the age-of-air inferred from observations of SF6 and CO2 with the age-of-air calculated using GCM fields and DAS fields. We also compare observations of ozone, total reactive nitrogen, and methane with results from the two simulations. These comparisons show that DAS fields produce rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport produced by the DAS fields may be due to implicit forcing that is required by the assimilation process when there is bias between the GCM forecast and observations that are combined to produce the analyzed fields. For example, the GCM does not produce a quasi-biennial oscillation (QBO). The QBO is present in the analyzed fields because it is present in the observations, and systematic implicit forcing is required by the DAS. Any systematic bias between observations and the GCM forecast used to produce the DAS analysis is likely to corrupt the transport produced by the analyzed fields. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model.

  18. Advanced propulsion for LEO-Moon transport. 3: Transportation model. M.S. Thesis - California Univ.

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.

    1992-01-01

    A simplified computational model of low Earth orbit-Moon transportation system has been developed to provide insight into the benefits of new transportation technologies. A reference transportation infrastructure, based upon near-term technology developments, is used as a departure point for assessing other, more advanced alternatives. Comparison of the benefits of technology application, measured in terms of a mass payback ratio, suggests that several of the advanced technology alternatives could substantially improve the efficiency of low Earth orbit-Moon transportation.

  19. Agglomeration of a comprehensive model for the wind-driven sand transport at the Belgian Coast

    NASA Astrophysics Data System (ADS)

    Strypsteen, Glenn; Rauwoens, Pieter

    2016-04-01

    Although a lot of research has been done in the area of Aeolian transport, it is only during the last years that attention has been drawn to Aeolian transport in coastal areas. In these areas, the physical processes are more complex, due to a large number of transport limiting parameters. In this PhD-project, which is now in its early stage, a model will be developed which relates the wind-driven sand transport at the Belgian coast with physical parameters such as the wind speed, humidity and grain size of the sand, and the slope of beach and dune surface. For the first time, the interaction between beach and dune dynamics is studied at the Belgian coast. The Belgian coastline is only 67km long, but densely populated and therefore subject to coastal protection and safety. The coast mostly consists of sandy beaches and dikes. Although, still 33km of dunes exist, whose dynamics are far less understood. The overall research approach consists of three pathways: (i) field measurements, (ii) physical model tests, and (iii) numerical simulations. Firstly and most importantly, several field campaigns will provide accurate data of meteo-marine conditions, morphology, and sand transport events on a wide beach at the Belgian Coastline. The experimental set-up consists of a monitoring station, which will provide time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, wind speed and direction and transport processes. The horizontal and vertical variability of the event scale Aeolian sand transport is analyzed with 8 MWAC sand traps. Two saltiphones register the intensity and variations of grain impacts over time. Two meteo-masts, each with four anemometers and one wind vane, provide quantitative measurements of the wind flow at different locations on the beach. Surficial moisture is measured with a moisture sensor. The topography measurements are typically done with laser techniques. To start, two sites are selected for measurement

  20. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  1. Mesh quality oriented 3D geometric vascular modeling based on parallel transport frame.

    PubMed

    Guo, Jixiang; Li, Shun; Chui, Yim Pan; Qin, Jing; Heng, Pheng Ann

    2013-08-01

    While a number of methods have been proposed to reconstruct geometrically and topologically accurate 3D vascular models from medical images, little attention has been paid to constantly maintain high mesh quality of these models during the reconstruction procedure, which is essential for many subsequent applications such as simulation-based surgical training and planning. We propose a set of methods to bridge this gap based on parallel transport frame. An improved bifurcation modeling method and two novel trifurcation modeling methods are developed based on 3D Bézier curve segments in order to ensure the continuous surface transition at furcations. In addition, a frame blending scheme is implemented to solve the twisting problem caused by frame mismatch of two successive furcations. A curvature based adaptive sampling scheme combined with a mesh quality guided frame tilting algorithm is developed to construct an evenly distributed, non-concave and self-intersection free surface mesh for vessels with distinct radius and high curvature. Extensive experiments demonstrate that our methodology can generate vascular models with better mesh quality than previous methods in terms of surface mesh quality criteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  3. Modeling of patient's blood pressure variation during ambulance transportation

    NASA Astrophysics Data System (ADS)

    Sakatani, Kenji; Ono, Takahiko; Kobayasi, Yasuhide; Hikita, Shinichi; Saito, Mitsuyuki

    2007-12-01

    In an emergency transportation by ambulance, a patient is transported in a supine position. In this position, a patient's blood pressure (BP) variation depending on an inertial force which occurs when an ambulance accelerates or decelerates. This BP variation causes a critical damage for a patent with brain disorder. In order to keep a patient stable during transportation, it is required to maintain small BP variation. To analyze the BP variation during transportation, a model of the BP variation has so far been made. But, it can estimate the BP variation only in braking. The purpose of this paper is to make a dynamical model of the BP variation which can simulate it in both braking and accelerating. First, to obtain the data to construct the model, we used a tilting bed to measure a head-to-foot acceleration and BP of fingertip. Based on this data, we build a mathematical model whose input is the head-to-foot acceleration and output is the Mean BP variation. It is a switched model which switches two models depending on the jerk. We add baroreceptor reflex to the model as a offset value.

  4. Collisional transport across the magnetic field in drift-fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.

    2016-03-15

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less

  5. Application of rrm as behavior mode choice on modelling transportation

    NASA Astrophysics Data System (ADS)

    Surbakti, M. S.; Sadullah, A. F.

    2018-03-01

    Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.

  6. Parameter estimation for a cohesive sediment transport model by assimilating satellite observations in the Hangzhou Bay: Temporal variations and spatial distributions

    NASA Astrophysics Data System (ADS)

    Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu

    2018-01-01

    Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.

  7. Toward computational models of magma genesis and geochemical transport in subduction zones

    NASA Astrophysics Data System (ADS)

    Katz, R.; Spiegelman, M.

    2003-04-01

    The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic

  8. Routing and Scheduling Optimization Model of Sea Transportation

    NASA Astrophysics Data System (ADS)

    barus, Mika debora br; asyrafy, Habib; nababan, Esther; mawengkang, Herman

    2018-01-01

    This paper examines the routing and scheduling optimization model of sea transportation. One of the issues discussed is about the transportation of ships carrying crude oil (tankers) which is distributed to many islands. The consideration is the cost of transportation which consists of travel costs and the cost of layover at the port. Crude oil to be distributed consists of several types. This paper develops routing and scheduling model taking into consideration some objective functions and constraints. The formulation of the mathematical model analyzed is to minimize costs based on the total distance visited by the tanker and minimize the cost of the ports. In order for the model of the problem to be more realistic and the cost calculated to be more appropriate then added a parameter that states the multiplier factor of cost increases as the charge of crude oil is filled.

  9. Role of sediment transport model to improve the tsunami numerical simulation

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.

    2015-12-01

    Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport

  10. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  11. BEYOND ELLIPSE(S): ACCURATELY MODELING THE ISOPHOTAL STRUCTURE OF GALAXIES WITH ISOFIT AND CMODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciambur, B. C., E-mail: bciambur@swin.edu.au

    2015-09-10

    This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial,more » cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.« less

  12. Assimilating concentration observations for transport and dispersion modeling in a meandering wind field

    NASA Astrophysics Data System (ADS)

    Haupt, Sue Ellen; Beyer-Lout, Anke; Long, Kerrie J.; Young, George S.

    Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.

  13. Programmers manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)

  14. Production of Accurate Skeletal Models of Domestic Animals Using Three-Dimensional Scanning and Printing Technology

    ERIC Educational Resources Information Center

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…

  15. Meeting in Turkey: WASP Transport Modeling and WASP Ecological Modeling

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  16. Meeting in Korea: WASP Transport Modeling and WASP Ecological Modeling

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  17. Discrete element modelling of bedload transport

    NASA Astrophysics Data System (ADS)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth

  18. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    PubMed

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  19. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    PubMed Central

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  20. Anharmonic phonon-phonon scattering modeling of three-dimensional atomistic transport: An efficient quantum treatment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.

    2018-05-01

    We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.

  1. Path Toward a Unified Geometry for Radiation Transport

    NASA Astrophysics Data System (ADS)

    Lee, Kerry

    to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.

  2. Path Toward a Unifid Geometry for Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann

    2014-01-01

    widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit-specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The workflow for achieving radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats

  3. A model-updating procedure to stimulate piezoelectric transducers accurately.

    PubMed

    Piranda, B; Ballandras, S; Steichen, W; Hecart, B

    2001-09-01

    The use of numerical calculations based on finite element methods (FEM) has yielded significant improvements in the simulation and design of piezoelectric transducers piezoelectric transducer utilized in acoustic imaging. However, the ultimate precision of such models is directly controlled by the accuracy of material characterization. The present work is dedicated to the development of a model-updating technique adapted to the problem of piezoelectric transducer. The updating process is applied using the experimental admittance of a given structure for which a finite element analysis is performed. The mathematical developments are reported and then applied to update the entries of a FEM of a two-layer structure (a PbZrTi-PZT-ridge glued on a backing) for which measurements were available. The efficiency of the proposed approach is demonstrated, yielding the definition of a new set of constants well adapted to predict the structure response accurately. Improvement of the proposed approach, consisting of the updating of material coefficients not only on the admittance but also on the impedance data, is finally discussed.

  4. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less

  5. Characterization of Transport Errors in Chemical Forecasts from a Global Tropospheric Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Bey, I.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Sachse, G. W.

    2004-01-01

    We propose a new methodology to characterize errors in the representation of transport processes in chemical transport models. We constrain the evaluation of a global three-dimensional chemical transport model (GEOS-CHEM) with an extended dataset of carbon monoxide (CO) concentrations obtained during the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. The TRACEP mission took place over the western Pacific, a region frequently impacted by continental outflow associated with different synoptic-scale weather systems (such as cold fronts) and deep convection, and thus provides a valuable dataset. for our analysis. Model simulations using both forecast and assimilated meteorology are examined. Background CO concentrations are computed as a function of latitude and altitude and subsequently subtracted from both the observed and the model datasets to focus on the ability of the model to simulate variability on a synoptic scale. Different sampling strategies (i.e., spatial displacement and smoothing) are applied along the flight tracks to search for systematic model biases. Statistical quantities such as correlation coefficient and centered root-mean-square difference are computed between the simulated and the observed fields and are further inter-compared using Taylor diagrams. We find no systematic bias in the model for the TRACE-P region when we consider the entire dataset (i.e., from the surface to 12 km ). This result indicates that the transport error in our model is globally unbiased, which has important implications for using the model to conduct inverse modeling studies. Using the First-Look assimilated meteorology only provides little improvement of the correlation, in comparison with the forecast meteorology. These general statements can be refined when the entire dataset is divided into different vertical domains, i.e., the lower troposphere (less than 2 km), the middle troposphere (2-6 km), and the upper troposphere (greater than

  6. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The reportmore » is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).« less

  7. Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Stolarski, Richard S.

    1989-01-01

    A fast two-dimensional residual circulation stratospheric family transport model, designed to minimize computer requirements, is developed. The model was used to calculate the ambient and perturbed atmospheres in which odd nitrogen species are transported as a family, and the results were compared with calculations in which HNO3, N2O5, ClONO2, and HO2NO2 are transported separately. It was found that ozone distributions computed by the two models for a present-day atmosphere are nearly identical. Good agreement was also found between calculated species concentrations and the ozone response, indicating the general applicability of the odd-nitrogen family approximations.

  8. Reactive-transport modelling of gypsum dissolution in a coastal karst aquifer in Puglia, southern Italy

    NASA Astrophysics Data System (ADS)

    Campana, Claudia; Fidelibus, Maria Dolores

    2015-11-01

    The gypsum coastal aquifer of Lesina Marina (Puglia, southern Italy) has been affected by sinkhole formation in recent decades. Previous studies based on geomorphologic and hydrogeological data ascribed the onset of collapse phenomena to the erosion of material that fills palaeo-cavities (suffosion sinkholes). The change in the hydrodynamic conditions of groundwater induced by the excavation of a canal within the evaporite formation nearly 100 years ago was identified as the major factor in triggering the erosion, while the contribution of gypsum dissolution was considered negligible. A combined reactive-transport/density-dependent flow model was applied to the gypsum aquifer to evaluate whether gypsum dissolution rate is a dominant or insignificant factor in recent sinkhole formation under current hydrodynamic conditions. The conceptual model was first defined with a set of assumptions based on field and laboratory data along a two-dimensional transect of the aquifer, and then a density-dependent, tide-influenced flow model was set up and solved using the numerical code SEAWAT. Finally, the resulting transient flow field was used by the reactive multicomponent transport model PHT3D to estimate the gypsum dissolution rate. The validation tests show that the model accurately represents the real system, and the multi-disciplinary approach provides consistent information about the causes and evolution time of dissolution processes. The modelled porosity development rate is too low to represent a significant contribution to the recent sinkhole formation in the Lesina Marina area, although it justifies cavity formation and cavity position over geological time.

  9. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  10. Geant4 Modifications for Accurate Fission Simulations

    NASA Astrophysics Data System (ADS)

    Tan, Jiawei; Bendahan, Joseph

    Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.

  11. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    USGS Publications Warehouse

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  12. A consistent transported PDF model for treating differential molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  13. Accurate Induction Energies for Small Organic Molecules. 2. Development and Testing of Distributed Polarizability Models against SAPT(DFT) Energies.

    PubMed

    Misquitta, Alston J; Stone, Anthony J; Price, Sarah L

    2008-01-01

    In part 1 of this two-part investigation we set out the theoretical basis for constructing accurate models of the induction energy of clusters of moderately sized organic molecules. In this paper we use these techniques to develop a variety of accurate distributed polarizability models for a set of representative molecules that include formamide, N-methyl propanamide, benzene, and 3-azabicyclo[3.3.1]nonane-2,4-dione. We have also explored damping, penetration, and basis set effects. In particular, we have provided a way to treat the damping of the induction expansion. Different approximations to the induction energy are evaluated against accurate SAPT(DFT) energies, and we demonstrate the accuracy of our induction models on the formamide-water dimer.

  14. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones.

    PubMed

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-06-06

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a

  15. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a

  16. Enhancements to the Branched Lagrangian Transport Modeling System

    USGS Publications Warehouse

    Jobson, Harvey E.

    1997-01-01

    The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.

  17. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L.; Konikow, Leonard F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  18. ITC Recommendations for Transporter Kinetic Parameter Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans

    PubMed Central

    Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A

    2013-01-01

    This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311

  19. An atomic and molecular fluid model for efficient edge-plasma transport simulations at high densities

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas; Rensink, Marvin

    2016-10-01

    Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  20. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions1

    PubMed Central

    Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten

    2016-01-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  1. Normal mode analysis of the IUS/TDRS payload in a payload canister/transporter environment

    NASA Technical Reports Server (NTRS)

    Meyer, K. A.

    1980-01-01

    Special modeling techniques were developed to simulate an accurate mathematical model of the transporter/canister/payload system during ground transport of the Inertial Upper Stage/Tracking and Data Relay Satellite (IUS/TDRS) payload. The three finite element models - the transporter, the canister, and the IUS/TDRS payload - were merged into one model and used along with the NASTRAN normal mode analysis. Deficiencies were found in the NASTRAN program that make a total analysis using modal transient response impractical. It was also discovered that inaccuracies may exist for NASTRAN rigid body modes on large models when Given's method for eigenvalue extraction is employed. The deficiencies as well as recommendations for improving the NASTRAN program are discussed.

  2. A comprehensive one-dimensional numerical model for solute transport in rivers

    NASA Astrophysics Data System (ADS)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  3. Molecular Modeling of Thermodynamic and Transport Properties for CO2 and Aqueous Brines.

    PubMed

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-04-18

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models for water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2 , and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2 -rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  4. A unified framework for heat and mass transport at the atomic scale

    NASA Astrophysics Data System (ADS)

    Ponga, Mauricio; Sun, Dingyi

    2018-04-01

    We present a unified framework to simulate heat and mass transport in systems of particles. The proposed framework is based on kinematic mean field theory and uses a phenomenological master equation to compute effective transport rates between particles without the need to evaluate operators. We exploit this advantage and apply the model to simulate transport phenomena at the nanoscale. We demonstrate that, when calibrated to experimentally-measured transport coefficients, the model can accurately predict transient and steady state temperature and concentration profiles even in scenarios where the length of the device is comparable to the mean free path of the carriers. Through several example applications, we demonstrate the validity of our model for all classes of materials, including ones that, until now, would have been outside the domain of computational feasibility.

  5. Dissipative time-dependent quantum transport theory.

    PubMed

    Zhang, Yu; Yam, Chi Yung; Chen, GuanHua

    2013-04-28

    A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.

  6. Entity-Centric Abstraction and Modeling Framework for Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Lewe, Jung-Ho; DeLaurentis, Daniel A.; Mavris, Dimitri N.; Schrage, Daniel P.

    2007-01-01

    A comprehensive framework for representing transpportation architectures is presented. After discussing a series of preceding perspectives and formulations, the intellectual underpinning of the novel framework using an entity-centric abstraction of transportation is described. The entities include endogenous and exogenous factors and functional expressions are offered that relate these and their evolution. The end result is a Transportation Architecture Field which permits analysis of future concepts under the holistic perspective. A simulation model which stems from the framework is presented and exercised producing results which quantify improvements in air transportation due to advanced aircraft technologies. Finally, a modeling hypothesis and its accompanying criteria are proposed to test further use of the framework for evaluating new transportation solutions.

  7. An accurate computational method for the diffusion regime verification

    NASA Astrophysics Data System (ADS)

    Zhokh, Alexey A.; Strizhak, Peter E.

    2018-04-01

    The diffusion regime (sub-diffusive, standard, or super-diffusive) is defined by the order of the derivative in the corresponding transport equation. We develop an accurate computational method for the direct estimation of the diffusion regime. The method is based on the derivative order estimation using the asymptotic analytic solutions of the diffusion equation with the integer order and the time-fractional derivatives. The robustness and the computational cheapness of the proposed method are verified using the experimental methane and methyl alcohol transport kinetics through the catalyst pellet.

  8. Tracer transport in soils and shallow groundwater: model abstraction with modern tools

    USDA-ARS?s Scientific Manuscript database

    Vadose zone controls contaminant transport from the surface to groundwater, and modeling transport in vadose zone has become a burgeoning field. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing the complexity of a...

  9. Equilibrium, kinetic, and reactive transport models for plutonium

    NASA Astrophysics Data System (ADS)

    Schwantes, Jon Michael

    Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive

  10. A transport model for computer simulation of wildfires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, R.

    1997-12-31

    Realistic self-determining simulation of wildfires is a difficult task because of a large variety of important length scales (including scales on the size of twigs or grass and the size of large trees), imperfect data, complex fluid mechanics and heat transfer, and very complicated chemical reactions. The author uses a transport approach to produce a model that exhibits a self-determining propagation rate. The transport approach allows him to represent a large number of environments such as those with nonhomogeneous vegetation and terrain. He accounts for the microscopic details of a fire with macroscopic resolution by dividing quantities into mean andmore » fluctuating parts similar to what is done in traditional turbulence modeling. These divided quantities include fuel, wind, gas concentrations, and temperature. Reaction rates are limited by the mixing process and not the chemical kinetics. The author has developed a model that includes the transport of multiple gas species, such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and other stationary solids and liquids. From this model he develops a simplified local burning model with which he performs a number of simulations that demonstrate that he is able to capture the important physics with the transport approach. With this simplified model he is able to pick up the essence of wildfire propagation, including such features as acceleration when transitioning to upsloping terrain, deceleration of fire fronts when they reach downslopes, and crowning in the presence of high winds.« less

  11. Modeling spin magnetization transport in a spatially varying magnetic field

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.

    2015-01-01

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).

  12. Implementation of Gravity Model to Estimation of Transportation Market Shares

    NASA Astrophysics Data System (ADS)

    Krata, Przemysław

    2010-03-01

    The theoretical consideration presented in the paper is inspired by market gravity models, as an interesting attitude towards operations research on a market. The transportation market issues are emphasized. The mathematical model of relations, taking place between transportation companies and their customers on the market, which is applied in the course of the research is based on continuous functions characteristics. This attitude enables the use of the field theory notions. The resultant vector-type utility function facilitates obtaining of competitive advantage areas for all transportation companies located on the considered transportation market.

  13. Tropospheric transport differences between models using the same large-scale meteorological fields

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.

    2017-01-01

    The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.

  14. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuniga, Cristal; Li, Chien -Ting; Huelsman, Tyler

    The green microalgae Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organismmore » to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Moreover, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine.« less

  15. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    DOE PAGES

    Zuniga, Cristal; Li, Chien -Ting; Huelsman, Tyler; ...

    2016-07-02

    The green microalgae Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organismmore » to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Moreover, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine.« less

  16. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. © 2016 American Society of Plant Biologists. All rights reserved.

  17. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...

    2017-10-17

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  18. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  19. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2018-01-01

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.

  20. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  1. Implementation of an anomalous radial transport model for continuum kinetic edge codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2007-11-01

    Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.

  2. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  3. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    PubMed

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  4. Use of transport models for wildfire behavior simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, R.R.; Harlow, F.H.

    1998-01-01

    Investigators have attempted to describe the behavior of wildfires for over fifty years. Current models for numerical description are mainly algebraic and based on statistical or empirical ideas. The authors have developed a transport model called FIRETEC. The use of transport formulations connects the propagation rates to the full conservation equations for energy, momentum, species concentrations, mass, and turbulence. In this paper, highlights of the model formulation and results are described. The goal of the FIRETEC model is to describe most probable average behavior of wildfires in a wide variety of conditions. FIRETEC represents the essence of the combination ofmore » many small-scale processes without resolving each process in complete detail.« less

  5. Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211

  6. Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models [Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with turbulent and neoclassical transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.

    Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less

  7. Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models [Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with turbulent and neoclassical transport models

    DOE PAGES

    Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.; ...

    2017-01-11

    Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less

  8. Modelling of human transplacental transport as performed in Copenhagen, Denmark.

    PubMed

    Mathiesen, Line; Mørck, Thit Aarøe; Zuri, Giuseppina; Andersen, Maria Helena; Pehrson, Caroline; Frederiksen, Marie; Mose, Tina; Rytting, Erik; Poulsen, Marie S; Nielsen, Jeanette K S; Knudsen, Lisbeth E

    2014-07-01

    Placenta perfusion models are very effective when studying the placental mechanisms in order to extrapolate to real-life situations. The models are most often used to investigate the transport of substances between mother and foetus, including the potential metabolism of these. We have studied the relationships between maternal and foetal exposures to various compounds including pollutants such as polychlorinated biphenyls, polybrominated flame retardants, nanoparticles as well as recombinant human antibodies. The compounds have been studied in the human placenta perfusion model and to some extent in vitro with an established human monolayer trophoblast cell culture model. Results from our studies distinguish placental transport of substances by physicochemical properties, adsorption to placental tissue, binding to transport and receptor proteins and metabolism. We have collected data from different classes of chemicals and nanoparticles for comparisons across chemical structures as well as different test systems. Our test systems are based on human material to bypass the extrapolation from animal data. By combining data from our two test systems, we are able to rank and compare the transport of different classes of substances according to their transport ability. Ultimately, human data including measurements in cord blood contribute to the study of placental transport. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  10. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    DOE PAGES

    Locatelli, R.; Bousquet, P.; Chevallier, F.; ...

    2013-10-08

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the

  11. Stratospheric aerosol modification by supersonic transport operations with climate implications

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Pollack, J. B.; Whitten, R. C.; Poppoff, I. G.; Hamill, P.

    1980-01-01

    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K.

  12. Modeling sediment transport with an integrated view of the biofilm effects

    NASA Astrophysics Data System (ADS)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  13. Verification of ARES transport code system with TAKEDA benchmarks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  14. Impact of scaling and body movement on contaminant transport in airliner cabins

    NASA Astrophysics Data System (ADS)

    Mazumdar, Sagnik; Poussou, Stephane B.; Lin, Chao-Hsin; Isukapalli, Sastry S.; Plesniak, Michael W.; Chen, Qingyan

    2011-10-01

    Studies of contaminant transport have been conducted using small-scale models. This investigation used validated Computational Fluid Dynamics (CFD) to examine if a small-scale water model could reveal the same contaminant transport characteristics as a full-scale airliner cabin. But due to similarity problems and the difficulty of scaling the geometry, a perfect scale up from a small water model to an actual air model was found to be impossible. The study also found that the seats and passengers tended to obstruct the lateral transport of the contaminants and confine their spread to the aisle of the cabin. The movement of a crew member or a passenger could carry a contaminant in its wake to as many rows as the crew member or passenger passed. This could be the reason why a SARS infected passenger could infect fellow passengers who were seated seven rows away. To accurately simulate the contaminant transport, the shape of the moving body should be a human-like model.

  15. Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change: Chapter 31

    USGS Publications Warehouse

    Schoellhamer, D.H.; Ganju, N.K.; Mineart, P.R.; Lionberger, M.A.; Kusuda, T.; Yamanishi, H.; Spearman, J.; Gailani, J. Z.

    2008-01-01

    Bathymetric change in tidal environments is modulated by watershed sediment yield, hydrodynamic processes, benthic composition, and anthropogenic activities. These multiple forcings combine to complicate simple prediction of bathymetric change; therefore, numerical models are necessary to simulate sediment transport. Errors arise from these simulations, due to inaccurate initial conditions and model parameters. We investigated the response of bathymetric change to initial conditions and model parameters with a simplified zero-dimensional cohesive sediment transport model, a two-dimensional hydrodynamic/sediment transport model, and a tidally averaged box model. The zero-dimensional model consists of a well-mixed control volume subjected to a semidiurnal tide, with a cohesive sediment bed. Typical cohesive sediment parameters were utilized for both the bed and suspended sediment. The model was run until equilibrium in terms of bathymetric change was reached, where equilibrium is defined as less than the rate of sea level rise in San Francisco Bay (2.17 mm/year). Using this state as the initial condition, model parameters were perturbed 10% to favor deposition, and the model was resumed. Perturbed parameters included, but were not limited to, maximum tidal current, erosion rate constant, and critical shear stress for erosion. Bathymetric change was most sensitive to maximum tidal current, with a 10% perturbation resulting in an additional 1.4 m of deposition over 10 years. Re-establishing equilibrium in this model required 14 years. The next most sensitive parameter was the critical shear stress for erosion; when increased 10%, an additional 0.56 m of sediment was deposited and 13 years were required to re-establish equilibrium. The two-dimensional hydrodynamic/sediment transport model was calibrated to suspended-sediment concentration, and despite robust solution of hydrodynamic conditions it was unable to accurately hindcast bathymetric change. The tidally averaged

  16. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  17. Interactive 4D Visualization of Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  18. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever

    PubMed Central

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J.; Scott, Dana P.; Feldmann, Heinz; Ebihara, Hideki

    2016-01-01

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF. PMID:27976688

  19. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.

    PubMed

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki

    2016-12-15

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.

  20. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. © 2016 John Wiley & Sons Ltd.

  1. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  2. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    nighttime to well mixed conditions during the day presents a big challenge to NWP models. Fast decrease and successive increase in hub-height wind speed after sunrise, and the formation of nocturnal low level jets will be discussed. For PV, the life cycle of low stratus clouds and fog is crucial. Capturing these processes correctly depends on the accurate simulation of diffusion or vertical momentum transport and the interaction with other atmospheric and soil processes within the numerical weather model. Results from Single Column Model simulations and 3d case studies will be presented. Emphasis is placed on wind forecasts; however, some references to highlights concerning the PV-developments will also be given. *) ORKA: Optimierung von Ensembleprognosen regenerativer Einspeisung für den Kürzestfristbereich am Anwendungsbeispiel der Netzsicherheitsrechnungen **) EWeLiNE: Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger, www.projekt-eweline.de

  3. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.

    PubMed

    Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A

    2016-11-01

    Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  5. A dual-porosity model for simulating solute transport in oil shale

    USGS Publications Warehouse

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  6. Numerical Modeling of Transport of Biomass Burning Emissions on South America

    NASA Technical Reports Server (NTRS)

    RibeirodeFreitas, Saulo

    2001-01-01

    Our research efforts have addressed theoretical and numerical modeling of sources emissions and transport processes of trace gases and aerosols emitted by biomass burning on the central of Brazil and Amazon basin. For this effort we coupled all Eulerian transport model with the mesoscale atmospheric model RAMS (Regional Atmospheric Modeling System).

  7. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation

  8. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  9. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  10. Modelling inflation in transportation, comunication and financial services using B-Spline time series model

    NASA Astrophysics Data System (ADS)

    Suparti; Prahutama, Alan; Santoso, Rukun

    2018-05-01

    Inflation is an increase in the price of goods and services in general where the goods and services are the basic needs of society or the decline of the selling power of a country’s currency. Significant inflationary increases occurred in 2013. This increase was contributed by a significant increase in some inflation sectors / groups i.e transportation, communication and financial services; the foodstuff sector, and the housing, water, electricity, gas and fuel sectors. However, significant contributions occurred in the transportation, communications and financial services sectors. In the model of IFIs in the transportation, communication and financial services sector use the B-Spline time series approach, where the predictor variable is Yt, whereas the predictor is a significant lag (in this case Yt-1). In modeling B-spline time series determined the order and the optimum knot point. Optimum knot determination using Generalized Cross Validation (GCV). In inflation modeling for transportation sector, communication and financial services obtained model of B-spline order 2 with 2 points knots produce MAPE less than 50%.

  11. Unified computational model of transport in metal-insulating oxide-metal systems

    NASA Astrophysics Data System (ADS)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  12. Surrogate model approach for improving the performance of reactive transport simulations

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  13. A mechanistic modeling system for estimating large scale emissions and transport of pollen and co-allergens

    PubMed Central

    Efstathiou, Christos; Isukapalli, Sastry

    2011-01-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  14. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  15. A model of ion transport processes along and across the neuronal membrane.

    PubMed

    Xiang, Z X; Liu, G Z; Tang, C X; Yan, L X

    2017-01-01

    In this study, we provide a foundational model of ion transport processes in the intracellular and extracellular compartments of neurons at the nanoscale. There are two different kinds of ionic transport processes: (i) ionic transport across the neuronal membrane (trans-membrane), and (ii) ionic transport along both the intracellular and extracellular surfaces of the membrane. Brownian dynamics simulations are used to give a description of ionic trans-membrane transport. Electro-diffusion is used to model ion transport along the membrane surface, and the two transport processes can be linked analytically. In our model, we found that the interactions between ions and ion channels result in high-frequency ionic oscillations during trans-membrane transport. In ion transport along the membrane, high-frequency ionic oscillations may be evoked on both the intracellular and extracellular surfaces of the plasma membrane. The electric field caused by Coulomb interactions between the ions is found to be the most likely origin of those ionic oscillations.

  16. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  17. A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ34S fractionation

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer L.; Steefel, Carl I.; Conrad, Mark E.; DePaolo, Donald J.

    2014-01-01

    This study demonstrates a mechanistic incorporation of the stable isotopes of sulfur within the CrunchFlow reactive transport code to model the range of microbially-mediated redox processes affecting kinetic isotope fractionation. Previous numerical models of microbially mediated sulfate reduction using Monod-type rate expressions have lacked rigorous coupling of individual sulfur isotopologue rates, with the result that they cannot accurately simulate sulfur isotope fractionation over a wide range of substrate concentrations using a constant fractionation factor. Here, we derive a modified version of the dual-Monod or Michaelis-Menten formulation (Maggi and Riley, 2009, 2010) that successfully captures the behavior of the 32S and 34S isotopes over a broad range from high sulfate and organic carbon availability to substrate limitation using a constant fractionation factor. The new model developments are used to simulate a large-scale column study designed to replicate field scale conditions of an organic carbon (acetate) amended biostimulation experiment at the Old Rifle site in western Colorado. Results demonstrate an initial period of iron reduction that transitions to sulfate reduction, in agreement with field-scale behavior observed at the Old Rifle site. At the height of sulfate reduction, effluent sulfate concentrations decreased to 0.5 mM from an influent value of 8.8 mM over the 100 cm flow path, and thus were enriched in sulfate δ34S from 6.3‰ to 39.5‰. The reactive transport model accurately reproduced the measured enrichment in δ34S of both the reactant (sulfate) and product (sulfide) species of the reduction reaction using a single fractionation factor of 0.987 obtained independently from field-scale measurements. The model also accurately simulated the accumulation and δ34S signature of solid phase elemental sulfur over the duration of the experiment, providing a new tool to predict the isotopic signatures associated with reduced mineral pools

  18. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  19. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  20. MODELING FINE SEDIMENT TRANSPORT IN ESTUARIES

    EPA Science Inventory

    A sediment transport model (SEDIMENT IIIA) was developed to assist in predicting the fate of chemical pollutants sorbed to cohesive sediments in rivers and estuaries. Laboratory experiments were conducted to upgrade an existing two-dimensional, depth-averaged, finite element, coh...

  1. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    USGS Publications Warehouse

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  2. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  3. An automatic and accurate method of full heart segmentation from CT image based on linear gradient model

    NASA Astrophysics Data System (ADS)

    Yang, Zili

    2017-07-01

    Heart segmentation is an important auxiliary method in the diagnosis of many heart diseases, such as coronary heart disease and atrial fibrillation, and in the planning of tumor radiotherapy. Most of the existing methods for full heart segmentation treat the heart as a whole part and cannot accurately extract the bottom of the heart. In this paper, we propose a new method based on linear gradient model to segment the whole heart from the CT images automatically and accurately. Twelve cases were tested in order to test this method and accurate segmentation results were achieved and identified by clinical experts. The results can provide reliable clinical support.

  4. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, F.; Wang, K.; Zhang, R.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less

  5. Chemical element transport in stellar evolution models

    PubMed Central

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972

  6. Chemical element transport in stellar evolution models.

    PubMed

    Salaris, Maurizio; Cassisi, Santi

    2017-08-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  7. Colloid transport in model fracture filling materials

    NASA Astrophysics Data System (ADS)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  8. The absorption and transport of magnolol in Caco-2 cell model.

    PubMed

    Wu, An-Guo; Zeng, Bao; Huang, Meng-Qiu; Li, Sheng-Mei; Chen, Jian-Nan; Lai, Xiao-Ping

    2013-03-01

    To investigate the absorption and transport mechanism of magnolol in Caco-2 cell model. A human intestinal epithelial cell model Caco-2 cell in vitro cultured was applied to study the absorption and transport of magnolol, the effects of time, donor concentration, P-gp inhibitor verapamil, pH and temperature on the absorption and transport of magnolol were investigated. The determination of magnolol was performed by high performance liquid chromatography, then the values of apparent permeability coefficient (P app ) and P ratio Basolateral-to-Apical (BL-to-AP)/Apical-to-Basolateral (AP-to-BL) were calculated. In Caco-2 cell model, comparing the amounts of transport of AP-to-BL and BL-to-AP, the latter was larger. At the same donor concentration, either the amounts of transport of AP-to-BL or BL-to-AP increased with increase in donor concentration and incubation time. Verapamil could significantly improve the amounts of transport of AP-to-BL. The transport of AP-to-BL and BL-to-AP depended on temperature, and there was no significant effect of pH on the transport of AP-to-BL. Magnolol could be transported through the intestinal mucosa via a passive diffusion mechanism primarily, coexisting with a carrier-mediated transport, at the same time, the efflux mechanism could be involved.

  9. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  10. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  11. Steepest entropy ascent quantum thermodynamic model of electron and phonon transport

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine

    2018-01-01

    An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.

  12. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE PAGES

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2017-02-24

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  13. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase

  14. Intermittency inhibited by transport: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  15. Colloid Transport in Saturated Porous Media: Elimination of Attachment Efficiency in a New Colloid Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.

    A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less

  16. Modeling of turbulent transport as a volume process

    NASA Technical Reports Server (NTRS)

    Jennings, Mark J.; Morel, Thomas

    1987-01-01

    An alternative type of modeling was proposed for the turbulent transport terms in Reynolds-averaged equations. One particular implementation of the model was considered, based on the two-point velocity correlations. The model was found to reproduce the trends but not the magnitude of the nonisotropic behavior of the turbulent transport. Some interesting insights were developed concerning the shape of the contracted two-point correlation volume. This volume is strongly deformed by mean shear from the spherical shape found in unstrained flows. Of particular interest is the finding that the shape is sharply waisted, indicating preferential lines of communication, which should have a direct effect on turbulent transfer and on other processes.

  17. Predicting organic floc transport dynamics in shallow aquatic ecosystems: Insights from the field, the laboratory, and numerical modeling

    USGS Publications Warehouse

    Harvey, Judson W.; Noe, Gregory B.; Larsen, Laurel G.; Crimaldi, John P.

    2009-01-01

    Transport of particulate organic material can impact watershed sediment and nutrient budgets and can alter the geomorphologic evolution of shallow aquatic environments. Prediction of organic aggregate (“floc”) transport in these environments requires knowledge of how hydraulics and biota affect the entrainment, settling, and aggregation of particles. This study evaluated the aggregation and field transport dynamics of organic floc from a low‐gradient floodplain wetland with flow‐parallel ridges and sloughs in the Florida Everglades. Floc dynamics were evaluated in a rotating annular flume and in situ in the field. Under present managed conditions in the Everglades, floc is not entrained by mean flows but is suspended via biological production in the water column and bioturbation. Aggregation was a significant process affecting Everglades floc at high flume flow velocities (7.0 cm s−1) and during recovery from high flow; disaggregation was not significant for the tested flows. During moderate flows when floc dynamics are hydrodynamically controlled, it is possible to model floc transport using a single “operative floc diameter” that accurately predicts fluxes downstream and to the bed. In contrast, during high flows and recovery from high flows, aggregation dynamics should be simulated. When entrained by flow in open‐water sloughs, Everglades floc will be transported downstream in multiple deposition and reentrainment events but will undergo net settling when transported onto ridges of emergent vegetation. We hypothesize that net transport of material from open to vegetated areas during high flows is critical for forming and maintaining distinctive topographic patterning in the Everglades and other low‐gradient floodplains.

  18. Photo-chemical transport modelling of tropospheric ozone: A review

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  19. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  20. A multi-ion generalized transport model of the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  1. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  2. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  3. Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport

    NASA Astrophysics Data System (ADS)

    Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah

    2018-04-01

    This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual

  4. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  5. Experimental investigation of heat transport through single synthetic fractures

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Redondo, Jose M.

    2017-04-01

    In fractured geothermal reservoirs, heat transport is highly influenced by the presence of the fractures, so appropriate knowledge of heat behaviour in fractured porous media is essential for accurate prediction of the energy extraction in geothermal reservoirs. The present study focuses on the study of heat transport within single synthetic fractures. In particular manner several tests have been carried out in order to explore the role of fracture roughness, aperture variability and the fracture-matrix ratio on the heat transport dynamics. The Synfrac program together with a 3d printer have been used to build several fracture planes having different geometrical characteristics that have been moulded to generate concrete porous fractured blocks. The tests regard the observation of the thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouples located uniformly on the fractured blocks. The physical model developed permits to reproduce and understand adequately some features of heat transport dynamics in fractured media. The results give emphasis on the errors of the assumptions commonly used in heat transport modelling.

  6. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Oldenburg, C.; Moridis, G.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport.more » A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.« less

  7. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    PubMed Central

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855

  8. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners.

    PubMed

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-04-11

    Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.

  9. Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue.

    PubMed

    Boyd, Bradley; Becker, Sid

    2016-03-01

    This study develops a macroscopic model of mass transport in electroporated biological tissue in order to predict the cellular drug uptake. The change in the macroscopic mass transport coefficient is related to the increase in electrical conductivity resulting from the applied electric field. Additionally, the model considers the influences of both irreversible electroporation (IRE) and the transient resealing of the cell membrane associated with reversible electroporation. Two case studies are conducted to illustrate the applicability of this model by comparing transport associated with two electrode arrangements: side-by-side arrangement and the clamp arrangement. The results show increased drug transmission to viable cells is possible using the clamp arrangement due to the more uniform electric field.

  10. Principle of radial transport in low temperature annular plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electricmore » field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.« less

  11. Benchmarking of Heavy Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  12. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  13. Predicting long-range transport: a systematic evaluation of two multimedia transport models.

    PubMed

    Bennett, D H; Scheringer, M; McKone, T E; Hungerbühler, K

    2001-03-15

    The United Nations Environment Program has recently developed criteria to identify and restrict chemicals with a potential for persistence and long-range transport (persistent organic pollutants or POPs). There are many stakeholders involved, and the issues are not only scientific but also include social, economic, and political factors. This work focuses on one aspect of the POPs debate, the criteria for determining the potential for long-range transport (LRT). Our goal is to determine if current models are reliable enough to support decisions that classify a chemical based on the LRT potential. We examine the robustness of two multimedia fate models for determining the relative ranking and absolute spatial range of various chemicals in the environment. We also consider the effect of parameter uncertainties and the model uncertainty associated with the selection of an algorithm for gas-particle partitioning on the model results. Given the same chemical properties, both models give virtually the same ranking. However, when chemical parameter uncertainties and model uncertainties such as particle partitioning are considered, the spatial range distributions obtained for the individual chemicals overlap, preventing a distinct rank order. The absolute values obtained for the predicted spatial range or travel distance differ significantly between the two models for the uncertainties evaluated. We find that to evaluate a chemical when large and unresolved uncertainties exist, it is more informative to use two or more models and include multiple types of uncertainty. Model differences and uncertainties must be explicitly confronted to determine how the limitations of scientific knowledge impact predictions in the decision-making process.

  14. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-07-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  15. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    USGS Publications Warehouse

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  16. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters

    NASA Astrophysics Data System (ADS)

    Harvey, Natalie J.; Huntley, Nathan; Dacre, Helen F.; Goldstein, Michael; Thomson, David; Webster, Helen

    2018-01-01

    Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME) to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations for a small operational

  17. Modeling of terminal-area airplane fuel consumption

    DOT National Transportation Integrated Search

    2009-08-01

    Accurate modeling of airplane fuel consumption is necessary for air transportation policy-makers to properly : adjudicate trades between competing environmental and economic demands. Existing public models used for : computing terminal-area airplane ...

  18. Thermal Transport Model for Heat Sink Design

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.

    2009-01-01

    A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.

  19. Modeling firebrand transport in wildfires using HIGRAD/FIRETEC

    Treesearch

    Eunmo Koo; Rodman R. Linn; Patrick J. Pagni; Carleton B. Edminster

    2012-01-01

    Firebrand transport is studied for disc and cylindrical firebrands by modelling their trajectories with a coupled-physics fire model, HIGRAD/FIRETEC. Through HIGRAD/FIRETEC simulations, the size of possible firebrands and travelled distances are analysed to assess spot ignition hazard. Trajectories modelled with and without the assumption that the firebrands'...

  20. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  1. Effects of varying the step particle distribution on a probabilistic transport model

    NASA Astrophysics Data System (ADS)

    Bouzat, S.; Farengo, R.

    2005-12-01

    The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed.

  2. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  3. Impact of transport and modelling errors on the estimation of methane sources and sinks by inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric

    2013-04-01

    Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors

  4. Modeling transport across the running-sandpile cellular automaton by means of fractional transport equations

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Newman, D. E.; Mier, J. A.

    2018-05-01

    Fractional transport equations are used to build an effective model for transport across the running sandpile cellular automaton [Hwa et al., Phys. Rev. A 45, 7002 (1992), 10.1103/PhysRevA.45.7002]. It is shown that both temporal and spatial fractional derivatives must be considered to properly reproduce the sandpile transport features, which are governed by self-organized criticality, at least over sufficiently long or large scales. In contrast to previous applications of fractional transport equations to other systems, the specifics of sand motion require in this case that the spatial fractional derivatives used for the running sandpile must be of the completely asymmetrical Riesz-Feller type. Appropriate values for the fractional exponents that define these derivatives in the case of the running sandpile are obtained numerically.

  5. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal

  6. Modeling of active transmembrane transport in a mixture theory framework.

    PubMed

    Ateshian, Gerard A; Morrison, Barclay; Hung, Clark T

    2010-05-01

    This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature.

  7. UVM Transportation Research Center signature project 1B : integrated land-use, transportation and environmental modeling.

    DOT National Transportation Integrated Search

    2014-05-01

    Land use and transportation are inextricably linked. Models that capture the dynamics and interactions : of both systems are indispensable for evaluating alternative courses of action in policy and investment. : These models must be spatially disaggr...

  8. Modelling debris transport within glaciers by advection in a full-Stokes ice flow model

    NASA Astrophysics Data System (ADS)

    Wirbel, Anna; Jarosch, Alexander H.; Nicholson, Lindsey

    2018-01-01

    Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea level rise and to understand the paleoclimate proxy recorded by such glaciers, it is necessary to understand the manner and timescales over which a supraglacial debris cover develops. Because debris is delivered to the glacier by processes that are heterogeneous in space and time, and these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when and how much debris is delivered to the glacier surface requires knowledge of englacial transport pathways and deformation. To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice flow model. The model performs well in numerical benchmark tests, and we present both 2-D and 3-D glacier test cases that, for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof and patterns of surface emergence predicted by theory and observations of structural glaciology. In a future step, coupling this model to (i) a debris-aware surface mass balance scheme and (ii) a supraglacial debris transport scheme will enable the co-evolution of debris cover and glacier geometry to be modelled.

  9. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Andreas; Wiengarten, Tobias; Fichtner, Horst

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects bymore » modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.« less

  10. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  11. TOPICAL REVIEW: Electrical transport modelling in organic electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Walker, A. B.; Kambili, A.; Martin, S. J.

    2002-10-01

    Organic electroluminescent devices (OEDs) emit light when an electric current is applied to a thin film section. They arise from two main technology branches - small molecules and light emitting polymers. Apart from the insight offered into the fundamentals of their physics, which is relevant to topics such as electrical transport in biological systems and molecular computers, understanding how the mobilities in these systems vary with morphology and composition enables the design of improved materials for technological requirements, e.g. fast switching speeds for active matrix displays and polymer field effect transistors. In this review, we have focussed on the models of transport in OEDs that address the unusual nature of this transport and underpin device design. The review concludes with the following point: as new materials for use in OEDs continue to appear, modelling is essential for the prediction of their transport properties, which in turn leads to the establishment of fundamental trends in the behaviour of devices employing them.

  12. Multimodal transportation best practices and model element.

    DOT National Transportation Integrated Search

    2014-06-01

    This report provides guidance in developing a multimodal transportation element of a local government comprehensive : plan. Two model elements were developed to address differences in statutory requirements for communities of different : sizes and pl...

  13. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  14. Combining Deterministic structures and stochastic heterogeneity for transport modeling

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg

    2017-04-01

    Contaminant transport in highly heterogeneous aquifers is extremely challenging and subject of current scientific debate. Tracer plumes often show non-symmetric but highly skewed plume shapes. Predicting such transport behavior using the classical advection-dispersion-equation (ADE) in combination with a stochastic description of aquifer properties requires a dense measurement network. This is in contrast to the available information for most aquifers. A new conceptual aquifer structure model is presented which combines large-scale deterministic information and the stochastic approach for incorporating sub-scale heterogeneity. The conceptual model is designed to allow for a goal-oriented, site specific transport analysis making use of as few data as possible. Thereby the basic idea is to reproduce highly skewed tracer plumes in heterogeneous media by incorporating deterministic contrasts and effects of connectivity instead of using unimodal heterogeneous models with high variances. The conceptual model consists of deterministic blocks of mean hydraulic conductivity which might be measured by pumping tests indicating values differing in orders of magnitudes. A sub-scale heterogeneity is introduced within every block. This heterogeneity can be modeled as bimodal or log-normal distributed. The impact of input parameters, structure and conductivity contrasts is investigated in a systematic manor. Furthermore, some first successful implementation of the model was achieved for the well known MADE site.

  15. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    NASA Astrophysics Data System (ADS)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  16. Radiation Transport in Random Media With Large Fluctuations

    NASA Astrophysics Data System (ADS)

    Olson, Aaron; Prinja, Anil; Franke, Brian

    2017-09-01

    Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.

  17. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  18. Use of a two-dimensional hydrodynamic model to evaluate extreme flooding and transport of dissolved solids through Devils Lake and Stump Lake, North Dakota, 2006

    USGS Publications Warehouse

    Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.

    2011-01-01

    The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model

  19. Model documentation report: Transportation sector model of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity inmore » model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.« less

  20. NODA for EPA's Updated Ozone Transport Modeling

    EPA Pesticide Factsheets

    Find EPA's NODA for the Updated Ozone Transport Modeling Data for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) along with the ExitExtension of Public Comment Period on CSAPR for the 2008 NAAQS.