Science.gov

Sample records for accurate velocity measurements

  1. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  2. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P. J.; Sutton, A.J.; Harris, A.J.L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Ki??lauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s-1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements. ?? Springer-Verlag 2006.

  3. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  4. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  5. Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Li, Mingxia; Feng, Zhihua

    2016-07-01

    This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.

  6. Application of the energy reassignment method to measure accurate Rayleigh and Love wave group velocities from ambient seismic noise cross-correlations

    NASA Astrophysics Data System (ADS)

    Witek, M.; Kang, T. S.; van der Lee, S.

    2015-12-01

    We have collected three-component data from 122 Korean accelerometer stations for the month of December in 2014. We apply similar techniques described by Zha et al. (2013) to retrieve accurate station orientation angles, in order to rotate the horizontal component data into the radial and transverse frame of reference, and for subsequent measurement of Love wave group velocity dispersion. We simultaneously normalize all three components of a daily noise record via the frequency-time normalization (FTN) method. Each component is divided by the average signal envelope in an effort to retain relative amplitude information between all three components. Station orientations are found by a grid search for the orientation azimuth which maximizes the coherency between the radial-vertical cross-correlation and the Hilbert transformed vertical-vertical cross-correlation. After measuring orientation angles, we cross-correlate and rotate the data. Typically, the group velocity dispersion curves are measured using the frequency time analysis technique (FTAN), effectively producing spectrograms with significant uncertainty in the time-frequency plane. The spectrogram approach retains only the amplitude information of the short-time Fourier transform (STFT). However, Kodera et al (1976) show that by taking into account the phase information, the concepts of instantaneous frequency and group-time delay can be used to compute the first moment of the signal power in the frequency and time domains. During energy reassignment, the signal power calculated using the STFT at a point (t0,f0t_0, f_0) is reassigned to the location of the first moment (t^g,f^ihat{t}_g,hat{f}_i), where t^ghat{t}_g is the group-time delay and f^ihat{f}_i is the instantaneous frequency. We apply the method of energy reassignment to produce precise Rayleigh and Love wave group velocity measurements in the frequency range 0.1 - 1.0 Hz. Tests on synthetic data show more accurate retrieval of group velocities at

  7. A catalog of isolated galaxy pairs with accurate radial velocities

    NASA Astrophysics Data System (ADS)

    Chamaraux, P.; Nottale, L.

    2016-07-01

    The present paper is devoted to the construction of a catalog of isolated galaxy pairs from the Uppsala Galaxy Catalog (UGC), using accurate radial velocities. The UGC lists 12 921 galaxies to δ > -2°30' and is complete to an apparent diameter of 1'. The criteria used to define the isolated galaxy pairs are based on velocity, interdistance, reciprocity and isolation information. A peculiar investigation has allowed to gather very accurate radial velocities for pair members, from high quality HI and optical measurements (median uncertainty on velocity differences 10 kms-1). Our final catalog contains 1005 galaxy pairs with ρ > 2.5, of which 509 have ρ > 5 (50% of the pairs, i.e. 8%of the UGC galaxies) and 273 are highly isolated with ρ > 10 (27% of the pairs, i.e. 4% of the UGC galaxies). Some global properties of the pair catalog are given.

  8. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  9. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  10. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  11. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  18. Accurate thermoelastic tensor and acoustic velocities of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  19. Accurate thermoelastic tensor and acoustic velocities of NaCl

    SciTech Connect

    Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  20. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  1. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    PubMed

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  2. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  3. Measuring mean velocities with Pogo

    SciTech Connect

    Rossby, T.; Fontaine, J.; Hummon, J. )

    1991-10-01

    Pogo is a sample technique for measuring water transport between the surface and some preselected depth. Equipped with a 12-kHz pinger for tracking and range measurements, a xenon flasher for nighttime relocation, and a VHF beacon for daytime recovery, it has been used over 200 times in the Gulf Stream to measure volume transport and to provide a reference velocity (transport) for geostrophic calculations from pairs of hydrographic stations. This note gives a brief technical description of Pogo and how it is used. Loran C was used for navigation in this study, but with the advent of the Global Positioning System (GPS), Pogo can be used worldwide. 6 refs.

  4. Measuring mean velocities with Pogo

    NASA Astrophysics Data System (ADS)

    Rossby, T.; Fontaine, J.; Hummon, J.

    1991-10-01

    Pogo is a sample technique for measuring water transport between the surface and some preselected depth. Equipped with a 12-kHz pinger for tracking and range measurements, a xenon flasher for nighttime relocation, and a VHF beacon for daytime recovery, it has been used over 200 times in the Gulf Stream to measure volume transport and to provide a reference velocity (transport) for geostrophic calculations from pairs of hydrographic stations. This note gives a brief technical description of Pogo and how it is used. Loran C was used for navigation in this study, but with the advent of the Global Positioning System (GPS), Pogo can be used worldwide.

  5. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  6. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  7. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  8. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  9. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  10. Inexpensive Time-of-Flight Velocity Measurements.

    ERIC Educational Resources Information Center

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  11. A simple apparatus for measuring cell settling velocity.

    PubMed

    Wang, Zhaowei; Belovich, Joanne M

    2010-01-01

    Accurate cell settling velocity determination is critical for perfusion culture using a gravity settler for cell retention. We have developed a simple apparatus (a "settling column") for measuring settling velocity and have validated the procedure with 15-μm polystyrene particles with known physical properties. The measured settling velocity of the polystyrene particles is within 4% of the value obtained using the traditional Stokes' law approach. The settling velocities of three hybridoma cell lines were measured, resulting in up to twofold variation among cell lines, and the values decreased as the cell culture aged. The settling velocities of the nonviable cells were 33-50% less than the corresponding viable cells. The significant variation of settling velocities among cell populations and growth phases confirms the necessity of routine measurement of this property during long-term perfusion culture.

  12. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  13. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  14. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  15. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  16. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  17. Measurements of Coronal Proton Velocity Distributions

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Panasyuk, A.; Cranmer, S. R.; Gardner, L. D.; Raymond, J. C.

    2007-12-01

    The Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory is being used to measure precise coronal H I Ly-alpha spectral line profiles out to several Doppler half widths. Such observations can be used to reveal the proton velocity distribution along the line-of-sight. Departures from a Maxwellian distribution are believed to be needed for the acceleration of solar energetic particles (SEPs) by coronal mass ejection (CME) shocks. Our initial attempt to measure suprathermal proton velocity distributions has been described by Kohl et al. (2006). We have made considerable additional progress on such measurements since then. Improvements include the following: a much more accurate instrument spectral line profile, an increase in the wavelength range used for the observations, an increase in the statistical accuracy of the observations by increasing the observation time, and inclusion of a background measurement as part of every set of observations. We have also investigated the sensitivity to the detector high voltage, investigated the effects of diffraction in the instrument, determined the stray light effects and the Thompson scattering effects, which both turn out to be small except for scattering of Si III 120.6 nm. That scattered light is out of the primary wavelength range of interest. We believe that we have now demonstrated that UVCS has the sensitivity to distinguish between a Gaussian coronal velocity distribution and a kappa = 4 or smaller distribution. It is generally believed that the required seed particle population needed to produce SEPs of interest with a CME shock would have a velocity distribution with 0.001 to 0.01 of the particles with speeds that exceed 1000 km/s. Assuming a kappa distribution that is symmetric in the tangential plane and Maxwellian in the radial direction, this would correspond to a distribution with kappa = 3.5 or smaller. This paper will report the results of examining a fairly large body of new

  18. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  19. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  20. Velocity measurements in inhomogeneous combustion systems

    SciTech Connect

    Chigier, N. . Dept. of Mechanical Engineering)

    1989-10-01

    Measurements of velocity have been made in single-phase and two-phase combustion systems using laser anemometers. Argon ion lasers, Bragg cells for frequency shifting, forward and backscatter collection, signal processing, and computer analysis are used for velocity measurement. The set of vertical and horizontal fringes allows two orthogonal velocity components to be measured simultaneously and instantaneously. Radiation line filters are installed in the photomultiplier detectors to remove influence of flame radiation on velocity measurements. Instantaneous measurements of three orthogonal velocity components ({mu}, {nu}, w) are made over time periods sufficiently long for statistically valid time averaging. Conditional sampling is used on velocity-time traces to separate periodic fluctuations of flow field structure (form intermittency) from microscale fluctuations intrinsic to fluid mechanic turbulence. For two-phase flow systems with liquid fuel injection, the phase Doppler particle analyzer measures the size and velocity of single drops simultaneously. The technique is based upon the measurement of the interference fringe patterns produced by spherical drops passing through the intersection of two laser beams. Three detectors, separated at fixed spacing, are used to receive Doppler signals and to determine the phase shift due to different path lengths of the laser beam. Detailed measurements have been made in burning and nonburning air-assisted atomizer sprays revealing the detailed structural changes in the sprays as a result of drop collision and coalescence, evaporation, dispersion, and acceleration. Comparisons of mean drop sizes, number densities, and velocities under burning and nonburning conditions show the extent that the spray and flow fields are modified by combustion.

  1. Superhilac real-time velocity measurements

    SciTech Connect

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor.

  2. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  3. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  4. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  5. Antarctica: Measuring glacier velocity from satellite images

    USGS Publications Warehouse

    Lucchitta, B.K.; Ferguson, H.M.

    1986-01-01

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  6. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  7. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  8. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  9. Wave Measurements Using GPS Velocity Signals

    PubMed Central

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618

  10. Correlation-timing-based erythrocyte velocity measurement using CCD imagery

    NASA Astrophysics Data System (ADS)

    O'Reilly, William J.; Hudetz, Anthony

    2001-05-01

    An automated correlation method is introduced to estimate erythrocyte velocity component of erythrocyte flux within the cerebral capillary network. Erythrocyte flux, defined as the number of red blood cells passing through a plane orthogonal to the axis of erythrocyte flow in a vessel per unit time, is considered to be the closest index of capillary flow. Introduced previously is the two-point cross-correlation method, a method whereby a video photometric analyzer captures the voltage produced from two electronic windows placed over a vessel of interest. In our new method, instead of using electronic windows, we use a CCD array, focused on a two- dimensional projection of the three-dimensional capillary structure. Simulations of this method yields accurate velocity measurements at a measured cell intensity of .2 standard deviations above mean noise values or cell counts fewer than 30 cells per minute for image sequences of 180 frames captured over a time interval of three seconds. We conclude that with proper reduction in the measured standard deviation of noise and by increasing the percentage of fluorscently labeled erythrocytes injected into the rat, the correlation timing method of estimating erythrocyte velocity is an accurate substitute for hand-measured velocity calculation.

  11. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  12. Acoustic Measurement of Potato Cannon Velocity

    ERIC Educational Resources Information Center

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  13. Radionuclide Counting Technique Measures Wind Velocity

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.; Mall, G. H.

    1983-01-01

    Proposed technique for measuring wind velocity based on inverse-squarelaw variation of radioactive counting rates. In proposal, radioative source is deposited on bottom of light, hollow sphere and suspended by flexible wire over radiation counter, Anemometer based on this concept is self-contained, portable, yet not too fragile. Used for extended periods of time, even at remote, inhospitable and inaccessible sites.

  14. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  15. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  16. Sound field separation with sound pressure and particle velocity measurements.

    PubMed

    Fernandez-Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-12-01

    In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance between the equivalent sources and measurement surfaces and for the difference in magnitude between pressure and velocity. Experimental and numerical studies have been conducted to examine the methods. The double layer velocity method seems to be more robust to noise and flanking sound than the combined pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward.

  17. Velocity Dispersion Measurements in Cracked Quartzite

    NASA Astrophysics Data System (ADS)

    Schijns, H. M.; Schmitt, D. R.; Jackson, I.

    2011-12-01

    Oscillating stress induced by seismic waves is expected to cause reversible fluid flow within low aspect ratio cracks, resulting in strongly frequency dependent seismic wave velocities. Laboratory measurements of seismic velocities typically made at MHz frequencies, well logging undertaken at kHz frequencies and in-situ exploration seismic (10-300 Hz) measurements are unlikely to be directly comparable as a result of this fluid flow effect. Experimental measurements over a broad range of frequencies are necessary to constrain theoretical velocity dispersion models. Here we present a preliminary comparison of ultrasonic (MHz) measurements on two cracked quartzite samples with measurements made in the mHz-Hz frequency band using forced oscillation. Quartzite samples from Cape Sorell, Australia and Alberta, Canada are cracked by thermally heating the samples to 1100 C and quenching them in liquid nitrogen and water, respectively. A relatively isotropic distribution of cracks, with average aperture of 1 μm and aspect ratio of <0.01, is induced in both samples for total porosities of ~2%. Measurements are made on the quartzite samples when they are dry, and after saturating with argon and water. The difference in viscosity between argon (0.025 mPa s at 10 MPa and 20 C) and water (1 mPa s) allow the investigation of different time scales of fluid flow. Further, measurements are made over effective pressures from 10-150 MPa, with progressive crack closure observed between 10-100 MPa. High frequency (0.64 MHz) measurements using piezoelectric transducers are used in conjunction with density measurements to calculate high frequency Young's and shear moduli. Low frequency (mHz-Hz) moduli are measured using a forced oscillation apparatus at Australian National University. The experimental assembly consists of a long cylindrical beam; the top of the beam is held fixed while the bottom is driven using time-varying electromagnetic drivers. The polarization of the applied force

  18. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  19. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  20. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  1. Ultrasound velocities for axial eye length measurement.

    PubMed

    Hoffer, K J

    1994-09-01

    Since 1974, I have used individual sound velocities for each eye condition encountered for axial length measurement. The calculation results in 1,555 M/sec for the average phakic eye. A slower speed of 1,549 M/sec was found for an extremely long (30 mm) eye and a higher speed of 1,561 M/sec was noted for an extremely short (20 mm) eye. This inversely proportional velocity change can best be adjusted for by measuring the phakic eye at 1,532 M/sec and correcting the result by dividing the square of the measured axial length (AL1,532)2 by the difference of the measured axial length (AL1,532) minus 0.35 mm. A velocity of 1,534 M/sec was found for all aphakic eyes regardless of their length, and correction is clinically significant. The velocity of an eye containing a poly(methyl methacrylate) intraocular lens is not different from an average phakic eye but it does magnify the effect of axial length change. I recommend measuring the pseudophakic eye at 1,532 M/sec and adding to the result (AL1,532), + 0.04 + 44% of the IOL thickness. The speed for an eye with a silicone IOL was found to be 1,476 M/sec (or AL1,532 + 0.04 - 56% of IOL thickness) and for glass, 1,549 M/sec (or AL1,532 + 0.04 + 75% of IOL thickness). A speed of 1,139 M/sec was found for a phakic eye with silicone oil filling most of the vitreous cavity and 1,052 M/sec for an aphakic eye filled with oil. For varying volumes of oil, each eye should be calculated individually. The speed was 534 M/sec for phakic eyes filled with gas. Eyes containing a silicone IOL or oil or gas will create clinically significant errors (3 to 10 diopters) if the sound velocity is not corrected. PMID:7996413

  2. Adaptive interferometric velocity measurements using a laser guide star

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Radner, H.; Büttner, L.

    2015-07-01

    We have harnessed the power of programmable photonics devices for an interferometric measurement technique. Laser interferometers are widely used for flow velocity measurements, since they offer high temporal and spatial resolutions. However, often optical wavefront distortions deteriorate the measurement properties. In principle, adaptive optics enables the correction of these disturbances. One challenge is to generate a suitable reference signal for the closed loop operation of the adaptive optics. An adaptive Mach Zehnder interferometer is presented to measure through a dynamic liquid-gas phase boundary, which can lead to a misalignment of the interfering laser beams. In order to generate the reference signal for the closed loop control, the Fresnel reflex of the phase boundary is used as Laser Guide Star (LGS) for the first time to the best of the authors' knowledge. The concept is related to the generation of artificial stars in astronomy, where the light transmitted by the atmosphere is evaluated. However, the adaptive interferometric flow velocity measurements at real world experiments require a different concept, since only the reflected light can be evaluated. The used LGS allows to measure the wavefront distortions induced by the dynamic phase boundary. Two biaxial electromagnetically driven steering mirrors are employed to correct the wavefront distortions. This opens up the possibility for accurate flow measurements through a dynamic phase boundary using only one optical access. Our work represents a paradigm shift in interferometric velocity measurement techniques from using static to dynamic optical elements.

  3. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  4. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  5. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  6. Measurement of neutrino masses from relative velocities.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu

    2014-09-26

    We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions. PMID:25302878

  7. Evaluation of mean velocity and turbulence measurements with ADCPs

    USGS Publications Warehouse

    Nystrom, E.A.; Rehmann, C.R.; Oberg, K.A.

    2007-01-01

    To test the ability of acoustic Doppler current profilers (ADCPs) to measure turbulence, profiles measured with two pulse-to-pulse coherent ADCPs in a laboratory flume were compared to profiles measured with an acoustic Doppler velocimeter, and time series measured in the acoustic beam of the ADCPs were examined. A four-beam ADCP was used at a downstream station, while a three-beam ADCP was used at a downstream station and an upstream station. At the downstream station, where the turbulence intensity was low, both ADCPs reproduced the mean velocity profile well away from the flume boundaries; errors near the boundaries were due to transducer ringing, flow disturbance, and sidelobe interference. At the upstream station, where the turbulence intensity was higher, errors in the mean velocity were large. The four-beam ADCP measured the Reynolds stress profile accurately away from the bottom boundary, and these measurements can be used to estimate shear velocity. Estimates of Reynolds stress with a three-beam ADCP and turbulent kinetic energy with both ADCPs cannot be computed without further assumptions, and they are affected by flow inhomogeneity. Neither ADCP measured integral time scales to within 60%. ?? 2007 ASCE.

  8. Tomographic Particle Localization and Velocity Measurement

    NASA Astrophysics Data System (ADS)

    Kirner, S.; Forster, G.; Schein, J.

    2015-01-01

    Wire arc spraying is one of the most common and elementary thermal spray processes. Due to its easy handling, high deposition rate, and relative low process costs, it is a frequently used coating technology for the production of wear and corrosion resistant coatings. In order to produce reliable and reproducible coatings, it is necessary to be able to control the coating process. This can be achieved by analyzing the parameters of the particles deposited. Essential for the coating quality are, for example, the velocity, the size, and the temperature of the particles. In this work, an innovative diagnostic for particle velocity and location determination is presented. By the use of several synchronized CMOS-Cameras positioned around the particle jet, a series of images from different directions is simultaneously taken. The images contain the information that is necessary to calculate the 3D-location-vector of the particles and finally with the help of the exposure time the trajectory can be determined. In this work, the experimental setup of the tomographic diagnostic is presented, the mathematical method of the reconstruction is explained, and first measured velocity distributions are shown.

  9. Radionuclide counting technique for measuring wind velocity

    SciTech Connect

    Singh, J.J.; Khandelwal, G.S.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  10. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  11. Toward accurate radial velocities with the fiber-fed GIRAFFE multi-object VLT spectrograph

    NASA Astrophysics Data System (ADS)

    Royer, Frederic; Blecha, Andre; North, Pierre; Simond, Gilles; Baratchart, Sebastien; Cayatte, Veronique; Chemin, Laurent; Palsa, Ralf

    2002-12-01

    We describe briefly the Data-Reduction of the VLT fiber-fed multi-object GIRAFFE spectrograph - part of the VLT FLAMES facility. We focus on specific features of GIRAFFE - the simultaneous wavelength calibration - and their impact on the data-reduction strategy. We describe the implementation of the global physical model and we compare the results obtained with the simulated, laboratory and preliminary data. We discuss the influence of critical parameters, the overall accuracy of the wavelength solution, and the stability and the robustness of the global model approach. We address the accuracy of radial velocity measurements illustrated by solar spectra obtained during the Preliminary Acceptance in Europe.

  12. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  13. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  14. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  15. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-01-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  16. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  17. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  18. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  19. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  20. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  1. Spectrographs for the Measurement of Radial Velocities

    NASA Astrophysics Data System (ADS)

    Baranne, A.

    A radial-velocity measurement derives from a shift in position of spectral features at the focus of a spectrographic instrument. We do not often think about how small these shifts are. It is not generally appreciated that the accuracy to which this shift must be measured is a tiny fraction of a pixel. Or, if we prefer to calculate in microns a surprising minuteness. What precautions should we be taking for the measurement of such small shifts? It is true that, thanks to computers, modern reduction methods allows us to correct for a wide variety of pertubations, provided that these are foreseen and understood; but such reduction procedures will give the best results if such pertubations are kept very small. We must therefore analyse these pertubations and think about how we can control them. The correlation method initiated in its modern form by Roger Griffin, and which we developed further with an optical mask in CORAVEL twenty-five years ago and more recently with a numerical mask in ELODIE, has demonstrated its power. In terms of these methods, the problem of high precision is to improve the correlation peak. Can this be done? Does the correlation method allow us to distinguish the overall radial velocity of the object from possible distortions of the lines? This is certainly a major problem which must be solved. The luminous efficiency of high-precision spectrographs is low. If the use of an optical fibre with scrambling for feeding the spectrograph seems inevitable to us today, it seems to me that the transmission of this system can be considerably improved by a better choice of the F-ratio of the image beam of the telescope which is to be matched with that of the spectrograph. This problem, common to all spectrographs, could be resolved with a specialised focal-plane instrument, giving a much greater than usual F-ratio, resulting in a simplification of the spectrograph optics, and hence an improvement in transmission and a serious decrease in size (which is

  2. Measurement of the velocity field behind the automotive vent

    NASA Astrophysics Data System (ADS)

    Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav

    2012-04-01

    Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  3. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  4. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  5. Interferometric measurement of acoustic velocity in PbMoO4 and TeO2

    SciTech Connect

    Vernaleken, Andreas; Cohen, Martin G.; Metcalf, Harold

    2007-10-10

    We present a novel interferometric technique for the accurate measurement of acoustic velocity based on an optical phase shifter consisting of a pair of properly aligned acousto-optic modulators (AOMs). Results for the z-axis longitudinal mode velocities in lead molybdate(PbMoO4) and tellurium dioxide(TeO2) at80 MHz are reported and compared with earlier results.A longstanding inconsistency in thePbMoO4 velocity is resolved.

  6. Holographic particle velocity measurement in the Fraunhofer plane.

    PubMed

    Ewan, B C

    1979-03-01

    Double exposure holograms of a moving particle field having a 1-D velocity distribution are produced. The Fraunhofer plane is observed on reconstruction, and it is shown that for a Gaussian velocity distribution, the fringes which modulate the diffraction pattern have spacings characteristic of the peak velocity. Known and measured peak velocities are compared, and the effect of the velocity distribution width on the fringe contrast is demonstrated.

  7. Doppler radar velocity measurements for wound ballistics experiments.

    PubMed

    Knudsen, P J; Svender, J

    1994-01-01

    Bullet velocity is a basic parameter in wound ballistics studies. It is usually measured electronically by means of a variety of solid or photoelectric barriers connected to equipment measuring the time elapsing between impulses, enabling the velocity to be calculated. With the advent of Doppler radar velocity measurement of large calibre artillery shells, the use of this equipment for wound ballistics experiments was investigated. Anaesthetized pigs were shot at a range of 9-10 metres and the velocities measured by Doppler radar and photocells were compared. A very good correspondence between the measured entry and exit velocities in low and medium velocity bullets was found, i.e. an average deviation of less than 1% (range 0-2%) between the two types of equipment. In high velocity bullets measurement of entry velocities was just as good, but in both methods measurement of the exit velocity was complicated by the cluttering of signals by fragments of tissue released from the exit wound and the deflection of the bullet, Doppler radar offers important benefits - simple set up, minimal risk of damage of equipment by stray bullets and very good accuracy - and may replace photocells and similar equipment in studies involving low and medium velocity bullets. Measurement of the exit velocity of high velocity bullets is unsatisfactory in both methods, and it is necessary to improve the Doppler radar method in order to measure that as well.

  8. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  9. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  10. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  11. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  12. Toward more accurate loss tangent measurements in reentrant cavities

    SciTech Connect

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  13. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  14. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  15. Direct measurements of convective fluid velocities in superporous agarose beads.

    PubMed

    Gustavsson, P E; Axelsson, A; Larsson, P O

    1998-02-01

    Superporous agarose beads contain two sets of pores, diffusion pores and so-called superpores or flow pores, in which the chromatographic flow can transport substances to the interior of each individual bead [Gustavsson and Larsson, J. Chromatogr. A 734 (1996) 231]. The existence of pore flow may be proven indirectly by the chromatographic performance of beads but it has never been directly demonstrated in a chromatographic bed. In this report, pore flow was directly measured by following the movement of micro-particles (dyed yeast cells) in a packed bed. The passage of the micro-particles through the superpores and through the interstitial pores was followed by a microscope/video camera focused on beads which were situated four layers from the glass wall. The video recordings were subsequently used to determine the convective fluid velocities in both the superpores and the interstitial pores. Experiments were carried out with three different bead size ranges, all of which contained superporous beads having an average superpore diameter of 30 microns. The superpore fluid velocity as % of interstitial fluid velocity was determined to be 2-5% for columns packed with 300-500-micron beads (3% average value), 6-12% for columns packed with 180-300-micron beads (7% average value) and 11-24% for columns packed with 106-180-micron beads (17% average value). These data were compared to and found to agree with theoretically calculated values based on the Kozeny-Carman equation. In order to observe and accurately measure fluid velocities within a chromatographic bed, special techniques were adopted. Also, precautions were made to ensure that the experimental conditions used were representative of normal chromatography runs.

  16. Compressional velocity measurements for a highly fractured lunar anorthosite

    NASA Technical Reports Server (NTRS)

    Sondergeld, C. H.; Granryd, L. A.; Spetzler, H. A.

    1979-01-01

    The compressional wave (V sub p) velocities in three mutually perpendicular directions have been measured in lunar sample 60025,174, lunar anorthosite. V sub p measurements were made at ambient temperature and pressure and a new technique was developed to measure the velocities because of the tremendous acoustic wave attenuation of the lunar sample. The measured velocities were all less than 1 km/sec and displayed up to a 21% departure from the mean value of the three directions. The velocities agree with seismic wave velocities determined for the lunar surface at the collection site.

  17. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  18. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  19. Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements.

    PubMed

    Ayrinhac, S; Gauthier, M; Le Marchand, G; Morand, M; Bergame, F; Decremps, F

    2015-07-15

    Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid-liquid transition has been found in the whole pressure and temperature range explored.

  20. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    PubMed Central

    Stade, Sam; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure

    2014-01-01

    An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol'skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 μm, while using the calculated sonic velocity the standard deviations were 21–39 μm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol'skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements. PMID:24991939

  1. Automated methods for accurate determination of the critical velocity of packed bed chromatography.

    PubMed

    Chang, Yu-Chih; Gerontas, Spyridon; Titchener-Hooker, Nigel J

    2012-01-01

    Knowing the critical velocity (ucrit) of a chromatography column is an important part of process development as it allows the optimization of chromatographic flow conditions. The conventional flow step method for determining ucrit is prone to error as it depends heavily on human judgment. In this study, two automated methods for determining ucrit have been developed: the automatic flow step (AFS) method and the automatic pressure step (APS) method. In the AFS method, the column pressure drop is monitored upon application of automated incremental increases in flow velocity, whereas in the APS method the flow velocity is monitored upon application of automated incremental increases in pressure drop. The APS method emerged as the one with the higher levels of accuracy, efficiency and ease of application having the greater potential to assist defining the best operational parameters of a chromatography column.

  2. Measuring the Velocity of a Tennis Serve.

    ERIC Educational Resources Information Center

    Eng, John; Lietman, Thomas

    1994-01-01

    Presents an alternative to the use of a radar to determine how fast an individual can serve a tennis ball. Equipped with a tape recorder and a Macintosh computer, students determine the velocity of a tennis ball by analyzing the sounds and echoes heard on the court. (ZWH)

  3. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  6. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  7. A method for accurate temperature measurement using infrared thermal camera.

    PubMed

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  8. Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Zheng, Yi; Jing, Yipeng

    2015-02-01

    Cosmology based on large scale peculiar velocity prefers volume weighted velocity statistics. However, measuring the volume weighted velocity statistics from inhomogeneously distributed galaxies (simulation particles/halos) suffers from an inevitable and significant sampling artifact. We study this sampling artifact in the velocity power spectrum measured by the nearest particle velocity assignment method by Zheng et al., [Phys. Rev. D 88, 103510 (2013).]. We derive the analytical expression of leading and higher order terms. We find that the sampling artifact suppresses the z =0 E -mode velocity power spectrum by ˜10 % at k =0.1 h /Mpc , for samples with number density 10-3 (Mpc /h )-3 . This suppression becomes larger for larger k and for sparser samples. We argue that this source of systematic errors in peculiar velocity cosmology, albeit severe, can be self-calibrated in the framework of our theoretical modelling. We also work out the sampling artifact in the density-velocity cross power spectrum measurement. A more robust evaluation of related statistics through simulations will be presented in a companion paper by Zheng et al., [Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modelling, arXiv:1409.6809.]. We also argue that similar sampling artifact exists in other velocity assignment methods and hence must be carefully corrected to avoid systematic bias in peculiar velocity cosmology.

  9. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  10. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  11. Precise and accurate isotopic measurements using multiple-collector ICPMS

    NASA Astrophysics Data System (ADS)

    Albarède, F.; Telouk, Philippe; Blichert-Toft, Janne; Boyet, Maud; Agranier, Arnaud; Nelson, Bruce

    2004-06-01

    New techniques of isotopic measurements by a new generation of mass spectrometers equipped with an inductively-coupled-plasma source, a magnetic mass filter, and multiple collection (MC-ICPMS) are quickly developing. These techniques are valuable because of (1) the ability of ICP sources to ionize virtually every element in the periodic table, and (2) the large sample throughout. However, because of the complex trajectories of multiple ion beams produced in the plasma source whether from the same or different elements, the acquisition of precise and accurate isotopic data with this type of instrument still requires a good understanding of instrumental fractionation processes, both mass-dependent and mass-independent. Although physical processes responsible for the instrumental mass bias are still to be understood more fully, we here present a theoretical framework that allows for most of the analytical limitations to high precision and accuracy to be overcome. After a presentation of unifying phenomenological theory for mass-dependent fractionation in mass spectrometers, we show how this theory accounts for the techniques of standard bracketing and of isotopic normalization by a ratio of either the same or a different element, such as the use of Tl to correct mass bias on Pb. Accuracy is discussed with reference to the concept of cup efficiencies. Although these can be simply calibrated by analyzing standards, we derive a straightforward, very general method to calculate accurate isotopic ratios from dynamic measurements. In this study, we successfully applied the dynamic method to Nd and Pb as examples. We confirm that the assumption of identical mass bias for neighboring elements (notably Pb and Tl, and Yb and Lu) is both unnecessary and incorrect. We further discuss the dangers of straightforward standard-sample bracketing when chemical purification of the element to be analyzed is imperfect. Pooling runs to improve precision is acceptable provided the pooled

  12. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  13. Accurate frequency noise measurement of free-running lasers.

    PubMed

    Schiemangk, Max; Spiessberger, Stefan; Wicht, Andreas; Erbert, Götz; Tränkle, Günther; Peters, Achim

    2014-10-20

    We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.

  14. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  15. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  16. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  17. On the measurement of vertical velocity by MST radar

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  18. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy.

    PubMed

    Bernard, Simon; Grimal, Quentin; Laugier, Pascal

    2013-02-01

    Resonant ultrasound spectroscopy (RUS) allows to accurately characterize the complete set of elastic constants of an anisotropic material from a set of measured mechanical resonant frequencies of a specimen. This method does not suffer from the drawbacks and limitations of the conventional sound velocity approach, but has been reported to fail to measure bone because of its strong viscoelastic damping. In this study, we take advantage of recent developments of RUS to overcome this limitation. The frequency response of a human cortical bone specimen (about 5 × 7 × 7 mm(3)) was measured between 100 and 280 kHz. Despite an important overlapping of the resonant peaks 20 resonant frequencies could be retrieved by using a dedicated signal processing method. The experimental frequencies were progressively matched to the frequencies predicted by a model of the sample whose elastic constants were adjusted. The determined diagonal elastic constants were in good agreement with concurrent sound velocity measurements performed in the principal directions of the specimen. This study demonstrates that RUS is suitable for an accurate measurement of cortical bone anisotropic elasticity. In particular, precision of measured Young and shear moduli is about 0.5%.

  19. A novel photonic Doppler velocimetry for transverse velocity measurement

    SciTech Connect

    Chen Guanghua; Wang Detian; Liu Jun; Meng Jianhua; Liu Shouxian; Yang Qingguo

    2013-01-15

    A fiber interferometry for transverse velocity measurement has been developed. This diagnostic is similar to photonic Doppler velocimetry in the way in which laser propagates and couples. The interferometer mainly consists of a fiber coupler, an emitting probe, and two receiving probes. A pair of scattered laser beams mix in the coupler and generates fringes with frequency proportional to transverse velocity. Measurement of transverse velocity is independent of longitudinal velocity. The feasibility of the technique has been verified by rotating wheel experiment and shock loading experiment.

  20. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  1. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  2. Radio-controlled boat for measuring water velocities and bathymetry

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  3. Unseeded Scalar Velocity Measurements for Propulsion Flows

    NASA Technical Reports Server (NTRS)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Seasholtz, Richard G. (Technical Monitor)

    2000-01-01

    Unseeded molecular tagging methods based on single-photon processes that produce long tag lines (>50 mm) have been recently developed and demonstrated by the Combustion Laser Diagnostics Group (Mechanical Engineering Department) at Vanderbilt University [1,2]. In Ozone Tagging Velocimetry (OTV) a line of ozone (O3) is produced by a single photon from a pulsed narrowband argon fluoride (ArF) excimer laser operating at - 193 nm. After a known time delay, t, the position of the displaced (convected in the flow field) O3 tag line is revealed by photodissociation of O3 and subsequent fluorescence of O2, caused by a pulsed laser sheet from a krypton fluoride (KrF) excimer laser operating at - 248 nm. Intensified CCD camera images of the fluorescence are taken from the initial and final tag line locations thus providing unobtrusive means of establishing a velocity profile in the interrogated flow field. The O3 lines are "written" and subsequently "read" by the following reactions:

  4. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  5. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  6. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  7. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  8. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  9. Interferometric measurement of the angular velocity of moving humans

    NASA Astrophysics Data System (ADS)

    Nanzer, Jeffrey A.

    2012-06-01

    This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.

  10. Influence of speckle effect on doppler velocity measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  11. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  12. Accurate blood flow measurements: are artificial tracers necessary?

    PubMed

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  13. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  14. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  15. Accurate measurement of liquid transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-04-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

  16. Accurate measurement of liquid transport through nanoscale conduits.

    PubMed

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  17. The sound velocity measurement in diacylglycerol oil under high pressure

    NASA Astrophysics Data System (ADS)

    Rostocki, A. J.; Malanowski, A.; Tarakowski, R.; Szlachta, K.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Ptasznik, S.

    2013-03-01

    In this article, the influence of high pressure on sound velocity at 293 K has been presented. The investigated diacylglycerol oil (DAG - [D82T18]AG) was composed of 82% DAGs and 18% triacylglycerols. The variation of sound velocity with hydrostatic pressure for DAG was evaluated up to 400 MPa. The phase transformation in DAG has been observed as a discontinuity of the dependence of sound velocity on pressure. The sound velocity during the phase transition has shown distinct increment. Also the volume changes have been measured. It has shown the rapid drop of the volume at the phase transformation pressure due to the possible crystallization of DAG oil.

  18. Measurement of sound velocity profiles in fluids for process monitoring

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.

    2012-12-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  19. New simple method for fast and accurate measurement of volumes

    NASA Astrophysics Data System (ADS)

    Frattolillo, Antonio

    2006-04-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  20. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  1. Improved formula for continuous-wave measurements of ultrasonic phase velocity

    NASA Technical Reports Server (NTRS)

    Chern, E. J.; Cantrell, J. H., Jr.; Heyman, J. S.

    1981-01-01

    An improved formula for continuous-wave ultrasonic phase velocity measurements using contact transducers is derived from the transmission line theory. The effect of transducer-sample coupling bonds is considered for measurements of solid samples even though it is often neglected because of the difficulty of accurately determining the bond thickness. Computer models show that the present formula is more accurate than previous expressions. Laboratory measurements using contacting transducers with the present formula are compared to measurements using noncontacting (hence effectively correction-free) capacitive transducers. The results of the experiments verify the validity and accuracy of the new formula.

  2. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  3. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  4. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  5. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  6. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  7. 33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT WES IN 1932 BY CARL E. BENTZEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  8. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  9. Measurements of groundwater velocity in discrete rock fractures.

    PubMed

    Novakowski, Kent; Bickerton, Greg; Lapcevic, Pat; Voralek, John; Ross, Nathalie

    2006-01-01

    Estimating groundwater velocity in fracture networks using a Darcy or cubic law calculation is complicated by the wide distribution of fracture aperture often found in these systems and by the difficulty in measuring hydraulic head in discrete fracture features. Although difficult to conduct in a fractured rock setting, the point dilution method can be utilized to collect direct measurements of groundwater velocity in individual fractures. To compare measured against calculated velocities, more than 100 point dilution experiments were conducted within a 35 x 35 m area of a single fracture and in discrete fracture features within a fracture network at a larger scale. The dilution experiments were conducted by isolating a fracture feature in a borehole, measuring the hydraulic aperture, and measuring the decay of an injected tracer due to the advective groundwater flux across the fracture. Groundwater velocity was estimated using the hydraulic aperture and the rate of decay of the injected tracer. Estimates of the local hydraulic gradient were calculated via the cubic law using the velocity estimate and the hydraulic aperture. The results of the tests conducted in the single fracture show variable (1 to 33 m/day) but on average higher velocities in comparison to that measured during a natural gradient tracer experiment conducted previously (in which the effects of matrix diffusion were accounted for) and to that which would be calculated using the cubic law. Based on these results, it was determined that the best estimate of the average groundwater velocity, at the scale of the measurement area used for the cubic law calculations, could only be obtained using the largest apertures in the aperture distribution. Variability of the velocity measurements was also observed over time. Increases in velocity were attributed to the effect of rainfall although concurrent increases in hydraulic gradient were not detected (likely within the tolerance of the measuring devices

  10. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  11. Non-intrusive measurements of bubble size and velocity

    NASA Astrophysics Data System (ADS)

    Tassin, A. L.; Nikitopoulos, D. E.

    1995-06-01

    A non-intrusive measuring technique based on video-imaging has been developed for the measurement of bubble size, velocity and frequency. Measurements carried out with this method have been compared to those obtained by an optimized phase-Doppler system in standard configuration, for a wide range of bubble sizes produced from single injectors in a quiescent environment. The two measuring techniques have yielded velocities and frequencies that are in very good agreement while the size of spherical bubbles was consistently measured by both methods. The phase-Doppler system was also used to size oblate-spheroidal bubbles moving with their equatorial plane parallel to the scattering plane, yielding measurements reasonably close to the average radius of curvature of the bubbles in the neighborhood of the equatorial plane, as calculated from the video-imaging data. Both methods were used for detailed velocity measurements of the bubble-stream in the neighborhood of the injector tip. The observed bubble-velocity variation with the distance from the injector tip does not always display the usual increasing trend leading into the terminal velocity. When injection conditions are near the transition from discrete to jet injection mode and the bubbles are small, the latter decelerate into a terminal velocity due to direct interaction of successive bubbles at the injector tip. The measured terminal velocities of bubble-chains for a variety of bubble sizes and injection frequencies, are successfully predicted by using a far-field wake approximation to account for the drafting effect which is responsible for bubble-chain velocities higher than those of single bubbles.

  12. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  13. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    SciTech Connect

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  14. Accurate MTF measurement in digital radiography using noise response

    PubMed Central

    Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel R.; Hoffmann, Kenneth R.; Rudin, Stephen

    2010-01-01

    an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. Conclusions: Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge. PMID:20229882

  15. Video measurement of the muzzle velocity of a potato gun

    NASA Astrophysics Data System (ADS)

    Jasperson, Christopher; Pollman, Anthony

    2011-09-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile mass. The present paper describes the results of experiments conducted to verify the validity of this theoretical equation. A high-speed video camera was used to quantify muzzle velocity for potatoes of varying mass exiting a pneumatic cannon for gauge pressures ranging from 310 to 830 kPa. The experiments verified that a friction modified version of the theoretical equation is qualitatively and quantitatively accurate for potato masses above 100 g.

  16. Velocity field measurement of a round jet using quantitative schlieren.

    PubMed

    Iffa, Emishaw D; Aziz, A Rashid A; Malik, Aamir S

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed.

  17. Velocity field measurement of a round jet using quantitative schlieren

    SciTech Connect

    Iffa, Emishaw D.; Aziz, A. Rashid A.; Malik, Aamir S.

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed.

  18. Cerenkov detector for heavy-ion velocity measurements

    SciTech Connect

    Olson, D.L.; Baumgartner, M.; Dufour, J.P.; Girard, J.G.; Greiner, D.E.; Lindstrom, P.J.; Symons, T.J.M.; Crawford, H.J.

    1984-08-01

    We have developed a highly sensitive velocity measuring detector using total-internal-reflection Cerenkov counters of a type mentioned by Jelly in 1958. If the velocity of the particle is above the threshold for total-internal-reflection these counters have a charge resolution of sigma = 0.18e for a 3mm thick glass radiator. For the velocity measurement we use a fused silica radiator so that the velocity of the particles are near the threshold for total-internal reflection. For momentum-analyzed projectile fragments of 1.6 GeV/nucleon /sup 40/Ar, we have measured a mass resolution of sigma = 0.1u for isotope identification.

  19. Particle size and velocity measurement in flames by laser anemometer

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.; Ungut, A.; Yule, A. J.

    1979-01-01

    Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.

  20. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  1. Shock-induced phase transition of Tin: experimental study with velocity and temperature measurements

    NASA Astrophysics Data System (ADS)

    Chauvin, Camille; Bouchkour, Zakaria; Sinatti, Frédéric; Petit, Jacques

    2015-06-01

    To investigate polymorphic transition and melting on release of Tin, experiments under shock wave compression have been carried out from 10 GPa to 44 GPa with both velocity and temperature measurements. Interface Sn/LiF velocity has been recorded using PDV measurement technique and interface Sn/LiF temperature has been performed thnks to an optical pyrometer appropriate to detect low and high temperature (respectively under 1000 K and upper 1000 K). While PDV measurements are common and accurate, temperature remains often imprecise due to the lack of knowledge of the emissivity of the sample. Nevertheless, temperature profiles show singularities particularly during phase transition, not visible on velocity profiles. The use of an emissive layer at the interface Sn/LiF allows to estimate an accurate temperature measurement which can be compared to our numerical calculations. The profiles of velocity record and radiance record are in a good agreement in chronometry and display the polymorphic transition and the melting on release of Tin. This presentation will discuss the evidence of phase transitions on temperature measurements, the complementarity with velocity data and the advantages of an emissive layer.

  2. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure. PMID:27076222

  3. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure.

  4. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R.E.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)

  5. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion.

    PubMed

    Varley, Matthew C; Fairweather, Ian H; Aughey, Robert J

    2012-01-01

    In this study, we assessed the validity and reliability of 5 and 10 Hz global positioning systems (GPS) for measuring instantaneous velocity during acceleration, deceleration, and constant velocity while straight-line running. Three participants performed 80 running trials while wearing two GPS units each (5 Hz, V2.0 and 10 Hz, V4.0; MinimaxX, Catapult Innovations, Scoresby, VIC, Australia). The criterion measure used to assess GPS validity was instantaneous velocity recorded using a tripod-mounted laser. Validity was established using the standard error of the estimate (± 90% confidence limits). Reliability was determined using typical error (± 90% confidence limits, expressed as coefficient of variation) and Pearson's correlation. The 10 Hz GPS devices were two to three times more accurate than the 5 Hz devices when compared with a criterion value for instantaneous velocity during tasks completed at a range of velocities (coefficient of variation 3.1-11.3%). Similarly, the 10 Hz GPS units were up to six-fold more reliable for measuring instantaneous velocity than the 5 Hz units (coefficient of variation 1.9-6.0%). Newer GPS may provide an acceptable tool for the measurement of constant velocity, acceleration, and deceleration during straight-line running and have sufficient sensitivity for detecting changes in performance in team sport. However, researchers must account for the inherent match-to-match variation reported when using these devices.

  6. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  7. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  8. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  9. Velocity and rotation measurements in acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  10. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    NASA Astrophysics Data System (ADS)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  11. On-line velocity measurements using phase probes at the SuperHILAC

    SciTech Connect

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs.

  12. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  13. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  14. 3D velocity measurement by a single camera using Doppler phase-shifting holography

    NASA Astrophysics Data System (ADS)

    Ninomiya, Nao; Kubo, Yamato; Barada, Daisuke; Kiire, Tomohiro

    2016-10-01

    In order to understand the details of the flow field in micro- and nano-fluidic devices, it is necessary to measure the 3D velocities under a microscopy. Thus, there is a strong need for the development of a new measuring technique for 3D velocity by a single camera. One solution is the use of holography, but it is well known that the accuracy in the depth direction is very poor for the commonly used in-line holography. At present, the Doppler phase-shifting holography is used for the 3D measurement of an object. This method extracts the signal of a fixed frequency caused by the Doppler beat between the object light and the reference light. It can measure the 3D shape precisely. Here, the frequency of the Doppler beat is determined by the velocity difference between the object light and the reference light. This implies that the velocity of an object can be calculated by the Doppler frequency. In this study, a Japanese 5 yen coin was traversed at a constant speed and its holography has been observed by a high-speed camera. By extracting only the first order diffraction signal at the Doppler frequency, a precise measurement of the shape and the position of a 5 yen coin has been achieved. At the same time, the longitudinal velocity of a 5 yen coin can be measured by the Doppler frequency. Furthermore, the lateral velocities are obtained by particle image velocimetry (PIV) method. A 5 yen coin has been traversed at different angles and its shapes and the 3D velocities have been measured accurately. This method can be applied to the particle flows in the micro- or nano-devices, and the 3D velocities will be measured under microscopes.

  15. Using embedded fibers to measure explosive detonation velocities

    SciTech Connect

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  16. Estimating Radar Velocity using Direction of Arrival Measurements

    SciTech Connect

    Doerry, Armin Walter; Horndt, Volker; Bickel, Douglas Lloyd; Naething, Richard M.

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  17. Low-cost tape system measures velocity of acceleration

    NASA Technical Reports Server (NTRS)

    Hartenstein, R.

    1964-01-01

    By affixing perforated magnetic recording tape to the falling end of a body, acceleration and velocity were measured. The measurement was made by allowing the tape to pass between a light source and a photoelectric sensor. Data was obtained from a readout device.

  18. Laser system for distance, velocity, and angle measurements

    NASA Astrophysics Data System (ADS)

    Pienkowski, Janusz; Rzepka, Janusz

    1995-03-01

    The two frequency laser interferometer, using frequency stabilized HeNe laser 0.63 micrometers , is presented in this paper. The system consists of a laser head, meteo station, and measurement display. The laser system fundamentally measures linear displacement (distance) but can also measure velocity and angle. The resolution and the accuracy of measurements are comparable with parameters of lasers systems produced by Hewlett-Packard 5526A and Spindler & Hoyer ZLI 150.

  19. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    SciTech Connect

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1991-10-01

    A new instrument based on a constant frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonicwavevelocity in liquids and changes in ultrasonicwavevelocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques including the constant phase shifts of reflectors placed in the path of the ultrasonicwave.Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measurevelocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10{sup 7}.

  20. Laboratory Measurements of Velocity and Attenuation in Sediments

    SciTech Connect

    Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M

    2004-06-08

    Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile of

  1. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  2. Sub-Micron Velocity Measurements near a Moving Contact Line

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeremiah; Weislogel, Mark M.; Tretheway, Derek C.

    2010-03-01

    The displacement of one fluid by an immiscible second fluid (i.e. dynamic wetting), governs many natural and technological processes. Despite extensive studies, understanding and modeling the displacement process remains one of the outstanding problems in fluid mechanics. In this work, we explore the physics of the moving contact line (the idealized line of intersection between two fluids and a solid) with micron resolution particle image velocimetry (μPIV), which enables sub-micron two-dimensional velocity measurements. The measured flow is generated by dynamic wetting in a glass microchannel. The microchannel is mounted on an automated microscope stage with precise velocity control allowing for the static placement of the contact line within the field of view. Full-field velocity measurements within 1 μm of the contact line were made in water/glycerol and fructose/glucose/water solutions. Preliminary results appear to show remarkable similarity to controversial theoretical predictions.

  3. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  4. Optic-microwave mixing velocimeter for superhigh velocity measurement

    SciTech Connect

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  5. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  6. Effects of inflow velocity profile on two-dimensional hemodynamic analysis by ordinary and ultrasonic-measurement-integrated simulations.

    PubMed

    Kato, Takaumi; Sone, Shusaku; Funamoto, Kenichi; Hayase, Toshiyuki; Kadowaki, Hiroko; Taniguchi, Nobuyuki

    2016-09-01

    Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation correctly reproduces hemodynamics even with an inexact inflow velocity distribution. This study aimed to investigate which is superior, a two-dimensional ordinary (2D-O) simulation with an accurate inflow velocity distribution or a 2D-UMI simulation with an inaccurate one. 2D-O and 2D-UMI simulations were performed for blood flow in a carotid artery with four upstream velocity boundary conditions: a velocity profile with backprojected measured Doppler velocities (condition A), and velocity profiles with a measured Doppler velocity distribution, a parabolic one, and a uniform one, magnitude being obtained by inflow velocity estimation (conditions B, C, and D, respectively). The error of Doppler velocity against the measurement data was sensitive to the inflow velocity distribution in the 2D-O simulation, but not in the 2D-UMI simulation with the inflow velocity estimation. Among the results in conditions B, C, and D, the error in the worst 2D-UMI simulation with condition D was 31 % of that in the best 2D-O simulation with condition B, implying the superiority of the 2D-UMI simulation with an inaccurate inflow velocity distribution over the 2D-O simulation with an exact one. Condition A resulted in a larger error than the other conditions in both the 2D-O and 2D-UMI simulations.

  7. Separation of non-stationary sound fields with single layer pressure-velocity measurements.

    PubMed

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-02-01

    This paper examines the feasibility of extracting the non-stationary sound field generated by a target source in the presence of disturbing source from single layer pressure-velocity measurements. Unlike the method described in a previous paper [Bi, Geng, and Zhang, J. Acoust. Soc. Am. 135(6), 3474-3482 (2014)], the proposed method allows measurements of pressure and particle velocity signals on a single plane instead of pressure signals on two planes, and the time-dependent pressure generated by the target source is extracted by a simple superposition of the measured pressure and the convolution between the measured particle velocity and the corresponding impulse response function. Because the particle velocity here is measured directly, the error caused by the finite difference approximation can be avoided, which makes it possible to perform the separation better than the previous method. In this paper, a Microflown pressure-velocity probe is used to perform the experimental measurements, and the calibration procedure of the probe in the time domain is given. The experimental results demonstrate that the proposed method is effective in extracting the desired non-stationary sound field generated by the target source from the mixed one in both time and space domains, and it obtains more accurate results than the previous method. PMID:26936560

  8. Separation of non-stationary sound fields with single layer pressure-velocity measurements.

    PubMed

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-02-01

    This paper examines the feasibility of extracting the non-stationary sound field generated by a target source in the presence of disturbing source from single layer pressure-velocity measurements. Unlike the method described in a previous paper [Bi, Geng, and Zhang, J. Acoust. Soc. Am. 135(6), 3474-3482 (2014)], the proposed method allows measurements of pressure and particle velocity signals on a single plane instead of pressure signals on two planes, and the time-dependent pressure generated by the target source is extracted by a simple superposition of the measured pressure and the convolution between the measured particle velocity and the corresponding impulse response function. Because the particle velocity here is measured directly, the error caused by the finite difference approximation can be avoided, which makes it possible to perform the separation better than the previous method. In this paper, a Microflown pressure-velocity probe is used to perform the experimental measurements, and the calibration procedure of the probe in the time domain is given. The experimental results demonstrate that the proposed method is effective in extracting the desired non-stationary sound field generated by the target source from the mixed one in both time and space domains, and it obtains more accurate results than the previous method.

  9. Design and characterization of optical heads for interferometric ballistic velocity measurements

    SciTech Connect

    Berkovic, Garry; Horovitz, Yossef; Moshe, Ella; Sadi, Yair; Shafir, Ehud

    2011-04-15

    The design of optical fiber based heads offering high accuracy and bandwidth for use in VISAR (velocity interferometer system for any reflector) experiments measuring ballistic velocities is described. A new, expanded, model for predicting the distance-dependent collection efficiency of the heads is presented. The model is shown to agree very well with experimental results, both within and outside the ''depth of field''. Various optical heads are demonstrated, to suit different experimental setups and conditions. Designs offering options for high bandwidths, accurate prealignment, and large stand-off distances are discussed. Results from a typical VISAR experiment are presented, verifying that our designs yield high-quality data.

  10. Design and characterization of optical heads for interferometric ballistic velocity measurements.

    PubMed

    Berkovic, Garry; Horovitz, Yossef; Moshe, Ella; Sadi, Yair; Shafir, Ehud

    2011-04-01

    The design of optical fiber based heads offering high accuracy and bandwidth for use in VISAR (velocity interferometer system for any reflector) experiments measuring ballistic velocities is described. A new, expanded, model for predicting the distance-dependent collection efficiency of the heads is presented. The model is shown to agree very well with experimental results, both within and outside the "depth of field". Various optical heads are demonstrated, to suit different experimental setups and conditions. Designs offering options for high bandwidths, accurate prealignment, and large stand-off distances are discussed. Results from a typical VISAR experiment are presented, verifying that our designs yield high-quality data.

  11. DEVELOPMENT OF AN OPTICAL SYSTEM FOR HIGH-SPEED, SMALL-SCALE VELOCITY MEASUREMENTS

    SciTech Connect

    Davies, H. R.; Chapman, D. J.; Proud, W. G.; Vine, T. A.

    2009-12-28

    An optical system was developed to allow the accurate focussing and alignment of small samples for velocity analysis with streak photography Even at low magnifications, a narrow streak slit means that any vibration or instability in the system greatly reduces the accuracy of the velocity measurements achieved. The optical system was designed to reduce the effects of such vibration. A spatial mount and rotation stage were modified to allow three spatial axis and rotational freedom of a custom-made sample mount. Markers within the sample mount were used to achieve precise alignment of the sample with the optical axis of the streak camera.

  12. Three component velocity measurements in an axisymmetric jet using LDA

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Gross, Robert W.

    1990-01-01

    A commercial three-component laser Doppler anemometer (LDA) has been used to acquire a detailed set of three-dimensional mean and fluctuating velocity measurements in a low-speed air jet entering a stagnant ambient, over the first 15 jet exit diameters along the jet trajectory. These data are consistent with previous measurements in axisymmetric, turbulent jets. Mean velocity and Reynolds stress data approach a self-preserving behavior by x/D equal to about 15. However, the RMS turbulence fluctuations were not self-preserving at this axial location, as expected based upon previous experimental studies. These data confirm the ability to obtain reliable three-dimensional velocity data using the present three-dimensional LDA system.

  13. Optical density and velocity measurements in cryogenic gas flows

    NASA Astrophysics Data System (ADS)

    Jensen, O. S.; Kunsch, J. P.; Rösgen, T.

    2005-07-01

    This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter β. Its value agrees well with the results obtained by earlier studies.

  14. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2001-01-01

    A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.

  15. Velocity Profile Normalization of Field-Measured Turbidity Currents

    NASA Astrophysics Data System (ADS)

    Xu, J.

    2009-05-01

    Multiple occurrences of turbidity currents were observed in moored-ADCP measurements in Monterey (2002/03) and Hueneme (2007/08) submarine canyons, California. These turbidity currents, almost all of which were supercritical (densimetric Froude number greater than unity), lasted for hours and obtained a maximum speed of greater than 200 cm/s. The layer-averaged velocity of the turbidity currents varied from 100+ cm/s at the onset of the turbidity currents to 20+ cm/s toward the end of the events. The thickness of the turbidity currents tended to increase from 10 to 40 m over an event. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller than the field measurements [e.g. Altinakar, Graf, and Hopfinger, 1996, Flow structure in turbidity currents, Journal of Hydraulic Research, 34(5):713-718], were found to represent the field data fairly well. However, the best similarity collapse of the turbidity current velocity profiles was obtained when the streamwise velocity was normalized by the layer-averaged velocity and the elevation was normalized by the turbidity current thickness. This normalization scheme can be generalized to the same empirical function y = exp (-α xm) for the jet region above the velocity maximum.

  16. Intraglottal velocity and pressure measurements in a hemilarynx model.

    PubMed

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-02-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model. PMID:25698025

  17. Intraglottal velocity and pressure measurements in a hemilarynx model

    PubMed Central

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-01-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model. PMID:25698025

  18. 11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2∗

    NASA Astrophysics Data System (ADS)

    Boyce, C. M.; Rice, N. P.; Sederman, A. J.; Dennis, J. S.; Holland, D. J.

    2016-04-01

    Magnetic resonance (MR) was used to measure SF6 gas velocities in beds filled with particles of 1.1 mm and 0.5 mm in diameter. Four pulse sequences were tested: a traditional spin echo pulse sequence, the 9-interval and 13-interval pulse sequence of Cotts et al. (1989) and a newly developed 11-interval pulse sequence. All pulse sequences measured gas velocity accurately in the region above the particles at the highest velocities that could be achieved (up to 0.1 m s-1). The spin echo pulse sequence was unable to measure gas velocity accurately in the bed of particles, due to effects of background gradients, diffusivity and acceleration in flow around particles. The 9- and 13-interval pulse sequence measured gas velocity accurately at low flow rates through the particles (expected velocity <0.06 m s-1), but could not measure velocity accurately at higher flow rates. The newly developed 11-interval pulse sequence was more accurate than the 9- and 13-interval pulse sequences at higher flow rates, but for velocities in excess of 0.1 m s-1 the measured velocity was lower than the expected velocity. The increased accuracy arose from the smaller echo time that the new pulse sequence enabled, reducing selective attenuation of signal from faster moving nuclei.

  19. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    NASA Astrophysics Data System (ADS)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  20. Velocity measurements around a freely swimming fish using PIV

    NASA Astrophysics Data System (ADS)

    Kamran Siddiqui, M. H.

    2007-01-01

    Two-dimensional velocity fields around a freely swimming goldfish in a vertical plane have been measured using the particle image velocimetry (PIV) technique. A novel scheme has been developed to detect the fish body in each PIV image. The scheme is capable of detecting the bodies of fish and other aquatic animals with multicolour skin and different patterns. In this scheme, the body portions brighter and darker than the background are extracted separately and then combined together to construct the entire body. The velocity fields show that the fins and tail produce jets. Vortices are also observed in the wake region.

  1. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  2. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    SciTech Connect

    W.M. Solomon; K.H. Burrell; P. Gohil; R.J. Groebner; L.R. Baylor

    2004-07-16

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations.

  3. An inexpensive instrument for measuring wave exposure and water velocity

    USGS Publications Warehouse

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  4. Inter-laboratory comparison of wave velocity measures.

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Rydzy, M.; Chong, S.H.; Grozic, J.L.H.; Hester, K.; Howard, J.; Kneafsey, T.J.; Lee, J.Y.; Nakagawa, S.; Priest, J.; Reese, E.; Koh, H.; Sloan, E.D.; Sultaniya, A.

    2011-01-01

     This paper presents an eight-laboratory comparison of compressional and shear wave velocities measured in F110 Ottawa sand. The study was run to quantify the physical property variations one should expect in heterogeneous, multiphase porous materials by separately quantifying the variability inherent in the measurement techniques themselves. Comparative tests were run in which the sand was dry, water-saturated, partially water-saturated, partially ice-saturated and partially hydrate-saturated. Each test illustrates a collection of effects that can be classified as inducing either specimen-based or measurement-based variability. The most significant variability is due to void ratio variations between samples. Heterogeneous pore-fill distributions and differences in measurement techniques also contribute to the observed variability, underscoring the need to provide detailed sample preparation and system calibration information when reporting wave velocities in porous media. 

  5. Rapid measurement of transient velocity evolution using GERVAIS.

    PubMed

    Davies, Colin J; Sederman, Andrew J; Pipe, Chris J; McKinley, Gareth H; Gladden, Lynn F; Johns, Mike L

    2010-01-01

    Rapid velocity measurements using GERVAIS (Gradient Echo Rapid Velocity and Acceleration Imaging Sequence), an EPI (Echo Planar Imaging) based technique capable of measuring velocity over an observation time of several milliseconds, are performed on a wide-gap Couette Rheo-NMR cell for the first time. A variable delay time between a control signal to initiate a transition in flow and the start of the measurement sequence is incorporated to allow investigation of the transient evolution of the velocity field following a step change in rotation rate. Both the commencement and the cessation of imposed shear stress are investigated for (i) a shear banding micellar solution of CPyCl (cetylpyridiniumchloride)/NaSal (sodium salicylate) in brine and (ii) a low molecular weight PDMS (polydimethylsiloxane) oil. With respect to the micellar solution, an elastic shear wave is seen to propagate across the cell following the commencement of shear stress whilst an oscillatory 'recoil' is observed following the cessation of shear stress; neither of these phenomena were observed for the PDMS oil which exhibited a purely viscous response as expected for an incompressible Newtonian fluid. This technique has potential applications across a wide range of transient rheological investigations, particularly with respect to optically opaque materials. PMID:19897390

  6. Rapid measurement of transient velocity evolution using GERVAIS

    NASA Astrophysics Data System (ADS)

    Davies, Colin J.; Sederman, Andrew J.; Pipe, Chris J.; McKinley, Gareth H.; Gladden, Lynn F.; Johns, Mike L.

    2010-01-01

    Rapid velocity measurements using GERVAIS (Gradient Echo Rapid Velocity and Acceleration Imaging Sequence), an EPI (Echo Planar Imaging) based technique capable of measuring velocity over an observation time of several milliseconds, are performed on a wide-gap Couette Rheo-NMR cell for the first time. A variable delay time between a control signal to initiate a transition in flow and the start of the measurement sequence is incorporated to allow investigation of the transient evolution of the velocity field following a step change in rotation rate. Both the commencement and the cessation of imposed shear stress are investigated for (i) a shear banding micellar solution of CPyCl (cetylpyridiniumchloride)/NaSal (sodium salicylate) in brine and (ii) a low molecular weight PDMS (polydimethylsiloxane) oil. With respect to the micellar solution, an elastic shear wave is seen to propagate across the cell following the commencement of shear stress whilst an oscillatory 'recoil' is observed following the cessation of shear stress; neither of these phenomena were observed for the PDMS oil which exhibited a purely viscous response as expected for an incompressible Newtonian fluid. This technique has potential applications across a wide range of transient rheological investigations, particularly with respect to optically opaque materials.

  7. 2004 Indian Ocean tsunami flow velocity measurements from survivor videos

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Borrero, Jose C.; Synolakis, Costas E.; Yoo, Jeseon

    2006-12-01

    The tsunami of 26th December 2004 severely affected Banda Aceh along the North tip of Sumatra (Indonesia) at a distance of 250 km from the epicenter of the magnitude 9.0 earthquake. This tsunami flow velocity analysis focused on two survivor videos recorded within Banda Aceh more than 3 km from the open ocean. The exact locations of the tsunami eyewitness video recordings were revisited by the survey team between February 22 and 25, 2005 to record camera calibration ground control points. The motion of the camera during the recordings was determined. The individual video images were rectified with a direct linear transformation (DLT) assuming a planar water surface at the level. Finally a cross-correlation based particle image velocimetry (PIV) analysis was applied to the rectified video images to determine instantaneous tsunami flow velocity fields. The measured tsunami flow velocities were within the range of 2 to 5 m/s.

  8. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm

    PubMed Central

    Chhatbar, Pratik Y.; Kara, Prakash

    2013-01-01

    Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature. PMID:23807877

  9. Towards an accurate model of redshift-space distortions: a bivariate Gaussian description for the galaxy pairwise velocity distributions

    NASA Astrophysics Data System (ADS)

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2016-10-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation , such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and variance σ2. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distorsions on all scales, fully capturing the overall linear and nonlinear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of redshift-space distortions is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. More work is needed, but these results indicate a very promising path to make definitive progress in our program to improve RSD estimators.

  10. Assimilation of Sonic Velocity and Thin Section Measurements from the NEEM Ice Core

    NASA Astrophysics Data System (ADS)

    Hay, Michael; Pettit, Erin; Kluskiewicz, Dan; Waddington, Edwin

    2016-04-01

    We examine the measurement of crystal orientation fabric (COF) in ice cores using thin sections and sound-wave velocities, focusing on the NEEM core in Greenland. Ice crystals have substantial plastic anisotropy, with shear orthogonal to the crystallographic c-axis occuring far more easily than deformation in other orientations. Due to strain-induced grain-rotation, COFs can become highly anisotropic, resulting in bulk anisotropic flow. Thin-section measurements taken from ice cores allow sampling of the crystal fabric distribution. Thin-section measurements, however, suffer from sampling error, as they sample a small amount of ice, usually on the order of a hundred grans. They are typically only taken at intervals of several meters, which means that meter-scale variations in crystal fabric are difficult to capture. Measuring sonic velocities in ice cores provides an alternate method of determining crystal fabric. The speed of vertical compression waves is affected by the vertical clustering of c-axes, but is insensitive to azimuthal fabric anisotropy. By measuring splitting between the fast and slow shear-wave directions, information on the azimuthal distribution of orientations can be captured. Sonic-velocity measurements cannot capture detailed information on the orientation distribution of the COF, but they complement thin-section measurements with several advantages. Sonic-logging measurements can be taken at very short intervals, eliminating spatial gaps. In addition, sonic logging samples a large volume of ice with each measurement, reducing sampling error. Our logging tool has a depth resolution of around 3m/s, and can measure velocity features on the order of 1m/s. Here, we show the results of compression-wave measurements at NEEM. We also combine sonic-velocity measurements and thin-section measurements to produce a more accurate and spatially-complete representation of ice-crystal orientations in the vicinity of the NEEM core.

  11. Coda wave interferometry for the measurement of thermally induced ultrasonic velocity variations in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Livings, Richard; Dayal, Vinay; Barnard, Dan

    2016-02-01

    Ultrasonic velocity measurement is a well-established method to measure properties and estimate strength as well as detect and locate damage. Determination of accurate and repeatable ultrasonic wave velocities can be difficult due to the influence of environmental and experimental factors. Diffuse fields created by a multiple scattering environment have been shown to be sensitive to homogeneous strain fields such as those caused by temperature variations, and Coda Wave Interferometry has been used to measure the thermally induced ultrasonic velocity variation in concrete, aluminum, and the Earth's crust. In this work, we analyzed the influence of several parameters of the experimental configuration on the measurement of thermally induced ultrasonic velocity variations in a carbon-fiber reinforced polymer plate. Coda Wave Interferometry was used to determine the relative velocity change between a baseline signal taken at room temperature and the signal taken at various temperatures. The influence of several parameters of the experimental configuration, such as the material type, the receiver aperture size, and fiber orientation on the results of the processing algorithm was evaluated in order to determine the optimal experimental configuration.---This work is supported by the NSF Industry/University Cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University.

  12. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  13. Nonintrusive Temperature and Velocity Measurements in a Hypersonic Nozzle Flow

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Houwing, A. F. P.

    2002-01-01

    Distributions of nitric oxide vibrational temperature, rotational temperature and velocity have been measured in the hypersonic freestream at the exit of a conical nozzle, using planar laser-induced fluorescence. Particular attention has been devoted to reducing the major sources of systematic error that can affect fluorescence tempera- ture measurements, including beam attenuation, transition saturation effects, laser mode fluctuations and transition choice. Visualization experiments have been performed to improve the uniformity of the nozzle flow. Comparisons of measured quantities with a simple one-dimensional computation are made, showing good agreement between measurements and theory given the uncertainty of the nozzle reservoir conditions and the vibrational relaxation rate.

  14. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  15. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  16. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  17. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  18. Unraveling overtone interferences in Love-wave phase velocity measurements by array-based radon transform

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Luo, Y.

    2015-12-01

    Surface waves contain fundamental mode and higher modes, which could interfere with each other. Different modes of surface waves have completely different sensitivities to earth structures. If they are not properly separated, the inverted Earth structures using surface waves could be biased. Especially, for Love waves propagating over oceanic paths, the group velocities of fundamental mod and first/second overtoneS are overlapped with each at periods shorter than 100 sec, resulting in strong overtone interferences in seismograms. Most surface wave tomography studies use dispersion curves of fundamental modes in imaging. One challenge in surface wave tomography is to accurately measure the fundamental-mode phase velocities and avoid the contamination by overtones. In this study, we develop an effective way by applying Linear Radon Transform (LRT) to a seismic array to separate fundamental-mode surface waves from higher modes. We apply this method to both synthetic data and real surface waves from USArray. Analysis on synthetic seismograms shows that two-station measurements on reconstructed data obtained after mode separation can completely retrieve the fundamental-mode Love-wave phase velocities. Results on USArray data show that higher mode contamination effects reach up to ˜10-15 percent for two-station and array-based measurements of Love waves, while two-station measurements on mode-separated data obtained by LRT are very close to the predicted values from a global dispersion model of GDM52, demonstrating that the contamination of overtones on fundamental-mode Love wave phase velocity measurements is effectively mitigated by the LRT method and accurate fundamental-mode Love-wave phase velocities can be measured.

  19. Dwarf galaxies in the Coma cluster - I. Velocity dispersion measurements

    NASA Astrophysics Data System (ADS)

    Kourkchi, E.; Khosroshahi, H. G.; Carter, D.; Karick, A. M.; Mármol-Queraltó, E.; Chiboucas, K.; Tully, R. B.; Mobasher, B.; Guzmán, R.; Matković, A.; Gruel, N.

    2012-03-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is -21 < MR < -15 mag. This paper (Paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using penalized pixel fitting (PPXF) and using the calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation (L∝σα) and find that the slope of the relation is α= 1.99 ± 0.14 for galaxies brighter than MR≃-16 mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in Paper II.

  20. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  1. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  2. Optimization of a VISAR for measuring flyer-plate velocities

    SciTech Connect

    Sweatt, W.C.; Crump, O.B. Jr.; Brigham, W.P.

    1992-05-06

    VISAR (Velocity Interferometer System for Any Reflector) is commonly used for measuring flyer-plate velocities up to 6 km/s. Flyer plates can travel as much as 1 mm, which is large compared to usual depth-of-focus requirements for VISARs. Flyer plates are explosively driven, or driven by some other very energetic means; as such, they must be tested in a chamber, which will contain the explosion. Routing the laser beam to the chamber and the signal beam to the VISAR can be done safely and easily in multi-mode optical fibers. We have optimized a fiber-coupled VISAR system for measuring flyer-plate velocities. This system given constant signal levels over the full travel of the flyer plate. Furthermore, the signal-collection efficiency is maximized, which allows use of a moderately sized laser. We also have optimized the VISAR cavity so it does not limit the system efficiency while giving a velocity sensitivity of about 1 km/s per fringe. 5 refs.

  3. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  4. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  5. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes

    PubMed Central

    Austin, Daniel; Hayes, Tamara L.; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given. PMID:21572911

  6. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  7. Energy and phase velocity considerations required for attenuation and velocity measurements of anisotropic composites.

    PubMed

    Carroll, N L; Humphrey, V F; Smith, J D

    2002-05-01

    Viscoelastic fibre-reinforced composite materials have a number of possible advantages for use in underwater acoustic applications. In order to exploit these materials it is important to be able to measure their complex stiffness matrix in order to determine their acoustic response. Ultrasonic transmission measurements on parallel-sided samples, employing broadband pulsed transducers at 2.25 MHz and an immersion method, have been used to determine the viscoelastic properties of a glass-reinforced composite with uniaxially aligned fibres. The composite measured was constructed from Cytecfiberite's CYCOM 919 E-glass. The theory of acoustic propagation in anisotropic materials shows that the direction of energy propagation is, in general, different from that given by Snell's Law. At 15 degrees incidence, Snell's Law implies a refracted angle of 40 +/- 2 degrees, whereas the energy direction is observed to be 70 +/- 2 degrees. Despite this, the experimental data indicates that the position of the receiving transducer has relatively little effect on the apparent phase velocity measured. The phase velocities measured at positions determined from the refracted angle and energy direction are 3647 and 3652 +/- 50 m s(-1), respectively. However, the amplitude of the received signal, and hence estimate of attenuation, is highly sensitive to the receiver position. This indicates that the acoustic Poynting vector must be considered in order to precisely determine the correct position of the receiving transducer for attenuation measurements. The beam displacement for a 17.6 mm sample at 15 degrees incidence is 9.5 and 40 mm by Snell's Law and Poynting's Theorem, respectively. Measured beam displacements have been compared with predictions derived from material stiffness coefficients. These considerations are important in recovering the complex stiffness matrix. PMID:12159995

  8. An accurate and simple method for measurement of paw edema.

    PubMed

    Fereidoni, M; Ahmadiani, A; Semnanian, S; Javan, M

    2000-01-01

    Several methods for measuring inflammation are available that rely on the parameters changing during inflammation. The most commonly used methods estimate the volume of edema formed. In this study, we present a novel method for measuring the volume of pathologically or artificially induced edema. In this model, a liquid column is placed on a balance. When an object is immersed, the liquid applies a force F to attempt its expulsion. Physically, F is the weight (W) of the volume of liquid displaced by that part of the object inserted into the liquid. A balance is used to measure this force (F=W).Therefore, the partial or entire volume of any object, for example, the inflamed hind paw of a rat, can be calculated thus, using the specific gravity of the immersion liquid, at equilibrium mass/specific gravity=volume (V). The extent of edema at time t (measured as V) will be V(t)-V(o). This method is easy to use, materials are of low cost and readily available. It is important that the rat paw (or any object whose volume is being measured) is kept from contacting the wall of the column containing the fluid whilst the value on the balance is read.

  9. Measuring Fisher information accurately in correlated neural populations.

    PubMed

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Kohn, Adam; Pouget, Alexandre

    2015-06-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.

  10. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  11. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  12. Measuring velocity and temperature profile sectional pipeline behind confuser

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard; Novomestský, Marcel

    2016-06-01

    The article deals with the measuring of temperature and velocity profile in area behind confuser in real made scale model of bypass. For proper operation of the equipment it is necessary to know the actual flow in the pipe. Bypasses have wide application and can be also associated with devices for heat recovery, heat exchangers different designs in which may be used in certain circumstances. In the present case, the heat that would otherwise has not been used is used for heating of insulators, and heating the air in the spray-dryer. The measuring principle was verify how the above-mentioned temperature and velocity profile decomposition above confuser on real made scale model.

  13. Direct measurement of intraparticle fluid velocity in superporous agarose beads.

    PubMed

    Larsson, P O; Gustavsson, P E; Axelsson, A

    1998-01-01

    Superporous agarose beads contain both normal diffusion pores and special, very wide superpores through which part of the chromatographic flow is transported, a situation that may greatly improve the chromatographic performance. For the first time such pore flow was measured directly by following the movement of microparticles (dyed yeast cells) through superporous beads packed in a chromatographic bed. The passage of the microparticles through the superpores and through the interstitial pores was recorded by a microscope/video camera. The video recordings were subsequently used to determine flow paths as well as the convective fluid velocities in both the superpores and the interstitial pores. The superpore fluid velocity was found to be proportional to the ratio between the squares of the respective pore diameters, which is in agreement with the Kozeny-Carman equation. Values for two-dimensional and three-dimensional tortuosity of the flow paths were measured and calculated respectively.

  14. Optical velocity-measurement techniques for supersonic surfaces.

    SciTech Connect

    Briggs, M,E.; Hemsing, W. F.; Shinas, M. A.

    2004-01-01

    Interferometric techniques have been used routinely for more than 20 years to measure velocities of explosive shock-fronts. Recently, structured-light measurements have been used for the same purpose. Explosions accelerate surfaces to as much as 15 km/sec in a nanosecond or less, often generating much light, large changes in reflectivity, and ejecting particles or layers at different speeds. I will describe the current performance of fiber-optic displacement-interferometers, Fabret-Perot inteferometers, velocity interferometers (VISAR), and structured light, in this interesting physical space. We have designed and used for several years a 1/4 inch OD optical probe with large depth of field that both illuminates and returns the image from a surface inside a confined geometry. We report on its design and performance. The increased information from the surface requires greater automation from the analysis software. We report our software automation and analysis improvements.

  15. High-speed velocity measurements on an EFI-system

    NASA Astrophysics Data System (ADS)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  16. Water Surface and Velocity Measurement-River and Flume

    NASA Astrophysics Data System (ADS)

    Chandler, J. H.; Ferreira, E.; Wackrow, R.; Shiono, K.

    2014-06-01

    Understanding the flow of water in natural watercourses has become increasingly important as climate change increases the incidence of extreme rainfall events which cause flooding. Vegetation in rivers and streams reduce water conveyance and natural vegetation plays a critical role in flood events which needs to be understood more fully. A funded project at Loughborough University is therefore examining the influence of vegetation upon water flow, requiring measurement of both the 3-D water surface and flow velocities. Experimental work therefore requires the measurement of water surface morphology and velocity (i.e. speed and direction) in a controlled laboratory environment using a flume but also needs to be adaptable to work in a real river. Measuring the 3D topographic characteristics and velocity field of a flowing water surface is difficult and the purpose of this paper is to describe recent experimental work to achieve this. After reviewing past work in this area, the use of close range digital photogrammetry for capturing both the 3D water surface and surface velocity is described. The selected approach uses either two or three synchronised digital SLR cameras in combination with PhotoModeler for data processing, a commercial close range photogrammetric package. One critical aspect is the selection and distribution of appropriate floating marker points, which are critical if automated and appropriate measurement methods are to be used. Two distinct targeting approaches are available: either large and distinct specific floating markers or some fine material capable of providing appropriate texture. Initial work described in this paper uses specific marker points, which also provide the potential measuring surface velocity. The paper demonstrates that a high degree of measurement and marking automation is possible in a flume environment, where lighting influences can be highly controlled. When applied to a real river it is apparent that only lower degrees of

  17. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  18. Velocity measurements in a boundary layer with a density gradient

    SciTech Connect

    Neuwald, P.; Reichenbach, H.; Kuhl, A.L.

    1992-11-01

    A number of experiments were performed at the EMI shock tube facility on shock waves propagating in a stratified atmosphere with density gradient modelled by air layered above Freon (C Cl{sub 2} F{sub 2}). This report presents streamwise velocity data for the flow behind the shock front. Additional information from measurements of overpressure history and shadowgraphs of the flow will be presented in a future EMI-report.

  19. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  20. Inflation model building with an accurate measure of e -folding

    NASA Astrophysics Data System (ADS)

    Chongchitnan, Sirichai

    2016-08-01

    It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation, despite the well-known fact that this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to show how this approximation can be completely avoided using an alternative framework for inflation model building. We show that using the inverse Hubble radius, H =a H , as the key dynamical parameter, the correct number of e -folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  1. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  2. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  3. Mobil unit provides fast and accurate Btu measurements

    SciTech Connect

    Lansing, J. )

    1991-05-01

    Southern California Gas Co. (SoCalGas) provides service to more than four million customers in a 23,000-plus square mile area. Some 95% of these customers fall under the residential category and the remaining customers are industrial and commercial. To ensure Btu value received from the supplier and delivered to the user is accounted for properly, SoCalGas has divided its service area into 47 districts according to the gas Btu content. The company obtains the information by collecting approximately 200 sample cylinders each week from field monitoring points and transporting them to one of four laboratories for analysis. For collecting the information from each lab site, SoCalGas uses a computerized Gas Quality Measurement System (GQMS) that utilizes a Hewlett-Packard 1000 computer. Information on all the gas sample analysis is transmitted each day to the company's measurement office. About two- thirds of the lab work is performed in Los Angeles and the remaining at three satellite laboratories. Sample points are strategically located to monitor gas entering each district. By measuring gas volumes at these key points, a volume- weighted average can be determined and the customers' monthly bills then can be adjusted for gas energy content by this volume-weighted four-week average. The engineering department uses sample-cylinder analysis data to establish and maintain correct Btu boundaries. However, the time it takes for this information to be processed makes it difficult for engineering to process the data.

  4. Particle velocity and stress measurements in low density HMX

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R.; Graham, R.A.; Anderson, M.U.

    1993-08-01

    Magnetic particle velocity gauges and PVDF stress rate gauges have been used to measure the shock response of low density HMX explosive (1.24 g/cm{sup 3}). In experiments done at LANL, magnetic particle velocity gauges were located on both sides of the explosive. In nearly identical experiments done at SNL, PVDF stress rate gauges were located at the same positions. Using these techniques both particle velocity and stress histories were obtained for a particular experimental condition. Loading and reaction paths were established in the stress-particle velocity plane for each input condition. This information was used to determine that compacted HMX has an impedance close to that of Kel-F and also that a global reaction rate of {approx} 0.13 {mu}s{sup {minus}1} was observed in HMX shocked to about 0.8 GPa. At low input stresses the transmitted wave profiles had long rise times (up to 1 {mu}s) due to the compaction processes.

  5. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  6. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  7. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler.

    PubMed

    Brunker, Joanna; Beard, Paul

    2016-07-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  8. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  9. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  10. Accurate measurement of intestinal transit in the rat

    SciTech Connect

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  11. Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector.

    PubMed

    Agafonova, N Yu; Aglietta, M; Antonioli, P; Ashikhmin, V V; Bari, G; Bertoni, R; Bressan, E; Bruno, G; Dadykin, V L; Fulgione, W; Galeotti, P; Garbini, M; Ghia, P L; Giusti, P; Kemp, E; Mal'gin, A S; Miguez, B; Molinario, A; Persiani, R; Pless, I A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Sartorelli, G; Shakyrianova, I R; Selvi, M; Trinchero, G C; Vigorito, C; Yakushev, V F; Zichichi, A; Razeto, A

    2012-08-17

    We report the measurement of the time of flight of ∼17 GeV ν(μ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements. PMID:23006352

  12. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  13. An approach for the accurate measurement of social morality levels.

    PubMed

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  14. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  15. Coherent Laser Instrument Would Measure Range and Velocity

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Cardell, Greg; San Martin, Alejandro; Spiers, Gary

    2005-01-01

    A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic

  16. Trace projection transformation: A new method for measurement of debris flow surface velocity fields

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-09-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  17. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  18. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  19. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  20. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  1. Simultaneous velocity and scalar measurements in premixed recirculating flames

    NASA Astrophysics Data System (ADS)

    Ferrão, P.; Heitor, M. V.

    The use of a laser-Doppler velocimeter has been extended to the analysis of turbulent heat transfer in a strongly sheared disc-stabilised propane-air flame through its combination with either laser Rayleigh scattering or digitally-compensated fine-wire thermocouples. The laser velocimeter was based on a conventional forward scattering system from the green light of a 5W Argon-Ion laser, while the Rayleigh signals used the blue line of the same laser. The procedure for the numeric compensation of the thermocouple signals included analysis of the effect of velocity and temperature on the time constant of the thermocouple and was optimised to allow combined velocity-temperature samples acquired by a purpose-built digital interference with a frequency up to 2000 Hz, without deterioration of the thermocouple by particle accretion. The maximum effective data rate for the combined Rayleigh/LDV system is shown to be around 130 Hz, which corresponds to a data rate of valid Doppler signals around 400 Hz and statistics based on more than 15000 measurements is made possible. The results obtained with the two systems agree qualitatively, although the use of thermocouples attenuates the measured velocity-temperature correlations. The results are used to assess the extent to which turbulent mixing in flames is altered by the accompanying heat release and quantify the processes of non-gradient diffusion in a strongly recirculating premixed flame.

  2. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  3. Velocity measurements of flow through a step stenosis using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Moser, K. W.; Kutter, E. C.; Georgiadis, J. G.; Buckius, R. O.; Morris, H. D.; Torczynski, J. R.

    Magnetic resonance imaging (MRI) is a versatile noninvasive tool for achieving full-field quantitative visualization of complex fluid flows. The MRI signal results from the interaction of radio-frequency (RF) pulses with nuclear spins exposed to a strong static magnetic field. The two main techniques of MRI velocimetry are time-of-flight and phase contrast techniques. Time-of- flight techniques involve tagging and tracking a material volume of fluid, whereas phase contrast techniques use magnetic field gradients to encode velocity information into the phase of the MRI signal. In this study, both techniques are used to probe the pressure-driven steady flow of water in a pipe with a step stenosis. The velocity measurements were then compared with computational results obtained using the FIDAP software package. The experiments show that the phase contrast method gives more accurate results, with 90% of the measurements within 10% of the local computational fluid dynamics (CFD) velocity predictions at Re=100 and 94% of the measurements within 10% of the local CFD predictions at Re=258. Although the time-of-flight experiments were not as accurate, they provide a good qualitative image of the flow field. Sources of the discrepancies between the MRI data and the CFD results are also discussed, including acceleration and spin flow-through artifacts.

  4. Measurement of Damage Velocities in Bullet Impacts of Transparent Armor

    NASA Astrophysics Data System (ADS)

    Anderson, Charles; Bigger, Rory; Weiss, Carl

    2013-06-01

    A series of impact experiments have been conducted to examine the response of transparent material to ballistic impact. The experiments consisted of impacting 15 mm of borosilicate glass back by 9.5 mm of Lexan. The projectile was a 0.30-cal hard steel bullet designed specifically for the experiments. Residual velocities and the residual length of the bullets (which were soft-recovered in a catch box) were measured as a function of impact velocity. High-speed imaging of the impact event and post-test analysis has permitted quantification of damage propagation and the rate of propagation. The results of several experiments are presented and compared to edge-on impact experiments that have been conducted by Strassburger et al..

  5. In-situ measurements of velocity structure within turbidity currents

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.; Rosenfeld, L.K.

    2004-01-01

    Turbidity currents are thought to be the main mechanism to move ???500,000 m3 of sediments annually from the head of the Monterey Submarine Canyon to the deep-sea fan. Indirect evidence has shown frequent occurrences of such turbidity currents in the canyon, but the dynamic properties of the turbidity currents such as maximum speed, duration, and dimensions are still unknown. Here we present the first-ever in-situ measurements of velocity profiles of four turbidity currents whose maximum along-canyon velocity reached 190 cm/s. Two turbidity currents coincided with storms that produced the highest swells and the biggest stream flows during the year-long deployment. Copyright 2004 by the American Geophysical Union.

  6. Whole field velocity measurements in three-dimensional periodic flows

    NASA Astrophysics Data System (ADS)

    Reddy, Urmila Chennuru

    To quantify flows around rotorcraft, rapid measurements of scalar and vector fields are needed over large volumes. The techniques used must be suitable for large test facilities. This thesis studies methods for acquiring and reconstructing four-dimensional, spatio-temporal measurements of flow properties in periodic flows. It involves both the theoretical studies needed for algorithm development and the solution of practical problems required to enable multi-dimensional velocity field measurement in flows typical of full-scale rotorcraft. Resolving the four-dimensional flowfield is viewed as a problem in the tomographic reconstruction of scalar and vector fields. Theoretical formulations reconstructing n-dimensional scalar fields from (n-1)-dimensional projections are studied. This work was a precursor to the extraction of three-component, three-dimensional velocity fields from planar Spatial Cross-Correlation Velocimetry (SCV). SCV measures a planar displacement field by cross-correlating two time-separated images of the flow. A scalable system that uses inexpensive pulsed white light sources and enables large-area imaging has been integrated for use in full-scale test facilities. The flowfield around a V22 half-model was studied using this technique. SCV discovered the existence of a transient upflow above the rotor plane, unique to compressible rotor flows, and verified other flow features. Measurements in a turbofan engine test cell validated system performance in the highly turbulent and vibrating test environment, under time limitations typical of industry testing. Studies of a two-bladed rotor in axial flight revealed basic vortex pairing and merger phenomena. These tests provided the first proof that full-scale rotor wakes at high Reynolds number and Mach number are cleanly periodic when facility interference effects are eliminated. A method was developed to compute the 3D, three-component, periodic velocity field by integrating 2D, phase-resolved, SCV data

  7. Ice Velocity Map of Antarctica measured with ALOS PALSAR

    NASA Astrophysics Data System (ADS)

    Mouginot, J.; Scheuchl, B.; Rignot, E. J.

    2010-12-01

    Ice velocity is fundamental characteristic of the dynamics of ice sheet and is essential to know for measuring the mass budget of ice sheet and for controlling ice sheet numerical models with realistic boundary conditions. Until recently, data were mostly available on a discrete basis over small areas with variable precision. Here, we report on our results of processing ice velocity from he interferometric synthetic-aperture radar data acquired by ALOS PALSAR in 2007, 2008 and 2009 by the Japan Aerospace Exploration Agency (JAXA) and distributed by NASA's Alaska Satellite Facility (ASF). The goal of our project is to produce a new set of Earth Science Data Record (ESDR): high-resolution digital maps of ice velocity of the Antarctic ice sheet. This new ESDR will be based on spaceborne Synthetic Aperture Radar (SAR) data from multiple missions. It will be distributed to the scientific community via institutional links already in place at the National Snow and Ice Data Center (NSIDC). The EDSR will benefit glaciologists and ice sheet modelers, but also climate modelers interested in how ice sheets are evolving, physical oceanographers studying sea level change and changes in oceanic circulation, solid earth scientists interested in post-glacial rebound, atmospheric scientists interested in surface mass balance in Antarctica. This effort will establish a long-term legacy for quantitative measurements of the dynamics of polar ice sheets. Areas north of 78 degrees south were first covered by RADARSAT-1 during the RAMP campaign. ALOS PALSAR and ENVISAT ASAR were tasked to cover the area in 2007, 2008 and 2009. PALSAR 46-day speckle tracking works well even in areas where C-band sensors lose signal coherence, which helps us to complete a full coverage of Antarctica's coastal regions. One challenge for L-band data is the sensitivity to ionosphere disturbances and another is to lower data noise in vast interior where flow velocities drop to below a few meters per year. We

  8. Measurement of sediment settling velocities in a tidal freshwater wetland

    NASA Astrophysics Data System (ADS)

    van der Deijl, Eveline C.; van der Perk, Marcel; Visser, Renske; Verschelling, Eelco; Middelkoop, Hans

    2015-04-01

    This study aims to determine the settling characteristics of suspended sediment in the Kleine Noordwaard tidal freshwater wetland in the south-western part of the Netherlands. This wetland consists of a recently inundated former polder area in the Biesbosch area, in which water and sediment have been reintroduced since 2009. The area mainly receives sediment from the Nieuwe Merwede River, a downstream distributary of the Rhine River. In July, September, and October 2014, water samples were collected in 30 cm diameter PVC settling tubes near the inlet and outlet of the area. The settling tubes were transported horizontally to a field laboratory, where the settling velocity measurements started by placing the settling tube in upright position within 1 hour after sampling. At logarithmic time increments, 250 ml samples were extracted from the settling tubes through a valve at a depth of 250 mm below the top of the tube. The sediment concentrations in the samples were determined by filtering through 0.45 μm pore size membrane filters. First results show that the suspended sediment concentrations were low and varied between 10 mg l-1 and 35 mg l-1. In general, the sediment concentrations decreased exponentially during the measurements with exponents ranging between 0.98 × 10-4s-1 and 1.27 × 10-4s-1. The median settling velocities were rather consistent between the measurement locations and measurement periods with median settling velocities of about 0.04 mm s-1 and 75th percentiles between 0.07 mm s-1 and 0.11 mm s-1.

  9. Unsteady velocity measurements in a realistic intracranial aneurysm model

    NASA Astrophysics Data System (ADS)

    Ugron, Ádám; Farinas, Marie-Isabelle; Kiss, László; Paál, György

    2012-01-01

    The initiation, growth and rupture of intracranial aneurysms are intensively studied by computational fluid dynamics. To gain confidence in the results of numerical simulations, validation of the results is necessary. To this end the unsteady flow was measured in a silicone phantom of a realistic intracranial aneurysm. A flow circuit was built with a novel unsteady flow rate generating method, used to model the idealised shape of the heartbeat. This allowed the measurement of the complex three-dimensional velocity distribution by means of laser-optical methods such as laser doppler anemometry (LDA) and particle image velocimetry (PIV). The PIV measurements, available with high temporal and spatial distribution, were found to have good agreement with the control LDA measurements. Furthermore, excellent agreement was found with the numerical results.

  10. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  11. Measuring densities of high-velocity metallic sprays using piezoelectric sensors

    SciTech Connect

    Lloyd, C. E.; Proud, W. G.

    2007-12-12

    Recent research efforts in large-scale hydrodynamic experiments have concentrated on the possibility of using piezoelectric sensors to study the evolution of ejecta. Ejecta are small (<100 m diameter) particulates that are ejected at high velocity (>1 km s{sup -1}) from a shocked surface. This paper investigates whether Dynasen PZT piezoelectric sensors are reliable and robust enough to measure accurate time-resolved stresses and densities in high-velocity metallic sprays. The sprays are assumed to have similar characteristics to ejecta sprays, and are generated by a gas gun and in a safe and reproducible manner. A complimentary diagnostic technique, utilising high-speed photography and fast x-radiography, measures the densities of the sprays independently, allowing the accuracy of the sensors to be assessed. The Dynasen sensors have been shown to perform relatively well in spray environments. Their accuracy can be improved by taking their mechanical impedance characteristics into account.

  12. A comparison of measured and modeled velocity fields for a laminar flow in a porous medium

    NASA Astrophysics Data System (ADS)

    Wood, B. D.; Apte, S. V.; Liburdy, J. A.; Ziazi, R. M.; He, X.; Finn, J. R.; Patil, V. A.

    2015-11-01

    Obtaining highly-resolved velocity data from experimental measurements in porous media is a significant challenge. The goal of this work is to compare the velocity fields measured in a randomly-packed porous medium obtained from particle image velocimetry (PIV) with corresponding fields predicted from direct numerical simulation (DNS). Experimentally, the porous medium was comprised of 15 mm diameter spherical beads made of optical glass placed in a glass flow cell to create the packed bed. A solution of ammonium thiocyanate was refractive-index matched to the glass creating a medium that could be illuminated with a laser sheet without distortion. The bead center locations were quantified using the imaging system so that the geometry of the porous medium was known very accurately. Two-dimensional PIV data were collected and processed to provide high-resolution velocity fields at a single plane within the porous medium. A Cartesian-grid-based fictitious domain approach was adopted for the direct numerical simulation of flow through the same geometry as the experimental measurements and without any adjustable parameters. The uncertainties associated with characterization of the pore geometry, PIV measurements, and DNS predictions were all systematically quantified. Although uncertainties in bead position measurements led to minor discrepancies in the comparison of the velocity fields, the axial and normal velocity deviations exhibited normalized root mean squared deviations (NRMSD) of only 11.32% and 4.74%, respectively. The high fidelity of both the experimental and numerical methods have significant implications for understanding and even for engineering the micro-macro relationship in porous materials. The ability to measure and model sub-pore-scale flow features also has relevance to the development of upscaled models for flow in porous media, where physically reasonable closure models must be developed at the sub-pore scale. These results provide valuable data

  13. An ultrasonic transducer array for velocity measurement in underwater vehicles.

    PubMed

    Boltryk, P; Hill, M; Keary, A; Phillips, B; Robinson, H; White, P

    2004-04-01

    A correlation velocity log (CVL) is an ultrasonic navigation aid for marine applications, in which velocity is estimated using an acoustic transmitter and a receiver array. CVLs offer advantages over Doppler velocity logs (DVLs) in many autonomous underwater vehicle (AUV) applications, since they can achieve high accuracy at low velocities even during hover manoeuvres. DVLs require narrow beam widths, whilst ideal CVL transmitters have wide beam widths. This gives CVLs the potential to use lower frequencies thus permitting operation in deeper water, reducing power requirements for the same depth, or allowing the use of smaller transducers. Moving patterns in the wavefronts across a 2D receiver array are detected by calculating correlation coefficients between bottom reflections from consecutive transmitted pulses, across all combinations of receiver pairings. The position of the peak correlation value, on a surface representing receiver-pairing separations, is proportional to the vessel's displacement between pulses. A CVL aimed primarily for AUVs has been developed. Its acoustical and signal processing design has been optimised through sea trials and computer modelling of the sound field. This computer model is also used to predict how the distribution of the correlation coefficients varies with distance from the peak position. Current work seeks to increase the resolution of the peak estimate using surface fitting methods. Numerical simulations suggest that peak estimation methods significantly improve system precision when compared with simply identifying the position of the maximum correlation coefficient in the dataset. The peak position may be estimated by fitting a quadratic model to the measured data using least squares or maximum likelihood estimation. Alternatively, radial basis functions and Gaussian processes successfully predict the peak position despite variation between individual correlation datasets. This paper summarises the CVL's main acoustical

  14. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  15. Phase Velocity Method for Guided Wave Measurements in Composite Plates

    NASA Astrophysics Data System (ADS)

    Moreno, E.; Galarza, N.; Rubio, B.; Otero, J. A.

    Carbon Fiber Reinforced Polymer is a well-recognized material for aeronautic applications. Its plane structure has been widely used where anisotropic characteristics should be evaluated with flaw detection. A phase velocity method of ultrasonic guided waves based on a pitch-catch configuration is presented for this purpose. Both shear vertical (SV) and shear horizontal (SH) have been studied. For SV (Lamb waves) the measurements were done at different frequencies in order to evaluate the geometrical dispersion and elastic constants. The results for SV are discussed with an orthotropic elastic model. Finally experiments with lamination flaws are presented.

  16. Measurement of surface recombination velocity on heavily doped indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  17. Measurements of parallel electron velocity distributions using whistler wave absorption.

    PubMed

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  18. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  19. Measurements of parallel electron velocity distributions using whistler wave absorption

    SciTech Connect

    Thuecks, D. J.; Skiff, F.; Kletzing, C. A.

    2012-08-15

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense ({omega}{sub pe} > {omega}{sub ce}). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency {omega}{sub ce}. As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation {omega}-k{sub ||v||} = {omega}{sub ce}. The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  20. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  1. Unraveling overtone interferences in Love-wave phase velocity measurements by radon transform

    NASA Astrophysics Data System (ADS)

    Luo, Yinhe; Yang, Yingjie; Zhao, Kaifeng; Xu, Yixian; Xia, Jianghai

    2015-10-01

    Surface waves contain fundamental mode and higher modes, which could interfere with each other. If different modes are not properly separated, the inverted Earth structures using surface waves could be biased. In this study, we apply linear radon transform (LRT) to synthetic seismograms and real seismograms from the USArray to demonstrate the effectiveness of LRT in separating fundamental-mode Love waves from higher modes. Analysis on synthetic seismograms shows that two-station measurements on reconstructed data obtained after mode separation can completely retrieve the fundamental-mode Love-wave phase velocities. Results on USArray data show that higher mode contamination effects reach up to ˜10 per cent for two-station measurements of Love waves, while two-station measurements on mode-separated data obtained by LRT are very close to the predicted values from a global dispersion model of GDM52, demonstrating that the contamination of overtones on fundamental-mode Love-wave phase velocity measurements is effectively mitigated by the LRT method and accurate fundamental-mode Love-wave phase velocities can be measured.

  2. Group velocity dispersion of CdSSe/ZnS core-shell colloidal quantum dots measured with white light interferometry

    NASA Astrophysics Data System (ADS)

    VanEngen Spivey, Amelia G.

    2016-03-01

    We measure the group velocity dispersion coefficient of CdSSe/ZnS core-shell colloidal quantum dots in liquid suspension in the ∼700-900 nm wavelength range using a white-light Michelson interferometer. Two different sizes of dots are investigated. In both cases, the group velocity dispersion coefficient decreases with increasing wavelength above the absorption edge in the dots. For quantum dots in which the linear absorption spectrum shows clear peaks, the absorption characteristics of the dots can be used to accurately model the wavelength-dependence of the group velocity dispersion coefficient.

  3. Near-Surface Shear-Wave Velocity Measurements in Unlithified Sediment

    NASA Astrophysics Data System (ADS)

    Rickards, Benjamin Thomas

    Shear-wave (S-wave) velocity can be directly correlated to material stiffness making it a valuable physical property that has found uses in construction, engineering, and environmental projects. This study compares three different methods, Multichannel Analysis of Surface Waves (MASW), S-wave tomography, and downhole seismic for measuring S-wave velocities, investigates and identifies the differences among the methods' results, and prioritizes the different methods for S-wave use at the U. S. Army's Yuma Proving Grounds (YPG) north of Yuma, AZ. A large signal-to-noise ratio and a layered depositional architecture at the study site gives the MASW method much potential, but higher-mode energy resulting from velocity discontinuities reduces the effectiveness of the method shallower than 20 ft. First arrival analysis provides evidence of a velocity discontinuity within the first 10 feet of unconsolidated sediment. S-wave first arrivals were picked using impulsive sledgehammer data which were then used for both tomographic inversion and refraction analysis. Three-component downhole seismic data were collected by using a locking geophone coupled with the borehole casing to estimate seismic velocities directly. This study helps to identify the strengths and weaknesses of each of these methods at sites similar to YPG. MASW results show a low-velocity layer at a depth of about 50 feet that is verified by downhole seismic data and is undetectable through traditional refraction tomography. However S-wave refraction tomography provides more convincing results at shallow depths where the MASW method fails. Using both methods in an integrated fashion provide the most accurate depiction of S-wave velocity characteristics in the shallow unconsolidated sediments at YPG.

  4. Application of multivariate outlier detection to fluid velocity measurements

    NASA Astrophysics Data System (ADS)

    Griffin, John; Schultz, Todd; Holman, Ryan; Ukeiley, Lawrence S.; Cattafesta, Louis N.

    2010-07-01

    A statistical-based approach to detect outliers in fluid-based velocity measurements is proposed. Outliers are effectively detected from experimental unimodal distributions with the application of an existing multivariate outlier detection algorithm for asymmetric distributions (Hubert and Van der Veeken, J Chemom 22:235-246, 2008). This approach is an extension of previous methods that only apply to symmetric distributions. For fluid velocity measurements, rejection of statistical outliers, meaning erroneous as well as low probability data, via multivariate outlier rejection is compared to a traditional method based on univariate statistics. For particle image velocimetry data, both tests are conducted after application of the current de facto standard spatial filter, the universal outlier detection test (Westerweel and Scarano, Exp Fluids 39:1096-1100, 2005). By doing so, the utility of statistical outlier detection in addition to spatial filters is demonstrated, and further, the differences between multivariate and univariate outlier detection are discussed. Since the proposed technique for outlier detection is an independent process, statistical outlier detection is complementary to spatial outlier detection and can be used as an additional validation tool.

  5. Intraglottal geometry and velocity measurements in canine larynges

    PubMed Central

    Oren, Liran; Khosla, Sid; Gutmark, Ephraim

    2014-01-01

    Previous flow velocity measurements during phonation in canine larynges were done above the glottal exit. These studies found that vortical structures are present in the flow above the glottis at different phases of the glottal cycle. Some vortices were observed to leave the glottis during the closing phase and assumptions were proposed regarding their formation mechanism. In the current study, intraglottal velocity measurements are performed using PIV, and the intraglottal flow characteristics are determined. Results from five canine larynges show that at low subglottal pressure the glottis assumes a minimal divergence angle during closing and the flow separates at the glottal exit. Vortical structures are observed above the glottis but not inside. As the subglottal pressure is increased, the divergence angle between the folds during closing increases and the location of the flow separation moves upstream into the glottis. Entrainment flow enters the glottis to fill the void that is formed between the glottal jet and the fold. Vortical structures develop near the superior edge at medium and high subglottal pressures from the flow separation. The magnitude of their swirling strength changes as a function of the wall dynamics. PMID:24437778

  6. Phase contrast ultrashort TE: A more reliable technique for measurement of high-velocity turbulent stenotic jets.

    PubMed

    O'Brien, Kieran R; Myerson, Saul G; Cowan, Brett R; Young, Alistair A; Robson, Matthew D

    2009-09-01

    Accurate measurement of peak velocity is critical to the assessment of patients with stenotic valvular disease. Conventional phase contrast (PC) methods for imaging high-velocity jets in aortic stenosis are susceptible to intravoxel dephasing signal loss, which can result in unreliable measurements. The most effective method for reducing intravoxel dephasing is to shorten the echo time (TE); however, the amount that TE can be shortened in conventional sequences is limited. A new sequence incorporating velocity-dependent slice excitation and ultrashort TE (UTE) centric radial readout trajectories is proposed that reduces TE from 2.85 to 0.65 ms. In a high-velocity stenotic jet phantom, a conventional sequence had >5% flow error at a flow rate of only 400 mL/s (velocity >358 cm/s), whereas the PC-UTE showed excellent agreement (<5% error) at much higher flow rates (1080 mL/s, 965 cm/s). In vivo feasibility studies demonstrated that by measuring velocity over a shorter time the PC-UTE approach is more robust to intravoxel dephasing signal loss. It also has less inherent higher-order motion encoding. This sequence therefore demonstrates potential as a more robust method for measuring peak velocity and flow in high-velocity turbulent stenotic jets.

  7. Cosmic dust investigations II. Instruments for measurement of particle trajectory, velocity and mass

    NASA Astrophysics Data System (ADS)

    Simpson, J. A.; Tuzzolino, A. J.

    1989-07-01

    A series of experiments have been completed using accelerator dust particles in the mass range ~10-9-10-6 g and velocity range ~2-12 km/s to measure the velocity loss and degree of fragmentation for dust particles penetrating 6 and 28 μm thick polyvinylidene fluoride (PVDF) dust detectors. These measurements prove that even for a ratio of PVDF foil thickness to particle diameter as large as 0.6, the velocity loss and fragmentation is far less than expected from earlier reports in the literature. For example, for 28 μm thick PVDF foils the velocity loss is ~ 20%, the fraction of particles suffering serious fragmentation is ~ 50% and the angular dispersion or ``spray angle'' of the fragments from the incident particle direction is <= 3°. For 6 μm thick foils the velocity loss is <= 5%. These experiments are based on an extension of our earlier work which showed that two PVDF foils spaced a given distance apart could provide accurate time-of-flight (TOF) information due to the fast pulse rise time of PVDF detector response. We also report on our present state of development of PVDF position-sensing detectors which identify the x, y coordinates of particle impact, using detector and electronic pulse techniques adapted from our semiconductor position-sensing cosmic-ray detectors. Typical position errors of ~ 1 mm are readily achieved. Finally, we have combined the above developments into a dust-particle telescope which accurately (~ 1° angular accuracy) measures the trajectory of the incident particle as well as its mass and incident velocity, irrespective of whether it is a charged or neutral particle. We discuss how this practical dust telescope can be combined with dust capture cells for space flight and later recovery for laboratory determination of elemental and isotopic composition of captured dust. We also describe a simpler trajectory array based on discrete mosaics of thin detectors which would measure trajectories with a mean angular error of ~ 4°. We

  8. Acoustic velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, Edwin F.

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  9. Acoustic-velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  10. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries.

  11. Optical measurement of ultrasonic Poynting and velocity vector fields.

    PubMed

    Pitts, Todd A; Greenleaf, James F

    2002-02-01

    This report describes a method for estimating several wide bandwidth ultrasonic field parameters from optical measurements of the local, acoustically induced, refractive index perturbation in water. These parameters include Poynting and particle velocity vector fields as well as pressure and density fields at any temporal delay under mild (forward-propagating) assumptions on the angular plane-wave spectrum of the ultrasound field. A sampling theorem is derived stating that two complete measurements of the three-dimensional pressure field separated in time by delta t allow release of the forward-propagating assumption for every acoustic wave number k satisfying k not = n pi/(c delta t), where c is the acoustic wave speed in the medium and n an integer greater than zero. The approach provides detailed measurements of very general ultrasound fields. Two optical measurement methods that acquire the Radon transform of the three-dimensional refractive index perturbation are briefly reviewed. It is shown that the Radon transform of the field itself satisfies a two-dimensional wave equation and may be propagated independently forward or backward in time under a source-free model. Conversely, the Radon transform of the ultrasound field measurement at several known time delays provides a means of applying a filter to the data based on known ultrasound propagation models. Each two-dimensional distribution may be propagated to a common time point and the ensemble averaged, thus incorporating the propagation model into the measurement. We support the presented theory with several experiments.

  12. Accuracy of velocity and shear rate measurements using pulsed Doppler ultrasound: a comparison of signal analysis techniques.

    PubMed

    Markou, C P; Ku, D N

    1991-01-01

    An experimental investigation was instituted to evaluate the performance of Doppler ultrasound signal processing techniques for measuring fluid velocity under well-defined flow conditions using a 10-MHz multigated pulsed ultrasound instrument. Conditions of fully developed flow in a rigid, circular tube were varied over a Reynolds number range between 500 and 8000. The velocity across the tube was determined using analog and digital zero crossing detectors and three digital spectrum estimators. Determination of the Doppler frequency from analog or digital zero crossing detectors gave accurate velocity values for laminar and moderately turbulent flow away from the wall (0.969 less than or equal to r less than or equal to 0.986). Three digital spectrum estimators, Fast Fourier Transform, Burg autoregressive method, and minimum variance method, were slightly more accurate than the zero crossing detector (0.984 less than or equal to r less than or equal to 0.994), especially at points close to the walls and with higher levels of turbulence. Steep velocity gradients and transit-time-effects from high velocities produced significantly larger errors in velocity measurement. Wall shear rate estimates were most precise when calculated using the position of the wall and two velocity points. The calculated wall shears were within 20%-30% of theoretically predicted values. PMID:1808798

  13. Magnetic induction system for two-stage gun projectile velocity measurements

    SciTech Connect

    Moody, R L; Konrad, C H

    1984-05-01

    A magnetic induction technique for measuring projectile velocities has been implemented on Sandia's two-stage light gas gun. The system has been designed to allow for projectile velocity measurements to an accuracy of approx. 0.2 percent. The velocity system has been successfully tested in a velocity range of 3.5 km/s to 6.5 km/s.

  14. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  15. Accurate measurement of refraction and dispersion of a solid by a double-layer interferometer.

    PubMed

    Nassif, A Y

    1997-02-01

    A silica plate of plane-parallel faces is inserted into one gap of a double-layer interferometer that transmits white light to a prism spectrograph in order to produce elliptic rings of equal chromatic order (RECO's). The silica plate is rotated and the expanding RECO's are counted at their center while this center is coincident with a standard wavelength. An analytic formula that relates the fringe count to the rotated angle enables the refractive index of the rotated plate to be accurately determined for different wavelengths. The results are fitted to a single-term Sellmeier dispersion function to find the peak wavelength of the ultraviolet absorption band and the atomic number density for such a transition. The variation of either the dispersion coefficient or the group-velocity factor with wavelength is determined from either the displacement of the RECO center across the visible spectrum if one of the double-layer interferometer's mirrors is displaced parallel to itself or from measurements on the RECO diameters. PMID:18250738

  16. The M 4 Core Project with HST - IV. Internal kinematics from accurate radial velocities of 2771 cluster members★

    NASA Astrophysics Data System (ADS)

    Malavolta, L.; Piotto, G.; Bedin, L. R.; Sneden, C.; Nascimbeni, V.; Sommariva, V.

    2015-12-01

    We present a detailed study of the internal kinematics of the Galactic globular cluster M 4 (NGC 6121), by deriving the radial velocities from 7250 spectra for 2771 stars distributed from the upper part of the red giant branch down to the main sequence. We describe new approaches to determine the wavelength solution from day-time calibrations and to determine the radial velocity drifts that can occur between calibration and science observations when observing with the GIRAFFE spectrograph at Very Large Telescope. Two techniques to determine the radial velocity are compared, after a qualitative description of their advantages with respect to other commonly used algorithm, and a new approach to remove the sky contribution from the spectra obtained with fibre-fed spectrograph and further improve the radial velocity precision is presented. The average radial velocity of the cluster is = 71.08 ± 0.08 km s-1 with an average dispersion of μ _{v_c} = 3.97 km s-1. Using the same data set and the same statistical approach of previous analyses, 20 additional binary candidates are found, for a total of 87 candidates. A new determination of the internal radial velocity dispersion as a function of cluster distance is presented, resulting in a dispersion of 4.5 km s-1 within 2 arcmin from the centre of cluster and steadily decreasing outward. We statistically confirm the small amplitude of the cluster rotation, as suggested in the past by several authors. This new analysis represents a significant improvement with respect to previous results in literature and provides a fundamental observational input for the modelling of the cluster dynamics.

  17. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  18. Laser Doppler velocity measurements of swirling flows with upstream influence

    NASA Technical Reports Server (NTRS)

    Rloff, K. L.; Bossel, H. H.

    1973-01-01

    Swirling flow in a rotating tube is studied by flow visualization at a moderate Reynolds number, and its velocity field is measured by laser-Doppler anemometry. The tube has constant diameter, and approximately uniform initial rigid rotation of the flow is assured by passing the flow through a rotating plug of porous metal before it enters the test section. At moderate swirl values, an object mounted on the tube centerline causes a closed bubble to form upstream of the obstacle, with a clearly defined stagnation point on the axis, and recirculating flow inside the bubble. The bubble length grows upstream as the swirl is increased, until it breaks up into a Taylor column reaching all the way upstream and downstream at swirl values above a certain critical value. A vortex jump (in the sense of Benjamin) occurs downstream of the obstacle except when the Taylor column is present. Using a laser-Doppler anemometer, axial and swirl velocity profiles are obtained at several stations upstream and downstream of the bubble, and in and around the bubble.

  19. Velocity field measurements in the wake of a propeller model

    NASA Astrophysics Data System (ADS)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  20. Upper Mississippi embayment shallow seismic velocities measured in situ

    USGS Publications Warehouse

    Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.

    1997-01-01

    Vertical seismic compressional- and shear-wave (P- and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals. Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s-1, and the highest values are about 300 m s-1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12m thick); in deeper, older material, VS exceeds 400 m s-1. At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s-1, and rise to about 1.9 km s-1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s-1. VP values below the water table are about 1.8 km s-1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at ???20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits. Until recently, seismic velocity data for the embayment basin came from earthquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data

  1. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  2. HUBBLE MEASURES VELOCITY OF GAS ORBITING BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A schematic diagram of velocity measurements of a rotating disk of hot gas in the core of active galaxy M87. The measurement was made by studying how the light from the disk is redshifted and blueshifted -- as part of the swirling disk spins in earth's direction and the other side spins away from earth. The gas on one side of the disk is speeding away from Earth, at a speed of about 1.2 million miles per hour (550 kilometers per second). The gas on the other side of the disk is orbiting around at the same speed, but in the opposite direction, as it approaches viewers on Earth. This high velocity is the signature of the tremendous gravitational field at the center of M87. This is clear evidence that the region harbors a massive black hole, since it contains only a fraction of the number of stars that would be necessary to create such a powerful attraction. A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system. The observations were made with HST's Faint Object Spectrograph. Credit: Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle. NASA PHOTO CAPTION STScI-PR94-23b

  3. Benchmarking Velocity and Vorticity Measurement Systems on the UCLA Large-Scale Rotating Convection Device

    NASA Astrophysics Data System (ADS)

    Hawkins, E. K.; Aurnou, J. M.; Pilegard, T.; Grannan, A. M.; Ribeiro, A.; Cheng, J. S.; May, S.

    2015-12-01

    In order to simulate the turbulent, rapidly-rotating convection processes that occur in Earth's core and other planetary cores, we have designed and fabricated a large-scale experimental device at UCLA. Capable of accessing a broad range of parameters (e.g., Ekman numbers between E ≃ 10-2 to 10-8 and Rayleigh numbers between Ra ≃ 104 to 1013), this device is ideal for identifying new regimes of core-style convection and for determining scaling trends that can be extrapolated to planetary conditions. In particular, this device provides the opportunity to characterize the heat transfer and velocity field behaviors needed to build and test next-generation, asymptotically accurate models of rotating convection. Two experimental measurement systems, a Laser Doppler Velocimetry (LDV) and a Particle Image Velocimetry (PIV) system, have been implemented on the UCLA rotating convection device. LDV allows for the acquisition of high resolution point velocity profiles while PIV allows for the measurement of planar velocity fields using a light sheet through the fluid layer. We present results showing the strong agreement between LDV and PIV measurements. In addition, we present results of the spin up process of a homogeneous fluid that show agreement between experimental measurements, obtained through LDV, with established theory. Our present results validate the use of the LDV and PIV systems on the UCLA rotating convection device. Thus, these two systems are now calibrated to measure the velocity and vorticity fields that characterize the turbulent, rotating core-style convection that underlies dynamo generation in planetary bodies.

  4. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    SciTech Connect

    Supardiyono; Santosa, Bagus Jaya

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  5. Low Velocity Difference Thermal Shear Layer Mixing Rate Measurements

    NASA Technical Reports Server (NTRS)

    Bush, Robert H.; Culver, Harry C. M.; Weissbein, Dave; Georgiadis, Nicholas J.

    2013-01-01

    Current CFD modeling techniques are known to do a poor job of predicting the mixing rate and persistence of slot film flow in co-annular flowing ducts with relatively small velocity differences but large thermal gradients. A co-annular test was devised to empirically determine the mixing rate of slot film flow in a constant area circular duct (D approx. 1ft, L approx. 10ft). The axial rate of wall heat-up is a sensitive measure of the mixing rate of the two flows. The inflow conditions were varied to simulate a variety of conditions characteristic of moderate by-pass ratio engines. A series of air temperature measurements near the duct wall provided a straightforward means to measure the axial temperature distribution and thus infer the mixing rate. This data provides a characterization of the slot film mixing rates encountered in typical jet engine environments. The experimental geometry and entrance conditions, along with the sensitivity of the results as the entrance conditions vary, make this a good test for turbulence models in a regime important to modern air-breathing propulsion research and development.

  6. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines

    NASA Astrophysics Data System (ADS)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.

    2014-12-01

    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  7. Fiber-Based Doppler Lidar for Vector Velocity and Altitude Measurements

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn; Petway, Larry; Barnes, Bruce

    2015-01-01

    A coherent Doppler lidar capable of providing accurate velocity and altitude data has been developed and demonstrated for future NASA missions to the solar system bodies requiring precision navigation and controlled soft landing.

  8. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  9. On the Extraction of Angular Velocity from Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  10. Photonic systems for high precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel

    2016-01-01

    I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.

  11. Video Measurement of the Muzzle Velocity of a Potato Gun

    ERIC Educational Resources Information Center

    Jasperson, Christopher; Pollman, Anthony

    2011-01-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…

  12. Measurement of the shock front velocity produced in a T-tube

    SciTech Connect

    Djurović, S.; Mijatović, Z.; Vujičić, B.; Kobilarov, R.; Savić, I.; Gavanski, L.

    2015-01-15

    A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for the incident and reflected shock waves.

  13. Methods of Measurement of High Air Velocities by the Hot-wire Method

    NASA Technical Reports Server (NTRS)

    Weske, John R.

    1943-01-01

    Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.

  14. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    that the H-ADCP is a suitable replacement for the AVM as the primary index velocity meter in the CSSC near Lemont. A key component to Lake Michigan Diversion Accounting is the USGS gaging station on the CSSC near Lemont, Illinois. The importance of this gaging station in monitoring withdrawals from Lake Michigan has made it one of the most highly scrutinized gaging stations in the country. Any changes in streamgaging practices at this gaging station requires detailed analysis to ensure the change will not adversely affect the ability of the USGS to accurately monitor flows. This report provides a detailed analysis of the flow structure and index velocity measurements in the CSSC near Lemont, Illinois, to ensure that decisions regarding the future of this streamgage are made with the best possible understanding of the site and the characteristics of the flow.

  15. Impact of acoustic velocity structure to measurement of ocean bottom crustal deformation

    NASA Astrophysics Data System (ADS)

    Ikuta, R.; Tadokoro, K.; Okuda, T.; Sugimoto, S.; Watanabe, T.; Eto, S.; Ando, M.

    2010-12-01

    We are developing a geodetic method of monitoring crustal deformation under the ocean using kinematic GPS and acoustic ranging. The goal of our research is to achieve sub-centimeter accuracy in measuring oceanic crustal deformation by a very short-time measurement like 10 hours. In this study, we focused on lateral variation of acoustic velocity structure in seawater and introduced an inclined acoustic velocity structure model to improve accuracy of the measurement. We have a few measurement sites along Nankai trough, Japan. In each sites, we deployed a trio of transponders on ocean floor (seafloor benchmark units) within distance comparable with the depth. An ultrasonic signal is generated from a surface vessel drifting over the benchmark unit, which is received and replied by the benchmark unit. In this system, both acoustic velocity structure and the benchmark unit positions were determined simultaneously for the each measurement using a tomographic technique. This tomographic technique was adopted on an assumption that the acoustic velocity structure is horizontally layered and changes only in time, not in space. Ikuta et al., (AGU fall meeting 2009) reported an approach to improve accuracy of benchmark positioning using a new additional assumption. The additional assumption was that the configuration of the transponders trio constituting one benchmark unit does not change. They determined the time evolution of weight center for the fixed transponder triangle between different measurements using all repetitively obtained data sets at once. This is contrasting to the previous method in which each data set for different measurement was solved independently. This assumption worked well in reducing number of unknown parameters. As a result, repeatability of benchmark positioning improved from 5 cm to 3 cm. We conducted numerical experiments synthesizing acoustic travel-time data to evaluate the robustness of this new approach. When acoustic travel-time data is

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  18. Optimization of the AC-gradient method for velocity profile measurement and application to slow flow

    NASA Astrophysics Data System (ADS)

    Kartäusch, Ralf; Helluy, Xavier; Jakob, Peter Michael; Fidler, Florian

    2014-11-01

    This work presents a spectroscopic method to measure slow flow. Within a single shot the velocity distribution is acquired. This allows distinguishing rapidly between single velocities within the sampled volume with a high sensitivity. The technique is based on signal acquisition in the presence of a periodic gradient and a train of refocussing RF pulses. The theoretical model for trapezoidal bipolar pulse shaped gradients under consideration of diffusion and the outflow effect is introduced. A phase correction technique is presented that improves the spectral accuracy. Therefore, flow phantom measurements are used to validate the new sequence and the simulation based on the theoretical model. It was demonstrated that accurate parabolic flow profiles can be acquired and flow variations below 200 μm/s can be detected. Three post-processing methods that eliminate static background signal are also presented for applications in which static background signal dominates. Finally, this technique is applied to flow measurement of a small alder tree demonstrating a typical application of in vivo plant measurements.

  19. Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens

    NASA Technical Reports Server (NTRS)

    Kohles, S. S.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A system was refined for the determination of the bulk ultrasonic wave propagation velocity in small cortical bone specimens. Longitudinal and shear wave propagations were measured using ceramic, piezoelectric 20 and 5 MHz transducers, respectively. Results of the pulse transmission technique were refined via the measurement of the system delay time. The precision and accuracy of the system were quantified using small specimens of polyoxymethylene, polystyrene-butadiene, and high-density polyethylene. These polymeric materials had known acoustic properties, similarity of propagation velocities to cortical bone, and minimal sample inhomogeneity. Dependence of longitudinal and transverse specimen dimensions upon propagation times was quantified. To confirm the consistency of longitudinal wave propagation in small cortical bone specimens (< 1.0 mm), cut-down specimens were prepared from a normal rat femur. Finally, cortical samples were prepared from each of ten normal rat femora, and Young's moduli (Eii), shear moduli (Gij), and Poisson ratios (Vij) were measured. For all specimens (bone, polyoxymethylene, polystyrene-butadiene, and high-density polyethylene), strong linear correlations (R2 > 0.997) were maintained between propagation time and distance throughout the size ranges down to less than 0.4 mm. Results for polyoxymethylene, polystyrene-butadiene, and high-density polyethylene were accurate to within 5 percent of reported literature values. Measurement repeatability (precision) improved with an increase in the wave transmission distance (propagating dimension). No statistically significant effect due to the transverse dimension was detected.

  20. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-01

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF4 gas determined the presheath exit velocities of all significant positive ions: CF3+, CF2+, CF+, and F+. At higher bias voltages, we detected essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.

  1. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    SciTech Connect

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  2. Highly accurate SNR measurement using the covariance of two SEM images with the identical view.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2012-01-01

    Quality of an SEM image is strongly influenced by the extent of noise. As a well-known method in the field of SEM, the covariance is applied to measure the signal-to-noise ratio (SNR). This method has potential ability for highly accurate measurement of the SNR, which is hardly known until now. If the precautions discussed in this article are adopted, that method can demonstrate its real ability. These precautions are strongly related to "proper acquisition of two images with the identical view," "alignment of an aperture diaphragm," "reduction of charging phenomena," "elimination of particular noises," and "accurate focusing," As necessary, characteristics in SEM signal and noise are investigated from a few standpoints. When using the maximum performance of this measurement, SNR of many SEM images obtained in a variety of the SEM operating conditions and specimens can be measured accurately.

  3. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  4. Calibration of Instruments for Measuring Wind Velocity and Direction

    NASA Technical Reports Server (NTRS)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  5. Determination of the concentration of SF 6 in an accelerator gas mixture by measuring the velocity of sound

    NASA Astrophysics Data System (ADS)

    Wilburn, W. S.; Gould, C. R.; Haase, D. G.; Hoffenberg, R. S.; Mioduszewski, S.; Roberson, N. R.

    1995-02-01

    A simple and reliable method for determining the concentration of SF 6 in an accelerator gas mixture with N 2 and CO 2 is described. The technique makes use of the low velocity of sound in SF 6 (approximately {1}/{3} that of air). The sound velocity of the mixture is determined by measuring the spacing of acoustic resonances in a tube filled with the gas. Data from standard gas mixtures containing 0-10% SF 6 are presented, showing that the technique is accurate to approximately 0.5% absolute.

  6. Near bottom velocity and suspended solids measurements in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Cheng, Ralph T.; Cacchione, David A.; Tate, George B.

    1997-01-01

    Ability to accurately measure long-term time-series of turbulent mean velocity distribution within the bottom boundary layer (BBL) in addition to suspended solids concentration (SSC) is critical to understanding complex processes controlling transport, resuspension, and deposition of suspended sediments in bays and estuaries. A suite of instruments, including broad band acoustic Doppler current profilers (BB-ADCPs), capable of making very high resolution measurement of velocity profiles in the BBL, was deployed in the shipping channel of South San Francisco Bay (South Bay), California in an investigation of sediment dynamics during March and April 1995. Results of field measurements provide information to calculate suspended solids flux (SSF) at the site. Calculations show striking patterns; residual SSF varies through the spring-neap tidal cycle. Significant differences from one spring tide to another are caused by differences in tidal current diurnal inequalities. Winds from significant storms establish residual circulation patterns that may affect magnitude of residual SSF more than increased tidal energy at spring tides.

  7. Strip Velocity Measurements for Gated X-Ray Imagers Using Short Pulse Lasers

    SciTech Connect

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S. H.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time-resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  8. Laser Doppler velocimeter measurements of boundary layer velocity and turbulent intensities in Mach 2.5 flow

    NASA Technical Reports Server (NTRS)

    Sewell, Jesse; Chew, Larry

    1994-01-01

    In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.

  9. Frequency dependence of laser ultrasonic SAW phase velocities measurements.

    PubMed

    Li, Chunhui; Song, Shaozhen; Guan, Guangying; Wang, Ruikang K; Huang, Zhihong

    2013-01-01

    Advances in the field of laser ultrasonics have opened up new possibilities in applications in many areas. This paper verifies the relationship between phase velocities of different materials, including hard solid and soft solid, and the frequency range of SAW signal. We propose a novel approach that utilizes a low coherence interferometer to detect the laser-induced surface acoustic waves (SAWs). A Nd:YAG focused laser line-source is applied to steel, iron, plastic plates and a 3.5% agar-agar phantom. The generated SAW signals are detected by a time domain low coherence interferometry system. SAW phase velocity dispersion curves were calculated, from which the elasticity of the specimens was evaluated. The relationship between frequency content and phase velocities was analyzed. We show that the experimental results agreed well with those of the theoretical expectations.

  10. Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range.

    PubMed

    Xu, Yang; Darga, Donald; Smid, Jason; Zysk, Adam M; Teh, Daniel; Boppart, Stephen A; Scott Carney, P

    2016-09-01

    In this Letter, we report the first application of two phase denoising algorithms to Doppler optical coherence tomography (DOCT) velocity maps. When combined with unwrapping algorithms, significantly extended fluid velocity dynamic range is achieved. Instead of the physical upper bound, the fluid velocity dynamic range is now limited by noise level. We show comparisons between physical simulated ideal velocity maps and the experimental results of both algorithms. We demonstrate unwrapped DOCT velocity maps having a peak velocity nearly 10 times the theoretical measurement range. PMID:27607963

  11. Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range.

    PubMed

    Xu, Yang; Darga, Donald; Smid, Jason; Zysk, Adam M; Teh, Daniel; Boppart, Stephen A; Scott Carney, P

    2016-09-01

    In this Letter, we report the first application of two phase denoising algorithms to Doppler optical coherence tomography (DOCT) velocity maps. When combined with unwrapping algorithms, significantly extended fluid velocity dynamic range is achieved. Instead of the physical upper bound, the fluid velocity dynamic range is now limited by noise level. We show comparisons between physical simulated ideal velocity maps and the experimental results of both algorithms. We demonstrate unwrapped DOCT velocity maps having a peak velocity nearly 10 times the theoretical measurement range.

  12. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  13. Optical fiber-based system for continuous measurement of in-bore projectile velocity

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  14. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%. PMID:25173302

  15. Doppler velocity measurements using a phase-stabilized michelson spectrometer

    NASA Astrophysics Data System (ADS)

    Smeets, G.

    1993-10-01

    Laser Doppler systems have become classical means of nonintrusively recording velocities in all kinds of flow fields. With the system mostly used, the so-called Doppler differential velocimeter, tracer particles incorporated in the flow are illuminated by two laser beams from slightly different directions, and the velocity is derived from the beating frequency of the two scattered light waves on the cathode of a photomultiplier. As the intersecting beams form equidistant light sheets within the probe volume by their interference, it is desirable, as is the case with any technique creating light barriers in space, that particles should pass the grid individually. The particles should be of a suitable size: large enough to scatter sufficient light for a good signal-to-noise ratio but small enough for negligible velocity relaxation and true indication of the turbulent velocity fluctuations. In most applications of this technique, e.g. in wind tunnel experiments, particles of controlled size and number density are seeded into the upstream flow.

  16. Continuous flow measurements using ultrasonic velocity meters - an update

    USGS Publications Warehouse

    Oltmann, Rick

    1995-01-01

    An article in the summer 1993 Newsletter described USGS work to continously monitor tidal flows in the delta using ultrasonic velocity meters.  This article updates progress since 1993, including new installations, results of data analysis, damage during this year's high flows, and the status of each site.

  17. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  18. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-01

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  19. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  20. Toward Accurate Measurement of Participation: Rethinking the Conceptualization and Operationalization of Participatory Evaluation

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve

    2009-01-01

    While participatory evaluation (PE) constitutes an important trend in the field of evaluation, its ontology has not been systematically analyzed. As a result, the concept of PE is ambiguous and inadequately theorized. Furthermore, no existing instrument accurately measures stakeholder participation. First, this article attempts to overcome these…

  1. Mathematical Relationships Between Two Sets of Laser Anemometer Measurements for Resolving the Total Velocity Vector

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1993-01-01

    The mathematical relations between the measured velocity fields for the same compressor rotor flow field resolved by two fringe type laser anemometers at different observational locations are developed in this report. The relations allow the two sets of velocity measurements to be combined to produce a total velocity vector field for the compressor rotor. This report presents the derivation of the mathematical relations, beginning with the specification of the coordinate systems and the velocity projections in those coordinate systems. The vector projections are then transformed into a common coordinate system. The transformed vector coordinates are then combined to determine the total velocity vector. A numerical example showing the solution procedure is included.

  2. MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal.

    PubMed

    Kalata, Wojciech; Martin, Bryn A; Oshinski, John N; Jerosch-Herold, Michael; Royston, Thomas J; Loth, Francis

    2009-06-01

    Noninvasive measurement of the speed with which the cerebrospinal fluid (CSF) velocity wave travels through the spinal canal is of interest as a potential indicator of CSF system pressure and compliance, both of which may play a role in the development of craniospinal diseases. However, measurement of CSF velocity wave speed (VWS) has eluded researchers primarily due to either a lack of access to CSF velocity measurements or poor temporal resolution. Here, we present a CSF VWS measurement methodology using a novel MR sequence that acquires unsteady velocity measurements during the cardiac cycle with a time interval < 10 ms. Axial CSF velocity measurements were obtained in the sagittal plane of the cervical spinal region on three subjects referred for an MRI scan without craniospinal disorders. CSF VWS was estimated by using the time shift identified by the maximum velocity and maximum temporal velocity gradient during the cardiac cycle. Based on the maximum velocity gradient, the mean VWS in the three cases was calculated to be 4.6 m/s (standard deviation 1.7 m/s, p < 0.005) during systolic acceleration. VWS computed using maximum velocity alone was not statistically significant for any of the three cases. The measurements of VWS are close in magnitude to previously published values. The methodology represents a new technique that can be used to measure VWS in the spinal canal noninvasively. Further research is required to both validate the measurements and determine clinical significance. PMID:19174343

  3. Pulsed-injection method for blood flow velocity measurement in intraarterial digital subtraction angiography.

    PubMed

    Shaw, C G; Plewes, D B

    1986-08-01

    The pulsed-injection method for measuring the velocity of blood flow in intraarterial digital subtraction angiography is described. With this technique, contrast material is injected at a pulsing frequency as high as 15 Hz, so that two or more boluses can be imaged simultaneously. The velocity of flow is determined by measuring the spacing between the boluses and multiplying it by the pulsing frequency. Results of tests with phantoms correlate well with flow measurements obtained with a graduated cylinder for velocities ranging from 8 to 60 cm/sec. The potential of the method for time-dependent velocity measurement has been demonstrated with simulated pulsatile flows. PMID:3523598

  4. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  5. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  6. Applying velocity profiling technology to flow measurement at the Orinda water treatment plant

    SciTech Connect

    Metcalf, M.A.; Kachur, S.; Lackenbauer, S.

    1998-07-01

    A new type of flow measurement technology, velocity profiling, was tested in the South Channel of the Orinda Water Treatment Plant. This new technology allowed installation in the difficult hydraulic conditions of the South Channel, without interrupting plant operation. The advanced technology of velocity profiling enables flow measurements to be obtained in sites normally unusable by more traditional methods of flow rate measurement.

  7. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  8. STARSPOT JITTER IN PHOTOMETRY, ASTROMETRY, AND RADIAL VELOCITY MEASUREMENTS

    SciTech Connect

    Makarov, V. V.; Beichman, C. A.; Lebreton, J.; Malbet, F.; Catanzarite, J. H.; Shao, M.; Fischer, D. A.

    2009-12-10

    Analytical relations are derived for the amplitude of astrometric, photometric, and radial velocity (RV) perturbations caused by a single rotating spot. The relative power of the starspot jitter is estimated and compared with the available data for kappa{sup 1} Ceti and HD 166435, as well as with numerical simulations for kappa{sup 1} Ceti and the Sun. A Sun-like star inclined at i = 90 deg. at 10 pc is predicted to have an rms jitter of 0.087 muas in its astrometric position along the equator, and 0.38 m s{sup -1} in radial velocities. If the presence of spots due to stellar activity is the ultimate limiting factor for planet detection, the sensitivity of SIM Lite to Earth-like planets in habitable zones is about an order of magnitude higher than the sensitivity of prospective ultra-precise RV observations of nearby stars.

  9. Measuring In-Situ Mdf Velocity Of Detonation

    DOEpatents

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  10. New measurements of radial velocities in clusters of galaxies. II

    NASA Astrophysics Data System (ADS)

    Proust, D.; Mazure, A.; Sodre, L.; Capelato, H.; Lund, G.

    1988-03-01

    Heliocentric radial velocities are determined for 100 galaxies in five clusters, on the basis of 380-518-nm observations obtained using a CCD detector coupled by optical fibers to the OCTOPUS multiobject spectrograph at the Cassegrain focus of the 3.6-m telescope at ESO La Silla. The data-reduction procedures and error estimates are discussed, and the results are presented in tables and graphs and briefly characterized.

  11. KISAP: New in situ seafloor velocity measurement tool

    NASA Astrophysics Data System (ADS)

    Kim, Gil Young; Park, Ki Ju; Kyo Seo, Young; Lee, Gwang Soo; Kim, Seong Pil

    2015-04-01

    The KISAP (KIGAM Seafloor Acoustic Prober) is an instrument developed to obtain in situ compressional wave velocity and attenuation profiles for upper several meters of sedimentary layer at the sediment-seawater interface. This instrument consists of independent recording channels (NI cDAQ-9132, National Instruments) with a linear array of receivers (5 Hz-20 kHz, GeoSpectrum Technologies Inc) with depth below acoustic source (acoustic pinger, 1-50 kHz frequency, GeoSpectrum Technologies Inc). It provides in situ recording of full waveforms to determine interval velocity and attenuation. The system can be attached to a corer (gravity and/or piston corer) or to a specially designed prober. The experiments for in situ test were carried out in east coast of Korea and Songjeong beach, Pusan, Korea. We collected good waveform data to be calculated in situ velocity from KISAP test. Therefore KISAP can be used to collect in situ acoustic data. In addition, it can be effectively used to calibrate previous laboratory data to in situ data.

  12. Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results.

    PubMed

    Allano, Daniel; Malek, Mokrane; Walle, Françoise; Corbin, Frédéric; Godard, Gilles; Coëtmellec, Sébastien; Lecordier, Bertrand; Foucaut, Jean-Marc; Lebrun, Denis

    2013-01-01

    Velocity measurements in the vicinity of an obstacle remain very complicated even when optical diagnostics based on displacement of micrometric tracers are considered. In the present paper, digital in-line holography with a divergent beam is proposed to measure the three-dimensional (3D) velocity vector fields in a turbulent boundary layer and, in particular, on the near wall region of a wind tunnel. The seeding droplets (1-5 μm) transported by a turbulent airflow are illuminated by a couple of laser pulses coming from a fiber coupled laser diode. These double exposure holograms are then recorded through a transparent glass reticle specially designed for this application with an accurate surface positioning combined with a particularly attractive in situ calibration method of the investigation volume (less than 10 mm(3)). The method used for processing holograms recorded in such a configuration is detailed. Our original calibration procedure and the assessment of its accuracy are presented. Our holographic probe has been tested in a wind tunnel for a large range of different velocities. Then 3D velocity vector fields extracted from more than 13000 holograms are analyzed. Statistical results show the capability of our approach to access in a turbulent boundary layer. In particular, it leads to relevant measurements for fluid mechanics such as velocity fluctuation and the shear stress in the very close vicinity of a wall. PMID:23292426

  13. Measurements of Spatially Resolved Velocity Variations in Shock Compressed Heterogeneous Materials Using a Line-Imaging Velocity Interferometer

    SciTech Connect

    ASAY,JAMES R.; CHHABILDAS,LALIT C.; KNUDSON,MARCUS D.; TROTT,WAYNE M.

    1999-09-01

    Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.

  14. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    SciTech Connect

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.

  15. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  16. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  17. Radiometer for accurate (+ or - 1%) measurement of solar irradiance equal to 10,000 solar constants

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1981-01-01

    The 10,000 solar constant radiometer was developed for the accurate (+ or - 1%) measurement of the irradiance produced in the image formed by a parabolic reflector or by a multiple mirror solar installation. This radiometer is water cooled, weighs about 1 kg, and is 5 cm (2 in.) in diameter by 10 cm (4 in.) long. A sting is provided for mounting the radiometer in the solar installation capable of measuring irradiances as high as 20,000 solar constants, the instrument is self calibrating. Its accuracy depends on the accurate determination of the cavity aperture, and absorptivity of the cavity, and accurate electrical measurements. The spectral response is flat over the entire spectrum from far UV to far IR. The radiometer responds to a measurement within 99.7% of the final value within 8 s. During a measurement of the 10,000 solar constant irradiance, the temperature rise of the water is about 20 C. The radiometer has perfect cosine response up to 60 deg off the radiometer axis.

  18. Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

    SciTech Connect

    Hare, D E; Holtkamp, D B; Strand, O T

    2010-03-02

    Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.

  19. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.

    PubMed

    Kadowaki, Hiroko; Hayase, Toshiyuki; Funamoto, Kenichi; Taniguchi, Nobuyuki

    2016-02-01

    Information on hemodynamics is essential for elucidation of mechanisms and development of novel diagnostic methods for circulatory diseases. Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation can correctly reproduce an intravascular blood flow field and hemodynamics by feeding back an ultrasonic measurement to the numerical blood flow simulation. In this method, it is critically important to give the correct cross-sectional average inflow velocity (inflow velocity) as the boundary condition. However, systematic study has not been done on the relative validity and effectiveness of existing inflow velocity estimation methods for various target flow fields. The aim of this study was to examine the existing methods systematically and to establish a method to accurately estimate inflow velocities for various vessel geometries and flow conditions in 2D-UMI simulations. A numerical experiment was performed for 2D-UMI simulation of blood flow models in a straight vessel with inflow velocity profiles symmetric and asymmetric to the vessel axis using existing evaluation functions based on Doppler velocity error for the inflow velocity estimation. As a result, it was clarified that a significantly large estimation error occurs in the asymmetric flow due to a nonfeedback domain near the downstream end of the calculation domain. Hence, a new inflow velocity estimation method of 2D-UMI simulation is proposed in which the feedback and evaluation domains are extended to the downstream end. Further numerical experiments of 2D-UMI simulation for two realistic vessel geometries of a healthy blood vessel and a stenosed one confirmed the effectiveness of the proposed method.

  20. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.

    PubMed

    Kadowaki, Hiroko; Hayase, Toshiyuki; Funamoto, Kenichi; Taniguchi, Nobuyuki

    2016-02-01

    Information on hemodynamics is essential for elucidation of mechanisms and development of novel diagnostic methods for circulatory diseases. Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation can correctly reproduce an intravascular blood flow field and hemodynamics by feeding back an ultrasonic measurement to the numerical blood flow simulation. In this method, it is critically important to give the correct cross-sectional average inflow velocity (inflow velocity) as the boundary condition. However, systematic study has not been done on the relative validity and effectiveness of existing inflow velocity estimation methods for various target flow fields. The aim of this study was to examine the existing methods systematically and to establish a method to accurately estimate inflow velocities for various vessel geometries and flow conditions in 2D-UMI simulations. A numerical experiment was performed for 2D-UMI simulation of blood flow models in a straight vessel with inflow velocity profiles symmetric and asymmetric to the vessel axis using existing evaluation functions based on Doppler velocity error for the inflow velocity estimation. As a result, it was clarified that a significantly large estimation error occurs in the asymmetric flow due to a nonfeedback domain near the downstream end of the calculation domain. Hence, a new inflow velocity estimation method of 2D-UMI simulation is proposed in which the feedback and evaluation domains are extended to the downstream end. Further numerical experiments of 2D-UMI simulation for two realistic vessel geometries of a healthy blood vessel and a stenosed one confirmed the effectiveness of the proposed method. PMID:26241967

  1. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  2. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  3. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  4. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  5. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  6. Theoretical analysis of the ultrasonic Doppler flowmeter for measurements of high flow velocities

    NASA Astrophysics Data System (ADS)

    Tabin, Jozef

    1987-07-01

    A geometric approach is used to analyze the ultrasonic Doppler flowmeter for measurements of flow velocities that are high but yet much smaller than the ultrasound velocity. The approach is based on the calculation of the transit time difference between the ultrasonic waves that are reflected from a moving particle at its various positions. Beam divergence is taken into account, and each path of the ultrasonic wave propagation is approximated by two rectilinear components. It is shown that the Doppler frequency shift is influenced not only by the suspended particle velocity, but also by the mean flow velocity of the fluid. This influence is of second order in the flow velocity.

  7. Practical do-it-yourself device for accurate volume measurement of breast.

    PubMed

    Tezel, E; Numanoğlu, A

    2000-03-01

    A simple and accurate method of measuring differences in breast volume based on Archimedes' principle is described. In this method, a plastic container is placed on the breast of the patient who is lying in supine position. While the breast occupies part of the container, the remaining part is filled with water and the volume is measured. This method allows the measurement of the volume differences of asymmetric breasts and also helps the surgeon to estimate the size of the prosthesis to be used in augmentation mammaplasty. PMID:10724264

  8. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  9. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  10. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  11. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)

    NASA Astrophysics Data System (ADS)

    Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.

    2016-03-01

    Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  12. 2011 Japan tsunami current and flow velocity measurements from survivor videos using LiDAR

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.

    2011-12-01

    On March 11, 2011, a magnitude Mw 9.0 earthquake occurred off the coast of Japan's Tohoku region causing catastrophic damage and loss of life. Numerous tsunami reconnaissance trips were conducted in Japan (Tohoku Earthquake and Tsunami Joint Survey Group). This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast and the subsequent video image calibration, processing and tsunami flow velocity analysis. Selected tsunami video recording sites were visited, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance from April 9 to 25. A follow-up survey from June 9 to 15, 2011 focused on terrestrial laser scanning (TLS) at locations with previously identified high quality eyewitness videos. We acquired precise topographic data using TLS at nine video sites with multiple scans acquired from different instrument positions at each site. These ground-based LiDAR measurements produce a 3-dimensional "point cloud" dataset. Digital photography from a scanner-mounted camera yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing of the TLS data in an absolute reference frame such as WGS84. We deployed a Riegl VZ-400 scanner (1550 nm wavelength laser, 42,000 measurements/second, <600 meter max range) and peripheral equipment from the UNAVCO instrument pool. The original full length videos recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). Multiple videos were synchronized and referenced in time (UTC). The analysis of the tsunami videos follows a four step procedure developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on visually identifiable ground control points measured in the LiDAR point cloud data

  13. 2011 Japan tsunami survivor video based hydrograph and flow velocity measurements using LiDAR

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-04-01

    On March 11, 2011, a magnitude Mw 9.0 earthquake occurred off the coast of Japan's Tohoku region causing catastrophic damage and loss of life. Numerous tsunami reconnaissance trips were conducted in Japan (Tohoku Earthquake and Tsunami Joint Survey Group). This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were visited, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance from April 9 to 25. A follow-up survey from June 9 to 15, 2011 focused on terrestrial laser scanning (TLS) at locations with previously identified high quality eyewitness videos. We acquired precise topographic data using TLS at nine video sites with multiple scans acquired from different instrument positions at each site. These ground-based LiDAR measurements produce a 3-dimensional "point cloud" dataset. Digital photography from a scanner-mounted camera yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing of the TLS data in an absolute reference frame such as WGS84. We deployed a Riegl VZ-400 scanner (1550 nm wavelength laser, 42,000 measurements/second, <600 meter max range) and peripheral equipment from the UNAVCO instrument pool. The original full length videos recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). Multiple videos were synchronized and referenced in time (UTC). The analysis of the tsunami videos follows a four step procedure developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on visually identifiable ground control points measured in the LiDAR point

  14. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  15. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  16. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  17. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  18. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  19. Accurate Determination of Torsion and Pure Bending Moment for Viscoelastic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Ko, Chih-Chin; Shiau, Li-Ming

    Measurements of time-dependent material properties in the context of linear viscoelasticity, at a given frequency and temperature, require accurate determination of both loading and deformation that are subjected to the testing materials. A pendulum-type viscoelastic spectroscopy is developed to experimentally measure loss tangent and the magnitude of dynamic modulus of solid materials. The mechanical system of the device is based on the behavior of the cantilever beam, and torsion and pure bending moment are generated from the interaction between a permanent magnet and the Helmholtz coils. The strength of the magnetic interactions may be determined with a material with known mechanical properties, such as aluminum 6061T4 alloy. The sensitivity of the torque measurement is on the order of one micro N-m level. With the high accurate torque measurement and deformation detection from a laser-based displacement measurement system, viscoelastic properties of materials can be experimentally measured in different frequency regimes. Sinusoidal driving signals are adopted for measuring complex modulus in the sub-resonant regime, and dc bias driving for creep tests in the low frequency limit. At structural resonant frequencies, the full-width-at-half-maximum (FWHM) method or Lorentzian curve fitting method is adopted to extract material properties. The completion of determining material properties in the wide frequency spectrum may help to identify the deformation mechanisms of the material and to create better models for simulation work.

  20. Flamelet/flow interaction in premixed turbulent flames: simultaneous measurements of gas velocity and flamelet position

    SciTech Connect

    Miles, P.C.; Gouldin, F.C.

    1996-12-01

    An experimental technique for obtaining simultaneous measurements of fluid velocity and flamelet position in premixed flames is described and applied in a turbulent V-flame. The flamelet position information is used to calculate conditional velocity statistics, conditional on both zone (reactants or products) as well as conditional on distance from the flamelet. The conditional zone statistics demonstrate that increases (or decreases) in turbulence across the flame are dependent on axial position and location within the flame brush. The product- zone conditional covariance, coupled with the measured conditional mean velocity profiles, indicate that turbulence generation by shear may be a significant contribution to product zone turbulence levels. Velocity statistics conditional on distance from the flamelet demonstrate a considerable interaction between the flamelet and velocity field. Man and rms velocities vary significantly with proximity to the flamelet, such that differences in velocities which which occur just across the flamelet surface. The change in rms velocities just across the flamelet is found to be anisotropic, with the largest increase (smallest decrease) occurring in the axial velocity component. Rms velocities conditional on flamelet position further support the hypothesis that increased product gas velocity fluctuations may have a significant component associated with turbulence generation by mean shear.

  1. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  2. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  3. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  4. Errors in acoustic doppler profiler velocity measurements caused by flow disturbance

    USGS Publications Warehouse

    Mueller, D.S.; Abad, J.D.; Garcia, C.M.; Gartner, J.W.; Garcia, M.H.; Oberg, K.A.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5cm from the transducers to less than 1% at about 50cm from the transducers for the scenarios simulated. ?? 2007 ASCE.

  5. Experimental Acoustic Velocity Measurements in a Tidally Affected Stream

    USGS Publications Warehouse

    Storm, J.B.; ,

    2002-01-01

    The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.

  6. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  7. Quantitative measurement of in-vessel dust velocity and its correlation with toroidal rotation of plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Kim, Kyung-Rae; Ko, Won-Ha; Nam, YongUn

    2015-08-01

    In-vessel dust velocity and its distribution have been evaluated by using dedicated software developed at KSTAR. The dust velocities are well described by log-normal distribution function in a range from ∼10 m/s up to ∼460 m/s. The peak velocity of the distribution increases through three campaigns from 2010 to 2012, mainly due to the increase of the input energy level. From the force balance, it is expected that the dust velocity is strongly correlated with the toroidal plasma flow due to the ion drag force acting on dusts. To confirm this, toroidal rotation velocity is measured by using charge exchange spectroscopy (CES) as a function of normalized stored energy (W/Ip), which is similar with Rice scaling. As a consequence, it is found that the dust velocity is linearly proportional to W/Ip, thus to the toroidal rotation velocity of the plasmas.

  8. Laboratory Velocity Measurements Used for Recovering Soil Distributions from Field Seismic Data

    SciTech Connect

    Berge, P A; Bertete-Aguirre, H

    1999-10-20

    Recent advances in field methods make it possible to obtain high quality compressional (P) and shear (S) velocity data for the shallow subsurface. Environmental and engineering problems require new methods for interpreting the velocity data in terms of sub-surface soil distribution. Recent advances in laboratory measurement techniques have provided high quality velocity data for soils at low pressures that can be used to improve interpretation of field data. We show how laboratory data can be used to infer lithology from field data. We use laboratory ultrasonic velocity measurements from artificial soils made by combining various amounts of sand and peat moss.

  9. Surface recombination velocity and lifetime in InP measured by transient microwave reflectance

    NASA Technical Reports Server (NTRS)

    Bothra, S.; Tyagi, S. D.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    Minority carrier lifetime and surface recombination velocity are determined in organometallic vapor-phase epitaxy (OMVPE)-grown InP by a contactless microwave technique. For lightly doped n-type InP, a surface recombination velocity of 5000 cm/s is measured. However, in solar cells with a heavily doped n-type emitter a surface recombination velocity of 1 x 10 to the 6th cm/s is observed. Possible reasons for this due to surface pinning are discussed. The effects of various chemical treatments and SiO on the surface recombination velocity are measured.

  10. Intracavity Rayleigh/Mie Scattering for Multipoint, Two-Component Velocity Measurement

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.

    2006-01-01

    A simultaneous multi-point two-component Doppler velocimeter is described. The system uses two optical cavities: a Fabry-Perot etalon and an optical cavity for collecting and re-circulating the Rayleigh/Mie scattered light that is collected from the measurement volume in two parallel, but opposite directions. Single-pulse measurements of two orthogonal components of the velocity vector in a supersonic free jet were performed to demonstrate the technique. The re-circulation of the light rejected by the interferometer input mirror also increased the signal intensity by a factor of 3.5. 2005 Optical Society of America Interferometric Rayleigh scattering has previously been used for single-point velocity measurements in unseeded gas flow. However, this past work has generally been limited to probing with continuous-wave lasers resulting in time-averaged measurements of velocity. Multiple velocity components have been measured simultaneously by separate instruments.1,2 It has also been demonstrated that two orthogonal velocity components can be measured simultaneously at one point using one interferometer by reflecting back the probing laser beam, although this approach results in directional ambiguity of the flow velocity vector.3 This measurement ambiguity was removed by prior knowledge of the approximate magnitude and sign of the velocity components. Furthermore, it was shown that multiple points could be measured simultaneously with a Rayleigh scattering interferometric approach, but only one component of velocity was measured.4 Another method of performing multiple component velocity measurements with Rayleigh scattering uses a pair of cameras to image the flow, one of which views the flow through an iodine gas filter. This iodine-filter technique has the advantage of allowing high-resolution velocity imaging, but it generally has a lower dynamic range.

  11. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity

    SciTech Connect

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1992-03-01

    A new instrument based on a constant frequency pulse phase-locked loop concept has been developed to accurately measure the ultrasonic phase velocity in condensed matter. Measurements of the sound velocity in ultrapure water are reported in which both damped and undamped transducers are used with the instrument together with reflectors of various thicknesses placed in the sound propagation path. An analysis of measurements made with the new instrument and similar measurements, taken under identical experimental conditions, using a popular variable frequency pulsed-phase-locked loop instrument is reported. Uncertainties in both measurement systems are analyzed and discussed. A method for measuring inherent phase shifts, not addressed by previous investigators, within the variable frequency pulsed phase-locked loop system and a derivation of the equations that govern the overall use of variable frequency systems using phase-sensitive comparisons are presented. The effects of a finite pulse length on the measurements of phase velocity in dispersive media are addressed in detail.

  12. Particle size and velocity measurement by laser anemometry

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Chigier, N. A.; Atakan, S.; Ungut, A.

    1977-01-01

    The use of a forward scattering Laser Anemometer system for the measurement of particle diameters larger than the fringe spacing is investigated. A systematic calibration experiment demonstrates a direct relationship between signal amplitude and particle diameter for transparent particles between 30 microns and 240 microns in diameter. A light scattering analysis confirms these measurements and indicates how the range of particles which can be measured using the peak (mean) signal depends on the optical arrangement and particle properties. On the basis of this work a real time Laser Anemometer signal processor is modified so that the peak of the mean of each signal can be measured. A method of correcting data for the effect of particles which do not go through the center of the measurement volume is derived. Good agreement is found between particle size distributions measured in sprays by using the Laser Anemometer and size distributions measured by collecting the particles on a slide and using an image analysis computer.

  13. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    PubMed

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-01

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.

  14. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data

    PubMed Central

    Borotikar, Bhushan S.; Sipprell, William H.; Wible, Emily E.; Sheehan, Frances T.

    2012-01-01

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47mm–0.77mm for the patella and femur and 0.68mm–0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy < 0.33mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. PMID:22284428

  15. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  16. Three-dimensional measurement of temperature and velocity field in buoyancy driven flows

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobuyuki; Sato, Gen; Ohkawa, Youhei

    2008-11-01

    Three-dimensional measurements of temperature and velocity field in buoyancy driven flows are carried out using a background oriented Schlieren combined with tomographic reconstruction technique. This method is based on the refractive index measurement in the three-dimensional flow field, and the corresponding velocity field is evaluated from the displacement of the measured temperature field. The accuracy of this measurement is examined using the artificial images derived from the numerical simulation.

  17. Velocity Measurements at Three Fish Screening Facilities in the Yakima Basin, Washington : Summer 1989 Annual Report.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    1990-09-01

    The Pacific Northwest Laboratory (PNL) measured the velocity conditions at three fish screening facilities in the Yakima River Basin: Wapato, Chandler, and Easton Screens. The measurement objectives were different at the three screens. At Wapato, approach and sweep velocities were measured to evaluate the effect of rearing pens in the screen forebay. A complete survey was performed at the Chandler Screens. At Easton, velocity was measured behind the screens to provide information for the installation of porosity boards to balance flow through the screens. Salmon-rearing pens used at the Wapato Canal had a minimal effect on the magnitude of approach and sweep velocities at the face of the drum screens, although the pens caused increased turbulence and variability in water velocities. The net pens did not appear to affect flows through the three fish bypasses. 8 refs., 17 figs., 5 tabs.

  18. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  19. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    SciTech Connect

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-12-31

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data.

  20. Material interactions with the low earth orbital environment Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Leger, L. J.

    1985-01-01

    Interactions between spacecraft surfaces and atomic oxygen within the low earth orbital (LEO) environment have been observed and measured during Space Shuttle flights over the past 3 yr. The results of these experiments have demonstrated that interaction rates for many materials proposed for spacecraft applications are high and that protective coatings must be developed to enable long-lived operation of spacecraft structures in the LEO environment. A flight experiment discussed herein uses the Space Shuttle as an orbiting exposure laboratory to obtain accurate reaction rate measurements for materials typically used in spacecraft construction. An ion-neutral mass spectrometer, installed in the Orbiter cargo bay, will measure diurnal ambient oxygen densities while material samples are exposed at low altitude (222 km) to the orbital environment. From in situ atomic oxygen density information and postflight material recession measurements, accurate reaction rates can be derived to update the Space Station materials interaction data base. Additionally, gases evolved from a limited number of material surfaces subjected to direct oxygen impingement will be identified using the mass spectrometer. These measurements will aid in mechanistic definitions of chemical reactions which cause atom-surface interactions and in validating results of upcoming degradation studies conducted in ground-based neutral beam laboratories.

  1. Accurate time-of-flight measurement of particle based on ECL-TTL Timer

    NASA Astrophysics Data System (ADS)

    Li, Deping; Liu, Jianguo; Huang, Shuhua; Gui, Huaqiao; Cheng, Yin; Wang, Jie; Lu, Yihuai

    2014-11-01

    Because of its aerodynamic diameter of the aerosol particles are stranded in different parts of different human respiratory system, thus affecting human health. Therefore, how to continue to effectively monitor the aerosol particles become increasingly concerned about. Use flight time of aerosol particle beam spectroscopy of atmospheric aerosol particle size distribution is the typical method for monitoring atmospheric aerosol particle size and particle concentration measurement , and it is the key point to accurate measurement of aerosol particle size spectra that measurement of aerosol particle flight time. In order to achieve accurate measurements of aerosol particles in time-of-flight, this paper design an ECL-TTL high-speed timer with ECL counter and TTL counter. The high-speed timer includes a clock generation, high-speed timer and the control module. Clock Generation Module using a crystal plus multiplier design ideas, take advantage of the stability of the crystal to provide a stable 500MHz clock signal is high counter. High count module design using ECL and TTL counter mix design, timing accuracy while effectively maintaining , expanding the timing range, and simplifies circuit design . High-speed counter control module controls high-speed counter start, stop and reset timely based on aerosol particles time-of-flight, is a key part of the high-speed counting. The high-speed counting resolution of 4ns, the full scale of 4096ns, has been successfully applied Aerodynamic Particle Sizer, to meet the precise measurement of aerosol particles time-of-flight.

  2. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  3. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  4. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  5. Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; La, Jongpil; Park, Kyihwan

    2006-10-15

    A Zeeman-type He-Ne laser is frequently used as a heterodyne laser due to the simple construction and the small loss of a light. However, the low beat frequency of the Zeeman-type laser limits the maximum measurable velocity. In this article, an electronic frequency modulation algorithm is proposed to overcome the drawback of the low velocity measurement capability by increasing the beat frequency electronically. The brief analysis, the measurement scheme of the proposed algorithm, and the experimental results are presented. It is demonstrated that the proposed algorithm is proven to enhance the maximum measurable velocity.

  6. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  7. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  8. 2011 Tohoku tsunami video and TLS based measurements: hydrographs, currents, inundation flow velocities, and ship tracks

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-12-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami

  9. A new carrier gas type for accurate measurement of N2O by GC-ECD

    NASA Astrophysics Data System (ADS)

    Wang, Yinghong; Wang, Yuesi; Ling, Hong

    2010-11-01

    The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.

  10. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  11. Higher Resolution Neutron Velocity Spectrometer Measurements of Enriched Uranium

    DOE R&D Accomplishments Database

    Rainwater, L. J.; Havens, W. W. Jr.

    1950-08-09

    The slow neutron transmission of a sample of enriched U containing 3.193 gm/cm2 was investigated with a resolution width of 1 microsec/m. Results of transmission measurements are shown graphically. (B.J.H.)

  12. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  13. Predicting stroke outcome using DCE-CT measured blood velocity

    NASA Astrophysics Data System (ADS)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  14. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  15. The road towards accurate optical width measurements at the industrial level

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  16. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  17. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  18. Measurement of High Frequency Perturbations to the Ion Velocity Distribution in the HELIX Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Boivin, R. F.; Franck, C.; Klinger, T.; Scime, E. E.

    2001-10-01

    Using lasers to measure plasma parameters has become more common in recent years. Lasers can provide information about plasma parameters without perturbing the plasma. The most common technique for ion parameter measurements is Laser Induced Fluorescence (LIF). LIF typically measures the ion velocity distribution and provides information about the ion temperatures and ion flows in the plasma. More recently, Skiff and Anderegg [1987] and Safarty et al. [1996] have shown that measurements of the perturbed ion velocity distribution can provide wave number information for waves propagating in a plasma due the non-local nature of the dielectric tensor. In the past two years, attempts have been made to measure the perturbed ion velocity distribution function at frequencies relevant to Helicon plasma sources. The objective of the measurements is to identify electrostatic oscillation associated to the slow wave or "Trivelpeice Gould modes" in helicon plasma sources. Past efforts to measure the perturbed ion velocity distribution function have been unsuccessful due to technical difficulties associated with measuring the cross correlation of the photon and reference signals. Using a high frequency SR544 Stanford Research lock-in amplifier, high frequency perturbations to the ion velocity distribution in a helicon source have been measured. Perturbed ion velocity distribution measurements, along with the related theory will be presented.

  19. Influence of timing algorithm on brachialankle pulse wave velocity measurement.

    PubMed

    Sun, Xin; Li, Ke; Ren, Hongwei; Li, Peng; Wang, Xinpei; Liu, Changchun

    2014-01-01

    The baPWV measurement is a non-invasive and convenient technique in an assessment of arterial stiffness. Despite its widespread application, the influence of different timing algorithms is still unclear. The present study was conducted to investigate the influence of six timing algorithms (MIN, MAX, D1, D2, MDP and INS) on the baPWV measurement and to evaluate the performance of them. Forty-five CAD patients and fifty-five healthy subjects were recruited in this study. A PVR acquisition apparatus was built up for baPWV measurement. The baPWV and other related parameters were calculated separately by the six timing algorithms. The influence and performance of the six algorithms was analyzed. The six timing algorithms generate significantly different baPWV values (left: F=29.036, P<0.001; right: F=40.076, P<0.001). In terms of reproducibility, the MAX has significantly higher CV value (≥ 18.6%) than the other methods, while the INS has the lowest CV value (≤ 2.7%). On the performance of classification, the INS produces the highest AUC values (left: 0.854; right: 0.872). The MIN and D2 also have a passable performance (AUC > 0.8). The choice of timing algorithm affects baPWV values and the quality of measurement. The INS method is recommended for baPWV measurement.

  20. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  1. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  2. Laser beam manifold and particle photography system for use in fluid velocity measurements

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Campbell, C. W.

    1980-01-01

    A laser beam manifold and particle photography system has been developed for use in fluid velocity measurements. The laser manifold is a device which transforms a single laser beam into several uniform parallel beams. By orienting two manifolds mutually perpendicular, an optical grid can be formed which acts as a reference for fluid velocity measurements. This optical grid is for all practical purposes totally nonperturbing to the flow. Tracer particles moving in the plane of the grid are then photographed to yield fluid velocities that can be measured relative to the optical grid. System construction and theory are presented.

  3. A Tool and a Method for Obtaining Hydrologic Flow Velocity Measurements in Geothermal Reservoirs

    SciTech Connect

    Carrigan, C.R.; Dunn, J.C.; Hardee, H.C.

    1986-01-21

    Downhole instruments based on a thermal perturbation principle are being developed to measure heat flow in permeable formations where convective transport of heat is important. To make heat flow measurements in these regions, the ground water velocity vector must be determined. A downhole probe has been designed to measure the local ground water velocity vector. The probe is a cylindrical heat source operated at a constant heat flux. In a convecting environment, surface temperatures on the probe are perturbed from those values of a purely conductive environment. With the aid of analytical and numerical models, these temperature differences can be related to the local velocity vector.

  4. Doppler shift and ambiguity velocity caused by relative motion in quantum-enhanced measurement.

    PubMed

    Shen, Yanghe; Xu, Luping; Zhang, Hua; Yang, Peng

    2015-07-13

    We study the effect of relative motion on a frequency-entangled-based ranging scheme. Two major puzzles arise, i.e., Doppler shift and ambiguity velocity. During condition of rapid relative motion, Doppler shift invalidates the measurement result of this scheme; while during condition of slow relative motion, the ambiguity velocity turns into a major limitation. If relative speed between targets and measurement platform exceeds the ambiguity velocity, an accumulated profile obtained by the coincidence measurement will be distorted, which causes a lower ranging accuracy. Theoretical analysis shows a time-varying delay can be introduced to solve the two major puzzles. PMID:26191903

  5. Radial artery blood pressure measurement in neonates: an accurate and convenient technique in clinical practice.

    PubMed

    Gevers, M; van Genderingen, H R; Lafeber, H N; Hack, W W

    1995-01-01

    To achieve accurate blood pressure measurement through radial artery catheters in infants, we previously developed an experimental high-fidelity catheter-manometer system (CMS). As this system lacks facilities for flushing and for blood sampling, we aimed to further develop this technique in order to make the system suitable for clinical practice. In addition, we aimed to develop methods to automate processing of the pressure wave forms. The high-fidelity system to be improved consisted of a 24 Gauge catheter, a threeway stopcock and a tip-manometer. We inserted this system in the catheter-manometer system as routinely used i.e. the remaining end of the stopcock was connected to the fluid-filled CMS as used routinely. This combined system became clinically applicable, since blood samples could be obtained and flushing could be performed. The measurement chain was completed by application of a modified physiological monitor and a computerized method to analyze pressure wave forms. In this manner accurate beat-to-beat pressure parameters were obtained. This technique was applied to 25 neonates admitted for intensive care and requiring arterial access. Gestational age of these infants ranged from 25-40 (median 29) weeks and birth weight ranges from 500-3375 (median 1060) grams. In all infants the technique was found to be convenient and the high-fidelity blood pressure measurements were performed without any problems. The advantage of the present system is the potential for both correct intermittent recordings of arterial wave forms in close relation to clinical condition and for the establishment of accurate radial artery beat-to-beat pressure values in clinical practice.

  6. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1). PMID:27285052

  7. A Pedagogical Measurement of the Velocity of Light

    ERIC Educational Resources Information Center

    Tyler, Charles E.

    1969-01-01

    Describes an inexpensive, easily constructed device for demonstrating that the speed of light is finite, and for measuring its value. The main components are gallium arsenide light emitting diodes, a light pulser, transistors, and an oscilloscope. Detailed instructions of procedure and experimental results are given. (LC)

  8. Doppler instrumentation for measuring blood velocity and flow

    NASA Technical Reports Server (NTRS)

    Gill, R. W.; Hottinger, C. F.; Meindl, J. D.

    1975-01-01

    Doppler ultrasonic blood flowmeters are reviewed in detail. The importance of measurement accuracy for transcutaneous flowmeters and their clinical application is stressed. Doppler imaging was combined with conventional pulse echo imaging, and diagnostic information was extracted from flow signals. The range and extent of applications of Doppler instruments was also presented.

  9. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  10. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  11. Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experiment

    SciTech Connect

    Bell, R. E.; Andre, R.; Kaye, S. M.; Kolesnikov, R. A.; LeBlanc, B. P.; Rewoldt, G.; Wang, W. X.; Sabbagh, S. A.

    2010-08-15

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, poloidal velocity measurements on the NSTX spherical torus [Kaye et al., Phys. Plasmas 8, 1977 (2001)] are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Inversions are used to extract local profiles from line-integrated active and background measurements. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS[Houlberg et al., Phys. Plasmas 4, 3230 (1997)] and GTC-NEO[Wang et al., Phys. Plasmas 13, 082501 (2006)].

  12. Novel measurement of blood velocity profile using translating-stage optical method and theoretical modeling based on non-Newtonian viscosity model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Lim, Jaeho; Hong, Hyobong; Kresh, J. Yasha; Wootton, David M.

    2015-07-01

    Detailed knowledge of the blood velocity distribution over the cross-sectional area of a microvessel is important for several reasons: (1) Information about the flow field velocity gradients can suggest an adequate description of blood flow. (2) Transport of blood components is determined by the velocity profiles and the concentration of the cells over the cross-sectional area. (3) The velocity profile is required to investigate volume flow rate as well as wall shear rate and shear stress which are important parameters in describing the interaction between blood cells and the vessel wall. The present study shows the accurate measurement of non-Newtonian blood velocity profiles at different shear rates in a microchannel using a novel translating-stage optical method. Newtonian fluid velocity profile has been well known to be a parabola, but blood is a non-Newtonian fluid which has a plug flow region at the centerline due to yield shear stress and has different viscosities depending on shear rates. The experimental results were compared at the same flow conditions with the theoretical flow equations derived from Casson non-Newtonian viscosity model in a rectangular capillary tube. And accurate wall shear rate and shear stress were estimated for different flow rates based on these velocity profiles. Also the velocity profiles were modeled and compared with parabolic profiles, concluding that the wall shear rates were at least 1.46-3.94 times higher than parabolic distribution for the same volume flow rate.

  13. Object strength--an accurate measure for small objects that is insensitive to partial volume effects.

    PubMed

    Tofts, P S; Silver, N C; Barker, G J; Gass, A

    2005-07-01

    There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.

  14. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  15. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  16. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  17. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  18. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    SciTech Connect

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-10-06

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion.

  19. New interpretations of measured antihydrogen velocities and field ionization spectra.

    PubMed

    Pohl, T; Sadeghpour, H R; Gabrielse, G

    2006-10-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H toms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion.

  20. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  1. A New Test Rig for Accurate Nonparametric Measurement and Characterization of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Montecucco, Andrea; Buckle, James; Siviter, Jonathan; Knox, Andrew R.

    2013-07-01

    Thermoelectric generators (TEGs) are increasingly employed in large-scale applications, therefore accurate performance data are necessary to permit precise designs and simulations. However, there is still no standardized method to test the electrical and thermal performance of TEGs. This paper presents an innovative test system to assess device performance in the "real world." The fixture allows the hot temperature to be increased up to 800°C with minimal thermal losses and thermal shock; the clamping load can be adjusted up to 5 kN, and the temperatures are sensed by thermocouples placed directly on the TEG's surfaces. A computer program controls all the instruments in order to minimize errors and to aid accurate measurement and test repeatability. The test rig can measure four TEGs simultaneously, each one individually controlled and heated by a maximum electrical power of 2 kW. This allows testing of the effects of series and parallel connection of TEGs under mismatched conditions, e.g., dimensions, clamping force, temperature, etc. The test rig can be employed both as a performance evaluator and as a quality control unit, due to the ability to provide nonparametric testing of four TEGs concurrently. It can also be used to rapidly characterize devices of different dimensions at the same time.

  2. Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    A workshop on particle capture, recovery, and velocity/trajectory measurement technologies was held. The primary areas covered were: (1) parent-daughter orbit divergence; (2) trajectory sensing; (3) capture medium development: laboratory experiments, and (4) future flight opportunities.

  3. Two transducer formula for more precise determination of ultrasonic phase velocity from standing wave measurements

    NASA Technical Reports Server (NTRS)

    Ringermacher, H. I.; Moerner, W. E.; Miller, J. G.

    1974-01-01

    A two transducer correction formula valid for both solid and liquid specimens is presented. Using computer simulations of velocity measurements, the accuracy and range of validity of the results are discussed and are compared with previous approximations.

  4. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity

    SciTech Connect

    Song, Yong-Seon; Zhao Gongbo; Bacon, David; Koyama, Kazuya; Nichol, Robert C.; Pogosian, Levon

    2011-10-15

    We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from General Relativity on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the Canadian France Hawaii Telescope Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain {approx_equal}5% errors on the modified gravity parametrization described here. We also present a model-independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present data set.

  5. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  6. Accurate and precise measurement of selenium by instrumental neutron activation analysis.

    PubMed

    Kim, In Jung; Watson, Russell P; Lindstrom, Richard M

    2011-05-01

    An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.

  7. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  8. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  9. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  10. Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

    SciTech Connect

    Pfister, Thorsten; Buettner, Lars; Shirai, Katsuaki; Czarske, Juergen

    2005-05-01

    Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to {approx}50 {mu}m. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of {approx}1-mm length, a spatial resolution of {approx}5 {mu}m was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

  11. Computer signal processing for ultrasonic attenuation and velocity measurements for material property characterizations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1979-01-01

    Instrumentation and computer programming concepts that were developed for ultrasonic materials characterization are described. Methods that facilitate velocity and attenuation measurements are outlined. The apparatus described is based on a broadband, buffered contact probe using a pulse-echo approach for simultaneously measuring velocity and attenuation. Instrumentation, specimen condition, and signal acquisition and acceptance criteria are discussed. Typical results with some representative materials are presented.

  12. Computer signal processing for ultrasonic attenuation and velocity measurements for material property characterizations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1979-01-01

    This report deals with instrumentation and computer programming concepts that have been developed for ultrasonic materials characterization. Methods that facilitate velocity and attenuation measurements are described. The apparatus described is based on a broadband, buffered contact probe using a pulse-echo approach for simultaneously measuring velocity and attenuation. Instrumentation, specimen condition, and signal acquisition and acceptance criteria are discussed. Typical results with some representative materials are presented.

  13. Image data-handling techniques for precise velocity measurements of atmospheric inhomogeneities.

    PubMed

    Mitev, V A; Sokolinov, G I

    1995-04-10

    Two techniques for measuring the velocity of inhomogeneities drifting in the atmosphere by the capturing and processing of their images are suggested. Properly selected data records of imaged clouds are used for building time variations of in-plane moving dots, related to different parts of the area of measurement and also corresponding to the image-detector pixel resolution. The precision in obtaining the velocity is provided by adjustment of the time between two successive image registrations.

  14. Shock velocity and temperature measurements of plastic foams compressed by smoothed laser beams

    SciTech Connect

    Koenig, Michel; Benuzzi-Mounaix, Alessandra; Batani, Dimitri; Hall, Tom; Nazarov, Wigen

    2005-01-01

    The importance of foams in laser produced plasmas has been recently pointed out in both inertial confinement fusion (ICF) and astrophysics laboratory dedicated experiments. In this paper, measurements of shock velocity using velocity interferometer for any reflector and of temperature in porous materials are presented. Reflectivity from the rear side of the target was measured using a probe beam and only foams of density higher than 800 mg/cm{sup 3} gave valuable data. Results are discussed and compared with available models.

  15. Radar measurement of the seasonal variation in the velocity of the sunrise terminator

    NASA Astrophysics Data System (ADS)

    Meehan, D. H.

    1990-03-01

    The HF phased-array radar at Bribie Island, Australia, used to measure horizontal movements of the ionosphere, has been calibrated using the known velocity of the sunrise terminator. The seasonal variation in the velocity of the terminator has been resolved, both in magnitud and direction. The technique uses single-station ionospheric sounding, and requires the angle of arrival and Doppler shift of ionospheric echoes to be measured as the terminator passes overhead. Pfister's (1971) theorem allows calculation of the velocity of the reflecting surface. The difference between theory and experiment is less than 3 percent in speed and 2 degrees in direction on average.

  16. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  17. Convective cloud top vertical velocity estimated from geostationary satellite rapid-scan measurements

    NASA Astrophysics Data System (ADS)

    Hamada, Atsushi; Takayabu, Yukari N.

    2016-05-01

    We demonstrate that the rate of development of cumulus clouds, as inferred from the so-called geostationary satellite "rapid-scan" measurements, is a good proxy for convective cloud top vertical velocity related to deep convective clouds. Convective cloud top vertical velocity is estimated from the decreasing rate of infrared brightness temperature observed by the Multi-functional Transport SATellite-1R (MTSAT-1R) over the ocean south of Japan during boreal summer. The frequency distribution of the estimated convective cloud top vertical velocity at each height is shown to distribute lognormally, and it is consistent with the statistical characteristics of direct measurements acquired in previous studies.

  18. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.

    PubMed

    Fisk, P H; Sellars, M J; Lawn, M A; Coles, G

    1997-01-01

    We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.

  19. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    SciTech Connect

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  20. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wu, Xianqian; Huang, Chenguang; Wei, Yangpeng; Wang, Xi

    2012-07-01

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  1. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  2. Measurement of velocities in gas-liquid two-phase flow using Laser Doppler Velocimetry

    SciTech Connect

    Vassallo, P.F.; Trabold, T.A.; Moore, W.E.; Kirouac, G.J.

    1992-09-01

    Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. This work was performed in a 6.4 by 11.1 mm vertical duct using known air/water mixtures. A standard LDV fiber optic probe was used to measure the bubble velocity, using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. The bubble velocity was confirmed by independent measurements with a high-speed video system. The liquid velocity was confirmed by demonstrating the dominance of the liquid seed data rate in the forward-scatter measurement. Experimental data are presented to demonstrate the accuracy of the technique for a wide range of flow conditions, from bubbles as small as 0.75-mm-diam to slugs as large as 10-mm wide by 30-mm long. In the slug regime, the LDV technique performed velocity measurements for both phases, for void fractions up to 50%, which was the upper limit of our experimental investigation.

  3. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  4. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  5. Characterization of intermetallic precipitates in a Nimonic alloy by ultrasonic velocity measurements

    SciTech Connect

    Murthy, G.V.S. Sridhar, G.; Kumar, Anish; Jayakumar, T.

    2009-03-15

    Ultrasonic velocity measurements have been carried out in Nimonic 263 specimens thermally aged at 923 and 1073 K for durations up to 75 h and correlated with the results of hardness measurements and electron microscopy studies. The ultrasonic velocities and hardness results obtained in the specimens thermally aged at both temperatures clearly indicated that ultrasonic velocity is more sensitive to the initiation of the precipitation, whereas the influence of precipitation on hardness can be observed only after the precipitates attain a minimum size to influence the movement of dislocations. Further, ultrasonic velocity measurements also revealed faster kinetics and a lesser amount of precipitation at 1073 K compared to 923 K due to higher solubility of precipitate-forming elements.

  6. Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests

    NASA Technical Reports Server (NTRS)

    Kourous, Helen E.; Seacholtz, Richard G.

    1995-01-01

    A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).

  7. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    PubMed Central

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P.; Aminian, Kamiar

    2012-01-01

    Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique. PMID:23201978

  8. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  9. Accurate label-free reaction kinetics determination using initial rate heat measurements.

    PubMed

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.

  10. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  11. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  12. Toward a velocity-resolved microvascular blood flow measure by decomposition of the laser Doppler spectrum.

    PubMed

    Larsson, Marcus; Strömberg, Tomas

    2006-01-01

    Tissue microcirculation, as measured by laser Doppler flowmetry (LDF), comprises capillary, arterial, and venous blood flow. With the classical LDF approach, it has been impossible to differentiate between different vascular compartments. We suggest an alternative LDF algorithm that estimates at least three concentration measures of flowing red blood cells (RBCs), each associated with a predefined, physiologically relevant, absolute velocity in millimeters per second. As the RBC flow velocity depends on the dimension of the blood vessel, this approach might enable a microcirculatory flow differentiation. The LDF concentration estimates are derived by fitting predefined Monte Carlo simulated, single-velocity spectra to a measured, multiple-velocity LDF spectrum. Validation measurements, using both single- and double-tube flow phantoms perfused with a microsphere solution, show that it is possible to estimate velocity and concentration changes, and to differentiate between flows with different velocities. Our theory is also applied to RBC flow measurements. A Gegenbauer kernel phase function (alpha(gk)=1.05; g(gk)=0.93), with an anisotropy factor of 0.987 at 786 nm, is found suitable for modeling Doppler scattering by RBCs diluted in physiological saline. The method is developed for low concentrations of RBCs, but can in theory be extended to cover multiple Doppler scattering. PMID:16526901

  13. Simultaneous measurement of density and sound velocity of liquid Fe-C at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Kuwabara, S.; Takubo, Y.; Katayama, Y.

    2014-12-01

    Seismological and experimental studies show that the Earth's outer core is approximately 10% less dense than molten iron at the core pressure and temperature conditions, implying that some light elements exist in the core. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. In this study, we have measured density and sound velocity of liquid Fe-C at SPring-8 beamline BL22XU using a DIA-type cubic anvil press (SMAP-I). Density was measured using X-ray absorption method (Katayama et al., 1993). We newly installed sound velocity measurement system using pulse-echo overlapping method (Higo et al., 2009) in this beamline. P-wave signals with a frequency of 35-37 MHz were generated and received by LiNbO3 transducer. Buffer rod and backing plated were adopted single-crystal sapphire. The sample length at high pressure and high temperature were measured from absorption contrast between sample and sapphire. We measured velocity and density of liquid Fe-C between 1.1-2.8 GPa and 1480-1740 K. Obtained density and velocity of Fe-C was found to increase with pressure. In contrast, the effect of temperature on density and velocity was negative. The relationship between these two properties will be discussed.

  14. In vivo Measurement of Red Blood Cell Deformation and Velocity in Capillary

    NASA Astrophysics Data System (ADS)

    Jeong, Jae Hong; Sugii, Yasuhiko; Minamiyama, Motomu; Okamoto, Koji

    2004-11-01

    Red blood cell (RBC) which plays an important role in oxygen transportation changes its shape as it flows along the arteriole and capillary. In this study, in order to investigate blood rheology, RBCs deformation, RBCs velocity and capillary diameter in a mesenteric capillary were measured with high spatial and temporal resolutions. Blood flow images were captured using intravital microscope equipped with a high-speed camera system at 2000 frames/sec. The relationships between a deformation index of RBC, RBC velocity and capillary diameter were investigated. The averaged deformation index (DI) of RBC in the mesenteric capillary showed 1.55 with the averaged diameter of the capillary 6.2 micro m and the average velocity 1.85 mm/sec. As increasing the velocity or decreasing the diameter, DI usually increased. The results indicated that RBCs deformed into parachute-like shapes depending on the blood flow velocity and capillary diameter.

  15. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  16. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    PubMed Central

    Doud, Michael B.; Bloom, Jesse D.

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  17. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1).

  18. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    PubMed

    Doud, Michael B; Bloom, Jesse D

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  19. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  20. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  1. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  2. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  3. Accurate measurement of intraarterial pressure through radial artery catheters in neonates.

    PubMed

    Hack, W W; Westerhof, N; Leenhoven, T; Okken, A

    1990-07-01

    A technique is described for accurate measurement of intraarterial pressure through radial artery catheters in neonates. The technique, which can be used for short-term monitoring, uses cannulation of the radial artery with a 24-gauge Teflon catheter, connected by a Luer-Lok fitting to a three-way stopcock and a high-fidelity tip transducer. In vitro studies showed that the system is linear and the frequency response is flat (+/- 3 dB) up to 50 Hz. The technique permits gathering of high-quality pressure data and can be used in the area of neonatal clinical research for short-term monitoring. It needs to be developed further before routine application in clinical practice can be recommended.

  4. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  5. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Spiridonov, Maxim; Toebaert, David

    2006-09-01

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  6. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy.

    PubMed

    Passeri, D; Rossi, M; Vlassak, J J

    2013-05-01

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious.

  7. [Measurement of path transverse wind velocity profile using light forward scattering scintillation correlation method].

    PubMed

    Yuan, Ke-E; Lü, Wei-Yu; Zheng, Li-Nan; Hu, Shun-Xing; Huang, Jian; Cao, Kai-Fa; Xu, Zhi-Hai

    2014-07-01

    A new method for path transverse wind velocity survey was introduced by analyzing time lagged covariance function of different separation sub-apertures of Hartmann wavefront sensor. A theoretical formula was logically deduced for the light propagation path transverse wind velocity profile. According to the difference of path weighting function for different sub apertures spacing, how to select reasonable path weighting functions was analyzed. Using a Hartmann wavefront sensor, the experiment for measuring path transverse velocity profile along 1 000 m horizontal propagating path was carried out for the first time to our knowledge. The experiment results were as follows. Path transverse averaged velocity from sensor had a good consistency with transverse velocity from the wind anemometer sited near the path receiving end. As the path was divided into two sections, the path transverse velocity of the first section had also a good consistency with that of the second one. Because of different specific underlaying surface of light path, the former was greater than the later over all experiment period. The averaged values were 1.273 and 0.952 m x s(-1) respectively. The path transverse velocity of second section and path transverse averaged velocity had the same trend of decrease and increase with time. The correlation coefficients reached 0.86.

  8. In situ Ultrasonic Velocity Measurements Across the Olivine-spinel Transformation in Fe2Si04

    SciTech Connect

    Liu, Q.; Liu, W; Whitaker, M; Wang, L; Li, B

    2010-01-01

    Compressional (P) and shear (S) wave velocities across the olivine-spinel transformation in Fe{sub 2}SiO{sub 4} were investigated in situ using combined synchrotron X-ray diffraction, X-ray imaging, and ultrasonic interferometry up to 5.5 GPa along the 1173 K isotherm. The onset of the spinel to olivine transformation at 4.5 GPa and olivine to spinel transition for Fe{sub 2}SiO{sub 4} at 4.8 GPa was concurrently observed from X-ray diffraction, the amplitude of the ultrasonic signals, the calculated velocities, and the ratio of P and S wave velocities (v{sub P}/v{sub S}). No velocity softening was observed prior to the fayalite to spinel transition. The velocity contrasts across the Fe{sub 2}SiO{sub 4} spinel to fayalite phase transition are derived directly from the measured velocities, which are 13 and 12% for P and S waves, respectively, together with a density contrast of 9.4%. A comparison with literature data indicates that the changes in compressional-wave velocity and density across the olivine-spinel transformation in Fe{sub 2}SiO{sub 4} are comparable to those with different iron concentrations in the (Mg,Fe){sub 2}SiO{sub 4} solid solution, whereas the shear wave velocity contrast decreases slightly with increasing iron concentration.

  9. Measurement of the degree of cure in epoxies with ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Parker, F. R.

    1986-01-01

    The use of ultrasonic longitudinal velocity values to measure the degree of cure (defined for an epoxide system as the concentration of epoxide/amine bonds divided by the initial epoxide concentration) in epoxy resins is investigated. The experimental setup used to measure the changes in longitudinal velocity with time is described, together with the technique used to calculate the degree of cure from the acoustic data, using the principle of additive module. Measurements were done with diglycidyl ether of bisphenol A epoxy resin cured with an amine adduct agent. Good qualitative agreement was shown between the time dependence of the acoustically measured degree of cure and the predicted rate of reaction.

  10. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  11. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  12. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  13. Velocity Measurement in a Dual-Mode Supersonic Combustor using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Temporally and spatially-resolved, two-component measurements of velocity in a supersonic hydrogen-air combustor are reported. The combustor had a single unswept ramp fuel injector and operated with an inlet Mach number of 2 and a flow total temperature approaching 1200 K. The experiment simulated the mixing and combustion processes of a dual-mode scramjet operating at a flight Mach number near 5. The velocity measurements were obtained by seeding the fuel with alumina particles and performing Particle Image Velocimetry on the mixing and combustion wake of the ramp injector. To assess the effects of combustion on the fuel air-mixing process, the distribution of time-averaged velocity and relative turbulence intensity was determined for the cases of fuel-air mixing and fuel-air reacting. Relative to the mixing case, the near field core velocity of the reacting fuel jet had a slower streamwise decay. In the far field, downstream of 4 to 6 ramp heights from the ramp base, the heat release of combustion resulted in decreased flow velocity and increased turbulence levels. The reacting measurements were also compared with a computational fluid dynamics solution of the flow field. Numerically predicted velocity magnitudes were higher than that measured and the jet penetration was lower.

  14. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Direct measurement of the velocity of the metachronal wave in beating cilia.

    PubMed

    Priel, Z

    1987-01-01

    Recently a computerized electro-optical method was developed which enables one to simultaneously measure the frequency and the wavelength of the metachronal waves in beating cilia. The method is based on measurement of scattered light from two areas at a given distance apart. The distance between measured areas can be varied from zero to hundreds of microns. The relative ease of the measurement and data analysis of this method enable one to create large statistical ensembles in order to obtain reliable averages. In this work we show that in addition to the previously mentioned parameters this system can measure directly the velocity of the metachronal wave. It was found that the average velocity in the tissue culture from frog's palate epithelium at room temperature is approximately 270 micron/sec, about twice the average particle velocity at the frog's palate.

  16. Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution.

    PubMed

    Decruppe, J P; Greffier, O; Manneville, S; Lerouge, S

    2006-06-01

    We present and discuss the results of pointwise velocity measurements performed on a viscoelastic micellar solution made of cetyltrimethylammonium bromide and sodium salicylate in water, respectively, at the concentrations of 50 and 100 mmol. The sample is contained in a Couette device and subjected to flow in the strain controlled mode. This particular solution shows shear banding and, in a narrow range of shear rates at the right end of the stress plateau, apparent shear thickening occurs. Time-dependent recordings of the shear stress in this range reveal that the flow has become unstable and that large sustained oscillations of the shear stress and of the first normal stresses difference emerge and grow in the flow. Local pointwise velocity measurements clearly reveal a velocity profile typical of shear banding when the imposed shear rate belongs to the plateau, but also important wall slip in the entire range of velocity gradients investigated. In the oscillations regime, the velocity is recorded as a function of time at a fixed point close to the rotor of the Couette device. The time-dependent velocity profile reveals random fluctuations but, from time to time, sharp decreases much larger than the standard deviation are observed. An attempt is made to correlate these strong variations with the stress oscillations and a correlation coefficient r is computed. However, the small value found for the coefficient r does not allow us to draw a final conclusion as concerns the correlation between stress oscillations and velocity fast decreases.

  17. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  18. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  19. Measurements of Terminal Velocities of Cirrus Clouds in the Upper Trosphere

    NASA Astrophysics Data System (ADS)

    Bai Nee, Jan; Chen, W. N.; Chiang, C. W.; Das, S. K.

    2016-06-01

    Cirrus clouds are composed of ice crystals condensed from humidity due to low temperature condition in the upper atmosphere. The microphysics of cirrus clouds including sizes and shapes of ice particles are not well understood but are important in climate modeling. Ice crystal will fall under gravitational sedimentation to reach terminal velocities which depend on the size, mass, and ice habit. We studied here the terminal velocity of cirrus clouds by using lidar observations at Chungli (25N, 121E). The terminal velocities for a few cases of stable cirrus clouds are measured to determine the ice particle sizes and processes in the upper atmosphere.

  20. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.