Science.gov

Sample records for accurate wavelength calibration

  1. Accurate wavelength calibration method for flat-field grating spectrometers.

    PubMed

    Du, Xuewei; Li, Chaoyang; Xu, Zhe; Wang, Qiuping

    2011-09-01

    A portable spectrometer prototype is built to study wavelength calibration for flat-field grating spectrometers. An accurate calibration method called parameter fitting is presented. Both optical and structural parameters of the spectrometer are included in the wavelength calibration model, which accurately describes the relationship between wavelength and pixel position. Along with higher calibration accuracy, the proposed calibration method can provide information about errors in the installation of the optical components, which will be helpful for spectrometer alignment. PMID:21929865

  2. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  3. Effective wavelength calibration for moire fringe projection

    SciTech Connect

    Purcell, Daryl; Davies, Angela; Farahi, Faramarz

    2006-12-01

    The fringe patterns seen when using moire instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moire fringe projection, the spacing (the effective wavelength) may not be constant over the field of view and the spacing depends on the system geometry. In these cases, using a constant effective wavelength over the field of view causes inaccurate surface height measurements. We examine the calibration process of the moirefringe projection measurement, which takes this varying wavelength into account to produce a pixel-by-pixel wavelength map. The wavelength calibration procedure is to move the object in the out-of-plane direction a known distance until every pixel intensity value goes through at least one cycle. A sinusoidal function is then fit to the data to extract the effective wavelength pixel by pixel, yielding an effective wavelength map. A calibrated step height was used to validate the effective wavelength map with results within 1% of the nominal value of the step height. The error sources that contributed to the uncertainty in determining the height of the artifact are also investigated.

  4. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  5. WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH

    SciTech Connect

    Pakhomov, Yu. V.; Zhao, G.

    2013-10-01

    We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

  6. Calibration method for radiometric and wavelength calibration of a spectrometer

    NASA Astrophysics Data System (ADS)

    Granger, Edward M.

    1998-12-01

    A new calibration target or Certified Reference Material (CRM) has been designed that uses violet, orange, green and cyan dyes ont cotton paper. This paper type was chosen because it has a relatively flat spectral response from 400 nm to 700 nm and good keeping properties. These specific dyes were chosen because the difference signal between the orange, cyan, green and purple dyes have certain characteristics that then a low the calibration of an instrument. The ratio between the difference readings is a direct function of the center wavelength of a given spectral band. Therefore, the radiometric and spectral calibration can be determined simultaneously from the physical properties of the reference materials.

  7. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  8. Wavelength Calibration Accuracy for the STIS CCD and MAMA Modes

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria; Hodge, Phil; Proffitt, Charles R.; Ayres, T.

    2011-03-01

    Two calibration programs were carried out to determine the accuracy of the wavelength solutions for the most used STIS CCD and MAMA modes after Servicing Mission 4. We report here on the analysis of this dataset and show that the STIS wavelength solution has not changed after SM4. We also show that a typical accuracy for the absolute wavelength zero-points is 0.1 pixels while the relative wavelength accuracy is 0.2 pixels.

  9. Micromagnetometer calibration for accurate orientation estimation.

    PubMed

    Zhang, Zhi-Qiang; Yang, Guang-Zhong

    2015-02-01

    Micromagnetometers, together with inertial sensors, are widely used for attitude estimation for a wide variety of applications. However, appropriate sensor calibration, which is essential to the accuracy of attitude reconstruction, must be performed in advance. Thus far, many different magnetometer calibration methods have been proposed to compensate for errors such as scale, offset, and nonorthogonality. They have also been used for obviate magnetic errors due to soft and hard iron. However, in order to combine the magnetometer with inertial sensor for attitude reconstruction, alignment difference between the magnetometer and the axes of the inertial sensor must be determined as well. This paper proposes a practical means of sensor error correction by simultaneous consideration of sensor errors, magnetic errors, and alignment difference. We take the summation of the offset and hard iron error as the combined bias and then amalgamate the alignment difference and all the other errors as a transformation matrix. A two-step approach is presented to determine the combined bias and transformation matrix separately. In the first step, the combined bias is determined by finding an optimal ellipsoid that can best fit the sensor readings. In the second step, the intrinsic relationships of the raw sensor readings are explored to estimate the transformation matrix as a homogeneous linear least-squares problem. Singular value decomposition is then applied to estimate both the transformation matrix and magnetic vector. The proposed method is then applied to calibrate our sensor node. Although there is no ground truth for the combined bias and transformation matrix for our node, the consistency of calibration results among different trials and less than 3(°) root mean square error for orientation estimation have been achieved, which illustrates the effectiveness of the proposed sensor calibration method for practical applications. PMID:25265625

  10. A tunable laser system for precision wavelength calibration of spectra

    NASA Astrophysics Data System (ADS)

    Cramer, Claire

    2010-02-01

    We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )

  11. Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions

    PubMed Central

    Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954

  12. Multimodal spatial calibration for accurately registering EEG sensor positions.

    PubMed

    Zhang, Jianhua; Chen, Jian; Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954

  13. Wavelength calibration with Fabry Perot Interferometers - yes we can!

    NASA Astrophysics Data System (ADS)

    Franziskus Bauer, Florian; Zechmeister, Mathias; Reiners, Ansgar

    2015-08-01

    Hollow-cathode lamps (HCLs) are used as default wavelength standard for spectroscopic measurements but have a number of well-known shortcomings. Advancing to cm/s precision in radial velocity experiments requires more stable calibration sources with more uniform line distributions. Fabry Perot Interferometers (FPI) are a practical alternative with a well-suited line distribution at relatively low cost. We present a simple method to characterize FPIs using standard HCLs and including the FPI spectrum in the wavelength calibration process. We propose to use the HCL wavelength solution to define a rough wavelength scale that is used to approximate the FPI peak positions. We assume that the FPI mirror distance is a smooth function of wavelength and utilize the large number of FPI peaks (typically 10^4) to consistently model all FPI peak wavelengths. With this approach, we anchor the dense FPI lines with the absolute HCL-scale combining their precision and accuracy. We test our method with the HARPS spectrograph and compare our wavelength calibration to one derived from a laser frequency comb (LFC) spectrum. Our combined HCL/FPI wavelength calibration removes the known, large-amplitude distortions of 50 m/s that occur in the HCL solution. Direct comparison with the LFC solution bears only small differences between the LFC and the HCL/FPI solutions and demonstrates that the HCL/FPI solution can overcome the most important shortcomings in HCL wavelength solutions. An FPI can provide an economical alternative to LFCs in particular for smaller projects.

  14. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  15. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  16. The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Mrotzek, N.; Lemke, U.; Hinrichs, J.; Reinsch, K.

    2016-03-01

    We present a new solar flux atlas with the aim of understanding wavelength precision and accuracy in solar benchmark data. The atlas covers the wavelength range 405-2300 nm and was observed at the Institut für Astrophysik, Göttingen (IAG), with a Fourier transform spectrograph (FTS). In contrast to other FTS atlases, the entire visible wavelength range was observed simultaneously using only one spectrograph setting. We compare the wavelength solution of the new atlas to the Kitt Peak solar flux atlases and to the HARPS frequency-comb calibrated solar atlas. Comparison reveals systematics in the two Kitt Peak FTS atlases resulting from their wavelength scale construction, and shows consistency between the IAG and the HARPS atlas. We conclude that the IAG atlas is precise and accurate on the order of ± 10 m s-1 in the wavelength range 405-1065 nm, while the Kitt Peak atlases show deviations as large as several ten to 100 m s-1. We determine absolute convective blueshift across the spectrum from the IAG atlas and report slight differences relative to results from the Kitt Peak atlas that we attribute to the differences between wavelength scales. We conclude that benchmark solar data with accurate wavelength solution are crucial to better understand the effect of convection on stellar radial velocity measurements, which is one of the main limitations of Doppler spectroscopy at m s -1 precision. Data (FITS files of the spectra) and Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A65

  17. High Accuracy In-Flight Wavelength Calibration of Imaging Spectrometry Data

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Heidebrecht, Kathleen B.; Chrien, Thomas G.

    1995-01-01

    Accurate wavelength calibration of imaging spectrometer data is essential if proper atmospheric transmission corrections are to be made to obtain apparent surface reflectance. Accuracies of 0.1 nm are necessary for a 10 nm-sampling instrument in order to match the slopes of the deep atmospheric water vapor features that dominate the 0.7-2.3 micrometer regions. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is calibrated in the laboratory to determine the wavelength position and full-width-half-maximum (FWHM) response for each of the 224 channels. The accuracies are limited by the quality of the monochromator used as a source. The accuracies vary from plus or minus to plus or minus 1.5 nm depending on the wavelength region, in general decreasing with increasing wavelength. Green et al. make corrections to the wavelength calibrations by using the known positions of 14 atmospheric absorption features throughout the 0.4-2.5 micrometer wavelength region. These features, having varying width and intensity, were matched to the MODTRAN model with a non-linear least squares fitting algorithm. A complete calibration was developed for all 224 channels by interpolation. Instrument calibration cannot be assumed to be stable to 0.1 nm over a flight season given the rigors of thermal cycling and launch and landing loads. The upcoming sensor HYDICE will require a means for in-flight spectral calibration of each scene because the calibration is both temperature and pressure sensitive. In addition, any sensor using a two-dimensional array has the potential for systematic wavelength shifts as a function of cross-track position, commonly called 'smile'. Therefore, a rapid means for calibrating complete images will be required. The following describes a method for determining instrument wavelength calibration using atmospheric absorption features that is efficient enough to be used for entire images on workstations. This study shows the effect of the surface reflectance on

  18. Method and Apparatus for Accurately Calibrating a Spectrometer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2013-01-01

    A calibration assembly for a spectrometer is provided. The assembly includes a spectrometer having n detector elements, where each detector element is assigned a predetermined wavelength value. A first source emitting first radiation is used to calibrate the spectrometer. A device is placed in the path of the first radiation to split the first radiation into a first beam and a second beam. The assembly is configured so that one of the first and second beams travels a path-difference distance longer than the other of the first and second beams. An output signal is generated by the spectrometer when the first and second beams enter the spectrometer. The assembly includes a controller operable for processing the output signal and adapted to calculate correction factors for the respective predetermined wavelength values assigned to each detector element.

  19. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  20. The Fine-Structure Constant and Wavelength Calibration

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan

    The fine-structure constant is a fundamental constant of the universe--and widely thought to have an unchanging value. However, the past decade has witnessed a controversy unfold over the claimed detection that the fine-structure constant had a different value in the distant past. These astrophysical measurements were made with spectrographs at the world's largest optical telescopes. The spectrographs make precise measurements of the wavelength spacing of absorption lines in the metals in the gas between the quasar background source and our telescopes on Earth. The wavelength spacing gives a snapshot of the atomic physics at the time of the interaction. Whether the fine-structure constant has changed is determined by comparing the atomic physics in the distant past with the atomic physics of today. We present our contribution to the discussion by analyzing three nights data taken with the HIRES instrument (High Resolution Echelle Spectrograph) on the Keck telescope. We provide an independent measurement on the fine-structure constant from the Damped Lyman alpha system at a redshift of z =2.309 (10.8 billion years ago) quasar PHL957. We developed a new method for calibrating the wavelength scale of a quasar exposure to a much higher precision than previously achieved. In our subsequent analysis, we discovered unexpected wavelength calibration errors that has not been taken into account in the previously reported measurements. After characterizing the wavelength miscalibrations on the Keck-HIRES instrument, we obtained several nights of data from the main competing instrument, the VLT (Very Large Telescope) with UVES (Ultraviolet and Visual Echelle Spectrograph). We applied our new wavelength calibration method and uncovered similar in nature systematic errors as found on Keck-HIRES. Finally, we make a detailed Monte Carlo exploration of the effects that these miscalibrations have on making precision fine-structure constant measurements.

  1. Calibration procedures for quantitative multiple wavelengths reflectance microscopy

    NASA Astrophysics Data System (ADS)

    Fedala, Yasmina; Munteanu, Sorin; Kanoufi, Frédéric; Tessier, Gilles; Roger, Jean Paul; Wu, Chang; Amiot, Fabien

    2016-01-01

    In order to characterize surface chemo-mechanical phenomena driving micro-electro-mechanical systems (MEMSs) behavior, it has been previously proposed to use reflected intensity fields obtained from a standard microscope for different illumination wavelengths. Wavelength-dependent and -independent reflectivity fields are obtained from these images, provided the relative reflectance sensitivities ratio can be identified. This contribution focuses on the necessary calibration procedures and mathematical methods allowing for a quantitative conversion from a mechanically induced reflectivity field to a surface rotation field, therefore paving the way for a quantitative mechanical analysis of MEMS under chemical loading.

  2. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  3. High accuracy wavelength calibration for a scanning visible spectrometer.

    PubMed

    Scotti, Filippo; Bell, Ronald E

    2010-10-01

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc  sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively. PMID:21033925

  4. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Lin, Hong; Ma, Xin; Xiang, Chengzhi

    2014-12-01

    Accurate on-line wavelength calibration is a crucial procedure for sensing atmospheric CO2 using the DIAL technique. Drastic fluctuations in the intensity of a pulsed laser pose a great challenge for accurate on-line wavelength determination and stabilization, resulting in CO2 retrievals lacking the desired accuracy for global climate change and carbon cycle research. To tackle this problem, a two-stage wavelength calibration method based on Voigt fitting was proposed in this work. Simulation analysis demonstrated that the proposed method is superior to the conventional method and provides wavelength calibration results with an accuracy of 0.1 pm when the noise level does not exceed than 5 %. This conclusion was confirmed through experiments with real signals. Furthermore, simulation analysis revealed that the proposed method could yield results with an accuracy of 0.1 pm by increasing the number of sample points, even for signals with noise levels of up to 20 %. This is a promising feature that could facilitate the development of DIAL systems without gas cells.

  5. Accurate pose estimation using single marker single camera calibration system

    NASA Astrophysics Data System (ADS)

    Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal

    2013-03-01

    Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.

  6. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  7. Scallops skeletons as tools for accurate proxy calibration

    NASA Astrophysics Data System (ADS)

    Lorrain, A.; Paulet, Y.-M.; Chauvaud, L.; Dunbar, R.; Mucciarone, D.; Pécheyran, C.; Amouroux, D.; Fontugne, M.

    2003-04-01

    Bivalves skeletons are able to produce great geochemical proxies. But general calibration of those proxies are based on approximate time basis because of misunderstanding of growth rhythm. In this context, the Great scallop, Pecten maximus, appears to be a powerful tool as a daily growth deposit has been clearly identified for this species (Chauvaud et al, 1998; Lorrain et al, 2000), allowing accurate environmental calibration. Indeed, using this species, a date can be affiliated to each growth increment, and as a consequence environmental parameters can be closely compared (at a daily scale) to observed chemical and structural shell variations. This daily record provides an unequivocal basis to calibrate proxies. Isotopic (Delta-13C and Delta-15N) and trace element analysis (LA-ICP-MS) have been performed on several individuals and different years depending on the analysed parameter. Seawater parameters measured one meter above the sea-bottom were compared to chemical variations in the calcitic shell. Their confrontation showed that even with a daily basis for data interpretation, calibration is still a challenge. Inter-individual variations are found and correlations are not always reproducible from one year to the others. The first explanation could be an inaccurate appreciation of the proximate environment of the animal, notably the water-sediment interface could best represent Pecten maximus environment. Secondly, physiological parameters could be inferred for those discrepancies. In particular, calcification takes places in the extrapallial fluid, which composition might be very different from external environment. Accurate calibration of chemical proxies should consider biological aspects to gain better insights into the processes controlling the incorporation of those chemical elements. The characterisation of isotopic and trace element composition of the extrapallial fluid and hemolymph could greatly help our understanding of chemical shell variations.

  8. Accurate camera calibration method specialized for virtual studios

    NASA Astrophysics Data System (ADS)

    Okubo, Hidehiko; Yamanouchi, Yuko; Mitsumine, Hideki; Fukaya, Takashi; Inoue, Seiki

    2008-02-01

    Virtual studio is a popular technology for TV programs, that makes possible to synchronize computer graphics (CG) to realshot image in camera motion. Normally, the geometrical matching accuracy between CG and realshot image is not expected so much on real-time system, we sometimes compromise on directions, not to come out the problem. So we developed the hybrid camera calibration method and CG generating system to achieve the accurate geometrical matching of CG and realshot on virtual studio. Our calibration method is intended for the camera system on platform and tripod with rotary encoder, that can measure pan/tilt angles. To solve the camera model and initial pose, we enhanced the bundle adjustment algorithm to fit the camera model, using pan/tilt data as known parameters, and optimizing all other parameters invariant against pan/tilt value. This initialization yields high accurate camera position and orientation consistent with any pan/tilt values. Also we created CG generator implemented the lens distortion function with GPU programming. By applying the lens distortion parameters obtained by camera calibration process, we could get fair compositing results.

  9. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    SciTech Connect

    Cai, Weiwei; Kaminski, Clemens F.

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  10. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  11. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  12. Wavelength calibration of the charge exchange recombination spectroscopy system on the DIII-D tokamak

    SciTech Connect

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Holtrop, K.; Kaplan, K.H.; Monier-Garbet, P.

    1998-06-01

    A wavelength calibration of all the detectors on the charge exchange recombination spectroscopy (CER) system is performed after every plasma discharge on the DIII-D tokamak. This is done to insure that the rest wavelength position of the C VI 5290.5 {angstrom} charge exchange line on the detector is accurately known so that the Doppler shift of the spectral line emitted during the discharge can be used for measurements of plasma rotation. In addition, this calibration provides a check on the spectral dispersion needed to determine the ion temperature. The reference spectra for the calibration are Ne I lines created by neon capillary discharge lamps contained within specially designed, diffuse reflectors. The Ne I lines at 3520.4720 {angstrom}, 5274.0393 {angstrom}, 5280.0853 {angstrom}, 5298.1891 {angstrom}, and 5304.7580 {angstrom} are used in this work. The location of these lines on the linear detectors can be determined to an accuracy of 0.1 pixel, which corresponds to a plasma rotation accuracy of 1.2 km/s and 0.7 km/s for the central and edge rotation measurements, respectively. Use of oppositely directed views of the plasma at the same major radius have been used to verify that the nominal 5290.5 {angstrom} wavelength of the C VI (n = 8 {r_arrow} 7) multiplet is the correct wavelength for the line emitted owing to charge exchange excitation.

  13. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  14. Accurate and quick calibration method for polarization-modulation spectroscopy using an ac-modulated polarizing undulator

    SciTech Connect

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2008-08-15

    An accurate calibration method in which an ac-modulated polarizing undulator is used for polarization modulation spectroscopy such as circular dichroism (CD) and linear dichroism (LD) has been proposed and successfully applied to vacuum ultraviolet (vuv) CD and LD spectra measured at beamline BL-5B in the electron storage ring, TERAS, at AIST. This calibration method employs an undulator-modulation spectroscopic method with a multireflection polarimeter, and it uses electronic and optical elements identical to those used for the CD and LD measurements. This method regards the polarimeter as a standard sample for the CD and LD measurements in the vuv region in which a standard sample has not yet been established. The calibration factors for the CD and LD spectra are obtained over a wide range of wavelengths, from 120 to 230 nm, at TERAS BL-5B. The calibrated CD and LD spectra measured at TERAS exhibit good agreement with the standard spectra for wavelengths greater than 170 nm; the mean differences between the standard and calibrated CD and LD spectra are approximately 7% and 4%, respectively. This method enables a remarkable reduction in the experimental time, from approximately 1 h to less than 10 min that is sufficient to observe the storage-ring current dependence of the calibration factors. This method can be applied to the calibration of vuv-CD spectra measured using a conventional photoelastic modulator and for performing an accurate analysis of protein secondary structures.

  15. High-throughput Accurate-wavelength Lens-based Visible Spectrometera

    SciTech Connect

    Ronald E. Belll and Filippo Scotti

    2010-06-04

    A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm-1 grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arcsec, corresponding to a wavelength error ≤ 0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature and pressure are monitored between the time of calibration and the time of measurement to insure a persistent wavelength calibration

  16. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Huang, Meizhen Zou, Ye; Wang, Yang; Sun, Zhenhua; Cao, Zhuangqi

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines, the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.

  17. A Traceable Ground to On-Orbit Radiometric Calibration System for the Solar Reflective Wavelength Region

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Georgiev, Georgi

    2012-01-01

    This paper describes the combination of a Mie scattering spectral BSDF and BTDF albedo standard whose calibration is traceable to the NIST SIRCUS Facility or the NIST STARR II Facility. The Space-based Calibration Transfer Spectroradiometer (SCATS) sensor uses a simple, invariant optical configuration and dedicated narrow band spectral channel modules to provide very accurate, polarization-insensitive, stable measurements of earth albedo and lunar disk albedo. Optical degradation effects on calibration stability are eliminated through use of a common optical system for observations of the Sun, Earth, and Moon. The measurements from space would be traceable to SI units through preflight calibrations of radiance and irradiance at NIST's SIRCUS facility and the invariant optical system used in the sensor. Simultaneous measurements are made in multiple spectral channels covering the solar reflective wavelength range of 300 nm to 2.4 microns. The large dynamic range of signals is handled by use of single-element, highly-linear detectors, stable discrete electronic components, and a non imaging optical configuration. Up to 19 spectral modules can be mounted on a single-axis drive to give direct pointing at the Earth and at least once per orbit view of the Sun and Moon. By observing the Sun on every orbit, the most stringent stability requirements of the system are limited to short time periods. The invariant optical system for both radiance and irradiance measurements also give excellent transfer to-orbit SI traceability. Emerging instrumental requirements for remotely sensing tropospheric trace species have led to a rethinking by some of the paradigm for Systeme International d'Unites (SI) traceability of the spectral irradiance and radiance radiometric calibrations to spectral albedo (sr(exp -1)) which is not a SI unit. In the solar reflective wavelength region the spectral albedo calibrations are tied often to either the spectral albedo of a solar diffuser or the Moon

  18. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    SciTech Connect

    Bell, Ronald E.

    2014-11-15

    A high-throughput spectrometer for the 400–820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup −1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  19. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera)

    DOE PAGESBeta

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection,more » and wavelength calibration.« less

  20. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    NASA Astrophysics Data System (ADS)

    Bell, Ronald E.

    2014-11-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  1. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    SciTech Connect

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  2. Automated model-based calibration of short-wavelength infrared (SWIR) imaging spectrographs.

    PubMed

    Kosec, Matjaž; Bürmen, Miran; Tomaževič, Dejan; Pernuš, Franjo; Likar, Boštjan

    2012-10-01

    Among the variety of available hyperspectral imaging systems, the line-scan technique stands out for its short acquisition time and good signal-to-noise ratio. However, due to imperfections in the camera lens and, in particular, optical components of the imaging spectrograph, the acquired images are spatially and spectrally distorted, which can significantly degrade the accuracy of the subsequent hyperspectral image analysis. In this work, we propose and evaluate an automated method for correction of spatial and spectral distortions introduced by a line-scan hyperspectral imaging system operating in the short wavelength infrared (SWIR) spectral range from 1000 nm to 2500 nm. The proposed method is based on non-rigid registration of the distorted and reference images corresponding to two passive calibration objects. The results of the validation show that the proposed method is accurate, efficient, and applicable for calibration of line-scan hyperspectral imaging systems. Moreover, the design of the method and of the calibration objects allows integration with systems operating in diffuse reflectance or transmittance modes. PMID:23031695

  3. [Wavelength calibration research on the automatic grating monochromator for orthogonal Czerny-Turner structure].

    PubMed

    Kou, Jie-ting; Bayanheshig; Tang, Yu-guo; Qi, Xiang-dong; Yu, Hong-zhu

    2012-04-01

    The wavelength calibration research on the automatic grating monochromator for orthogonal Czerny-Turner structure was investigated. Combined with the structure parameters and characteristic of this monochromator, the sinusoid that accords with the grating equation was proposed as the function of the wavelength calibration. Based on the principle of the least square method, the formula of the fitting residual error of the wavelength calibration was given. Using the Nelder-Mead simplex method, the undetermined coefficient of the fitting residual error was solved, which founded the precise formula between the wavelength and the grating turning angle. The accuracy of the method was verified through the experiment. The calibrated wavelength precision of the monochromator is less than 0.1 nm, which satisfies the application requirement. Applied in the wavelength calibration of the automatic grating monochromator with orthogonal Czerny-Turner structure, this method is simple to apply and easy for implementation. Using this method, the wavelength calibration can be realized quickly and real-timely, but it is only needed to modify the control program of the stepping motor slightly, which shows a better practicability. PMID:22715800

  4. High-throughput accurate-wavelength lens-based visible spectrometer.

    PubMed

    Bell, Ronald E; Scotti, Filippo

    2010-10-01

    A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm(-1) grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arc  sec, corresponding to a wavelength error ≤0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all the relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature, and pressure are monitored between the time of calibration and the time of measurement to ensure a persistent wavelength calibration. PMID:21033924

  5. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  6. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  7. Absolute wavelength calibration of pulsed lasers by use of machine vision.

    PubMed

    Nayuki, T; Fujii, T; Nemoto, K

    2001-04-01

    We developed a new absolute wavelength calibration system that uses machine vision for measurement of low-repetition-rate, short-pulse-duration (10-Hz, 5-ns) tunable lasers. Weak fluorescence from an iodine cell was measured by use of machine vision as a spatially gated integrator, and a pulsed dye-laser wavelength was calibrated with an accuracy of +/-0.005 nm , which is precise enough for differential absorption lidar application. PMID:18040341

  8. Stability study of standards used for calibration of the spectrophotometer wavelength scale

    NASA Astrophysics Data System (ADS)

    Debossan, L. F.; Carvalho, E. M. S.; Souza, M. A.; Gomes, J. F. S.

    2016-07-01

    The calibration of spectrophotometers is a procedure recommended by international standards to provide quality assurance of results and traceability. Due to its intrinsic properties, holmium oxide filters are indicated as reference standards for calibrating the wavelength scale of such equipment. This paper presents a study aiming to assess the repeatability and drift of holmium oxide standard filters calibrated in the Radiometry and Photometry Laboratory (Laraf) of Inmetro in order to verify their stability.

  9. Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Guo, Jie; Wang, Liming; Ying, Chaofu; Zhou, Zhen

    2015-02-01

    A methodology of self-calibration for concentration measurement based on wavelength modulation absorption spectroscopy has been developed by normalized fixed intensity. Experimental results show that the simple self-calibration method not only effectively improves the calibration accuracy, but also greatly improves stabilization and reliability as compared with the popular method called self-calibration by 1f normalized. In addition, the proposed system do not need any additional equipment when comparing with the use of traditional wavelength modulation absorption spectrometer. The standard deviation of a concentration measurement with different optical intensity aimed on the detector has been found to be below 1.0%. The dependence of the concentration assessment on the laser intensity fluctuation has also been investigated, which shows that the method of self-calibration could be applied in the field, specially where the dust is easily splattered on the windows of the detector.

  10. Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers

    PubMed Central

    Gaigalas, A. K.; Wang, Lili; He, Hua-Jun; DeRose, Paul

    2009-01-01

    This work describes a procedure for acquiring a spectrum of an analyte over an extended range of wavelengths and validating the wavelength and intensity assignments. To acquire a spectrum over an extended range of wavelengths with a spectrometer with a charge coupled device (CCD) array detector, it is necessary to acquire many partial spectra, each at a different angular position of the grating, and splice the partial spectra into a single extended spectrum. The splicing procedure exposes instrument dependent artifacts. It is demonstrated that by taking a spectrum of a reference irradiance source and making spectral correction, the artifacts exposed by the splicing are removed from the analyte spectrum. This is because the irradiance reference spectrum contains the same artifacts as the analyte spectrum. The artifacts exposed by the splicing depend on the wavelength of the splice; therefore it is important to measure the irradiance reference spectrum for the same range of wavelengths used to measure the spectrum of the analyte solution. In other words, there is no general spectral correction factor which is applicable to spectra taken for different range of wavelengths. The wavelength calibration is also carried out by splicing many partial spectra from a source like a krypton lamp. However the wavelength assignments are not sensitive to the splicing procedure and the same wavelength calibration can be used for spectra acquired over different extended wavelength ranges. The wavelength calibration checks the validity of the setting of the grating angular position, and the assignment of wavelengths to individual pixels on the CCD array detector. The procedure is illustrated by measuring the spectrum of an orange glass and the spectrum of a suspension of microalgae.

  11. Self calibrating wavelength multiplexed heterodyne interferometer for angstrom precision measurements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Riza, Nabeel A.

    2005-05-01

    Measurement of refractive index, surface quality and temperature of the process materials in defense, petrochemical, power systems, glass, and metal industries is a fundamental need for precision systems performance. However, making these measurements in a super noisy defense or industrial environment is a big challenge faced by sensor technologies. Reported in this paper is the first ever demonstration of a wavelength multiplexed heterodyne interferometer using a single acousto-optic device (AOD). Heterodyne interferometry is pivotal in realizing a highly stable low noise interferometer. Inspite of the physical separation of the two arms of the interferometer, the sensor demonstrates Angstrom level optical path length sensitivity. The proposed sensor can be used in optical path length measurement-based sensing of parameters such as surface profile, refractive index, temperature, and pressure. Proof-of-concept experiment features a high resolution, low-loss, ultra compact, free space scanning interferometer implementation. Results include measurement of surface quality of a test mirror.

  12. Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2007-01-01

    Rapid calibration of liquid crystal variable retarder (LCVR) devices is critical for successful clinical implementation of a LC-based Mueller matrix imaging system being developed for noninvasisve skin cancer detection. For multispectral implementation of such a system, the effect of wavelength (), temperature (T), and voltage (V) on the retardance () required to generate each desired polarization state needs to be clearly understood. Calibration involves quantifying this interdependence such that for a given set of system input variables, T, the appropriate voltage is applied across a LC cell to generate a particular retardance. This paper presents findings that elucidate the dependence of voltage, for a set retardance, on the aforementioned variables for a nematic LC cell: 253 mv100 nm-dependence andd 10 mVC T-dependence. Additionally, an empirically derived model is presented that enables initial voltage calibration of retardance for any desired input wavelength within the calibration range of 460-905 nm. copyright 2007 Optical Society of America

  13. Accurate Ritz Wavelengths of Parity-forbidden [Co II] and [V II] Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-01

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 × 10-2 s-1 and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  14. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  15. The Algorithm for MODIS Wavelength On-Orbit Calibration Using the SRCA

    NASA Technical Reports Server (NTRS)

    Montgomery, Harry; Che, Nianzeng; Parker, Kirsten; Bowser, Jeff

    1998-01-01

    The Spectro-Radiometric Calibration Assembly (SRCA) provides on-orbit spectral calibration of the MODerate resolution Imaging Spectroradiometer (MODIS) reflected solar bands and this paper describes how it is accomplished. The SRCA has two adjacent exit slits: 1) Main slit and 2) Calibration slit. The output from the main slit is measured by a reference silicon photo-diode (SIPD) and then passes through the MODIS. The output from the calibration slit passes through a piece of didymium transmission glass and then it is measured by a calibration SIPD. The centroids of the sharp spectral peaks of a didymium glass are utilized as wavelength standards. After normalization using the reference SIPD signal to eliminate the effects of the illuminating source spectra, the calibration SIPD establishes the relationship between the peaks of the didymium spectra and the grating angle; this is accomplished through the grating equation. In the grating equation the monochromator parameters, Beta (half angle between the incident and diffractive beams) and Theta(sub off) (offset angle of the grating motor) are determined by matching, in a least square sense, the known centroid wavelengths of the didymium peaks and the calculated centroid grating angles from the calibration SIPD signals for the peaks. A displacement between the calibration SIPD and the reference SIPD complicates the signal processing.

  16. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  17. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  18. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.

    PubMed

    Martelli, Fabrizio; Zaccanti, Giovanni

    2007-01-22

    In spite of many progresses achieved both with theories and with experiments in studying light propagation through diffusive media, a reliable method for accurate measurements of the optical properties of diffusive media at NIR wavelengths is, in our opinion, still missing. It is therefore difficult to create a diffusive medium with well known optical properties to be used as a reference. In this paper we describe a method to calibrate the reduced scattering coefficient, mu'(s) , of a liquid diffusive medium and the absorption coefficient, mu(a), of an absorbing medium with a standard error smaller than 2% both on mu'(s) and on mu(a). The method is based on multidistance measurements of fluence into an infinite medium illuminated by a CW source. The optical properties are retrieved with simple inversion procedures (linear fits) exploiting the knowledge of the absorption coefficient of the liquid into which the diffuser and the absorber are dispersed. In this study Intralipid diluted in water has been used as diffusive medium and Indian ink as absorber. For a full characterization of these media measurements of collimated transmittance have also been carried out, from which the asymmetry factor of the scattering function of Intralipid and the single scattering albedo of Indian ink have been determined. PMID:19532267

  19. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-08-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future.

  20. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy.

    PubMed

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R; Feld, Michael S

    2011-08-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  1. Near-infrared wavelength calibration of astrophysical spectrographs with the emission spectrum of the CN molecule

    NASA Astrophysics Data System (ADS)

    Boesch, Andreas; Reiners, Ansgar; Bernath, Peter F.; Seifahrt, Andreas

    2014-07-01

    Many astrophysical applications require precise wavelength calibration of high resolution spectra. Calibration sources for this purpose at near-infrared wavelengths are sparse. We present an experimental setup for an electrodeless microwave discharge lamp that produces molecular band emission spectra. The discharge is sustained inside a glass cell filled with a combination of different gases producing CN molecules with many spectral lines in the wavelength range between 1 μm and 2.5 μm. We investigate this lamp in terms of its usability for wavelength calibration in high resolution spectroscopy. In this conference contribution, we present the experimental setup and the characterization of the calibration source in terms of line identification, line intensities, and line density. We find approximately 20,000 lines in the spectral region of 1 - 2 μm with relative peak intensities in a range of two orders of magnitude. The results from a first endurance test show that the durability of the spectrum requires careful attention in the course of further development.

  2. Revised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy: Cryogenic phase

    NASA Astrophysics Data System (ADS)

    Baba, Shunsuke; Nakagawa, Takao; Shirahata, Mai; Isobe, Naoki; Usui, Fumihiko; Ohyama, Youichi; Onaka, Takashi; Yano, Kenichi; Kochi, Chihiro

    2016-04-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to correct quantitatively for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5-5.0 μm, with a spectral resolving power of 120 at 3.6 μm, is found to be contaminated by second-order light at wavelengths longer than 4.9 μm, which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 μm compared with the revised wavelengths at 2.5-5.0 μm. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Secondly, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 μm. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 μm up to 5.0 μm. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.

  3. An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration.

    PubMed

    Stone, Jack A; Egan, Patrick

    2010-01-01

    Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10(-8) and never below 10(-12), very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794

  4. An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration

    PubMed Central

    Stone, Jack A.; Egan, Patrick

    2010-01-01

    Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794

  5. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  6. Wavelength calibration from 1-5μm for the CRIRES+ high-resolution spectrograph at the VLT

    NASA Astrophysics Data System (ADS)

    Seemann, U.; Anglada-Escude, G.; Baade, D.; Bristow, P.; Dorn, R. J.; Follert, R.; Gojak, D.; Grunhut, J.; Hatzes, A. P.; Heiter, U.; Ives, D. J.; Jeep, P.; Jung, Y.; Käufl, H.-U.; Kerber, F.; Klein, B.; Lizon, J.-L.; Lockhart, M.; Löwinger, T.; Marquart, T.; Oliva, E.; Paufique, J.; Piskunov, N.; Pozna, E.; Reiners, A.; Smette, A.; Smoker, J.; Stempels, E.; Valenti, E.

    2014-08-01

    CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 105 from 1 - 5 μm. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (~ γ/70 in a single-order) by a factor of 10 in the cross-dispersed configuration, while still retaining a ~> 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument's observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3 m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1 - 5 μµm), employing cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.

  7. Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2016-05-01

    The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.

  8. Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration.

    PubMed

    Chang, Haitao; Zhu, Lianqing; Lou, Xiaoping; Meng, Xiaochen; Guo, Yangkuan; Wang, Zhongyu

    2016-01-01

    One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity. A wavelength selection method based on simple-to-use interactive self-modeling mixture analysis minimizes the influence of noisy variables, and the most informative variables of the most similar samples are selected to build the multivariate calibration model based on partial least squares regression. To validate the performance of the proposed method, ultraviolet-visible absorbance spectra of mixed solutions of food coloring analytes in a concentration range of 20-200 µg/mL is measured. Experimental results show that the proposed method can not only enhance the prediction accuracy of the calibration model, but also greatly reduce its complexity. PMID:27271636

  9. Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration

    PubMed Central

    Chang, Haitao; Zhu, Lianqing; Lou, Xiaoping; Meng, Xiaochen; Guo, Yangkuan; Wang, Zhongyu

    2016-01-01

    One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity. A wavelength selection method based on simple-to-use interactive self-modeling mixture analysis minimizes the influence of noisy variables, and the most informative variables of the most similar samples are selected to build the multivariate calibration model based on partial least squares regression. To validate the performance of the proposed method, ultraviolet-visible absorbance spectra of mixed solutions of food coloring analytes in a concentration range of 20–200 µg/mL is measured. Experimental results show that the proposed method can not only enhance the prediction accuracy of the calibration model, but also greatly reduce its complexity. PMID:27271636

  10. Bistatic laser polarimeter calibrated to 1% at visible-SWIR wavelengths.

    PubMed

    Hoover, Brian G; Rugely, David A; Francis, Christopher M; Zeira, Gal; Gamiz, Victor L

    2016-08-22

    This paper documents the accuracy and precision of the U. S. Air Force Research Laboratory APCL laser polarimeter in arbitrary bistatic geometries at the three laser wavelengths 633nm, 1064nm, and 1550nm. The difference between measured and theoretical-truth Mueller matrices of calibration components is used as the calibration metric and justified relative to block ellipsometer calibration methods. Calibration of the polarimeter ellipsometry mode is demonstrated first, at quasi-monostatic and large bistatic angles, employing a metallic mirror and a dielectric window as the calibration component, respectively, the latter in order to avoid uncertainty in the retardance of typical metallic mirrors at large incident angles. This uncertainty is demonstrated in measurements of COTS protected-silver mirrors from two vendors, revealing an approximately λ/8 retardance difference, for reflection through 90°, between nominally-identical mirrors from the two vendors. Polarimeter calibration is finally extended beyond ellipsometry by calibrating depolarization measurements using a new technique employing ensembles of polarized states as calibration components. PMID:27557264

  11. Wavelength self-calibration and sky subtraction for Fabry-Pérot interferometers: applications to OSIRIS

    NASA Astrophysics Data System (ADS)

    Weinzirl, T.; Aragón-Salamanca, A.; Bamford, S. P.; Rodríguez del Pino, B.; Gray, M. E.; Chies-Santos, A. L.

    2015-12-01

    We describe techniques concerning wavelength calibration and sky subtraction to maximize the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument (OSIRIS) on the 10.4-m Gran Telescopio Canarias telescope, our discussion is generalizable to data from other tunable filter instruments. A key aspect of our methodology is a coordinate transformation to polar coordinates, which simplifies matters when the tunable filter data are circularly symmetric around the optical centre. First, we present a method for rectifying inaccuracies in the wavelength calibration using OH sky emission rings. Using this technique, we improve the absolute wavelength calibration from an accuracy of ˜5 to 1 Å, equivalent to ˜7 per cent of our instrumental resolution, for 95 per cent of our data. Then, we discuss a new way to estimate the background sky emission by median filtering in polar coordinates. This method suppresses contributions to the sky background from the outer envelopes of distant galaxies, maximizing the fluxes of sources measured in the corresponding sky-subtracted images. We demonstrate for data tuned to a central wavelength of 7615 Å that galaxy fluxes in the new sky-subtracted image are ˜37 per cent higher, versus a sky-subtracted image from existing methods for OSIRIS tunable filter data.

  12. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  13. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  14. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration.

    PubMed

    Li, Hongdong; Liang, Yizeng; Xu, Qingsong; Cao, Dongsheng

    2009-08-19

    By employing the simple but effective principle 'survival of the fittest' on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR). PMID:19616692

  15. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    SciTech Connect

    Yan, W.; Chen, Z. Y. Jin, W.; Huang, D. W.; Ding, Y. H.; Li, J. C.; Zhang, X. Q.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-11-15

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  16. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak.

    PubMed

    Yan, W; Chen, Z Y; Jin, W; Huang, D W; Ding, Y H; Li, J C; Zhang, X Q; Lee, S G; Shi, Y J; Zhuang, G

    2014-11-01

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase. PMID:25430323

  17. Accurate rest-frequencies of ketenimine (CH2CNH) at submillimetre wavelength

    NASA Astrophysics Data System (ADS)

    Degli Esposti, C.; Dore, L.; Bizzocchi, L.

    2014-05-01

    Context. Imine compounds are thought to have a role in the interstellar formation of complex organic species, including pre-biotic molecules. Ketenimine (CH2CNH) is one of the four imines discovered in space. It was identified in Sgr B2(N-LMH) through the detection of three rotational lines in absorption. Aims: We present an extensive laboratory study of the ground-state rotational spectrum of CH2CNH at submillimetre wavelengths, aimed at obtaining accurate rest-frequencies for radio-astronomical searches. Methods: The investigation was carried out using a source-modulation microwave spectrometer equipped with a cell that is coupled to a pyrolysis apparatus working at 1000°. The spectrum was recorded in the frequency range 80-620 GHz with the detection of 150 transitions. Results: The newly measured transition frequencies were analysed with previously available microwave and far-infrared data, yielding accurate rotational constants of CH2CNH, the complete sets of quartic and sextic centrifugal distortion constants, and three octic constants. Several transitions exhibit a hyperfine structure due to the quadrupole and spin-rotation couplings of the 14N nucleus, which were accounted for in the analysis. Conclusions: The determined spectroscopic constants allowed for the computation of a list of highly accurate rest-frequencies for astrophysical purposes in the submillimetre and THz region with 1σ uncertainties that are lower than 0.1 km s-1 in radial equivalent velocity. Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A66

  18. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  19. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy

    SciTech Connect

    Chung, Koo-Hyun; Shaw, Gordon A.; Pratt, Jon R.

    2009-06-15

    The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

  20. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results

    USGS Publications Warehouse

    Janssen, M.A.; Lorenz, R.D.; West, R.; Paganelli, F.; Lopes, R.M.; Kirk, R.L.; Elachi, C.; Wall, S.D.; Johnson, W.T.K.; Anderson, Y.; Boehmer, R.A.; Callahan, P.; Gim, Y.; Hamilton, G.A.; Kelleher, K.D.; Roth, L.; Stiles, B.; Le, Gall A.

    2009-01-01

    The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere. ?? 2008 Elsevier Inc.

  1. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  2. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  3. A Sensitivity Study for the Wavelength Calibration of GeoTASO for KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Kang, M.; Ahn, M. H.; Liu, X.; Kim, J.; Jeong, U.; Park, S. S.

    2015-12-01

    The cooperative field campaign for KOREA-US Air Quality (KORUS-AQ) study is under preparation. For the success of campaign, Megacity Air Pollution Studies-SEOUL (MAPS-SEOUL) as a preliminary study is now going on. The major objective of MAPS is the trial run of the laboratory and airborne measurement and the preparation for the sensor calibration. From these campaigns, it is possible to increase the accuracy of air quality model and also to assess the retrieval algorithm for Geostationary Environment Monitoring Spectrometer (GEMS). The Geostationary Trace-gas and Aerosol Sensor Optimization (GEO-TASO) instrument which will be onboard aircraft utilizes Offner spectrometer with a 4 mirror telescope. For the data processing, we plan to develop the wavelength calibration algorithm for the raw measurements from this airborne hyperspectral sensor. The important parameters considered in spectral calibration of radiance spectra are absorption of ozone and ring effect. We would adapt the similar process with the heritage programs such as OMI, GOME and OMPS and so on. However, the airborne flying environment in troposphere would be different compared to GEMS's geostationary orbit. Therefore, the parameters which cause wavelength change could be different. For example, the variation of aircraft altitude would bring additional uncertainties in wavelength change. Here, the GEMS prototype algorithm is applied to Geo-TASO measurement to derive slit functions and check wavelength shift. And the algorithm sensitivity to each parameter will be examined. Through these tests, the characteristics of each parameter and their correlation will be used to refine the GEMS algorithm and to futher KORUS-AQ study.

  4. Accurate Quantification of High Density Lipoprotein Particle Concentration by Calibrated Ion Mobility Analysis

    PubMed Central

    Hutchins, Patrick M.; Ronsein, Graziella E.; Monette, Jeffrey S.; Pamir, Nathalie; Wimberger, Jake; He, Yi; Anantharamaiah, G.M.; Kim, Daniel Seung; Ranchalis, Jane E.; Jarvik, Gail P.; Vaisar, Tomas; Heinecke, Jay W.

    2015-01-01

    Background It is critical to develop new metrics to determine whether high density lipoprotein (HDL) is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P) – the size and concentration of HDL in plasma or serum. However, the two methods currently used to determine HDL-P yield concentrations that differ more than 5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). Methods HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. A calibration curve constructed with purified proteins was used to correct for the ionization efficiency of HDL particles. Results The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n=40) and cerebrovascular disease (n=40) subjects, three subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4±2.4 µM (mean±SD). HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in subjects with cerebrovascular disease, and this difference remained significant after adjustment for HDL cholesterol levels. Conclusions Calibrated IMA accurately and reproducibly determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting the method could accurately quantify HDL particle concentration. Importantly, the estimated stoichiometry of apoA-I determined by calibrated IMA was 3–4 per HDL particle, in excellent agreement with current structural models. Furthermore, HDL-P associated with cardiovascular disease status in a clinical population independently of HDL cholesterol. PMID:25225166

  5. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    PubMed Central

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  6. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  7. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  8. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera)

    SciTech Connect

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  9. Accurate calibration of a stereo-vision system in image-guided radiotherapy.

    PubMed

    Liu, Dezhi; Li, Shidong

    2006-11-01

    Image-guided radiotherapy using a three-dimensional (3D) camera as the on-board surface imaging system requires precise and accurate registration of the 3D surface images in the treatment machine coordinate system. Two simple calibration methods, an analytical solution as three-point matching and a least-squares estimation method as multipoint registration, were introduced to correlate the stereo-vision surface imaging frame with the machine coordinate system. Both types of calibrations utilized 3D surface images of a calibration template placed on the top of the treatment couch. Image transformational parameters were derived from corresponding 3D marked points on the surface images to their given coordinates in the treatment room coordinate system. Our experimental results demonstrated that both methods had provided the desired calibration accuracy of 0.5 mm. The multipoint registration method is more robust particularly for noisy 3D surface images. Both calibration methods have been used as our weekly QA tools for a 3D image-guided radiotherapy system. PMID:17153416

  10. Accurate calibration of a stereo-vision system in image-guided radiotherapy

    SciTech Connect

    Liu Dezhi; Li Shidong

    2006-11-15

    Image-guided radiotherapy using a three-dimensional (3D) camera as the on-board surface imaging system requires precise and accurate registration of the 3D surface images in the treatment machine coordinate system. Two simple calibration methods, an analytical solution as three-point matching and a least-squares estimation method as multipoint registration, were introduced to correlate the stereo-vision surface imaging frame with the machine coordinate system. Both types of calibrations utilized 3D surface images of a calibration template placed on the top of the treatment couch. Image transformational parameters were derived from corresponding 3D marked points on the surface images to their given coordinates in the treatment room coordinate system. Our experimental results demonstrated that both methods had provided the desired calibration accuracy of 0.5 mm. The multipoint registration method is more robust particularly for noisy 3D surface images. Both calibration methods have been used as our weekly QA tools for a 3D image-guided radiotherapy system.

  11. ACCURATE KAP METER CALIBRATION AS A PREREQUISITE FOR OPTIMISATION IN PROJECTION RADIOGRAPHY.

    PubMed

    Malusek, A; Sandborg, M; Carlsson, G Alm

    2016-06-01

    Modern X-ray units register the air kerma-area product, PKA, with a built-in KAP meter. Some KAP meters show an energy-dependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q0, to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q1, to beam quality, Q Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography. PMID:26743261

  12. A methodology for calibrating wavelength dependent spectral resolution for crystal spectrometersa)

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J. E.; Rochau, G. A.; Dunham, G. S.; Nielsen-Weber, L. B.; Ball, C. R.

    2012-10-01

    High quality absorption spectroscopy measurements were recently achieved at the Sandia National Laboratories Z facility in the soft x-ray range. Detailed spectral resolution knowledge is a key requirement for their interpretation. We present a methodology for measuring the wavelength dependent crystal spectral resolution, with a particular focus on the 7-17 Å range. We apply this procedure to the case of 1st order resolution of a potassium acid phthalate (KAP) convex crystal spectrometer. One calibration issue is that inferring the crystal resolution requires that the x-ray source emission feature widths and spectral profiles are known. To this aim, we resolve Manson x-ray source Si, Al, and Mg Kα line profiles using a KAP crystal spectrometer in 2nd order to achieve relatively high resolution. This information is exploited to measure 1st order KAP resolving powers λ/Δλ˜1100-1300 in the 7-10 Å wavelength range.

  13. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.

    PubMed

    Cho, Youngbin; Moseley, Douglas J; Siewerdsen, Jeffrey H; Jaffray, David A

    2005-04-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 degrees (around beam direction) to 0.3 degrees (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0

  14. Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy.

    PubMed

    Chung, Koo-Hyun; Pratt, Jon R; Reitsma, Mark G

    2010-01-19

    The colloidal probe technique for atomic force microscopy (AFM) has allowed the investigation of an extensive range of surface force phenomena, including the measurement of frictional (lateral) forces between numerous materials. The quantitative accuracy of such friction measurements is often debated, in part due to a lack of confidence in existing calibration strategies. Here we compare three in situ AFM lateral force calibration techniques using a single colloidal probe, seeking to establish a foundation for quantitative measurement by linking these techniques to accurate force references available at the National Institute of Standards and Technology. We introduce a procedure for calibrating the AFM lateral force response to known electrostatic forces applied directly to the conductive colloidal probe. In a second procedure, we apply known force directly to the colloidal probe using a precalibrated piezo-resistive reference cantilever. We found agreement between these direct methods on the order of 2% (within random uncertainty for both measurements). In a third procedure, we performed a displacement-based calibration using the piezo-resistive reference cantilever as a stiffness reference artifact. The method demonstrated agreement on the order of 7% with the direct force methods, with the difference attributed to an expected systematic uncertainty, caused by in-plane deflection in the cantilever during loading. The comparison establishes the existing limits of instrument accuracy and sets down a basis for selection criteria for materials and methods in colloidal probe friction (lateral) force measurements via atomic force microscopy. PMID:19827782

  15. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  16. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  17. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.

    PubMed

    Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M

    2014-12-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. PMID:25195174

  18. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Reiners, Ansgar

    2012-09-01

    The most frequently used standard light sources for spectroscopic high precision wavelength calibration are hollow cathode lamps. These lamps, however, do not provide homogeneous line distribution and intensities. Particularly in the infrared, the number of useful lines is severely limited and the spectrum is contaminated by lines of the filler gas. With the goal of achieving sub m/s stability in the infrared, as required for detecting earthlike extra-solar planets, we are developing two passively stabilized Fabry-Perot interferometers for the red visible (600-1050nm) and near infrared wavelength regions (900-1350nm). Each of the two interferometers can produce ~15,000 lines of nearly constant brightness. The Fabry-Perot interferometers aim at a RV calibration precision of 10cm/s and are optimized in line shape and spacing for the infrared planet hunting CARMENES spectrograph that is currently being built for the Calar Alto 3.5m telescope. Here we present the first results of our work.

  19. A calibration-independent method for accurate complex permittivity determination of liquid materials

    SciTech Connect

    Hasar, U. C.

    2008-08-15

    This note presents a calibration-independent method for accurate complex permittivity determination of liquid materials. There are two main advantages of the proposed method over those in the literature, which require measurements of two cells with different lengths loaded by the same liquid material. First, it eliminates any inhomogeneity or impurity present in the second sample and decreases the uncertainty in sample thickness. Second, it removes the undesired impacts of measurement plane deterioration on measurements of liquid materials. For validation of the proposed method, we measure the complex permittivity of distilled water and compare its extracted permittivity with the theoretical datum obtained from the Debye equation.

  20. Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation

    NASA Astrophysics Data System (ADS)

    Chung, H. Y.; Guo, G. Y.; Chiang, H.-P.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical response of a multilayered spherical system of unlimited number of layers (a “matryushka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryushka in each of the two limits: the nonlocal optical response for ultrasmall systems (<10nm) , and the “finite-wavelength corrections” for systems ˜100nm . This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations.

  1. Update to the Cosmic Origins Spectrograph FUV Calibration: Improved Characterization Below 1150 Angstroms and Improved Absolute Flux Calibration at all Wavelengths

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule; Bostroem, K. A.; Ely, J.; Debes, J. H.; DiFelice, A.; Hernandez, S.; Hodge, P. E.; Lindsay, K.; Lockwood, S. A.; Massa, D.; Oliveira, C. M.; Roman-Duval, J.; Penton, S. V.; Proffitt, C. R.; Taylor, J. M.

    2014-01-01

    As of Cycle 20, the three COS/FUV "Blue Mode" wavelength settings at G130M/1055, 1096 and 1222, have become available as regular observing modes. We provide updates on the wavelength and flux calibration of these new Blue Mode settings, which allow medium-resolution spectroscopy down to 900A with effective areas comparable to those of FUSE. We discuss also recent improvements to the COS/FUV flux and flat-field calibrations and present the most recent time-dependent sensitivity trends of the FUV and NUV channels.

  2. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction

    SciTech Connect

    Mersmann, Sven; Seitel, Alexander; Maier-Hein, Lena; Erz, Michael; Jähne, Bernd; Nickel, Felix; Mieth, Markus; Mehrabi, Arianeb

    2013-08-15

    Purpose: In image-guided surgery (IGS) intraoperative image acquisition of tissue shape, motion, and morphology is one of the main challenges. Recently, time-of-flight (ToF) cameras have emerged as a new means for fast range image acquisition that can be used for multimodal registration of the patient anatomy during surgery. The major drawbacks of ToF cameras are systematic errors in the image acquisition technique that compromise the quality of the measured range images. In this paper, we propose a calibration concept that, for the first time, accounts for all known systematic errors affecting the quality of ToF range images. Laboratory and in vitro experiments assess its performance in the context of IGS.Methods: For calibration the camera-related error sources depending on the sensor, the sensor temperature and the set integration time are corrected first, followed by the scene-specific errors, which are modeled as function of the measured distance, the amplitude and the radial distance to the principal point of the camera. Accounting for the high accuracy demands in IGS, we use a custom-made calibration device to provide reference distance data, the cameras are calibrated too. To evaluate the mitigation of the error, the remaining residual error after ToF depth calibration was compared with that arising from using the manufacturer routines for several state-of-the-art ToF cameras. The accuracy of reconstructed ToF surfaces was investigated after multimodal registration with computed tomography (CT) data of liver models by assessment of the target registration error (TRE) of markers introduced in the livers.Results: For the inspected distance range of up to 2 m, our calibration approach yielded a mean residual error to reference data ranging from 1.5 ± 4.3 mm for the best camera to 7.2 ± 11.0 mm. When compared to the data obtained from the manufacturer routines, the residual error was reduced by at least 78% from worst calibration result to most accurate

  3. Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources.

    PubMed

    Srajer, V; Crosson, S; Schmidt, M; Key, J; Schotte, F; Anderson, S; Perman, B; Ren, Z; Teng, T Y; Bourgeois, D; Wulff, M; Moffat, K

    2000-07-01

    Wavelength normalization is an essential part of processing of Laue X-ray diffraction data and is critically important for deriving accurate structure-factor amplitudes. The results of wavelength normalization for Laue data obtained in nanosecond time-resolved experiments at the ID09 beamline at the European Synchrotron Radiation Facility, Grenoble, France, are presented. Several wiggler and undulator insertion devices with complex spectra were used. The results show that even in the most challenging cases, such as wiggler/undulator tandems or single-line undulators, accurate wavelength normalization does not require unusually redundant Laue data and can be accomplished using typical Laue data sets. Single-line undulator spectra derived from Laue data compare well with the measured incident X-ray spectra. Successful wavelength normalization of the undulator data was also confirmed by the observed signal in nanosecond time-resolved experiments. Single-line undulators, which are attractive for time-resolved experiments due to their high peak intensity and low polychromatic background, are compared with wigglers, based on data obtained on the same crystal. PMID:16609201

  4. An improved method to accurately calibrate the gantry angle indicators of the radiotherapy linear accelerators

    NASA Astrophysics Data System (ADS)

    Chang, Liyun; Ho, Sheng-Yow; Du, Yi-Chun; Lin, Chih-Ming; Chen, Tainsong

    2007-06-01

    The calibration of the gantry angle indicator is an important and basic quality assurance (QA) item for the radiotherapy linear accelerator. In this study, we propose a new and practical method, which uses only the digital level, V-film, and general solid phantoms. By taking the star shot only, we can accurately calculate the true gantry angle according to the geometry of the film setup. The results on our machine showed that the gantry angle was shifted by -0.11° compared with the digital indicator, and the standard deviation was within 0.05°. This method can also be used for the simulator. In conclusion, this proposed method could be adopted as an annual QA item for mechanical QA of the accelerator.

  5. Automated Fast and Accurate Display Calibration Using ADT Compensated LCD for Mobile Phone

    NASA Astrophysics Data System (ADS)

    Han, Chan-Ho; Park, Kil-Houm

    Gamma correction is an essential function and is time consuming task in every display device such as CRT and LCD. And gray scale CCT reproduction in most LCD are quite different from those of standard CRT. An automated fast and accurate display adjusment method and system for gamma correction and for constant gray scale CCT calibration of mobile phone LCD is presented in this paper. We develop the test pattern disply and register control program in mobile phone and devleop automatic measure program in computer using spectroradimeter. The proposed system is maintain given gamma values and CCT values accuratly. In addition, This system is possible to fast mobile phone LCD adjusment within one hour.

  6. Determination of the diffuser reference plane for accurate illuminance responsivity calibrations

    SciTech Connect

    Hovila, Jari; Mustonen, Maria; Kaerhae, Petri; Ikonen, Erkki

    2005-10-01

    It is difficult to predict where the effective measurement plane is situated with dome-shaped diffusers often used in commercial photometers and radiometers. Insufficient knowledge of this plane could lead to large systematic errors in calibration of the illuminance responsivity of photometers. We propose a method that can be used to determine this reference plane accurately, based on the inverse-square law between the measured signal and the distance from the source. The method is demonstrated with three commercial photometers with dome-shaped diffusers of different geometries. By taking into account the measured shifts of the reference planes (5.0{+-}0.5 mm, 7.8{+-}0.3 mm, and 8.5{+-}0.7 mm), we reduced the systematic measurement errors up to 2% to statistical uncertainty components at the level of 0.2%.

  7. Low noise frequency synthesizer with self-calibrated voltage controlled oscillator and accurate AFC algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Qin; Jinbo, Li; Jian, Kang; Xiaoyong, Li; Jianjun, Zhou

    2014-09-01

    A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm2, including bias circuits and buffers.

  8. Wavelength calibration of spectra measured by the Global Ozone Monitoring Experiment by use of a high-resolution reference spectrum.

    PubMed

    van Geffen, Jos H G M; van Oss, Roeland F

    2003-05-20

    Earthshine spectra measured by the nadir-viewing Global Ozone Monitoring Experiment (GOME) spectrometer aboard the second European Remote Sensing (ERS-2) Satellite in the range of 240-790 nm are widely used for the retrieval of concentrations and vertical profiles of atmospheric trace gases. For the near-real-time delivery of ozone columns and profiles at the Royal Netherlands Meterological Institute, a tailor-made wavelength calibration method was developed. The method use a high-resolution (0.01-nm) solar spectrum as the reference spectrum and applies both a shift and a squeeze to the wavelengths in selected windows to find the optimal wavelength grid per window. This method provides a calibration accuracy of 0.002 nm below and 0.001 nm above 290 nm. The new wavelength calibration method can be used on any wavelength window, for example, to improve the calibration of spectra from the GOME Data Processor. A software package, GomeCal, which performs this recalibration, along with an improved polarization and radiometric correction, has been made and has been released via the World Wide Web. The method can be used for any high-resolution (ir)radiance spectrometer, such as the satellite instruments SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography), Ozone Monitoring Instrument, and GOME-2. PMID:12777012

  9. An Assessment of the Pipeline Wavelength Calibrations for the First Order Gratings of the GHRS in Cycle 2

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.; Sherbert, Lisa E.; Hulbert, Stephen J.

    1993-11-01

    This Report is based on several executions of calibration proposal 4067 and shows that the default wavelength scaled provided by the pipeline data reduction system has not changed significantly with time. WAVE exposures as part of user observations can, however, improve the zero point for each observation, as can use of SPYBAL exposures.

  10. Accurate rotational rest-frequencies of CH2NH at submillimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Dore, L.; Bizzocchi, L.; Degli Esposti, C.

    2012-08-01

    Context. Methanimine (CH2NH) has been detected in different astronomical sources, both galactic (as in several "hot cores", the circumstellar enevolope IRC+10216, and the L183 pre-stellar core) and extragalactic, and is considered a pre-biotic interstellar molecule. Its ground-state rotational spectrum has been studied in the laboratory up to 172 GHz, well below the spectral ranges covered by Herschel/HIFI and the ALMA bands 9 and 10. Aims: In this laboratory study, we extend into the submillimetre-wave region the detection of the rotational spectrum of CH2NH in its vibrational ground state. Methods: The investigation was carried out using a source-modulation microwave spectrometer equipped with a cell coupled to a pyrolysis apparatus working at 1150 °C. The spectrum was recorded in the frequency range 329-629 GHz, with the detection of 58 transitions. Results: The newly measured transition frequencies, along with those available from previous microwave studies, allow us to determine fairly accurate rotational constants of CH2NH and the complete sets of quartic and sextic centrifugal distortion constants, in addition to two octic constants. Several transitions have an hyperfine structure due to the 14N nucleus, which was accounted for in the analysis. Conclusions: The determined spectroscopic constants make it possible to build a list of very accurate rest-frequencies for astrophysical purposes in the THz region with 1σ uncertainties lower than 0.01 km s-1 in radial equivalent velocity. Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A19

  11. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid. PMID:25624198

  12. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  13. Nebulizer calibration using lithium chloride: an accurate, reproducible and user-friendly method.

    PubMed

    Ward, R J; Reid, D W; Leonard, R F; Johns, D P; Walters, E H

    1998-04-01

    Conventional gravimetric (weight loss) calibration of jet nebulizers overestimates their aerosol output by up to 80% due to unaccounted evaporative loss. We examined two methods of measuring true aerosol output from jet nebulizers. A new adaptation of a widely available clinical assay for lithium (determined by flame photometry, LiCl method) was compared to an existing electrochemical method based on fluoride detection (NaF method). The agreement between the two methods and the repeatability of each method were examined. Ten Mefar jet nebulizers were studied using a Mefar MK3 inhalation dosimeter. There was no significant difference between the two methods (p=0.76) with mean aerosol output of the 10 nebulizers being 7.40 mg x s(-1) (SD 1.06; range 5.86-9.36 mg x s(-1)) for the NaF method and 7.27 mg x s(-1) (SD 0.82; range 5.52-8.26 mg x s(-1)) for the LiCl method. The LiCl method had a coefficient of repeatability of 13 mg x s(-1) compared with 3.7 mg x s(-1) for the NaF method. The LiCl method accurately measured true aerosol output and was considerably easier to use. It was also more repeatable, and hence more precise, than the NaF method. Because the LiCl method uses an assay that is routinely available from hospital biochemistry laboratories, it is easy to use and, thus, can readily be adopted by busy respiratory function departments. PMID:9623700

  14. A protocol and calibration method for accurate multi-camera field videography.

    PubMed

    Theriault, Diane H; Fuller, Nathan W; Jackson, Brandon E; Bluhm, Evan; Evangelista, Dennis; Wu, Zheng; Betke, Margrit; Hedrick, Tyson L

    2014-06-01

    Stereo videography is a powerful technique for quantifying the kinematics and behavior of animals, but it can be challenging to use in an outdoor field setting. We here present a workflow and associated software for performing calibration of cameras placed in a field setting and estimating the accuracy of the resulting stereoscopic reconstructions. We demonstrate the workflow through example stereoscopic reconstructions of bat and bird flight. We provide software tools for planning experiments and processing the resulting calibrations that other researchers may use to calibrate their own cameras. Our field protocol can be deployed in a single afternoon, requiring only short video clips of light, portable calibration objects. PMID:24577444

  15. Wavelength-scanning calibration of detection efficiency of single photon detectors by direct comparison with a photodiode

    NASA Astrophysics Data System (ADS)

    Lee, Hee Jung; Park, Seongchong; Park, Hee Su; Hong, Kee Suk; Lee, Dong-Hoon; Kim, Heonoh; Cha, Myoungsik; Seb Moon, Han

    2016-04-01

    We present a practical calibration method of the detection efficiency (DE) of single photon detectors (SPDs) in a wide wavelength range from 480 nm to 840 nm. The setup consists of a GaN laser diode emitting a broadband luminescence, a tunable bandpass filter, a beam splitter, and a switched integrating amplifier which can measure the photocurrent down to the 100 fA level. The SPD under test with a fibre-coupled beam input is directly compared with a reference photodiode without using any calibrated attenuator. The relative standard uncertainty of the DE of the SPD is evaluated to be from 0.8% to 2.2% varying with wavelength (k  =  1).

  16. Physical resist models and their calibration: their readiness for accurate EUV lithography simulation

    NASA Astrophysics Data System (ADS)

    Klostermann, U. K.; Mülders, T.; Schmöller, T.; Lorusso, G. F.; Hendrickx, E.

    2010-04-01

    In this paper, we discuss the performance of EUV resist models in terms of predictive accuracy, and we assess the readiness of the corresponding model calibration methodology. The study is done on an extensive OPC data set collected at IMEC for the ShinEtsu resist SEVR-59 on the ASML EUV Alpha Demo Tool (ADT), with the data set including more than thousand CD values. We address practical aspects such as the speed of calibration and selection of calibration patterns. The model is calibrated on 12 process window data series varying in pattern width (32, 36, 40 nm), orientation (H, V) and pitch (dense, isolated). The minimum measured feature size at nominal process condition is a 32 nm CD at a dense pitch of 64 nm. Mask metrology is applied to verify and eventually correct nominal width of the drawn CD. Cross-sectional SEM information is included in the calibration to tune the simulated resist loss and sidewall angle. The achieved calibration RMS is ~ 1.0 nm. We show what elements are important to obtain a well calibrated model. We discuss the impact of 3D mask effects on the Bossung tilt. We demonstrate that a correct representation of the flare level during the calibration is important to achieve a high predictability at various flare conditions. Although the model calibration is performed on a limited subset of the measurement data (one dimensional structures only), its accuracy is validated based on a large number of OPC patterns (at nominal dose and focus conditions) not included in the calibration; validation RMS results as small as 1 nm can be reached. Furthermore, we study the model's extendibility to two-dimensional end of line (EOL) structures. Finally, we correlate the experimentally observed fingerprint of the CD uniformity to a model, where EUV tool specific signatures are taken into account.

  17. A laser locked Fabry-Perot etalon with 3 cm/s stability for wavelength calibration of Doppler spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Gurevich, Yulia; Stuermer, Julian; Fuehrer, Thorsten; Lamoreaux, Steve; Walther, Thomas; Quirrenbach, Andreas

    2015-12-01

    Superior wavelength calibration is a major component in attaining Doppler precision of 10 cm/s and better with high resolution spectrographs. To achieve this goal, current calibration methods like thorium-argon lamps and iodine cells need to be replaced by more precise techniques. The ideal wavelength calibrator has a grid of densely spaced, narrow lines of equal brightness and works over a wide wavelength range. Laser frequency combs have received much attention recently, but they are complex and costly. We present an alternative method that builds on the success of passively stabilized Fabry-Perot etalons: we actively stabilize the etalon to an atomic transition, which provides an absolute frequency reference. We use saturated absorption laser spectroscopy to detect the hyperfine transitions of rubidium at 780 nm, a well-established frequency standard. Then we tune an etalon parameter (for instance, temperature) to keep one etalon peak coincident with the rubidium transition. Our setup is designed to be simple and robust, adaptable to various etalons, and to work in the infrared as well as the visible spectral range. We achieve a locking precision that is equivalent to a Doppler precision of better than 3 cm/s over any reasonable integration time.

  18. A method for accurate zero calibration of asymmetric jaws in single-isocenter half-beam techniques

    SciTech Connect

    Hernandez, V.; Abella, R.; Lopez, M.; Perez, M.; Artigues, M.; Sempau, J.; Arenas, M.

    2013-02-15

    Purpose: To present a practical method for calibrating the zero position of asymmetric jaws that provides higher accuracy at the central axis and improves dose homogeneity in the abutting region of half-beams. Methods: Junction doses were measured for each asymmetric jaw using the double-exposure technique and electronic portal imaging devices. The junction dose was determined as a function of jaw position. The shift in the zero jaw position (or in its corresponding potentiometer readout) required to correct for the measured junction dose could thus be obtained. The jaw calibration was then modified to introduce the calculated shift and therefore achieve an accurate zero position in order to provide a relative junction dose that was as close to zero as possible. Results: All the asymmetric jaws from four medical linear accelerators were calibrated with the new calibration procedure. Measured relative junction doses at gantry 0 Degree-Sign were reduced from a maximum of {+-}40% to a maximum of {+-}8% for all the jaws in the four considered accelerators. These results were valid for 6 MV and 18 MV photon beams and for any combination of asymmetric jaws set to zero. The calibration was stable over a long period of time; therefore, the need for recalibrating is seldom necessary. Conclusions: Accurate calibration of the zero position of the jaws is feasible in current medical linear accelerators. The proposed procedure is fast and it improves dose homogeneity at the junction of half-beams, thus, allowing a more accurate and safer use of these techniques.

  19. A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements

    NASA Astrophysics Data System (ADS)

    Hijazi, A.; Sachidanandan, S.; Singh, R.; Madhavan, V.

    2011-02-01

    We report the development of a new approach for determining temperatures using the dual-wavelength infrared thermometry technique, which does not presume greybody behaviour and compensates for the spectral dependence of emissivity. This approach is based on Planck's radiation equation and explicitly accounts for the wavelength-dependent response of the IR detector and the losses occurring due to each of the elements of the IR imaging system that affect the total radiant energy sensed in different spectral bands. A thorough calibration procedure is utilized to determine a compensation factor for the spectral dependence of emissivity, which is referred to as the non-greybody compensation factor (NGCF). Calibration and validation experiments are carried out on Aluminum 6061-T6 targets with two different surface roughnesses. Results show that this alloy does not exhibit greybody behaviour, even though the two spectral bands used were relatively close to each other, and that the spectral dependence of emissivity is influenced by the surface finish. It is found that non-greybody behaviour of low emissivity surfaces can lead to significant systematic error in dual-wavelength IR thermometry. The inclusion of the NGCF eliminates the systematic error caused by the invalidity of greybody assumption and thus improves the accuracy of the measurements. Non-greybody-compensated dual-wavelength thermography is used to measure the chip temperature along the tool-chip interface during orthogonal cutting of Al 6061-T6 and sample results at three different cutting speeds are presented.

  20. COS observations below 1150Angstrom with R > 10, 000: Calibrations for a new G130M/1222 central wavelength

    NASA Astrophysics Data System (ADS)

    Penton, Steven

    2011-10-01

    We fully calibrate a new COS/G130M wavelength setting in this program. This setting, G130M/1222, places Geocoronal Lya on the detector gap {to mitigate FUV detector gain sag} and covers the astrophysically important UV bandpass of 1065-1327 Angstrom. At the focus mechanism position requested {-850}, this mode provides 4-10 times the resolution of the G130M/1055 and G130M/1096 central wavelength settings at the same sensitivity. The sensitivity, waveband, and increased resolution of the G130M/1222 central wavelength {R=17,000 at 1065 Angstrom, 15,000 at 1222 Angstrom, and 12,000 at 1369 Angstrom} is beneficial to many UV scientific studies, including, but not limited to, molecular hydrogen in planetary nebulae and translucent clouds, the HeII lyman-alpha forest in the epoch of HeII re-ionization, AGN intrinsic absorbers and high-ionization outflows, low-redshift IGM, galaxy halos, galaxy feedback, and the WHIM using O VI, MgX, NeVIII, Lyman beta, and other important atomic and molecular transitions. At 1100 Angstrom, this mode has 10 times the effective area of FUSE {per channel} with almost non-existent detector background. This program is designed to completely calibrate this wavelength setting with minimal use of STScI personnel and resources.

  1. Dual Polarity Accurate Mass Calibration for ESI and MALDI Mass Spectrometry Using Maltooligosaccharides

    PubMed Central

    Clowers, Brian H.; Dodds, Eric D.; Seipert, Richard R.; Lebrilla, Carlito B.

    2009-01-01

    In view of the fact that memory effects associated with instrument calibration hinder the use of many m/z and tuning standards, identification of robust, comprehensive, inexpensive, and memory-free calibration standards are of particular interest to the mass spectrometry community. Glucose and its isomers are known to have a residue mass of 162.05282 Da; therefore, both linear and branched forms of poly-hexose oligosaccharides possess well defined masses making them ideal candidates for mass calibration. Using a wide range of maltooligosaccharides (MOS) derived from commercially available beers, ions with m/z ratios from ~500 Da to 2500 Da or more have been observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and time of flight mass spectrometry (TOF-MS). The mixtures of MOS were further characterized using infrared multiphoton dissociation (IRMPD) and nano-liquid chromatography/mass spectrometry (nano-LC/MS). In addition to providing well defined series of positive and negative calibrant ions using either ESI or MALDI, the MOS are not encumbered by memory effects and are thus well suited mass calibration and instrument tuning standards for carbohydrate analysis. PMID:18655765

  2. Improvements to the Wavelength Calibration of the HST/COS FUV Detector

    NASA Astrophysics Data System (ADS)

    Plesha, Rachel; Ake, Thomas B.; Ely, Justin; Lockwood, Sean A.; Oliveira, Cristina M.; Penton, Steven V.; Proffitt, Charles R.; Roman-Duval, Julia; Sahnow, David J.; Sonnentrucker, Paule

    2016-06-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in 2009 during Servicing Mission 4. Since then, the teams at the Space Telescope Science Institute have striven to provide the highest quality scientific products to the community. One of the latest improvements to COS/FUV data is an updated wavelength solution. We improved wavelength dispersion solutions from the current accuracy of ~15 km/s for medium-resolution data obtained at Lifetime Position 1 (i.e. before July 2012). Here we present the methodology and results behind the improvements of the wavelength dispersion solutions. We also discuss ongoing efforts to improve the wavelength dispersion solutions for other lifetime positions as well as updates to the geometric distortion and walk corrections.

  3. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    NASA Astrophysics Data System (ADS)

    Hekkenberg, R. T.; Richards, A.; Beissner, K.; Zeqiri, B.; Prout, G.; Cantrall, Ch; Bezemer, R. A.; Koch, Ch; Hodnett, M.

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within +/-20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably.

  4. Fabrication of a monolithically integrated multiple wavelength Fabry-Perot filter array using transparent etch stop layers for accurate wavelength determination

    NASA Astrophysics Data System (ADS)

    Convey, Diana; Le, Ngoc; Smith, Steven M.; Holm, Paige; Baker, Jeffrey

    2006-10-01

    In this paper we describe a method of fabricating a Fabry-Perot filter array consisting of four distinct wavelengths using a stopping layer, which in turn is discriminately measured. Precise control of the oxide thickness is demonstrated by using reflectance to measure center wavelengths (CWL) between 645nm-822nm with full width half maximum (FWHM) values of 15 nm. These parameters are used to confirm good narrow band filter characteristics. The physical and chemical properties of an oxide layer converted from a silicon-carbon-nitride (SiCN) etch stop layer (ESL) is reported for both as-deposited and the resultant oxidized film. The filter array can be fabricated directly on top of silicon photo diodes, to form a complete multi-wavelength sensor system. Fabricating a multi-wavelength filter array using etch-stop layers can provide better thickness control and across wafer uniformity compared to a timed-etch approach.

  5. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  6. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving. PMID:26628164

  7. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  8. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  9. Spectral line lists of a nitrogen gas discharge for wavelength calibration in the range 4500-11 000 cm-1

    NASA Astrophysics Data System (ADS)

    Boesch, A.; Reiners, A.

    2015-10-01

    Context. A discharge of nitrogen gas, as created in a microwave-induced plasma, exhibits a very dense molecular emission line spectrum. Emission spectra of this kind could serve as wavelength calibrators for high-resolution astrophysical spectrographs in the near-infrared, where only very few calibration sources are currently available. Aims: The compilation of a spectral line list and the characterization of line intensities and line density belong to the initial steps when investigating the feasibility of potential wavelength calibration sources. Although the molecular nitrogen spectrum was extensively studied in the past, to our knowledge, no line list exists that covers a continuous range of several thousand wavenumbers in the near-infrared. Methods: We recorded three high-resolution (Δ tilde{ν = 0.018} cm-1) spectra of a nitrogen gas discharge operated at different microwave powers. The nitrogen gas is kept inside a sealed glass cell at a pressure of 2 mbar. The emission lines in the spectra were fitted by a superposition of Gaussian profiles to determine their position, relative intensity, and width. The line parameters were corrected for an absolute wavelength scale, instrumental line broadening, and intensity modulation. Molecular and atomic transitions of nitrogen were identified with available line positions from the literature. Results: We report line lists with more than 40 000 emission lines in the spectral range 4500-11 000 cm-1 (0.9-2.2 μm). The spectra exhibit emission lines over the complete spectral range under investigation with about 350-1300 lines per 100 cm-1. Depending on the microwave power, a fraction of 35-55% of all lines are blended. The total dynamic range of the detected lines covers about four orders of magnitude. Conclusions: Line density and peak intensities qualify the recorded discharge as a useful wavelength calibrator, and the line list provides an empirical reference for nitrogen spectra in the near-infrared. The line lists

  10. Using SPYBALs to Improve Pipeline Wavelength Calibrations for the First-Order Gratings of the GHRS

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.; Sherbert, Lisa E.; Hulbert, Stephen J.

    1994-11-01

    GHRS ISR-052 showed that wavelengths produced by PODPS can be significantly in error compared to the solution that would re- sult from obtaining a WAVECAL in conjunction with a science ex- posure. This report illustrates how the information contained in Spectrum Y Balance (SPYBAL) exposure, which is routinely obtained before many GHRS exposures, can be used to correct the default wavelengths so that they are nearly as good as if a WAVECAL had been specified. This procedure can also be used with archival data.

  11. Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Tzanavaris, P.; Webb, J. K.; Lovis, C.

    2007-06-01

    Echelle spectrographs currently provide some of the most precise and detailed spectra in astronomy, the interpretation of which sometimes depends on the wavelength calibration accuracy. In some applications, such as constraining cosmological variations in the fundamental constants from quasar absorption lines, the wavelength calibration is crucial. Here we detail an algorithm for selecting thorium-argon (ThAr) emission lines for wavelength calibration which incorporates the properties of both a new laboratory wavelength list and the spectrograph of interest. We apply the algorithm to the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (UVES) and demonstrate a factor of >~3 improvement in the wavelength calibration residuals (i.e. random errors) alone. It is also found that UVES spectra calibrated using a previous, widely distributed line-list contain systematic +/-30 -75 ms-1 distortions of the wavelength scale over both short and long wavelength ranges. These distortions have important implications for current UVES constraints on cosmological variations in the fine-structure constant. The induced systematic errors are most severe for Mg/FeII quasar absorbers in the redshift range 1.2 <~ zabs <~ 2.3, with individual absorbers studied by recent authors containing systematic errors up to four times larger than quoted statistical errors.

  12. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  13. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  14. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  15. A Novel Technique for Accurate Intensity Calibration of Area X-ray Detectors at Almost Arbitrary Energy.

    PubMed

    Moy, J P; Hammersley, A P; Svensson, S O; Thompson, A; Brown, K; Claustre, L; Gonzalez, A; McSweeney, S

    1996-01-01

    A novel intensity uniformity calibration method for area X-ray detectors is described. In diffraction experiments, amorphous lithium glass plates, containing doping elements chosen for their K edges just below the energy of the main beam, replace the crystallographic samples for the calibration measurement. The fluorescent emission excited by the X-ray beam is almost isotropic. It has exactly the same geometry as the diffracted radiation, and can be obtained at the same wavelength by proper selection of the element and excitation energy. A sample 2theta scan allows the emission distribution as a function of angle to be characterized with an accuracy of a fraction of a percent. This allows a flat-field correction of similar accuracy. The quality of crystallographic data collected with an X-ray image intensifier/CCD detector was significantly improved by flat-field correction using an Sr-doped lithium tetraborate glass. This technique can be applied to X-ray energies from 5 to 50 KeV; the calibration sample is small, stable and easily handled. PMID:16702651

  16. Calibrating the measurement of wavelength-dependent second harmonic generation from biological tissues with a BaB2O4 crystal

    NASA Astrophysics Data System (ADS)

    Shen, Mengzhe; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo

    2013-03-01

    Although second harmonic generation (SHG) imaging has emerged as a powerful tool for imaging biological tissues with submicron resolution, the excitation wavelength dependence of SHG intensity in biological tissues is an optical property that is not fully understood so far. We first calibrate system factors which may potentially affect the accuracy of the wavelength-dependent SHG measurement. Then our calibration is validated by measuring the wavelength dependence of SHG signal from a BaB2O4 crystal under different focusing conditions and comparing with the theoretical calculations. The good agreement between the experimental results and theoretical calculations demonstrates that we have established a reliable method to validate wavelength-dependent SHG measurement over a broad wavelength range. We also investigate the wavelength dependence of a 10-μm thick mouse tendon tissue in both forward and backward directions. It is found that SHG of mouse tendon tissue decreases monotonically for excitation from 750 to 950 nm.

  17. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  18. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  19. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  20. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Lohmann, George P.

    2002-09-01

    Paired δ18O and Mg/Ca measurements on the same foraminiferal shells offer the ability to independently estimate sea surface temperature (SST) changes and assess their temporal relationship to the growth and decay of continental ice sheets. The accuracy of this method is confounded, however, by the absence of a quantitative method to correct Mg/Ca records for alteration by dissolution. Here we describe dissolution-corrected calibrations for Mg/Ca-paleothermometry in which the preexponent constant is a function of size-normalized shell weight: (1) for G. ruber (212-300 μm) (Mg/Ca)ruber = (0.025 wt + 0.11) e0.095T and (b) for G. sacculifer (355-425 μm) (Mg/Ca)sacc = (0.0032 wt + 0.181) e0.095T. The new calibrations improve the accuracy of SST estimates and are globally applicable. With this correction, eastern equatorial Atlantic SST during the Last Glacial Maximum is estimated to be 2.9° ± 0.4°C colder than today.

  1. Note: On the wavelength dependence of the intensity calibration factor of extreme ultraviolet spectrometer determined with profile measurement of bremsstrahlung continuum

    SciTech Connect

    Yamaguchi, N.; Morita, S.; Dong, C. F.; Goto, M.; Maezawa, H.; Miyauchi, H.

    2015-06-15

    The absolute calibration factor of extreme ultraviolet spectroscopic instrument which has recently been determined from absolute radiation profile measurement of bremsstrahlung continuum has been investigated by comparing the calculated diffraction efficiency of grating. An overall tendency of the wavelength dependence of the calibration factor from 40 Å to 500 Å can be reproduced by that of the grating efficiency, especially the agreement between the measured calibration factor and the calculated grating efficiency has been found to be fairly good for the wavelength range 200 Å-500 Å.

  2. Atmospheric attenuation of solar radiation and calibration of multiple wavelength sun photometers

    SciTech Connect

    Price, D.M.; Mulholland, G.P.; Matthews, L.K.; King, D.L.

    1986-01-01

    The activities detailed in this report include a review of the literature pertaining to the atmospheric attenuation of solar radiation, the maintenance and calibration of Volz and Sandia designed sun photometers, a comparison of the SOLTRAN5 and LOW-TRAN6 spectral irradiance models, an evaluation of the Li-Cor LI-1800 spectral radiometer, and a comparison between Li-Cor measurements of solar spectral irradiance and the modeled results from LOWTRAN6. Suggestions for the improvement of the sun photometers and the Li-Cor are also given.

  3. Traceability of laser frequency/wavelength calibration through the frequency comb at Inmetro

    NASA Astrophysics Data System (ADS)

    Silva, I. L. M.; Couceiro, I. B.; Torres, M. A. C.; Costa, P. A.; Grieneisen, H. P. H.

    2016-07-01

    The acquisition of a femtosecond laser comb by the Optical Metrology Division of Inmetro now allows for carrying out high precision calibrations of optical frequencies for lasers which are used as standards of the length unit with gauge block interferometers. The frequency comb is operated as an optical frequency synthesizer and is presently linked to the time unit by a 10 MHz oscillator which is disciplined by GPS. Laser frequencies are determined with accuracy in the range of few parts in 1012. This measurement method now links the length unit, meter, to the SI-second attending the recommendation by the BIPM.

  4. Digital test signal generation: An accurate SNR calibration approach for the DSN

    NASA Technical Reports Server (NTRS)

    Gutierrez-Luaces, B. O.

    1991-01-01

    A new method of generating analog test signals with accurate signal to noise ratios (SNRs) is described. High accuracy will be obtained by simultaneous generation of digital noise and signal spectra at a given baseband or bandpass limited bandwidth. The digital synthesis will provide a test signal embedded in noise with the statistical properties of a stationary random process. Accuracy will only be dependent on test integration time with a limit imposed by the system quantization noise (expected to be 0.02 dB). Setability will be approximately 0.1 dB. The first digital SNR generator to provide baseband test signals is being built and will be available in early 1991.

  5. A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD-LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA

    SciTech Connect

    Madore, Barry F.; Freedman, Wendy L.; Kollmeier, Juna A.; Monson, Andy; Eric Persson, S.; Rich, Jeff A. Jr.; Scowcroft, Victoria; Seibert, Mark; Hoffman, Douglas E-mail: wendy@obs.carnegiescience.edu E-mail: amonson@obs.carnegiescience.edu E-mail: jrich@obs.carnegiescience.edu E-mail: mseibert@obs.carnegiescience.edu

    2013-10-20

    Using time-resolved, mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) and geometric parallaxes from the Hubble Space Telescope for four Galactic RR Lyrae variables, we derive the following Population II period-luminosity (PL) relations for the WISE [W1], [W2], and [W3] bands at 3.4, 4.6, and 12 μm, respectively: The slopes and the scatter around the fits are consistent with a smooth extrapolation of those same quantities from previously published K-band observations at 2.2 μm, where the asymptotic (long-wavelength) behavior is consistent with a period-radius relation with a slope of 0.5. No obvious correlation with metallicity (spanning 0.4 dex in [Fe/H]) is found in the residuals of the four calibrating RR Lyrae stars about the mean PL regression line.

  6. Accurate and Robust Calibration of the Extragalactic Distance Scale with the Maser Galaxy NGC4258

    NASA Astrophysics Data System (ADS)

    Greenhill, Lincoln

    2003-07-01

    The extragalactic distance scale {EDS} is defined by a comparison of Cepheid Period-Luminosity {PL} relations for nearby galaxies and the LMC, whose uncertain distance is thereby the SOLE anchor. Studies of maser sources orbiting the central black hole in the galaxy NGC4258 have provided the most accurate extragalactic distance ever {7.2+/- 0.5Mpc}. Since this distance is well determined and based on GEOMETRIC arguments, NGC4258 can provide a much needed new anchor for the EDS. We propose multi-epoch BVIH observations of NGC4258 in order to discover about 100 Cepheids and to characterize their light curves with 2-3 times greater accuracy than was previously possible with WFPC2. At 90 orbits {48 in Cycle 12; 42 in Cycle 13}, this is a relatively large program. However, the result will have a major impact on the EDS, and substantial attention must be paid to characterization and minimization of systematic errors, as from metallicity, crowding, and blending. The resulting dataset will be the most complete for Cepheids in any galaxy yet studied with HST. In an ongoing NASA-funded program {OSS-SARA}, we are using new analysis techniques and radio data to reduce uncertainty in the geometric distance to < 3% {0.07 mag}. With this improved geometric distance and the BVIH data, we will be able to calculate the zero point of the PL relation ROBUSTLY to <4% {0.09 mag}.

  7. Digital test signal generation: An accurate SNR calibration approach for the DSN

    NASA Technical Reports Server (NTRS)

    Gutierrez-Luaces, Benito O.

    1993-01-01

    In support of the on-going automation of the Deep Space Network (DSN) a new method of generating analog test signals with accurate signal-to-noise ratio (SNR) is described. High accuracy is obtained by simultaneous generation of digital noise and signal spectra at the desired bandwidth (base-band or bandpass). The digital synthesis provides a test signal embedded in noise with the statistical properties of a stationary random process. Accuracy is dependent on test integration time and limited only by the system quantization noise (0.02 dB). The monitor and control as well as signal-processing programs reside in a personal computer (PC). Commands are transmitted to properly configure the specially designed high-speed digital hardware. The prototype can generate either two data channels modulated or not on a subcarrier, or one QPSK channel, or a residual carrier with one biphase data channel. The analog spectrum generated is on the DC to 10 MHz frequency range. These spectra may be up-converted to any desired frequency without loss on the characteristics of the SNR provided. Test results are presented.

  8. Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimuthal filtering technique.

    PubMed

    Labonte, Laurent; Pagnoux, Dominique; Roy, Philippe; Bahloul, Faouzi; Zghal, Mourad; Melin, Gilles; Burov, Ekaterina; Renversez, Gilles

    2006-06-15

    A simple self-referenced nondestructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time-dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2 m MOF sample is found to be close to that provided by numerical predictions (approximately 25 nm higher). Because of the high dynamics of the measurement, the uncertainty is limited to Dlambda= +/-10 nm. PMID:16729068

  9. The important role of stellar atmosphere spectra for a consistent spectrophotometric calibration from the optical to the infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Decin, L.

    2008-12-01

    We discuss the role of stellar atmosphere models in the spectrophotometric calibration pedigree. It is shown that stellar atmosphere spectra form an essential ingredient for spectrophotometric calibration. Compared with other (infrared) calibration networks currently available, the marcs grid is shown to provide the calibration community with spectral reference energy distributions of higher accuracy improving the spectrophotometric calibration of infrared spectrometers by more than 3%.

  10. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.

    PubMed

    Zhu, Jinlong; Shi, Yating; Goddard, Lynford L; Liu, Shiyuan

    2016-09-01

    Critical dimension measurement accuracy in optical scatterometry relies not only on the systematic noise level of instruments and the reliability of forward modeling algorithms, but also heavily on the measurement configuration. To construct a set of potentially high-accuracy configurations, we apply a general measurement configuration optimization method based on error propagation theory and singular value decomposition, by which the measurement accuracy is approximated as a function of a pseudo Jacobian with respect to the measurement configurations. Simulations and experiments for the optical metrology of a sub-wavelength deep-etched multilayer grating establish the feasibility of the proposed method. PMID:27607258

  11. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.

    PubMed

    Slattery, Ashley D; Blanch, Adam J; Quinton, Jamie S; Gibson, Christopher T

    2013-08-01

    calibrate the cantilever spring constant using the thermal noise method, allowing complete force calibration to be accurately performed without tip-sample contact. PMID:23685172

  12. In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Zhechao; Schmidt, Florian M.

    2015-04-01

    The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 µm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/ 1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7 × 10-5 cm-1 Hz-1/2, the system is applicable down to an H2O concentration of 0.1 % at 1,000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded laboratory-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to real time in situ measurements of H2O concentration and temperature time histories (0.25-s time resolution) in the hot gases 2-11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1,200 and 1,600 K and H2O concentrations up to 40 % were detected above the biofuels.

  13. How accurately can current, planned and proposed InSAR missions measure slow, long-wavelength tectonic strain? (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, T. J.; Garthwaite, M.; Jung, H.; Shepherd, A.

    2010-12-01

    Since the launch of ERS-1 in 1991, InSAR has been widely used to measure large deformation events such as earthquakes or volcanic eruptions. In the last decade, small strains accumulating around locked crustal faults and dormant volcanic edifices have also been measured, in certain favourable conditions. In this presentation, we discuss the accuracy of current, planned and proposed InSAR missions. We quantify the main contributions to the error budget of a single interferogram at different spatial scales: atmospheric and orbital errors dominate at long wavelengths (tens of kilometres), and errors from system noise and surface incoherence at short spatial scales (tens of metres). We show that the optimum method for combining multiple interferograms to measure the average line-of-sight (LOS) deformation rate is via a weighted linear inversion of a connected network of short-interval interferograms. The LOS accuracy is strongly dependent on the mission length and satellite revisit time, as well as the spatial length scale. For example, to obtain an LOS accuracy of 1 mm/yr over 100 km requires 5 years of observation with a 13-day repeat, or 7 years for a 35-day repeat. We assess the ability of current (ERS/Envisat), planned (Sentinel-1), and proposed (SuperSAR, DesDYNI) satellite missions to measure long wavelength tectonic strain by estimating the proportion of global straining areas (as defined by the Global Strain Rate Map) where the strain rates are higher than the measurement error. The results highlight the importance of obtaining measurements in three dimensions in order to monitor all actively deforming regions. Of the planned/proposed missions, only SuperSAR (submitted to ESA’s Earth Explorer 8 call) has the ability to achieve 1 mm/yr accuracy over 100 km in all three dimensions after 5 years of observation. This is sufficient to map strain accumulating around faults that are responsible for 95% of damaging onshore earthquakes.

  14. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation

    PubMed Central

    Choi, Sung Soo Sean; Lashkari, Bahman; Dovlo, Edem; Mandelis, Andreas

    2016-01-01

    Accurate monitoring of blood oxy-saturation level (SO2) in human breast tissues is clinically important for predicting and evaluating possible tumor growth at the site. In this work, four different non-invasive frequency-domain photoacoustic (PA) imaging modalities were compared for their absolute SO2 characterization capability using an in-vitro sheep blood circulation system. Among different PA modes, a new WM-DPAR imaging modality could estimate the SO2 with great accuracy when compared to a commercial blood gas analyzer. The developed WM-DPARI theory was further validated by constructing SO2 tomographic images of a blood-containing plastisol phantom. PMID:27446691

  15. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation.

    PubMed

    Choi, Sung Soo Sean; Lashkari, Bahman; Dovlo, Edem; Mandelis, Andreas

    2016-07-01

    Accurate monitoring of blood oxy-saturation level (SO2 ) in human breast tissues is clinically important for predicting and evaluating possible tumor growth at the site. In this work, four different non-invasive frequency-domain photoacoustic (PA) imaging modalities were compared for their absolute SO2 characterization capability using an in-vitro sheep blood circulation system. Among different PA modes, a new WM-DPAR imaging modality could estimate the SO2 with great accuracy when compared to a commercial blood gas analyzer. The developed WM-DPARI theory was further validated by constructing SO2 tomographic images of a blood-containing plastisol phantom. PMID:27446691

  16. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    PubMed Central

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system. PMID:26543243

  17. Accurate calibration and control of relative humidity close to 100% by X-raying a DOPC multilayer

    SciTech Connect

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; Jiang, Zhang; Tristram-Nagle, Stephanie; Lurio, Laurence B.; Sinha, Sunil K.

    2015-01-01

    Here in this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstrate that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10–100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.

  18. Accurate calibration and control of relative humidity close to 100% by X-raying a DOPC multilayer

    DOE PAGESBeta

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; Jiang, Zhang; Tristram-Nagle, Stephanie; Lurio, Laurence B.; Sinha, Sunil K.

    2015-01-01

    Here in this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstratemore » that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10–100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.« less

  19. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  20. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  1. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  2. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  4. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  5. COS Internal FUV Wavelength Verification

    NASA Astrophysics Data System (ADS)

    Keyes, Charles

    2009-07-01

    This program will be executed after the uplink of the OSM1 position updates derived from the determination of the wavelength-scale zero points and desired spectral ranges for each grating in activity COS29 {program 11487 - COS FUV Internal/External Wavelength Scales}. This program will verify that the operational spectral ranges for each grating, central wavelength, and FP-POS are those desired. Subsequent to a successful verification, COS FUV ERO observations that require accurate wavelength scales {if any} and FUV science can be enabled. An internal wavelength calibration spectrum using the default PtNe lamp {lamp 1} with each FUV grating at each central wavelength setting and each FP-POS position will be obtained for the verification. Additional exposures and waits between certain exposures will be required to avoid - and to evaluate - mechanism drifts.

  6. Accurate and Precise Bottom Water Paleotemperatures from Aragonitic Benthic Foraminiferal Li/Mg: Calibration, Theory, and Application

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M., Jr.; Valley, S.; Lynch-Stieglitz, J.

    2015-12-01

    While great progress has been made in reconstructing past sea surface temperatures, reliable bottom water paleotemperature measurements are not routinely available. We suggest that Li/Mg ratios in biogenic aragonites, particularly in the cosmopolitan benthic foraminifer Hoeglundina elegans, have the potential to bridge this gap. Core top calibration shows that H. elegans Li/Mg decreases by 5.5% per °C (r2 = 0.91), with a relationship that is nearly identical to that displayed by a wide range of corals (r2 = 0.95). The fact that such disparate organisms behave so similarly suggests to us that thermodynamics are shining through the 'vital effects' that so often plague paleoceanographic proxies. We hypothesize that Ca2+ pumping causes Li/Ca and Mg/Ca ratios in the organisms' calcification pools to decline, while Li/Mg remains constant. Rayleigh fractionation has the opposite effect on calcification pool Li/Ca and Mg/Ca (they rise), while Li/Mg still remains essentially constant. Hence any environmental influences on Ca2+ pumping and/or Rayleigh fractionation, such as seawater carbonate chemistry, have no measurable effects on aragonite Li/Mg. Our first downcore test of the Li/Mg proxy is performed in core KNR166-2-26JPC from 546 m water depth in the Florida Straits. Benthic foraminiferal δ18O was previously used to document decreased seawater density during both Heinrich Stadial 1 (HS1) and the Younger Dryas (YD), consistent with flattening of isopycnals across the Florida Current caused by slowdown of the AMOC. Here we show striking agreement between H. elegans Li/Mg and ice-volume-corrected δ18O temperatures since ~17 ka (in both absolute values and temporal changes), confirming that bottom waters abruptly warmed during HS1 and the YD. The YD, which is better-resolved, was ~2°C warmer than the Holocene. Li/Mg indicates that Last Glacial Maximum bottom waters were ~2-3°C, or ~5°C colder than during the Holocene. If these glacial temperatures are accurate, they

  7. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    SciTech Connect

    Luo, Xiongbiao

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An

  8. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  9. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  10. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  11. Calibration of longwavelength exotech model 20-C spectroradiometer

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Robinson, B.; Silva, L.

    1978-01-01

    A brief description of the Exotech model 20-C field spectroradiometer which measures the spectral radiance of a target in the wavelength ranges 0.37 to 2.5 microns (short wavelength unit), 2.8 to 5.6 microns and 7.0 to 14 microns (long wavelength unit) is given. Wavelength calibration of long wavelength unit was done by knowing the strong, sharp and accurately known absorption bands of polystyrene, atmospheric carbon dioxide and methyl cyclohexane (liquid) in the infrared wavelength region. The spectral radiance calibration was done by recording spectral scans of the hot and the cold blackbodies and assuming that spectral radiance varies linearly with the signal.

  12. Assignment of Calibration Information to Deeper Phylogenetic Nodes is More Effective in Obtaining Precise and Accurate Divergence Time Estimates.

    PubMed

    Mello, Beatriz; Schrago, Carlos G

    2014-01-01

    Divergence time estimation has become an essential tool for understanding macroevolutionary events. Molecular dating aims to obtain reliable inferences, which, within a statistical framework, means jointly increasing the accuracy and precision of estimates. Bayesian dating methods exhibit the propriety of a linear relationship between uncertainty and estimated divergence dates. This relationship occurs even if the number of sites approaches infinity and places a limit on the maximum precision of node ages. However, how the placement of calibration information may affect the precision of divergence time estimates remains an open question. In this study, relying on simulated and empirical data, we investigated how the location of calibration within a phylogeny affects the accuracy and precision of time estimates. We found that calibration priors set at median and deep phylogenetic nodes were associated with higher precision values compared to analyses involving calibration at the shallowest node. The results were independent of the tree symmetry. An empirical mammalian dataset produced results that were consistent with those generated by the simulated sequences. Assigning time information to the deeper nodes of a tree is crucial to guarantee the accuracy and precision of divergence times. This finding highlights the importance of the appropriate choice of outgroups in molecular dating. PMID:24855333

  13. Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system built at the Space Dynamic Laboratory (SDL) to measure the spatial...

  14. AGLITE Lidar: Calibration and Retrievals of Well Characterized Aerosols from Agricultural Operations using a Three-wavelength Elastic Lidar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (Light Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. AGLITE is a three-wavelength portable scanning lidar system developed at the Space Dynamic Laboratory (SDL) to measure the spa...

  15. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Lin, C.; Gillespie, J.; Schuder, M. D.; Duberstein, W.; Beverland, I. J.; Heal, M. R.

    2015-01-01

    Low-power, and relatively low-cost, gas sensors have potential to improve understanding of intra-urban air pollution variation by enabling data capture over wider networks than is possible with 'traditional' reference analysers. We evaluated an Aeroqual Ltd. Series 500 semiconducting metal oxide O3 and an electrochemical NO2 sensor against UK national network reference analysers for more than 2 months at an urban background site in central Edinburgh. Hourly-average Aeroqual O3 sensor observations were highly correlated (R2 = 0.91) and of similar magnitude to observations from the UV-absorption reference O3 analyser. The Aeroqual NO2 sensor observations correlated poorly with the reference chemiluminescence NO2 analyser (R2 = 0.02), but the deviations between Aeroqual and reference analyser values ([NO2]Aeroq - [NO2]ref) were highly significantly correlated with concurrent Aeroqual O3 sensor observations [O3]Aeroq. This permitted effective linear calibration of the [NO2]Aeroq data, evaluated using 'hold out' subsets of the data (R2 ≥ 0.85). These field observations under temperate environmental conditions suggest that the Aeroqual Series 500 NO2 and O3 monitors have good potential to be useful ambient air monitoring instruments in urban environments provided that the O3 and NO2 gas sensors are calibrated against reference analysers and deployed in parallel.

  16. Accurate Laboratory Wavelengths of the e 3 Σ-(ν' = 5) - X 1 Σ+(ν'' = 0) Band of 12C16O

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Nortje, A. C.; Steenkamp, C. M.; Rohwer, E. G.; Du Plessis, A.

    2010-05-01

    The forbidden singlet-triplet transitions of carbon monoxide (CO) are important in the interpretation of vacuum ultraviolet interstellar absorption spectra and in particular for the measurement of large CO column densities. Twenty rovibronic lines of the e 3Σ-(ν' = 5) - X 1Σ+(ν'' = 0) band of 12 C 16O for which laboratory wavelengths were previously unavailable were identified in laser-induced fluorescence excitation spectra. Wavelengths were assigned to five rovibronic transitions to an average accuracy of 0.0028 Å. A further 15 lines could not be fully resolved and average wavelengths were measured for these groups of closely spaced lines. A wavelength difference of 0.011 ± 0.0028 Å between the measured wavelengths and the calculated wavelengths in the atlas of Eidelsberg & Rostas demonstrates the need for more experimental data on CO.

  17. Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines

    SciTech Connect

    Swann, William C.; Gilbert, Sarah L.

    2005-08-01

    We have measured the line centers and pressure-induced shift and broadening of 25 lines in the 2{nu}{sub 3} rotational-vibrational band of hydrogen cyanide H{sup 13}C{sup 14}N. These lines can be used as wavelength references in the optical fiber communication wavelength division multiplexing C-band (approximately 1530-1565 nm). We find that the pressure shift varies with line number from +0.09 pm/kPa to -0.15 pm/kPa (approximately -1.5 to +2.5 MHz/Torr). The pressure broadening also varies with line number and is typically between 1 and 5.4 pm/kPa (17-90 MHz/Torr). We determined the line centers of 21 lines with an expanded uncertainty (2{sigma}) of 0.01 pm ({approx_equal}1 MHz), an improvement of more than 1 order of magnitude over previous line center measurements of this band. We also calculate the molecular constants for the band, yielding improved determination of the band origin frequency and the excited-state molecular constants.

  18. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot

    PubMed Central

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2014-01-01

    Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  19. Accurate three-dimensional virtual reconstruction of surgical field using calibrated trajectories of an image-guided medical robot.

    PubMed

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J

    2014-10-01

    Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071

  20. Calibrating the High Density Magnetic Port within Tissue Expanders to Achieve more Accurate Dose Calculations for Postmastectomy Patients with Immediate Breast Reconstruction

    NASA Astrophysics Data System (ADS)

    Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine

    In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.

  1. Calibration of DFT Functionals for the Prediction of 57Fe Mössbauer Spectral Parameters in Iron-Nitrosyl and Iron-Sulfur Complexes: Accurate Geometries Prove Essential

    PubMed Central

    Sandala, Gregory M.; Hopmann, Kathrin H.; Ghosh, Abhik

    2011-01-01

    structure. Significant improvements to the isomer shift calibrations are obtained for B3LYP and B3LYP* when geometries obtained with the OLYP functional are used. In addition, greatly improved performance of these functionals is found if the complete test set is grouped separately into Fe–NO and Fe–S complexes. Calibration fits including only Fe–NO complexes are found to be excellent, while those containing the non-nitrosyl Fe–S complexes alone are found to demonstrate less accurate correlations. Similar trends are also found with OLYP, OPBE, PW91, and BP86. Correlations between experimental and calculated QSs were also investigated. Generally, universal and separate Fe–NO and Fe–S fit parameters obtained to determine QSs are found to be of good to excellent quality for every density functional examined, especially if [Fe4(NO)4(μ3-S)4]− is removed from the test set. PMID:22039359

  2. A laser-lock concept to reach cm s-1-precision in Doppler experiments with Fabry-Pérot wavelength calibrators

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Banyal, R. K.; Ulbrich, R. G.

    2014-09-01

    State-of-the-art Doppler experiments require wavelength calibration with precision at the cm s-1 level. A low-finesse Fabry-Pérot interferometer (FPI) can provide a wavelength comb with a very large bandwidth as required for astronomical experiments, but unavoidable spectral drifts are difficult to control. Instead of actively controlling the FPI cavity, we propose to passively stabilize the interferometer and track the time-dependent cavity length drift externally using the 87Rb D2 atomic line. A dual-finesse cavity allows drift tracking during observation. In the low-finesse spectral range, the cavity provides a comb transmission spectrum tailored to the astronomical spectrograph. The drift of the cavity length is monitored in the high-finesse range relative to an external standard: a single narrow transmission peak is locked to an external cavity diode laser and compared to an atomic frequency from a Doppler-free transition. Following standard locking schemes, tracking at sub-mm s-1 precision can be achieved. This is several orders of magnitude better than currently planned high-precision Doppler experiments, and it allows freedom for relaxed designs including the use of a single-finesse interferometer under certain conditions. All components for the proposed setup are readily available, rendering this approach particularly interesting for upcoming Doppler experiments. We also show that the large number of interference modes used in an astronomical FPI allows us to unambiguously identify the interference mode of each FPI transmission peak defining its absolute wavelength solution. The accuracy reached in each resonance with the laser concept is then defined by the cavity length that is determined from the one locked peak and by the group velocity dispersion. The latter can vary by several 100 m s-1 over the relevant frequency range and severely limits the accuracy of individual peak locations, although their interference modes are known. A potential way to

  3. Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements.

    PubMed

    Hori, Teruhito; Araya, Akito; Moriwaki, Shigenori; Mio, Norikatsu

    2007-02-01

    We have developed a wavelength-stabilized laser diode (LD) for geophysical measurement devices, which benefit from the uniformity of laser light. Regarding this purpose, a system that has such characteristics as low power consumption, sturdiness against mechanical disturbances, and a long life with long-term frequency stability is especially required. Therefore, we adopt as the light source a distributed Bragg reflector (DBR) LD because it has various advantages concerning such properties. This paper describes the durable and compact wavelength-stabilized laser system. Since our DBR-LD oscillates at 852 nm, we selected the Cs-D2 line (6 2S1/2-6 2P3/2 transition) as a frequency reference to obtain a long-term stability in wavelength. Stabilization is performed by a feedback system using a modulation transfer (MT) method, which is a kind of Doppler-free saturated absorption spectroscopy, to acquire a saturated absorption signal with a high signal-to-noise ratio. Using this system, we could continuously lock the laser frequency to the hyperfine component of the Cs-D2 line for more than one week. By an Allan standard deviation measurement, the uncertainty of the stabilized laser frequency was found to be better than 1 x 10(-10) (<40 kHz) in a Gatetime region longer than 100 s. PMID:17578154

  4. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  5. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  6. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  7. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand

    2015-09-01

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α =0.0 ) and HSE06 (α =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been

  8. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  9. [Calibration Procedure of Laser Confocal Micro-Raman Spectrometer].

    PubMed

    Zhao, Ying-chun; Ren, Ling-ling; Wei, Wei-sheng; Yao, Ya-xuan

    2015-09-01

    As a common spectral characterization technique, Raman spectroscopy is widely used and has a specified calibration procedure. Based on laser confocal micro-Raman spectrometer, in this paper, we briefly introduced the principle, configuration and main components of Raman spectrometer. In addition, the calibration procedures were also presented, with an emphasis on the calibration of spectrometer (spectrograph) and that of excitation laser wavelength. On the basis of conventional calibration method, a novel and more accurate method was proposed to obtain the actual excitation wavelength, that is, calibration at the point of Raman shift Δν=0. Using this novel calibration method of excitation wavelength, Raman frequency shift values of sulfur were measured, and compared with the standard values from American Society Testing and Materials (ASTM). As a result, the measured values after calibration were consistent with those ASTM values, which indicated that the calibration method is accurate. Thus, a more reasonable calibration procedure of the laser confocal micro-Raman spectrometer was provided. PMID:26669164

  10. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; Zeuch, M. A.; Pollock, C. J.; Jacques, A. D.

    2015-01-01

    system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. More precise calibration is highly desirable as the instruments will produce higher quality raw data that will require less post-acquisition data correction using results from in-flight pitch angle distribution measurements and ground calibration measurements. The detection system description and the fundamental concepts of this new calibration method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters and how to choose the optimum detection system operating point. This new method has been successfully applied to achieve a highly accurate calibration of the DESs and DISs of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown that, with further detailed modeling, this method can be extended for use in flight to achieve and maintain a highly accurate detection system calibration across a large number of instruments during the mission.

  11. Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial least-squares and hybrid linear analyses. Application of a novel method of wavelength selection.

    PubMed

    Goicoechea, H C; Olivieri, A C

    1999-07-12

    The mucolitic bromhexine [N-(2-amino-3,5-dibromobenzyl)-N-methylcyclohexylamine] has been determined in cough suppressant syrups by multivariate spectrophotometric calibration, together with partial least-squares (PLS-1) and hybrid linear analysis (HLA). Notwithstanding the spectral overlapping between bromhexine and syrup excipients, as well as the intrinsic variability of the latter in unknown samples, the recoveries are excellent. A novel method of wavelength selection was also applied, based on the concept of net analyte signal regression, as adapted to the HLA methodology. This method allows one to improve the performance of both PLS-1 and HLA in samples containing nonmodeled interferences. PMID:18967655

  12. Primer on multivariate calibration

    SciTech Connect

    Thomas, E.V. )

    1994-08-01

    In analytical chemistry, calibration is the procedure that relates instrumental measurements to an analyte of interest. Typically, instrumental measurements are obtained from specimens in which the amount (or level) of the analyte has been determined by some independent and inherently accurate assay (e.g., wet chemistry). Together, the instrumental measurements and results from the independent assays are used to construct a model that relates the analyte level to the instrumental measurements. The advent of high-speed digital computers has greatly increased data acquisition and analysis capabilities and has provided the analytical chemist with opportunities to use many measurements - perhaps hundreds - for calibrating an instrument (e.g., absorbances at multiple wave-lengths). To take advantage of this technology, however, new methods (i.e., multivariate calibration methods) were needed for analyzing and modeling the experimental data. The purpose of this report is to introduce several evolving multivariate calibration methods and to present some important issues regarding their use. 30 refs., 7 figs.

  13. Accurate Fourier transform infrared (FT-IR) spectroscopy measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) calibrated with synthetic spectra.

    PubMed

    Flores, Edgar; Viallon, Joële; Moussay, Philippe; Wielgosz, Robert Ian

    2013-10-01

    A novel method for determining the accuracy of laboratory-based measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) mole fractions using Fourier transform infrared (FT-IR) spectroscopy 1 cm(-1) resolution instruments calibrated with synthetic spectra has been developed. The traceability of these measurement results is to the reference line strength data contained within the high-resolution transmission molecular absorption (HITRAN) database. Incorporating a proper estimate of the uncertainty of this data into the measurement results will ensure that the SI traceable values are encompassed within the uncertainty of the measurement results. The major contributors to the uncertainties of the results are, in descending order of importance, the uncertainty in the line strength values (HITRAN 2004), the uncertainty attributed to the generation of reference spectra (including knowledge of the optical path length of the FT-IR gas cell), and temperature measurements of the gas. The stability of the FT-IR instrument itself is only a minor contributor to the overall uncertainty of the measurements. FT-IR measurements of NO2 mole fractions at nominal values of 10 μmol mol(-1) calibrated with synthetic spectra lead to standard uncertainties of 0.34 μmol mol(-1) (3.4% relative). In contrast, calibration of the FT-IR instrument with SI traceable gas standards generated by a dynamic weighing system resulted in measurements results with standard uncertainties of 0.04 μmol mol(-1) (0.4% relative). When comparing the consistency of measurement results based on the synthetic calibration method against those obtained by calibrations with SI traceable gas standards, the existence of a potential bias of ~5% was observed, although this was within the stated uncertainties of the results. The FT-IR measurements of HNO3 mole fractions at nominal values of 200 nmol mol(-1) calibrated with synthetic spectra resulted in values with standard uncertainties of 23 nmol mol(-1) (11

  14. A novel device for automatic withdrawal and accurate calibration of 99m-technetium radiopharmaceuticals to minimise radiation exposure to nuclear medicine staff and patient.

    PubMed

    Nazififard, Mohammad; Mahdizadeh, Simin; Meigooni, A S; Alavi, M; Suh, Kune Y

    2012-09-01

    A Joint Automatic Dispenser Equipment (JADE) has been designed and fabricated for automatic withdrawal and calibration of radiopharmaceutical materials. The thermoluminescent dosemeter procedures have shown a reduction in dose to the technician's hand with this novel dose dispenser system JADE when compared with the manual withdrawal of (99m)Tc. This system helps to increase the precision of calibration and to minimise the radiation dose to the hands and body of the workers. This paper describes the structure of this device, its function and user-friendliness, and its efficacy. The efficacy of this device was determined by measuring the radiation dose delivered to the hands of the nuclear medicine laboratory technician. The user-friendliness of JADE has been examined. The automatic withdrawal and calibration offered by this system reduces the dose to the technician's hand to a level below the maximum permissible dose stipulated by the international protocols. This research will serve as a backbone for future study about the safe use of ionising radiation in medicine. PMID:22628527

  15. Redundant 230Th/ 234U/ 238U, 231Pa/ 235U and 14C dating of fossil corals for accurate radiocarbon age calibration

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Chien; Fairbanks, Richard G.; Mortlock, Richard A.; Cao, Li; Fairbanks, Todd W.; Bloom, Arthur L.

    2006-09-01

    230Th/ 234U/ 238U dating of fossil corals by mass spectrometry is remarkably precise, but some samples exposed to freshwater over thousands of years may gain and/or lose uranium and/or thorium and consequently yield inaccurate ages. Although a δ 234U initial value equivalent to modern seawater and modern corals has been an effective quality control criterion, for samples exposed to freshwater but having δ 234U initial values indistinguishable from modern seawater and modern corals, there remains a need for additional age validation in the most demanding applications such as the 14C calibration (Fairbanks et al., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/ 234U/ 238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16-17), 1781-1796). In this paper we enhance screening criteria for fossil corals older than 30,000 years BP in the Fairbanks0805 radiocarbon calibration data set (Fairbanks et al., 2005) by measuring redundant 230Th/ 234U/ 238U and 231Pa/ 235U dates via multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-MS-ICPMS) using techniques described in Mortlock et al. (2005. 230Th/ 234U/ 238U and 231Pa/ 235U ages from a single fossil coral fragment by multi-collector magnetic-sector inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 69(3), 649-657.). In our present study, we regard paired 231Pa/ 235U and 230Th/ 234U/ 238U ages concordant when the 231Pa/ 235U age (±2 σ) overlaps with the associated 230Th/ 234U/ 238U age (±2 σ). Out of a representative set of 11 Fairbanks0805 (Fairbanks et al., 2005) radiocarbon calibration coral samples re-measured in this study, nine passed this rigorous check on the accuracy of their 230Th/ 234U/ 238U ages. The concordancy observed between 230Th/ 234U/ 238U and 231Pa/ 235U dates provides convincing evidence to support closed system behavior of these fossil corals and validation of their 230Th/ 234U/ 238U

  16. InfraRed Standards Used for Spectrophotometric Calibration - Application to the Medium Resolution Spectrometer of {MIRI}

    NASA Astrophysics Data System (ADS)

    Decin, L.; Bauwens, E.; Blommaert, J. A. D. L.

    2007-04-01

    One of the main ingredients in establishing the relation between input signal and output flux from a spectrometer, is the accurate determination of the {spectrophotometric calibration}. In case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the reliability of the candidate calibrators as being fiducial. In this contribution, we deal with the spectrophotometric calibration of {infrared} spectrometers in the 2-200 μm wavelength range. We outline a general selection procedure to arrive at a set of fiducial IR calibrators, and apply the method to the Medium Resolution Spectrometer of MIRI which will be onboard the James Webb Space Telescope.

  17. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  18. Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Salati, Seyedali; Khorsandi, Alireza

    2014-09-01

    We introduce the basics of an apodized 2f/1f wavelength modulation method for the spectroscopy of the R(9) transition line in the first overtone band of carbon monoxide (12C16O) in near-infrared (NIR) region around 2.33 μm. Performance of the method is investigated for high gas concentrations beyond the optically thin limit to generalize common 2f/1f wavelength modulation spectroscopy (WMS) reported by Rieker et al. (Appl Opt 48:5546, [28]). Numerical simulations are performed based on real experimental parameters associated with a NIR spectrometer designed in our laboratory. The results primarily show a more linear response and less error than occurred in the common WMS-2f/1f method for an optically thick sample. It is also theoretically shown that the apodized method enables sharpening the spectrum without peak displacement compared to the common WMS-2f/1f method. The validity of the method is verified experimentally by the trace detection of an air-broadened R(9) CO absorption line centered at 4,294.637 cm-1 at atmospheric pressure and room temperature. The effect of a so-called scaling k-factor on the sharpening of WMS-2f/1f signal is investigated through trace simulation and detection of CO and methane (CH4) lines in the scanning range of a distributed feedback laser. The obtained results show very good agreement between simulation and experiment.

  19. Field calibration of stable isotopes (δ18O) in coccoliths : Toward an accurate carbonate record-based reconstruction of the photic zone temperature

    NASA Astrophysics Data System (ADS)

    Candelier, Y.; Minoletti, F.; Hermoso, M.; Probert, I.

    2010-12-01

    Oxygen-isotopes from biogenic carbonates have been widely used to estimate SSTs during the Cenozoic. The full potential of coccolithophores for reconstructing past temperatures is still unexploited owing to two major issues: their minute size that prevents their isotopic analyzes at the specific level as done for foraminifera, and the large range of interspecific isotopic offsets (~ 5‰) ascribed to the vital effect (Ziveri et al., 2003). To test the suitability of applying in vitro data for the truly pelagic natural record, we established new coccolithophorid δ18O-temperature calibrations from sediments that we compared to empirical thermodependance equations from previous culture experiments. In this respect, we focused on two foremost coccolithophore species: Calcidicus leptoporus and Gephyrocapsa oceanica. We successfully obtained monospecific fractions of those taxa by applying a microfiltering protocol (Minoletti et al., 2009) on Holocene sediments for which the temperature of the photic zone water has been directly measured. For G. oceanica, the constant offset (δcGo-δceq) of ~ +1.5‰ with respect to equilibrium is in a good agreement with previous culture experiments (~ +1.6‰; Ziveri et al., 2003). Conversely, for C. leptoporus, although the relation between temperature and oxygen-isotopic fractionation is also well-behaved between 16 and 27°C, we found a significant discrepancy with previous cultures (-2.8‰; Dudley et al., 1986). This difference could be the result of growing conditions in the lab that may not mimate the natural environment (seawater chemistry such as pH, nutrient level, cell concentration, …). We generated new isotopic results of preliminary temperature-controlled experiments for C. leptoporus in constrained conditions close to the natural environment. We measured an isotopic offset comparable to the one from our sedimentologic study. Hence, we suggest a new correction of -1.2‰ for C. leptoporus, which may be more

  20. ACCURATE LABORATORY WAVELENGTHS OF THE e {sup 3} {Sigma}{sup -}({nu}' = 5) - X {sup 1} {Sigma}{sup +}({nu}'' = 0) BAND OF {sup 12}C{sup 16}O

    SciTech Connect

    Dickenson, G. D.; Nortje, A. C.; Steenkamp, C. M.; Rohwer, E. G.; Du Plessis, A.

    2010-05-10

    The forbidden singlet-triplet transitions of carbon monoxide (CO) are important in the interpretation of vacuum ultraviolet interstellar absorption spectra and in particular for the measurement of large CO column densities. Twenty rovibronic lines of the e {sup 3}{Sigma}-({nu}' = 5) - X {sup 1}{Sigma}{sup +}({nu}'' = 0) band of {sup 12} C {sup 16}O for which laboratory wavelengths were previously unavailable were identified in laser-induced fluorescence excitation spectra. Wavelengths were assigned to five rovibronic transitions to an average accuracy of 0.0028 A. A further 15 lines could not be fully resolved and average wavelengths were measured for these groups of closely spaced lines. A wavelength difference of 0.011 {+-} 0.0028 A between the measured wavelengths and the calculated wavelengths in the atlas of Eidelsberg and Rostas demonstrates the need for more experimental data on CO.

  1. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  2. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  3. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  4. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  5. The COS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hodge, Philip E.; Keyes, C.; Kaiser, M.

    2007-12-01

    The COS calibration pipeline (CALCOS) includes three main components: basic calibration, wavelength calibration, and spectral extraction. Calibration of modes using the far ultraviolet (FUV) and near ultraviolet (NUV) detectors share a common structure, although the individual reference files differ and there are some additional steps for the FUV channel. The pipeline is designed to calibrate data acquired in either ACCUM or time-tag mode. The basic calibration includes pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. Wavelength calibration can be done either by using separate lamp exposures or by taking several short lamp exposures concurrently with a science exposure. For time-tag data, the latter mode ("tagflash") will allow better correction of potential drift of the spectrum on the detector. One-dimensional spectra will be extracted and saved in a FITS binary table. Separate columns will be used for the flux-calibrated spectrum, error estimate, and the associated wavelengths. CALCOS is written in Python, with some functions in C. It is similar in style to other HST pipeline code in that it uses an association table to specify which files to be included, and the calibration steps to be performed and the reference files to use are specified by header keywords. Currently, in conjunction with the Instrument Definition Team (led by J. Green), the ground-based reference files are being refined, delivered, and tested with the pipeline.

  6. Accurate blackbodies

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Watson, Mike; Topham, Shane; Scott, Deron; Wojcik, Mike; Bingham, Gail

    2010-07-01

    Infrared radiometers and spectrometers generally use blackbodies for calibration, and with the high accuracy needs of upcoming missions, blackbodies capable of meeting strict accuracy requirements are needed. One such mission, the NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which will measure Earth's emitted spectral radiance from orbit, has an absolute accuracy requirement of 0.1 K (3σ) at 220 K over most of the thermal infrared. Space Dynamics Laboratory (SDL) has a blackbody design capable of meeting strict modern accuracy requirements. This design is relatively simple to build, was developed for use on the ground or onorbit, and is readily scalable for aperture size and required performance. These-high accuracy blackbodies are currently in use as a ground calibration unit and with a high-altitude balloon instrument. SDL is currently building a prototype blackbody to demonstrate the ability to achieve very high accuracy, and we expect it to have emissivity of ~0.9999 from 1.5 to 50 μm, temperature uncertainties of ~25 mK, and radiance uncertainties of ~10 mK due to temperature gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the low temperature uncertainty is attained by including phase change materials such as mercury, gallium, and water in the blackbody. Blackbody temperature sensors are calibrated at the melt points of these materials, which are determined by heating through their melt point. This allows absolute temperature calibration traceable to the SI temperature scale.

  7. Determination of spectrometer-detector parameters from calibration spectra and the use of the parameters in spectrometer calibrations.

    PubMed

    Holy, John A

    2004-10-01

    The grating equation is used to generate quadratic calibration equations for multichannel detectors with perpendicular and tilted focal planes. The quadratic coefficients are not independent and contain terms that are used to solve for spectrometer-detector parameters. The parameters can be calculated from a quadratic fit at one spectrometer position, but more accurate values can be obtained from quadratic fits at two spectrometer positions. The calculations show that the detector focal plane is tilted by about two degrees. Once values for the spectrometer-detector parameters are obtained from calibrations using at least three lines at one or two spectrometer positions, only one calibration line at any spectrometer position is required to obtain accuracies on the order of 0.1 cm(-1) over a several thousand wavenumber range. The main cause of spectrometer drift is a change in the diffraction angle and/or the spectrometer included angle. This drift is almost totally compensated by the one-line calibration, which adjusts the diffraction angle. A neon pen lamp is used to generate the calibration spectra. Using standard air wavelengths compared to true wavelengths can produce calibration errors of 0.1 to 0.6 cm(-1); the magnitude depends on local conditions and how the laser wavelength is treated. PMID:18070401

  8. Selection of stars to calibrate Gaia

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  9. Four-wavelength retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan Jensen

    1999-11-01

    This dissertation documents the design and construction of a four-wavelength retinal vessel oximeter, the Eye Oximeter (EOX). The EOX scans low-powered laser beams (at 629, 678, 821 and 899 nm) into the eye and across a targeted retinal vessel to measure the transmittance of the blood within the vessel. From the transmittance measurements, the oxygen saturation of the blood within the vessel is computed. Retinal vessel oxygen saturation has been suggested as a useful parameter for monitoring a wide range of conditions including occult blood loss and a variety of ophthalmic diseases. An artificial eye that simulates the geometry of a human retinal vessel was constructed and used to calibrate the EOX saturation measurement. A number of different oximetry equations were developed and tested. From measurements made on whole human blood in the artificial eye, an oximetry equation that places a linear wavelength dependance on the scattering losses (3% decrease from 629 to 899 nm) is found to best calibrate the EOX oxygen saturation measurement. This calibration also requires that an adjustment be made to the absorption coefficient of hemoglobin at 629 nm that has been reported in the literature. More than 4,000 measurements were made in the eyes of three human subjects during the development of the EOX. Applying the oximetry equation developed through the in vitro experiments to human data, the average human retinal venous oxygen saturation is estimated to be 0.63 +/- 0.07 and the average human retinal arterial oxygen saturation is 0.99 +/- 0.03. Furthermore, measurements made away from the optic disk resulted in a larger variance in the calculated saturation when compared to measurements made on the optic disk. A series of EOX experiments using anesthetized swine helped to verify the sensitivity of the EOX measurement of oxygen saturation. It is found that the calibration in swine differed from the calibration in the artificial eye. An empirical calibration from the

  10. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  11. A color sensor wavelength meter

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin; Jackson, Jarom; Otterstrom, Nils; Jones, Tyler; Archibald, James

    2016-05-01

    We will discuss a laser wavelength meter based on a commercial color sensor chip consisting of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined with picometer-level precision and with picometer-scale calibration drift over a period longer than a month. This work was supported by NSF Grant Number PHY-1205736.

  12. SWOC: Spectral Wavelength Optimization Code

    NASA Astrophysics Data System (ADS)

    Ruchti, G. R.

    2016-06-01

    SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.

  13. Improving self-calibration

    NASA Astrophysics Data System (ADS)

    Enßlin, Torsten A.; Junklewitz, Henrik; Winderling, Lars; Greiner, Maksim; Selig, Marco

    2014-10-01

    Response calibration is the process of inferring how much the measured data depend on the signal one is interested in. It is essential for any quantitative signal estimation on the basis of the data. Here, we investigate self-calibration methods for linear signal measurements and linear dependence of the response on the calibration parameters. The common practice is to augment an external calibration solution using a known reference signal with an internal calibration on the unknown measurement signal itself. Contemporary self-calibration schemes try to find a self-consistent solution for signal and calibration by exploiting redundancies in the measurements. This can be understood in terms of maximizing the joint probability of signal and calibration. However, the full uncertainty structure of this joint probability around its maximum is thereby not taken into account by these schemes. Therefore, better schemes, in sense of minimal square error, can be designed by accounting for asymmetries in the uncertainty of signal and calibration. We argue that at least a systematic correction of the common self-calibration scheme should be applied in many measurement situations in order to properly treat uncertainties of the signal on which one calibrates. Otherwise, the calibration solutions suffer from a systematic bias, which consequently distorts the signal reconstruction. Furthermore, we argue that nonparametric, signal-to-noise filtered calibration should provide more accurate reconstructions than the common bin averages and provide a new, improved self-calibration scheme. We illustrate our findings with a simplistic numerical example.

  14. Development and performance of the MUSE calibration unit

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Bauer, Svend-Marian; Hahn, Thomas; Jahn, Thomas; Kosmalski, Johan; Laurent, Florence; Laux, Uwe; Larrieu, Marie; Loupias, Magali; Olaya, Jean-Christophe; Popow, Emil; Roth, Martin M.; Srivastava, Mudit; Streicher, Ole; Weilbacher, Peter; Bacon, Roland M.

    2012-09-01

    The Multi-Unit Spectroscopic Explorer (MUSE), an integral-field spectrograph for the ESO Very Large Telescope, has been built and integrated by a consortium of 7 European institutes. MUSE can simultaneously record spectra across a field of view of 1 square arcminute in the wavelength range from 465nm to 930nm. The calibration unit (CU) for MUSE was developed to provide accurate flat fielding, spectral, geometrical, image quality and efficiency calibration for both the wide-field and AO-assisted narrow-field modes. This paper describes the performance of the CU and electronics, from the subsystem validation to the integration, alignment and use in the MUSE instrument.

  15. COS Internal NUV Wavelength Verification

    NASA Astrophysics Data System (ADS)

    Keyes, Charles

    2009-07-01

    This program will be executed after the uplink of the OSM2 position updates derived from the determination of the wavelength-scale zero points and desired spectral ranges for each grating in activity COS14 {program 11474 - COS NUV Internal/External Wavelength Scales}. This program will verify that the operational spectral ranges for each grating, central wavelength, and FP-POS are those desired. Subsequent to a successful verification, COS NUV ERO observations and NUV science can be enabled. An internal wavelength calibration spectrum using the default PtNe lamp {lamp 1} with each NUV grating at each central wavelength setting and each FP-POS position will be obtained for the verification. Additional exposures and waits between certain exposures will be required to avoid - and to evaluate - mechanism drifts.

  16. SERTS-95 Measurements of Wavelength Shifts in Coronal Emission Lines Across a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffery W.; Thomas, Roger; Davila, Joseph

    1999-01-01

    We used slit spectra from the 1995 flight of Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS-95) to measure wavelength shifts of coronal emission lines in the core of NOAA active region 7870 relative to its immediate surroundings (its "edge"). This method circumvents the unavailability of reliable laboratory rest wavelengths for the observed lines by using wavelengths from the edge spectrum as references. We derived the, SERTS-95 wavelength calibration from measurements of a post-flight laboratory spectrum containing 28 He II and Ne II EUV standard wavelengths known to high accuracy. Wavelength measurements for lines of He I, Ne III, and additional lines of Ne II in the laboratory calibration spectrum provide more accurate values than were previously available, enabling these lines also to serve as future calibration standards. Six solar lines were chosen for this study, namely, He II at 303.78 A, Fe XII at 193.51 A, Fe XIII at 202.05 A, Fe XIV at 211.33 A, Fe XV at 284.15 A, and Fe XVI at 335.41 A. Because these lines are free from known blends in the SERTS-95 spectra and are either intrinsically strong or near the SERTS-95 peak sensitivity, they are our most reliable lines for measuring relative wavelength shifts in the spatially resolved active region core spectra. The iron ions are the hottest ions ever used for this type of analysis. All six lines reveal statistically significant spatial variations in their measured relative wavelength shifts in the active region core, including mixtures of blueshifts and redshifts (each with maximum values corresponding to relative Doppler velocities approximately 15 km/s), indicating a dynamic, turbulent corona. For each of these lines we calculated weighted-average relative Doppler velocities from the wavelength shifts in the spatially resolved core spectra by weighting the shifts in the individual spatial pixels with their respective measurement uncertainties.

  17. Gaia-ESO Survey: Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440-6810 Å in the γ Velorum cluster, and calibration of spectral indices

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Prisinzano, L.; Micela, G.; Randich, S.; Gilmore, G.; Drew, J. E.; Jeffries, R. D.; Frémat, Y.; Alfaro, E. J.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Sacco, G. G.; Smiljanic, R.; Jackson, R. J.; de Laverny, P.; Morbidelli, L.; Worley, C. C.; Hourihane, A.; Costado, M. T.; Jofré, P.; Lind, K.; Maiorca, E.

    2014-06-01

    -main-sequence stars outside the parameter range of the ELODIE dataset, index calibration relies on model isochrones. We check our calibrations against current Gaia-ESO UVES results, plus a number of Survey benchmark stars, and also against Gaia-ESO observations of young clusters, which contribute to establishing the good performance of our method across a wide range of stellar parameters. Our gravity determination for late-type PMS stars is found to be accurate enough to let us obtain gravity-based age estimates for PMS clusters. Finally, our gravity determinations support the existence of an older pre-main-sequence population in the γ Vel sky region, in agreement with evidence obtained from the lithium depletion pattern of the same stars. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002).Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A50

  18. Long-term analysis of GOME in-flight calibration parameters and instrument degradation.

    PubMed

    Coldewey-Egbers, Melanie; Slijkhuis, Sander; Aberle, Bernd; Loyola, Diego

    2008-09-10

    Since 1995, the Global Ozone Monitoring Experiment (GOME) has measured solar and backscattered spectra in the ultraviolet and visible wavelength range. Now, the extensive data set of the most important calibration parameters has been investigated thoroughly in order to analyze the long-term stability and performance of the instrument. This study focuses on GOME in-flight calibration and degradation for the solar path. Monitoring the sensor degradation yields an intensity decrease of 70% to 90% in 240-316 nm and 35% to 65% in 311-415 nm. The spectral calibration is very stable over the whole period, although a very complex interaction between predisperser temperature and wavelength was found. The leakage current and the pixel-to-pixel gain increased significantly during the mission, which requires an accurate correction of the measured radiance and irradiance signals using proper calibration parameters. Finally, several outliers in the data sets can be directly assigned to instrument and satellite anomalies. PMID:18784780

  19. Two-Step Calibration of a Multiwavelength Pyrometer for High Temperature Measurement Using a Quartz Lamp

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    2001-01-01

    There is no theoretical upper temperature limit for pyrometer application in temperature measurements. NASA Glenn's multiwavelength pyrometer can make measurements over wide temperature ranges. However, the radiation spectral response of the pyrometer's detector must be calibrated before any temperature measurement is attempted, and it is recommended that calibration be done at temperatures close to those for which measurements will be made. Calibration is a determination of the constants of proportionality at all wavelengths between the detector's output (voltage) and its input signals (usually from a blackbody radiation source) in order to convert detector output into radiation intensity. To measure high temperatures, the detectors are chosen to be sensitive in the spectral range from 0.4 to 2.5 micrometers. A blackbody furnace equilibrated at around 1000 C is often used for this calibration. Though the detector may respond sensitively to short wavelengths radiation, a blackbody furnace at 1000 C emits only feebly at very short wavelengths. As a consequence, the calibration constants that result may not be the most accurate. For pyrometry calibration, a radiation source emitting strongly at the short wavelengths is preferred. We have chosen a quartz halogen lamp for this purpose.

  20. Towards an Accurate Orbital Calibration of Late Miocene Climate Events: Insights From a High-Resolution Chemo- and Magnetostratigraphy (8-6 Ma) from Equatorial Pacific IODP Sites U1337 and U1338

    NASA Astrophysics Data System (ADS)

    Drury, A. J.; Westerhold, T.; Frederichs, T.; Wilkens, R.; Channell, J. E. T.; Evans, H. F.; Hodell, D. A.; John, C. M.; Lyle, M. W.; Roehl, U.; Tian, J.

    2015-12-01

    In the 8-6 Ma interval, the late Miocene is characterised by a long-term -0.3 ‰ reduction in benthic foraminiferal δ18O and distinctive short-term δ18O cycles, possibly related to dynamic Antarctic ice sheet variability. In addition, the late Miocene carbon isotope shift (LMCIS) marks a permanent long-term -1 ‰ shift in oceanic δ13CDIC, which is the largest, long-term perturbation in the global marine carbon cycle since the mid Miocene Monterey excursion. Accurate age control is crucial to investigate the origin of the δ18O cyclicity and determine the precise onset of the LMCIS. The current Geological Time Scale in the 8-6 Ma interval is constructed using astronomical tuning of sedimentary cycles in Mediterranean outcrops. However, outside of the Mediterranean, a comparable high-resolution chemo-, magneto-, and cyclostratigraphy at a single DSDP/ODP/IODP site does not exist. Generating an accurate astronomically-calibrated chemo- and magneto-stratigraphy in the 8-6 Ma interval became possible with retrieval of equatorial Pacific IODP Sites U1337 and U1338, as both sites have sedimentation rates ~2 cm/kyr, high biogenic carbonate content, and magnetic polarity stratigraphies. Here we present high-resolution correlation of Sites U1337 and U1338 using Milankovitch-related cycles in core images and X-ray fluorescence core scanning data. By combining inclination and declination data from ~400 new discrete samples with shipboard measurements, we are able to identify 14 polarity reversals at Site U1337 from the young end of Chron C3An.1n (~6.03 Ma) to the onset of Chron C4n.2n (~8.11 Ma). New high-resolution (<1.5 kyr) stable isotope records from Site U1337 correlate highly with Site U1338 records, enabling construction of a high-resolution stack. Initial orbital tuning of the U1337-U1338 records show that the δ18O cyclicity is obliquity driven, indicating high-latitude climate forcing. The LMCIS starts ~7.55 Ma and is anchored in Chron C4n.1n, which is

  1. Learning from AESoP: NIST-traceable Spectroradiometric Calibration of Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.; Zimmer, P. C.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    The creation of a homogeneous set of NIST-traceable standard stars with reproducible measurement errors is an enabling factor for fundamental physical interpretation of imaging radiometric and spectroradiometric data. Broader impacts of these stars include use in calibrating optical instrumentation, including on-orbit sensors, and monitoring the wavelength-dependent transmission of Earth’s atmosphere. The Astronomical Extinction Spectrophotometer (AESoP) is designed to accurately measure the spectra of stars and calibrate them to a NIST transfer standard. AESoP is a 100mm objective spectrometer built on a Takahashi 106ED refractor, using a 90 line/mm grating to produce a spectrum from 530 to 950nm in first order and 350 to 600nm in second order. Accurately autoguided stellar spectra are maintained on spectrophotometer pixels calibrated to a co-mounted NIST calibrated transfer standard, CAL. CAL is identical to AESoP except for the objective grating. The telescopes are mounted in a mobile optical laboratory, also containing a monochromator to provide a wavelength-tunable calibration source. The monochromator illuminates a collimator simultaneously viewed by AESoP and CAL, thus allowing wavelength-dependent calibration of the AESoP detector to the NIST-calibrated CAL detector. The resulting stellar spectra, when reduced and corrected for wavelength-dependent atmospheric extinction, are NIST-traceable spectroradiometric standards. The AESoP/CAL telescopes are being tested in the field. Operational procedures, stellar measurment performance, and calibration data will be discussed. AESoP development and application is funded by NSF Grant AST-1009878 and NIST Award 60NANB9D9121.

  2. Use of Radiometrically Calibrated Flat-Plate Calibrators in Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Cárdenas-García, D.; Méndez-Lango, E.

    2015-08-01

    Most commonly used, low-temperature, infrared thermometers have large fields of view sizes that make them difficult to be calibrated with narrow aperture blackbodies. Flat-plate calibrators with large emitting surfaces have been proposed for calibrating these infrared thermometers. Because the emissivity of the flat plate is not unity, its radiance temperature is wavelength dependent. For calibration, the wavelength pass band of the device under test should match that of the reference infrared thermometer. If the device under test and reference radiometer have different pass bands, then it is possible to calculate the corresponding correction if the emissivity of the flat plate is known. For example, a correction of at is required when calibrating a infrared thermometer with a "" radiometrically calibrated flat-plate calibrator. A method is described for using a radiometrically calibrated flat-plate calibrator that covers both cases of match and mismatch working wavelength ranges of a reference infrared thermometer and infrared thermometers to be calibrated with the flat-plate calibrator. Also, an application example is included in this paper.

  3. Compact radiometric microwave calibrator

    SciTech Connect

    Fixsen, D. J.; Wollack, E. J.; Kogut, A.; Limon, M.; Mirel, P.; Singal, J.; Fixsen, S. M.

    2006-06-15

    The calibration methods for the ARCADE II instrument are described and the accuracy estimated. The Steelcast coated aluminum cones which comprise the calibrator have a low reflection while maintaining 94% of the absorber volume within 5 mK of the base temperature (modeled). The calibrator demonstrates an absorber with the active part less than one wavelength thick and only marginally larger than the mouth of the largest horn and yet black (less than -40 dB or 0.01% reflection) over five octaves in frequency.

  4. Gemini facility calibration unit

    NASA Astrophysics Data System (ADS)

    Ramsay-Howat, Suzanne K.; Harris, John W.; Gostick, David C.; Laidlaw, Ken; Kidd, Norrie; Strachan, Mel; Wilson, Ken

    2000-08-01

    High-quality, efficient calibration instruments is a pre- requisite for the modern observatory. Each of the Gemini telescopes will be equipped with identical facility calibration units (GCALs) designed to provide wavelength and flat-field calibrations for the suite of instruments. The broad range of instrumentation planned for the telescopes heavily constrains the design of GCAL. Short calibration exposures are required over wavelengths from 0.3micrometers to 5micrometers , field sizes up to 7 arcminutes and spectral resolution from R-5 to 50,000. The output from GCAL must mimic the f-16 beam of the telescope and provide a uniform illumination of the focal plane. The calibration units are mounted on the Gemini Instrument Support Structure, two meters from the focal pane, necessitating the use of large optical components. We will discuss the opto-mechanical design of the Gemini calibration unit, with reference to those feature which allow these stringent requirements to be met. A novel reflector/diffuser unit replaces the integration sphere more normally found in calibration systems. The efficiency of this system is an order of magnitude greater than for an integration sphere. A system of two off-axis mirrors reproduces the telescope pupil and provides the 7 foot focal plane. The results of laboratory test of the uniformity and throughput of the GCAL will be presented.

  5. The COS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hodge, Philip E.; Kaiser, M. E.; Keyes, C. D.; Ake, T. B.; Aloisi, A.; Friedman, S. D.; Oliveira, C. M.; Shaw, B.; Sahnow, D. J.; Penton, S. V.; Froning, C. S.; Beland, S.; Osterman, S.; Green, J.; COS/STIS STScI Team; IDT, COS

    2008-05-01

    The Cosmic Origins Spectrograph, COS, (Green, J, et al., 2000, Proc SPIE, 4013) will be installed in the Hubble Space Telescope (HST) during the next servicing mission. This will be the most sensitive ultraviolet spectrograph ever flown aboard HST. The program (CALCOS) for pipeline calibration of HST/COS data has been developed by the Space Telescope Science Institute. As with other HST pipelines, CALCOS uses an association table to list the data files to be included, and it employs header keywords to specify the calibration steps to be performed and the reference files to be used. COS includes both a cross delay line detector for the far ultraviolet (FUV) and a MAMA detector for the near ultraviolet (NUV). CALCOS uses a common structure for both channels, but the specific calibration steps differ. The calibration steps include pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. A 1-D spectrum will be extracted and flux calibrated. Data will normally be taken in TIME-TAG mode, recording the time and location of each detected photon, although ACCUM mode will also be supported. The wavelength calibration uses an on-board spectral line lamp. To enable precise wavelength calibration, default operations will simultaneously record the science target and lamp spectrum by executing brief (tag-flash) lamp exposures at least once per external target exposure.

  6. New Method for Calibration for Hyperspectral Pushbroom Imaging Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Olive, Dan; ONeal, Duane; Schere, Chris; Nixon, Thomas; May, Chengye; Ryan, Jim; Stanley, Tom; Witcher, Kern

    1999-01-01

    A new, easy-to-implement approach for achieving highly accurate spectral and radiometric calibration of array-based, hyperspectral pushbroom imagers is presented in this paper. The equivalence of the plane of the exit port of an integrating sphere to a Lambertian surface is utilized to provide a field-filling radiance source for the imager. Several different continuous wave lasers of various wavelengths and a quartz-tungsten-halogen lamp internally illuminate the sphere. The imager is positioned to "stare" into the port, and the resultant data cube is analyzed to determine wavelength calibrations, spectral widths of channels, radiometric characteristics, and signal-to-noise ratio, as well as an estimate of signal-to-noise performance in the field. The "smile" (geometric distortion of spectra) of the system can be quickly ascertained using this method. As the price and availability of solid state laser sources improve, this technique could gain wide acceptance.

  7. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  8. [High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer].

    PubMed

    Lin, Jun; Shao, Jun; Song, Chao-yu; Li, Yun-wei; Lei, Yu-fei

    2015-12-01

    The Fourier interferometric spectrometer (FIS) acquires the interference data information of the spectrum and during the spectrum data processing, a series of spectrum reconstruction will be performed on the interference information to obtain the final spectrum information data. The spectral calibration is the key step to spectrum reconstruction of FIS, which directly determines accuracy and availability of the spectrum results. This paper introduces the basic ideas and calibration accuracy about the spectral calibration for the FIS and puts forward a new spectral calibration method based on calculating the precise value of the total optical path difference (TOPD). The TOPD of FIS is difficult to be precisely measured, but it is the core and key to the spectral calibration. In order to calculate the precise TOPD, this paper proposes the idea how to traverse the TOPD and analyzes the spectrum drift. During the calibration, all the possible values of the TOPD participate in the spectrum reconstruction flow to carry out spectrum recovery and analysis. Ultimately the TOPD with the minimum spectrum drift will be achieved, namely solution value of the TOPD. This method can accurately resolve the TOPD of the FIS and then calibrate the spectrum with high accuracy. In addition, the paper introduces the detailed and complete spectral calibration flow and obtains the center wavelength value of every band and wavenumber resolution. Moreover, the paper designs the main parameters of the typical FIS and generates its simulation interference data. Using the above method to calibrate the simulation data, the analysis and verification of the spectral calibration results proves that the calibration precision of wavenumber resolution achieves 0.000 25 cm⁻¹ or above. PMID:26964245

  9. STIS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hulbert, S.; Hodge, P.; Lindler, D.; Shaw, R.; Goudfrooij, P.; Katsanis, R.; Keener, S.; McGrath, M.; Bohlin, R.; Baum, S.

    1997-05-01

    Routine calibration of STIS observations in the HST data pipeline is performed by the CALSTIS task. CALSTIS can: subtract the over-scan region and a bias image from CCD observations; remove cosmic ray features from CCD observations; correct global nonlinearities for MAMA observations; subtract a dark image; and, apply flat field corrections. In the case of spectral data, CALSTIS can also: assign a wavelength to each pixel; apply a heliocentric correction to the wavelengths; convert counts to absolute flux; process the automatically generated spectral calibration lamp observations to improve the wavelength solution; rectify two-dimensional (longslit) spectra; subtract interorder and sky background; and, extract one-dimensional spectra. CALSTIS differs in significant ways from the current HST calibration tasks. The new code is written in ANSI C and makes use of a new C interface to IRAF. The input data, reference data, and output calibrated data are all in FITS format, using IMAGE or BINTABLE extensions. Error estimates are computed and include contributions from the reference images. The entire calibration can be performed by one task, but many steps can also be performed individually.

  10. The habitable-zone planet finder calibration system

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Terrien, Ryan; Roy, Arpita; Schwab, Christian; Bender, Chad; Hearty, Fred; Levi, Eric; Osterman, Steve; Ycas, Gabe; Diddams, Scott

    2014-08-01

    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R~50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s-1 or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to improve RV measurement precision including a dynamic optical coupling system that significantly reduces modal noise effects. Each component has been thoroughly tested in the laboratory and has demonstrated significant performance gains over previous NIR calibration systems.

  11. MODIS solar reflective calibration traceability

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  12. MODIS Solar Reflective Calibration Traceability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  13. Observations of Mars, Uranus, Neptune, Io, Europa, Ganymede, and Callisto at a wavelength of 2.66 mm

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Berge, Glenn L.

    1991-01-01

    An accurate thermal model of Mars is presently used as a calibrator for 2.66-mm brightness temperature observations of Uranus, Neptune, and the Galilean satellites. While the measurements for Io, Europa, and Callisto, are consistent with thermal models of the lunar type, Ganymede is found to be anomalous. It appears that the near surface of Ganymede differs from that of the other satellites in some unknown fashion, perhaps by scattering more strongly at short wavelengths.

  14. Calibrating the Astronomical Extinction Spectrophotometer for NIST Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.; Zimmer, P. C.; Karle, J.; Zirzow, D. C.; Cramer, C.; Lykke, K.; Woodward, J. T.

    2013-01-01

    The NIST Stars program is currently creating a new generation of absolutely calibrated spectroradiometric standard stars traceable to NIST laboratory standards. A fundamental task required to accomplish this is the transfer of the laboratory irradiance standard to telescopes in the field. We describe the system for calibration transfer for the Astronomical Extinction Spectrophotometer (AESOP), a 100mm diameter objective grating spectrometer designed to precisely and accurately measure the spectral energy distribution of bright (V<6) stars. The transfer standard for AESoP is a nearly identical 100mm diameter optical system with no dispersive element, CAL, which is co-mounted with AESoP but can be easily removed and taken to NIST for calibration in their Telescope Calibration Facility (TCF). CAL is designed to measure one wavelength at a time using a novel technique where CAL’s input pupil is imaged onto a CCD read out in TDI mode. The row read rate and on-chip binning can be modulated to match a very large dynamic range, from 100aW at a signal-to-noise ratio of 10 per second to 1nW at a signal-to-noise of >20000 per second. Moreover, CAL never observes the sky, only calibration sources and otherwise has its aperture covered to prevent dust accumulation. In the TCF, CAL measures a wavelength-tunable source that is simultaneous monitored using a NIST working standard photodiode. The responsivity of the photodiode and its distance from the source is accurately known. The distance from CAL to the source, of the order 50m, is also accurately known, as is CAL’s collecting area, allowing highly accurate transfer of the diode calibration to CAL. In AESoP’s mobile calibration lab, CAL and AESoP are mounted side-by-side with apertures aligned and both observe a collimated, tunable source that simultaneously illuminates both systems. AESoP and CAL are currently under field testing. We present calibration data and some initial stellar spectral energy distribution

  15. Interference comparator for laser diode wavelength and wavelength instability measurement

    NASA Astrophysics Data System (ADS)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  16. Interference comparator for laser diode wavelength and wavelength instability measurement.

    PubMed

    Dobosz, Marek; Kożuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ⋅ 10(-8). Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement. PMID:27131662

  17. Energy calibration via correlation

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  18. Continuous blood oxygen saturation detection with single-wavelength photoacoustics

    NASA Astrophysics Data System (ADS)

    Peng, Qiwen; Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2015-03-01

    Blood oxygen saturation (SO2) reflects the oxygenation level in blood transport and tissue. Previous studies have shown the capability of non-invasive quantitative measurements of SO2 by multi-wavelength photoacoustic (PA) spectroscopy for diagnosis of brain, tumor hemodynamics and other pathophysiological phenomena. However, those multi-wavelength methods require a tunable laser or multiple lasers which are relatively expensive and bulky for filed measurement environment and applications. Besides, the operation of multiple wavelengths, calibration procedures and data processing gets system complicated, which reduces the feasibility and flexibility for continuous real-time monitoring. Here we report a newly proposed method by combining PA and scattered light signals wherein imposing a hypothesis that scattering intensity is linear to the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin weighed by blood scattering coefficients. A rigorous theoretical relationship between PA and scattering signals is thus established, making it possible that SO2 can be measured with only one excitation wavelength. To verify the theory basis, both dual-ink phantoms and fresh porcine blood sample have been employed in the experiments. The phantom experiment is able to quantify the concentration of mixed red-green ink that is in precise agreement with pre-set values. The ex vivo experiment with fresh porcine blood was conducted and the results of the proposed single-wavelength method achieved high accuracy of 1% - 4% errors. These demonstrated that the proposed single-wavelength SO2 detection is able to provide non-invasive, accurate measurement of blood oxygenation, and herein create potential for applying it to real clinical applications with low cost and high flexibility.

  19. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, Michael D.; Sagan, Francis J.; Burkhardt, Mark R.

    1993-01-01

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  20. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  1. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  2. Frequency-wavelength calculator with table of dielectric properties

    NASA Technical Reports Server (NTRS)

    Thompson, L. L.

    1972-01-01

    Frequency-wavelength calculator has been developed which rapidly and accurately calculates wavelength of given frequency in specific dielectric material. Unit fits into shirt pocket and includes table of dielectric properties and one-step calculator.

  3. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  4. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  5. SDSS-IV/MaNGA: Spectrophotometric Calibration Technique

    NASA Astrophysics Data System (ADS)

    Yan, Renbin; Tremonti, Christy; Bershady, Matthew A.; Law, David R.; Schlegel, David J.; Bundy, Kevin; Drory, Niv; MacDonald, Nicholas; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Cherinka, Brian; Eigenbrot, Arthur; Gunn, James E.; Harding, Paul; Hogg, David W.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Wake, David A.; Weijmans, Anne-Marie; Xiao, Ting; Zhang, Kai

    2016-01-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600-10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.

  6. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    SciTech Connect

    Burke, David L.; Axelrod, T.; Blondin, Stephane; Claver, Chuck; Ivezic, Zeljko; Jones, Lynne; Saha, Abhijit; Smith, Allyn; Smith, R.Chris; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  7. SWIR calibration of Spectralon reflectance factor

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Catherine; Ding, Leibo; Thome, Kurtis J.

    2011-11-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near InfraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475 nm to 1625 nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 50.8 mm (2 in) diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6°directional-hemispherical spectral reflectance factors from 900 nm to 2500 nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475 nm to 1625 nm at an incident angle of 0° and at viewing angle of 45°. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions.

  8. Method of Controlling Lasing Wavelength(s)

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Murray, Keith E. (Inventor); Hutcheson, Ralph L. (Inventor)

    2000-01-01

    A method is provided to control the lasing wavelength of a laser material without changing or adjusting the mechanical components of a laser device, The rate at which the laser material is pumped with the pumping energy is controlled so that lasing occurs at one or more lasing wavelengths based on the rate. The lasing wavelengths are determined by transition lifetimes and/or energy transfer rates.

  9. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  10. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  11. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    SciTech Connect

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-15

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 {mu}m) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ('hotspot') was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm{sup 2}/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  12. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  13. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  14. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  15. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  16. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  17. ASTER TIR subsystem and calibration

    NASA Technical Reports Server (NTRS)

    Ohmae, Hirokazu

    1992-01-01

    Viewgraphs are given on the purpose of TIR, major functions, characteristics and design of various components, and calibration. The major functions are to acquire image data on the earth's surface in thermal infrared wavelength band, using mercury cadmium telluride (HgCdTe) detectors; to convert the obtained image data into the digital data to meet the Common Signal Processor (CSP) interface, and output the signals; pointing function in cross-track direction to get the wide swath of 232 km; and to calibrate the whole TIR with the blackbody on orbit, then the amplifier and subsequent transmission units are calibrated electrically.

  18. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  19. Calibration issues in Δα/α

    NASA Astrophysics Data System (ADS)

    Centurión, Miriam; Molaro, Paolo; Levshakov, Sergei

    2010-11-01

    Laser Comb Wavelength calibration shows ThAr one locally unreliable with deviations up to 100 m s-1 (or Δα/α ≈ 7 · 10-6 for a Fe ii-Mg ii pair) while delivering an overall 1 m s-1 accuracy. Comparison of line shifts of the 5 Fe ii lines with identical sensitivity to Δα/α offers a clean way to test local wavelength calibration errors of whatever origin.

  20. The DICE calibration project Design, characterization, and first results

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Guyonnet, A.; Schahmanèche, K.; Le Guillou, L.; Antilogus, P.; Astier, P.; Barrelet, E.; Betoule, M.; Bongard, S.; Cuillandre, J.-C.; Juramy, C.; Pain, R.; Rocci, P.-F.; Tisserand, P.; Villa, F.

    2015-09-01

    Aims: We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3 Å on the filter cutoff positions. Methods: Prior to installation, the light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at the National Institute of Standards and Technology (NIST). The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0 °C to 25 °C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. Results: We find that the calibration beams are stable at the 10-4 level - after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3 Å in wavelength, depending on how accurately we are able to calibrate the wavelength response of the mononochromator. In flux, we reach an accuracy of about 0.2 - 0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. We describe how with

  1. Targetless Camera Calibration

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Mussio, L.; Remondino, F.; Scaioni, M.

    2011-09-01

    In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  2. Automatic beamline calibration procedures

    SciTech Connect

    Corbett, W.J.; Lee, M.J.; Zambre, Y.

    1992-03-01

    Recent experience with the SLC and SPEAR accelerators have led to a well-defined set of procedures for calibration of the beamline model using the orbit fitting program, RESOLVE. Difference orbit analysis is used to calibrate quadrupole strengths, BPM sensitivities, corrector strengths, focusing effects from insertion devices, and to determine the source of dispersion and coupling errors. Absolute orbit analysis is used to locate quadrupole misalignments, BPM offsets, or beam loss. For light source applications, the photon beam source coordinates can be found. The result is an accurate model of the accelerator which can be used for machine control. In this paper, automatable beamline calibration procedures are outlined and illustrated with recent examples. 5 refs.

  3. A proposed standard method for polarimetric calibration and calibration verification

    NASA Astrophysics Data System (ADS)

    Persons, Christopher M.; Jones, Michael W.; Farlow, Craig A.; Morell, L. Denise; Gulley, Michael G.; Spradley, Kevin D.

    2007-09-01

    Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.

  4. Fast fiber-optic multi-wavelength pyrometer

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Tan, Peng; Pang, Chuanhe; Zhao, Huan; Shen, Yi

    2011-06-01

    A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, ΔλCCD = 30 nm and ΔλInGaAs = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.

  5. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  6. COBE Final Report: Dirbe Celestial Calibration

    NASA Technical Reports Server (NTRS)

    Burdick, Shawn V.; Murdock, Thomas L.

    1997-01-01

    We report the results of a comparative study of the COsmic Background Explorer/Diffuse InfraRed Background Experiment (COBE/DIRBE) photometric calibration over about 100 selected stellar and non-stellar calibration objects across a wide range of the DIRBE instrument dynamic range, wavelength coverage, and source temperature. A statistical comparison of the DIRBE-reported flux to the accepted values from the literature (as summarized in the CIO) provides an independent verification of the DIRBE point source calibration.

  7. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  8. On-sky calibration performance of a monolithic Michelson interferometer filtered source

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Powell, Scott; Varosi, Frank; Schofield, Sidney; Grieves, Nolan; Liu, Jian

    2014-07-01

    In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source

  9. Calibration of the ARID robot

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.

  10. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  11. Calibration Under Uncertainty.

    SciTech Connect

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  12. Calibration Procedures for a Two-Modulator Generalized Ellipsometer

    SciTech Connect

    Chen, C.; Jellison, G.E., Jr.; Modine, F.A.

    1999-07-18

    A Two-Modulator Generalized Ellipsometer (2-MGE) has been extremely useful in characterizing optical properties of uniaxial bulk materials, thin films and diffraction gratings. The instrument consists of two polarizer-photoelastic modulator pairs, one operating as the polarization state generator and the other as the polarization state detector. Each photoelastic modulator operates at a different remnant frequency (such as 50 kHz and 60 kHz), making it possible to measure eight elements of the reduced sample Mueller matrix simultaneously. In certain configurations, light reflection from non-depolarizing anisotropic samples can be completely characterized by a single measurement, and the entire reduced Jones matrix can be determined, including the cross polarization coefficients. The calibration of the instrument involves the measurement of the azimuthal angle of the polarizer with respect to the modulator, the modulation amplitude, and the modulator strain for each polarizer photoelastic modulator pair, where the last two are functions of wavelengths. In addition, it is essential to calibrate the azimuthal angles of the polarization state generator and the polarization state detector with respect to the plane of incidence in the ellipsometry configuration that is used in the measurements. Because two modulators operating at different frequencies are used, these calibrations are actually easier and more accurate than for one modulator ellipsometers. In this paper, we will discuss these calibrations and the resultant accuracy limitations of the 2-MGE.

  13. Progress in BRDF calibration measurements in the SWIR

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.

    2009-08-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF). Laboratory-based diffusers are used in their pre-flight calibrations and at ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Lab at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NIST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. The Diffuser Calibration Lab works on extending the covered spectral range from 900 nm up to 1.7 microns. The measurements are made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was used at this setup. Monochromator based broadband light source application is also under development. The results are discussed and compared to empirically generated BRDF data from simple model based on 6 deg directional/hemispherical measurements and experimental data in the 900 - 1100 nm spectral range.

  14. Landsat 8 thermal infrared sensor geometric characterization and calibration

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  15. BRDF Calibration of Sintered PTFE in the SWIR

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  16. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively. PMID:27411154

  17. Magic wavelengths for terahertz clock transitions

    SciTech Connect

    Zhou Xiaoji; Xu Xia; Chen Xuzong; Chen Jingbiao

    2010-01-15

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the {sup 3}P{sub 0}, {sup 3}P{sub 1}, and {sup 3}P{sub 2} metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  18. ``Ultimate'' information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2008-12-01

    Context: Spectral-line asymmetries (displayed as bisectors) and wavelength shifts are signatures of the hydrodynamics in solar and stellar atmospheres. Theory may precisely predict idealized lines, but accuracies in real observed spectra are limited by blends, few suitable lines, imprecise laboratory wavelengths, and instrumental imperfections. Aims: We extract bisectors and shifts until the “ultimate” accuracy limits in highest-quality solar and stellar spectra, so as to understand the various limits set by (i) stellar physics (number of relevant spectral lines, effects of blends, rotational line broadening); by (ii) observational techniques (spectral resolution, photometric noise); and by (iii) limitations in laboratory data. Methods: Several spectral atlases of the Sun and bright solar-type stars were examined for those thousands of “unblended” lines with the most accurate laboratory wavelengths, yielding bisectors and shifts as averages over groups of similar lines. Representative data were obtained as averages over groups of similar lines, thus minimizing the effects of photometric noise and of random blends. Results: For the solar-disk center and integrated sunlight, the bisector shapes and shifts were extracted for previously little-studied species (Fe II, Ti I, Ti II, Cr II, Ca I, C I), using recently determined and very accurate laboratory wavelengths. In Procyon and other F-type stars, a sharp blueward bend in the bisector near the spectral continuum is confirmed, revealing line saturation and damping wings in upward-moving photospheric granules. Accuracy limits are discussed: “astrophysical” noise due to few measurable lines, finite instrumental resolution, superposed telluric absorption, inaccurate laboratory wavelengths, and calibration noise in spectrometers, together limiting absolute lineshift studies to ≈50-100 m s-1. Conclusions: Spectroscopy with resolutions λ/Δλ ≈ 300 000 and accurate wavelength calibration will enable

  19. Slab coupled optical fiber sensor calibration

    NASA Astrophysics Data System (ADS)

    Whitaker, B.; Noren, J.; Chadderdon, S.; Wang, W.; Forber, R.; Selfridge, R.; Schultz, S.

    2013-02-01

    This paper presents a method for calibrating slab coupled optical fiber sensors (SCOS). An automated system is presented for selecting the optimal laser wavelength for use in SCOS interrogation. The wavelength calibration technique uses a computer sound card for both the creation of the applied electric field and the signal detection. The method used to determine the ratio between the measured SCOS signal and the applied electric field is also described along with a demonstration of the calibrated SCOS involving measuring the dielectric breakdown of air.

  20. High accuracy calibration of the fiber spectroradiometer

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Chen, Binhua

    2014-11-01

    Comparing to the big-size scanning spectroradiometer, the compact and convenient fiber spectroradiometer is widely used in various kinds of fields, such as the remote sensing, aerospace monitoring, and solar irradiance measurement. High accuracy calibration should be made before the use, which involves the wavelength accuracy, the background environment noise, the nonlinear effect, the bandwidth, the stray light and et al. The wavelength lamp and tungsten lamp are frequently used to calibration the fiber spectroradiometer. The wavelength difference can be easily reduced through the software or calculation. However, the nonlinear effect and the bandwidth always can affect the measurement accuracy significantly.

  1. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  2. An Automatic Online Calibration Design in Adaptive Testing

    ERIC Educational Resources Information Center

    Makransky, Guido; Glas, Cees A. W.

    2010-01-01

    An accurately calibrated item bank is essential for a valid computerized adaptive test. However, in some settings, such as occupational testing, there is limited access to test takers for calibration. As a result of the limited access to possible test takers, collecting data to accurately calibrate an item bank in an occupational setting is…

  3. Research to define algorithms appropriate to a high-data-rate laser-wavelength-measurement instrument

    SciTech Connect

    Byer, R.L.

    1982-04-01

    Progress made over a four year period on a computer controlled laser wavelength meter is summarized. The optical system of the laser wavelength meter consists of a series of Fabry-Perot interferometers and one high resolution confocal interferometer, preceeded by a one-half meter grating spectrometer. The interferometrically generated fringes are imaged on linear diode arrays, read into computer memory and processed by an efficient, noise resistant, algorithm which calculates the wavelength. The algorithm fitting routine generates high accuracy fringe fits at a rate of 5Hz with the present LSI 11/2 processor. A 10 Hz fitting rate is expected with the LSI 11/23 processor. Fringes are fit with an rms error of less than +- 0.01. The wavelength measurement accuracy is thus one hundredth of the free spectral range of the interferometers, which at present are 10 cm/sup -1/, 1 cm/sup -1/, 0.1 cm/sup -1/ and 0.01 cm/sup -1/. Thus wavelengths can be measured to +- .0001 cm/sup -1/ or +- 3 MHz. The wavelength meter interferometers are calibrated by a stabilized HeNe laser source with a long term stability of better than +- 1 MHz. Fringes have been fit for over 10/sup 6/ cycles to demonstrate the stability of the algorithm. When the hardware is transferred from the present bread-borad mounting to final mounting, the wavelength meter will provide an accurate and versatile approach for measuring and displaying cw, pulsed, single mode or multi mode laser spectra.

  4. ICESAT Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, D. D.; Carabajal, C. C.; Harding, D. H.; Bufton, J. L.; Williams, T. A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.

  5. Recent Results in ICESat Geolocation Parameter Calibration from Range Residual Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Carabajal, Claudia C.; Williams, Terry A.

    2004-01-01

    The Ice, Cloud and land Elevation Satellite (ICESat), launched on January 12, 2003, carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser-ranging to the Earths surface at 1064 nm wavelength at a rate of 40 pulses per second. The instrument has collected (at the time of this writing) over 540 million observations of the Earth's surface including precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLASs surface returns, the spots from which the laser energy reflects on the Earths surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. The ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps and around-the-world scans along with dynamic crossovers in order to calibrate pointing ranging and timing. The analysis has resolved complex time varying signal resulting from thermal variations of instrument pointing and boresite shadowing. The calibration methodology and current calibration results are discussed along with future efforts and current geolocation accuracies.

  6. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  7. jasonSWIR Calibration of Spectralon Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Cahterine; Ding, Leibo; Thome, Kurtis J.

    2011-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near infraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475nm to 1625nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 2 inch diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6deg directional/hemispherical spectral reflectance factors from 900nm to 2500nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475nm to 1625nm at an incident angle of 0deg and at viewing angles of 40deg, 45deg, and 50deg. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions. Keywords: BRF, BRDF, Calibration, Spectralon, Reflectance, Remote Sensing.

  8. Calibration of platinum resistance thermometers.

    NASA Technical Reports Server (NTRS)

    Sinclair, D. H.; Terbeek, H. G.; Malone, J. H.

    1972-01-01

    Results of five years experience in calibrating about 1000 commercial platinum resistance thermometers (PRT) are reported. These PRT were relatively small and rugged, with ice-point resistances from 200 to 5000 ohms. Calibrations normalized in terms of resistance-difference ratios (Cragoe Z function) were found to be remarkably uniform for five of six different types of PRT tested, and to agree very closely with normalized calibrations of the primary reference standard type PRT. The Z function normalization cancels residual resistances which are not temperature dependent and simplifies interpolation between calibration points when the quality of a given type of PRT has been established in terms of uniform values of the Z function. Measurements at five or six well spaced base-point temperatures with Z interpolation will suffice to calibrate a PRT accurately from 4 to 900 K.

  9. Wavelength Swept Lasers

    NASA Astrophysics Data System (ADS)

    Yun, Seok Hyun; Bouma, Brett E.

    In optical interferometric metrology, the wavelength of light serves as a reference for length. At a given optical wavelength, an interference signal varies as a sinusoidal function of distance with a period equal to the wavelength. Although this approach offers unrivaled precision, the periodic signal results in a 2π ambiguity for measurement of lengths greater than one wavelength. In optical coherence tomography (OCT), one wishes to determine light scattering distances and distribution within a sample, but without the ambiguity. To accomplish this, OCT is based on interferometry using many optical wavelengths, each serving as a "ruler" with different periodicities. OCT traditionally has used broadband light sources providing a wide range of wavelengths, all simultaneously. Alternatively, a tunable light source emitting one wavelength at a time, rapidly swept over a broad spectral range, can also be used to achieve the absolute ranging capability in OCT. In this chapter, we describe a technical overview of these new emerging sources. We begin with a discussion general specifications of these light sources, the review basic fundamentals of laser and wavelength tuning. Finally, we discuss the principles of various techniques developed to date for high-speed and wide tuning range.

  10. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  11. Calibration issues for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Roth, Martin; Bauer, Svend; Gerssen, Joris; Hahn, Thomas; Weilbacher, Peter; Laux, Uwe; Loupias, Magali; Kosmalski, Johan; McDermid, Richard; Bacon, Roland

    2008-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the VLT for the next decade. Using an innovative field-splitting and slicing design, combined with an assembly of 24 spectrographs, MUSE will provide some 90,000 spectra in one exposure, which cover a simultaneous spectral range from 465 to 930nm. The design and manufacture of the Calibration Unit, the alignment tests of the Spectrograph and Detector sub-systems, and the development of the Data Reduction Software for MUSE are work-packages under the responsibility of the AIP, who is a partner in a European-wide consortium of 6 institutes and ESO, that is led by the Centre de Recherche Astronomique de Lyon. MUSE will be operated and therefore has to be calibrated in a variety of modes, which include seeing-limited and AO-assisted operations, providing a wide and narrow-field-of-view. MUSE aims to obtain unprecedented ultra-deep 3D-spectroscopic exposures, involving integration times of the order of 80 hours at the VLT. To achieve the corresponding science goals, instrumental stability, accurate calibration and adequate data reduction tools are needed. The paper describes the status at PDR of the AIP related work-packages, in particular with respect to the spatial, spectral, image quality, and geometrical calibration and related data reduction aspects.

  12. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  13. Weight-based Synthesized Standards Preparation for Correction-free Calibration in X-ray Fluorescence Determination of Tungsten in High-speed Steel.

    PubMed

    Nakayama, Kenichi; Wagatsuma, Kazuaki

    2015-01-01

    This paper suggests a correction-free calibration method in wavelength dispersive X-ray fluorescence analysis in order to determine tungsten as a major alloyed element in high-speed steels accurately. Matrix effects on fluorescent X-ray intensity of tungsten Lα line were minimized by borate fusion, and the total amount of tungsten in the glassy matrix could be quantified. Glass bead specimens were prepared with 10 to 12 mg of the steel sample and 4.0 g of lithium tetraborate as a flux agent. Without untraceable X-ray intensity correction, a linear calibration curve was obtained by measuring synthesized calibration standards prepared by using standard solutions. As compared with fundamental parameter calculations, the present method gave more accurate results of tungsten in certified reference materials of high-speed steel. PMID:26256612

  14. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 ??m (2343.3 cm-1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ???4.255 ??m (???2350.2 cm-1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 ??m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector

  15. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  16. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  17. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  18. Self-Calibrating Respiratory-Flowmeter Combination

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne R.; Orr, Joseph A.

    1990-01-01

    Dual flowmeters ensure accuracy over full range of human respiratory flow rates. System for measurement of respiratory flow employs two flowmeters; one compensates for deficiencies of other. Combination yields easily calibrated system accurate over wide range of gas flow.

  19. Computer Vision Assisted Virtual Reality Calibration

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  20. Calibration of radionuclide calibrators in Canadian hospitals

    SciTech Connect

    Santry, D.C.

    1986-01-01

    The major user of radioactive isotopes in Canada is the medical profession. Because of this a program has been initiated at the National Research Council of Canada (NRCC) to assist the nuclear medicine community to determine more accurately, the rather large amounts of radioactive materials administered to patients either for therapeutic or medical diagnostics. Since radiation exposure to the human body has deleterious effects, it is important for the patient that the correct amount of radioactive material is administered to minimize the induction of a fatal cancer at a later time. Hospitals in many other countries have a legal requirement to have their instruments routinely calibrated and have previously entered into intercomparisons with other hospitals or their national standards laboratories. In Canada, hospitals and clinics can participate on a voluntary basis to have the proper operation of measuring devices (radionuclide calibrators in particular) examined through intercomparisons. The program looks primarily at laboratory performance. This includes not only the instrument's performance but the performance of the individual doing the procedure and the technical procedure or method employed. In an effort to provide personal assistance to those having problems, it is essential that the comparisons should be pertinent to the daily work of the laboratory and that the most capable technologist not be selected to carry out the assay.

  1. Geometrical measurement of cardiac wavelength in reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Dupraz, Marie; Jacquemet, Vincent

    2014-09-01

    The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models.

  2. Geometrical measurement of cardiac wavelength in reaction-diffusion models.

    PubMed

    Dupraz, Marie; Jacquemet, Vincent

    2014-09-01

    The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models. PMID:25273213

  3. A BPM calibration procedure using TBT data

    SciTech Connect

    Yang, M.J.; Crisp, J.; Prieto, P.; /Fermilab

    2007-06-01

    Accurate BPM calibration is crucial for lattice analysis. It is also reassuring when the calibration can be independently verified. This paper outlines a procedure that can extract BPM calibration information from TBT orbit data. The procedure is developed as an extension to the Turn-By-Turn lattice analysis [1]. Its application to data from both Recycler Ring and Main Injector (MI) at Fermilab have produced very encouraging results. Some specifics in hardware design will be mentioned to contrast that of analysis results.

  4. Design driven test patterns for OPC models calibration

    NASA Astrophysics Data System (ADS)

    Al-Imam, Mohamed

    2009-03-01

    In the modern photolithography process for manufacturing integrated circuits, geometry dimensions need to be realized on silicon which are much smaller than the exposure wavelength. Thus Resolution Enhancement Techniques have an indispensable role towards the implementation of a successful technology process node. Finding an appropriate RET recipe, that answers the needs of a certain fabrication process, usually involves intensive computational simulations. These simulations have to reflect how different elements in the lithography process under study will behave. In order to achieve this, accurate models are needed that truly represent the transmission of patterns from mask to silicon. A common practice in calibrating lithography models is to collect data for the dimensions of some test structures created on the exposure mask along with the corresponding dimensions of these test structures on silicon after exposure. This data is used to tune the models for good predictions. The models will be guaranteed to accurately predict the test structures that has been used in its tuning. However, real designs might have a much greater variety of structures that might not have been included in the test structures. This paper explores a method for compiling the test structures to be used in the model calibration process using design layouts as an input. The method relies on reducing structures in the design layout to the essential unique structure from the lithography models point of view, and thus ensuring that the test structures represent what the model would actually have to predict during the simulations.

  5. Design and analysis of VCSEL based twodimension wavelength converter.

    PubMed

    Liu, H; Shum, P; Kao, M

    2003-07-14

    A novel two-dimensional vertical cavity surface emission laser (VCSEL) based wavelength converter is proposed. We developed a twodimensional transmission line laser model (TLLM) to analyze the proposed wavelength converter. This model takes into account Bragg reflectors by using the modified connecting matrix. Therefore, accurate and efficient modeling of the VCSEL structure is achieved. Extinction ratio of the output signal is investigated by considering input signal power, wavelength, facet reflectivity and cavity diameter. PMID:19466044

  6. Nimbus-7 TOMS Version 7 Calibration

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Jaross, G.; DeLand, M. T.; Seftor, C. J.; Labow, G.; Swissler, T. J.; Cebula, R. P.

    1996-01-01

    This report describes an improved instrument characterization used for the Version 7 processing of the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data record. An improved internal calibration technique referred to as spectral discrimination is used to provide long-term calibration precision of +/- 1%/decade in total column ozone amount. A revised wavelength scale results in a day one calibration that agrees with other satellite and ground-based measurements of total ozone, while a wavelength independent adjustment of the initial radiometric calibration constants provides good agreement with surface reflectivity measured by other satellite-borne ultraviolet measurements. The impact of other aspects of the Nimbus-7 TOMS instrument performance are also discussed. The Version 7 data should be used in all future studies involving the Nimbus-7 TOMS measurements of ozone. The data are available through the NASA Goddard Space Flight Center's Distributive Active Archive Center (DAAC).

  7. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  8. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  9. Demonstration of spectral calibration for stellar interferometry

    NASA Technical Reports Server (NTRS)

    Demers, Richard T.; An, Xin; Tang, Hong; Rud, Mayer; Wayne, Leonard; Kissil, Andrew; Kwack, Eug-Yun

    2006-01-01

    A breadboard is under development to demonstrate the calibration of spectral errors in microarcsecond stellar interferometers. Analysis shows that thermally and mechanically stable hardware in addition to careful optical design can reduce the wavelength dependent error to tens of nanometers. Calibration of the hardware can further reduce the error to the level of picometers. The results of thermal, mechanical and optical analysis supporting the breadboard design will be shown.

  10. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  11. Fabrication of high quality optical coherence tomography (OCT) calibration artefacts using femtosecond inscription

    NASA Astrophysics Data System (ADS)

    Lee, Graham C. B.; Rasakanthan, Janarthanan; Woolliams, Peter D.; Sugden, Kate

    2012-06-01

    Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

  12. Improved wide-angle, fisheye and omnidirectional camera calibration

    NASA Astrophysics Data System (ADS)

    Urban, Steffen; Leitloff, Jens; Hinz, Stefan

    2015-10-01

    In this paper an improved method for calibrating wide-angle, fisheye and omnidirectional imaging systems is presented. We extend the calibration procedure proposed by Scaramuzza et al. by replacing the residual function and joint refinement of all parameters. In doing so, we achieve a more stable, robust and accurate calibration (up to factor 7) and can reduce the number of necessary calibration steps from five to three. After introducing the camera model and highlighting the differences from the current calibration procedure, we perform a comprehensive performance evaluation using several data sets and show the impact of the proposed calibration procedure on the calibration results.

  13. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    SciTech Connect

    Perley, R. A.; Butler, B. J. E-mail: BButler@nrao.edu

    2013-02-15

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  14. ENVISAT-1 MWR: calibration targets and preflight calibration

    NASA Astrophysics Data System (ADS)

    Atkinson, Nigel C.; Bombaci, Ornella; L'Abbate, Michele; Ricketts, Marion

    1998-12-01

    ENVISAT Microwave Radiometer (MWR) is an instrument designed and developed as part of the Envisat-1 satellite scientific payload, with Alenia Aerospazio engaged in the phase C-D as instrument Prime Contractor, leading an industrial consortium of European and American companies. The Flight Model of the Instrument was delivered to ESA at the end of July 1997, after successful completion of design, test and calibration activities. An Engineering Model of the instrument was also developed and completed in March 1997. The MWR output products are of prime importance for wind/wave products of the Radar Altimeter (RA-2) Instrument, part of the Envisat-1 payload, providing correction of atmospheric propagation data. The products are also useful for direct evaluation of brightness temperature in order to characterize polar ice, land surface properties and sea surface temperature. In order to achieve the required accuracy and sensitivity performance, an in- flight two-point calibration concept is adopted, with hot and cold calibration reference points for each frequency channel. Periodically the measurements of earth scene radiation are interrupted to allow the measurement of an on-board calibration load and of the deep cold space. The overall ground calibration tasks were performed through an iterative sequence of measurement and relevant model corrections, with an extensive instrument calibration in a thermal-vacuum environment, to derive the final radiometer model coefficients and to verify its performance in the expected in-flight environment. To achieve the required instrument calibration accuracy, extremely accurate blackbody target sources were required, in order to simulate the Earth scene and the deep space (for cold calibration), as seen by the radiometer during its in-flight mission. The definition, development and characterization of such blackbody targets were key aspects to achieving the required stimulus accuracy for proper calibration of the instrument. These

  15. Calibration and postlaunch performance of the Meteor 3/TOMS instrument

    SciTech Connect

    Jaross, G.; Krueger, A.; Cebula, R.P.; Seftor, C.; Hartmann, U.; Haring, R.; Burchfield, D. ||

    1995-02-01

    Prelaunch and postlaunch calibration results for the Meteor 3/total ozone mapping spectrometer (TOMS) instrument are presented here. Ozone amounts are retrieved from measurements of Earth albedo in the 312- to 380-nm range. The accuracy of albedo measurements is primarily tied to knowledge of the reflective properties of diffusers used in the calibrations and to the instrument`s wavelength selection. These and other important prelaunch calibrations are presented. Their estimated accuracies are within the bounds necessary to determine column ozone to better than 1%. However, postlaunch validation results indicate some prelaunch calibration uncertainties may be larger than originally estimated. Instrument calibrations have been maintained postlaunch to within a corresponding 1% error in retrieved ozone. Onboard calibrations, including wavelength monitoring and a three-diffuser solar measurement system, are described and specific results are presented. Other issues, such as the effects of orbital precession on calibration and recent chopper wheel malfunctions, are also discussed.

  16. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  17. Calibrated Properties Model

    SciTech Connect

    H. H. Liu

    2003-02-14

    This report has documented the methodologies and the data used for developing rock property sets for three infiltration maps. Model calibration is necessary to obtain parameter values appropriate for the scale of the process being modeled. Although some hydrogeologic property data (prior information) are available, these data cannot be directly used to predict flow and transport processes because they were measured on scales smaller than those characterizing property distributions in models used for the prediction. Since model calibrations were done directly on the scales of interest, the upscaling issue was automatically considered. On the other hand, joint use of data and the prior information in inversions can further increase the reliability of the developed parameters compared with those for the prior information. Rock parameter sets were developed for both the mountain and drift scales because of the scale-dependent behavior of fracture permeability. Note that these parameter sets, except those for faults, were determined using the 1-D simulations. Therefore, they cannot be directly used for modeling lateral flow because of perched water in the unsaturated zone (UZ) of Yucca Mountain. Further calibration may be needed for two- and three-dimensional modeling studies. As discussed above in Section 6.4, uncertainties for these calibrated properties are difficult to accurately determine, because of the inaccuracy of simplified methods for this complex problem or the extremely large computational expense of more rigorous methods. One estimate of uncertainty that may be useful to investigators using these properties is the uncertainty used for the prior information. In most cases, the inversions did not change the properties very much with respect to the prior information. The Output DTNs (including the input and output files for all runs) from this study are given in Section 9.4.

  18. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2014-09-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allows "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic carbon (OC)-elemental carbon (EC) measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ]) using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC) and brown carbon (BrC) contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  19. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B. J.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.

    2015-01-01

    A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allowed "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic-carbon (OC)-elemental-carbon (EC) measurements. Optical sensing was calibrated with transfer standards traceable to absolute R and T measurements, adjusted for loading effects to report spectral light absorption (as absorption optical depth (τa, λ)), and verified using diesel exhaust samples. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~ 635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black-carbon (BC) and brown-carbon (BrC) contributions and their optical properties in the near infrared to the near ultraviolet parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  20. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  1. Use of channel electron multipliers as secondary standard detectors at EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Lapson, L. B.

    1974-01-01

    The procedures available for photometric calibration at extreme ultraviolet (EUV) wavelengths are outlined and the requirements for a secondary standard EUV photomultiplier defined. The performance of a number of commercially available channel electron multipliers over the 304-1350-A wavelength range is described, and their suitability for use as secondary standards is discussed in detail. Although none of the multipliers evaluated fully met the requirements for a secondary standard, it proved possible to calibrate absolutely a Mullard cone channel over the required wavelength range to an accuracy of plus or minus 9% and to employ it as a secondary standard in the calibration of a series of sounding rocket spectrometers.

  2. Use of Channel Electron Multipliers as Secondary Standard Detectors at EUV Wavelengths.

    PubMed

    Timothy, J G; Lapson, L B

    1974-06-01

    The procedures available for photometric calibration at extreme ultraviolet (EUV) wavelengths are outlined and the requirements for a secondary standard EUV photomultiplier defined. The performance of a number of commercially available channel electron multipliers over the 304-1350-A wavelength range is described and their suitability for use as secondary standards discussed in detail. Although none of the multipliers evaluated fully met the requirements for a secondary standard it proved possible to calibrate absolutely a Mullard cone channel over the required wavelength range to an accuracy of +/-9% and to employ it as a secondary standard in the calibration of a series of sounding rocket spectrometers. PMID:20126208

  3. Holographic topography using acousto-optically generated large synthetic wavelengths

    NASA Astrophysics Data System (ADS)

    Abeywickrema, U.; Beamer, D.; Banerjee, P.; Poon, T.-C.

    2016-03-01

    Digital holography uses phase imaging in a variety of techniques to produce a three-dimensional phase resolved image that includes accurate depth information about the object of interest. Multi-wavelength digital holography is an accurate method for measuring the topography of surfaces. Typically, the object phases are reconstructed for two wavelengths separately and the phase corresponding to the synthetic wavelength (obtained from the two wavelengths) is obtained by calculating the phase difference. Then the surface map can be obtained using proper phase-unwrapping techniques. Usually these synthetic wavelengths are on the order of microns which can be used to resolve depths on the order of microns. In this work, two extremely close wavelengths generated by an acousto-optic modulator (AOM) are used to perform two-wavelength digital holography. Since the difference between the two wavelengths is on the order of picometers, a large synthetic wavelength (on the order of centimeters) can be obtained which can be used to determine the topography of macroscopic surface features. Also since the synthetic wavelength is large, an accurate surface map can be obtained without using a phase-unwrapping technique. A 514 nm Argon-ion laser is used as the optical source, and used with an AOM to generate the zeroth-order and frequency-shifted first-order diffracted orders which are used as the two wavelengths. Both beams are aligned through the same spatial filter assembly. Holograms are captured sequentially using a typical Mach-Zehnder interferometric setup by blocking one beam at a time. Limitations of the large synthetic wavelength are also discussed.

  4. Sloan Digital Sky Survey Photometric Calibration Revisited

    SciTech Connect

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  5. Sloan Digital Sky Survey Photometric Calibration Revisited

    NASA Astrophysics Data System (ADS)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  6. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  7. Mariner 9 television calibration - Revisited

    NASA Technical Reports Server (NTRS)

    Herkenhoff, Ken E.; Soderblom, Laurence A.; Murray, Bruce C.; Danielson, G. Edward

    1988-01-01

    Mariner 9 TV data from the 1971-1972 encounter with Mars, which contain good synoptic coverage of of the planet as well as the highest-resolution images thus far obtained for the south polar region, can lead to more accurate photometric analysis if subjected to improved processing methods. While calibration errors are rather greater than those of the Viking Orbiter cameras, both calibration data and processing software applicable to an improvement program have become available through the USGS's Planetary Image Cartography System.

  8. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    NASA Astrophysics Data System (ADS)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  9. HPS instrument calibration laboratory accreditation program

    SciTech Connect

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  10. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    ERIC Educational Resources Information Center

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  11. Long Wavelength Fluorescence Ratiometric Zinc Biosensor

    PubMed Central

    Zeng, Hui Hui; Matveeva, Evgenia; Stoddard, Andrea K.; Fierke, Carol A.; Thompson, Richard B.

    2013-01-01

    A protein-based emission ratiometric fluorescence biosensor is described that exhibits sensitivity to free zinc ion solutions down to picomolar concentrations. Ratiometric measurements are widely used to assure accurate quantitation, and emission ratios are preferred for laser scanning microscopes such as confocal fluorescence microscopes. The relatively long emission wavelengths used are well suited to studies in tissues and other matrices which exhibit significant fluorescence background, and the apo-carbonic anhydrase moiety recognizes zinc ion with high and controllable specificity. PMID:23345045

  12. Three different methods for determination of binary mixture of Amlodipine and Atorvastatin using dual wavelength spectrophotometry.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-03-01

    Three simple, specific, accurate and precise spectrophotometric methods depending on the proper selection of two wavelengths are developed for the simultaneous determination of Amlodipine besylate (AML) and Atorvastatin calcium (ATV) in tablet dosage forms. The first method is the new Ratio Difference method, the second method is the Bivariate method and the third one is the Absorbance Ratio method. The calibration curve is linear over the concentration range of 4-40 and 8-32 μg/mL for AML and ATV, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Methods are validated according to the ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit. The mathematical explanation of the procedures is illustrated. PMID:23266678

  13. Three different methods for determination of binary mixture of Amlodipine and Atorvastatin using dual wavelength spectrophotometry

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-03-01

    Three simple, specific, accurate and precise spectrophotometric methods depending on the proper selection of two wavelengths are developed for the simultaneous determination of Amlodipine besylate (AML) and Atorvastatin calcium (ATV) in tablet dosage forms. The first method is the new Ratio Difference method, the second method is the Bivariate method and the third one is the Absorbance Ratio method. The calibration curve is linear over the concentration range of 4-40 and 8-32 μg/mL for AML and ATV, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Methods are validated according to the ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit. The mathematical explanation of the procedures is illustrated.

  14. CALIBRATION IS BOTH FUNCTIONAL AND ANATOMICAL

    PubMed Central

    Bingham, Geoffrey P.; Pan, Jing S.; Mon-Williams, Mark A.

    2014-01-01

    Bingham and Pagano (1998) described calibration as a mapping from embodied perceptual units to an embodied action unit and suggested that it is an inherent component of perception/action that yields accurate targeted actions. We tested two predictions of this ‘Mapping Theory’. First, calibration should transfer between limbs, because it involves a mapping from perceptual units to an action unit, and thus is functionally specific to the action (Pan, et al., submitted). We used distorted haptic feedback to calibrate feedforward right hand reaches and tested right and left hand reaches after calibration. The calibration transferred. Second, the Mapping Theory predicts that limb specific calibration should be possible because the units are embodied and anatomy contributes to their scaling. Limbs must be calibrated to one another given potential anatomical differences among limbs. We used distorted haptic feedback to calibrate feedforward reaches with right and left arms simultaneously in opposite directions relative to a visually specified target. Reaches tested after calibration revealed reliable limb specific calibration. Both predictions were confirmed. This resolves a prevailing controversy as to whether calibration is functional (Rieser, et al., 1995; Bruggeman & Warren, 2010) or anatomical (Durgin, et al., 1999; 2003). Necessarily, it is both. PMID:23855525

  15. Muon Energy Calibration of the MINOS Detectors

    SciTech Connect

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  16. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  17. Auto-Calibration of SOL-ACES in the EUV Spectral Region

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Brunner, R.; Eberhard, D.; Hofmann, A.; Klocke, U.; Knothe, M.; Konz, W.; Riedel, W.-J.; Wolf, H.

    The Sol-ACES (SOLAR Auto-Calibrating EUV/UV Spectrometers) experiment is prepared to be flown with the ESA SOLAR payload to the International Space Station as planned for the Shuttle mission E1 in August 2006. Four grazing incidence spectrometers of planar geometry cover the wavelength range from 16-220 nm with a spectral resolution from 0.5-2.3 nm. These high-efficiency spectrometers will be re-calibrated by two three-signal ionization chambers to be operated with 44 band pass filters on routine during the mission. Re-measuring the filter transmissions with the spectrometers also allows a very accurate determination of the changing second (optical) order efficiencies of the spectrometers as well as the stray light contributions to the spectral recording in different wavelength ranges. In this context the primary requirements for measurements of high radiometric accuracy will be discussed in detail. - The absorption gases of the ionization chambers are neon, xenon and a mixture of 10 % nitric oxide and 90 % xenon. As the laboratory measurements show that by this method secondary effects can be determined to a high degree resulting in very accurate irradiance measurements that is ranging from 5 to 3 % in absolute terms depending on the wavelegth range.

  18. Adaptive self-calibrating iterative GRAPPA reconstruction.

    PubMed

    Park, Suhyung; Park, Jaeseok

    2012-06-01

    Parallel magnetic resonance imaging in k-space such as generalized auto-calibrating partially parallel acquisition exploits spatial correlation among neighboring signals over multiple coils in calibration to estimate missing signals in reconstruction. It is often challenging to achieve accurate calibration information due to data corruption with noises and spatially varying correlation. The purpose of this work is to address these problems simultaneously by developing a new, adaptive iterative generalized auto-calibrating partially parallel acquisition with dynamic self-calibration. With increasing iterations, under a framework of the Kalman filter spatial correlation is estimated dynamically updating calibration signals in a measurement model and using fixed-point state transition in a process model while missing signals outside the step-varying calibration region are reconstructed, leading to adaptive self-calibration and reconstruction. Noise statistic is incorporated in the Kalman filter models, yielding coil-weighted de-noising in reconstruction. Numerical and in vivo studies are performed, demonstrating that the proposed method yields highly accurate calibration and thus reduces artifacts and noises even at high acceleration. PMID:21994010

  19. Zero-Points of FOS Wavelength Scales

    NASA Astrophysics Data System (ADS)

    Rosa, Michael R.; Kerber, Florian

    We have investigated the internal zero-points of the HST's Faint object spectrograph (FOS) on-orbit wavelength calibration between 1990 (launch) and 1997 (de-commissioning). The analysis is based on cross-correlating about 1200 WAVECAL exposures for the high-resolution dispersers, using as templates those exposures which define the dispersion solutions currently in use by the FOS pipeline. FOS has two channels BLUE/RED using two independent Digicon detectors. For BLUE systematic shifts of the zero-points are present, which amount to a maximum offset of 7 pixels (1.75 diodes) over the entire period. The zero-points for RED modes present an apparently random distribution with a peak-to-peak range of 7 pixels. We discu ss the effect of the geomagnetic environment as a possible cause for the observed behaviour and describe the ongoing work to reduce the uncertainty in the wavelength scale.

  20. Aperture-synthesis interferometry at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Burke, Bernard F.

    1987-01-01

    The prospects for applying aperture-synthesis interferometry to the optical domain are reviewed. The radio examples such as the VLA provide a model, since the concepts are equally valid for radio and optical wavelengths. If scientific problems at the milliarc-second resolution level (or better) are to be addressed, a space-based optical array seems to be the only practical alternative, for the same reasons that dictated array development at radio wavelengths. One concept is examined, and speculations are offered concerning the prospects for developing real systems. Phase-coherence is strongly desired for a practical array, although self-calibration and phase-closure techniques allow one to relax the restriction on absolute phase stability. The design of an array must be guided by the scientific problems to be addressed.

  1. Estimation of neutron mean wavelength from rocking curve dataThis work is a contribution of NIST, an agency of the US Government, and not subject to copyright laws.

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Chowdhuri, Z.; Snow, W. M.; Richardson, J. M.; Dewey, M. S.

    2003-01-01

    At NIST, an in-beam neutron lifetime experiment is underway. In part of the experiment, a neutron detector is calibrated. The accuracy of the detector calibration depends, in part, on how accurately the mean wavelength of a neutron beam can be estimated from rocking curve data. Based on a stochastic model for neutron scattering, we simulate rocking curve data. To speed up the simulation, an importance sampling method is used. For the cases studied, importance sampling reduces the execution time of the simulation code by over a factor of 500. For simulated data, the statistical bias of the mean wavelength estimate is found to be 0.004%. This work is a contribution of NIST, an agency of the US Government, and not subject to copyright laws.

  2. Calibration concepts for the MUSE integral field

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Bauer, Svend M.; Roth, Martin M.

    2006-06-01

    The phase-A design study of the Calibration Unit (CU) for the Multi-Unit Spectroscopic Explorer (MUSE) is presented. MUSE is an integral-field spectrograph for the 2nd generation of VLT instruments and offers a relative wide integral-field, adaptive-optics assisted spatial resolution, and a wavelength coverage between 465 and 930 nm. MUSE is a project of seven European institutes and is led by the Centre de Recherche Atronomique de Lyon (CRAL). Amongst other work-packages, the Astrophysical Institute Potsdam (AIP) is responsible for the Calibration Unit. The paper describes the calibration requirements, including issues related to spectral, image quality, and geometrical calibration. The opto-mechanical layout of the calibration unit is presented and the use of focal plane masks to evaluate image distortions and PSF degradations is explained.

  3. Lambertian nature of tissue phantoms for use as calibrators in near infrared fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Litorja, Maritoni; Lorenzo, Simón; Zhu, Banghe; Sevick Muraca, Eva

    2016-03-01

    The use of tissue phantoms as calibrators to transfer SI-referenced scale to an imager offers convenience, compared to other methods of calibration. The tissue phantoms are calibrated separately for radiance at emission wavelength per irradiance at excitation wavelength. This calibration is only performed at a single geometric configuration, typically with the detector normal to the sample. In the clinic however, the imager can be moved around, resulting in a geometric configuration different from the calibration configuration. In this study, radiometric measurements are made at different sample-imager angles to test whether the tissue phantoms are Lambertian and the angular limits to which the calibration values hold true.

  4. Design of onboard calibration unit of space-borne imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Ming; Ding, Shitao; Xiao, Dazhou

    2014-11-01

    The onboard calibration unit is an important part of the space-borne imaging spectrometer and used for the onboard radiometric calibration and spectral calibration of the spectrometer. An imaging spectrometer used in marine satellite is given as an example and its onboard calibration unit is introduced. The onboard calibration unit is in the front of the optical path of the spectrometer, with the sun as the light source, the space qualified PTFE diffusers are used for the onboard radiometric calibration, and the space qualified PTFE diffuser doped with rare earth elements is used for the onboard spectral calibration. The components of the calibration unit are introduced. For the main radiometric calibration diffuser and the redundant radiometric calibration diffuser, the BDRF test results in component level are introduced. Considering the effects of the assembly error and the stray light after the assembly of the spectrometer, the BDRF test method of the radiometric calibration diffuser in system level is introduced. The test results of the directional hemispherical reflectance of the radiometric calibration diffusers and the spectral calibration diffuser are given and the wavelengths of the absorption peaks of the spectral calibration diffuser are obtained. According to the measurement signal of the spectrometer while the onboard spectral calibration, the wavelengths of the absorption peaks of the spectral calibration diffuser which can be used for the onboard spectral calibration are determined. The onboard calibration unit can satisfy the onboard calibration requirements of the spectrometer.

  5. Wavelength-Dependent Optical Absorption Properties of Artificial and Atmospheric Aerosol Measured by a Multi-Wavelength Photoacoustic Spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Bozóki, Z.; Szabó, G.

    2014-12-01

    Various aspects of the photoacoustic (PA) detection method are discussed from the point of view of developing it into a routine tool for measuring the wavelength-dependent optical absorption coefficient of artificial and atmospheric aerosol. The discussion includes the issues of calibration, cross-sensitivity to gaseous molecules, background PA signal subtraction, and size-dependent particle losses within the PA system. The results in this paper are based on a recently developed four-wavelength PA system, which has operational wavelengths in the near-infrared, in the visible, and in the ultraviolet. The measured spectra of artificial and atmospheric aerosol prove the outstanding applicability of the presented PA system.

  6. Relative flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huo, Z. Y.; Huang, Y.; Zheng, Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.

    2015-03-01

    We have developed and implemented an iterative algorithm of flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre (LSS-GAC). For a given LSS-GAC plate, the spectra are first processed with a set of nominal spectral response curves (SRCs) and used to derive initial stellar atmospheric parameters (effective temperature Teff, surface gravity log g and metallicity [Fe/H]) as well as dust reddening E(B - V) of all targeted stars. For each of the 16 spectrographs, several F-type stars with good signal-to-noise ratios are selected as flux standard stars for further, iterative spectral flux calibration. Comparison of spectrophotometric colours, deduced from the flux-calibrated spectra, with the photometric measurements yield average differences of 0.02 ± 0.07 and -0.04 ± 0.09 mag for (g - r) and (g - i), respectively. The relatively large negative offset in (g - i) is because we have opted not to correct for the telluric bands, most notably the atmospheric A band in the wavelength range of the i band. Comparison of LSS-GAC multi-epoch observations of duplicate targets indicates that the algorithm has achieved an accuracy of about 10 per cent in relative flux calibration for the wavelength range 4000-9000 Å. The shapes of SRCs deduced for individual LAMOST spectrographs vary by up to 30 per cent for a given night, and larger for different nights, indicating that the derivation of SRCs for the individual plates is essential to achieve accurate flux calibration for the LAMOST spectra.

  7. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  8. Wavelength dependent mask defects

    NASA Astrophysics Data System (ADS)

    Badger, Karen; Butt, Shahid; Burnham, Jay; Faure, Tom; Hibbs, Michael; Rankin, Jed; Thibault, David; Watts, Andrew

    2005-05-01

    For years there has been a mismatch between the photomask inspection wavelength and the usage conditions. While the non-actinic inspection has been a source for concern, there has been essentially no evidence that a defect "escaped" the mask production process due to the inspection mismatch. This paper will describe the discovery of one such defect, as well as the diagnostic and inspection techniques used to identify the location, analyze the composition, and determine the source of the printed wafer defect. Conventional mask inspection techniques revealed no defects, however an actinic Aerial Image Metrology System (AIMS) revealed a 1.5 mm region on the mask with up to 59% transmission reduction at 193 nm. Further diagnostics demonstrated a strong wavelength dependence which accounted for the near invisibility of the defect at I line (365 nm) or even DUV (248 nm) wavelengths, which had 0% and 5% respective transmission reductions. Using some creative imaging techniques via AIMS tool and modeling, the defect was deduced to have a three dimensional Gaussian absorption character, with total width approximately 1.5 mm. Several non-destructive diagnostic techniques were developed to determine the composition and location of the defect within the substrate. These results will be described in addition to identifying methods for ensuring product quality in the absence of actinic inspection.

  9. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  10. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature. PMID:16662241

  11. Self-calibrating multiplexer circuit

    DOEpatents

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  12. Self-calibrating multiplexer circuit

    SciTech Connect

    Wahl, C.P.

    1995-12-31

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  13. Radar altimeter calibration using SLR

    NASA Technical Reports Server (NTRS)

    Klosko, Steven M.

    1994-01-01

    Clearly a calibration of the TOPEX altimeter (and future TOPEX-class altimeters) which is more accurate and better prepared to meet the demands of global sea level trend monitoring is warranted. TOPEX/Posideon (T/P) is in its second year of data acquisition. If it survives or surpasses the two to five year projected baseline, an unprecedented opportunity for monitoring global sea level trends at mm/y levels will have been lost due to insufficient accuracy in its altimeter calibration. It is therefore paramount to revisit the design of the T/P calibration experiment and implement a more direct approach which better utilizes the accuracy of SLR to perform this needed bias assessment.

  14. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  15. Colorimetric calibration of coupled infrared simulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  16. Accurate and robust estimation of camera parameters using RANSAC

    NASA Astrophysics Data System (ADS)

    Zhou, Fuqiang; Cui, Yi; Wang, Yexin; Liu, Liu; Gao, He

    2013-03-01

    Camera calibration plays an important role in the field of machine vision applications. The popularly used calibration approach based on 2D planar target sometimes fails to give reliable and accurate results due to the inaccurate or incorrect localization of feature points. To solve this problem, an accurate and robust estimation method for camera parameters based on RANSAC algorithm is proposed to detect the unreliability and provide the corresponding solutions. Through this method, most of the outliers are removed and the calibration errors that are the main factors influencing measurement accuracy are reduced. Both simulative and real experiments have been carried out to evaluate the performance of the proposed method and the results show that the proposed method is robust under large noise condition and quite efficient to improve the calibration accuracy compared with the original state.

  17. Calibration of sound calibrators: an overview

    NASA Astrophysics Data System (ADS)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  18. SOL ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Brunner, R.; Eberhard, D.; Halford, B.; Klocke, U.; Knothe, M.; Konz, W.; Riedel, W.-J.; Wolf, H.

    The SOL-ACES experiment is prepared to be flown with the ESA SOLAR payload to the International Space Station as planned for the Shuttle mission E1 (Columbus) in August 2006. Four grazing incidence spectrometers of planar geometry cover the wavelength range from 16 to 220 nm with a spectral resolution from 0.5 to 2.3 nm. These high-efficiency spectrometers will be re-calibrated by two three-signal ionization chambers to be operated with 42 band pass filters on routine during the mission. Re-measuring the filter transmissions with the spectrometers also allows a very accurate determination of the changing second order (optical) efficiencies of the spectrometers as well as the stray light contributions to the spectral recording in different wavelength ranges. In this context the primary requirements for measurements of low radiometric uncertainty are discussed in detail. The absorbing gases in the ionization chambers are neon, xenon and a mixture of 10% nitric oxide and 90% xenon. The laboratory measurements confirm very high count rates such that optical attenuators have to be applied. In addition, possible interfering contributions to the recorded data as generated by secondary effects can be determined to a high degree of accuracy by this method. Hence, very accurate irradiance measurements are expected in terms of relative standard uncertainties (RSU) ranging from 5% to 3% depending on the wavelength range.

  19. Thermal Targets for Satellite Calibration

    SciTech Connect

    Villa-Aleman, E.

    2001-01-10

    The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of ''cold targets'' with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.

  20. ICESat Laser Altimetry: Calibration/Validation

    NASA Astrophysics Data System (ADS)

    Schutz, B. E.

    2003-12-01

    The Geoscience Laser Altimeter System (GLAS) was launched on ICESat in January 2003 into a 600 km altitude, near polar orbit from Vandenberg, California. The GLAS instrument has been developed by NASA Goddard and it was mated to the spacecraft bus, built by Ball Aerospace, in June 2003. GLAS laser-1 was activated in orbit on February 20, 2003 and elevation profiles of the Greenland and Antarctic ice sheets, as well as land and ocean profiles, have been produced using the 1064 nm wavelength. The laser pulse has a divergence of about 0.11 mrad, which illuminates a spot on the surface with a 66 m diameter. The 170 m spot separation on the surface is determined by the ICESat orbital motion and the 40 Hz laser pulse repetition rate. Unlike wide pulse radar altimeters, accurate knowledge of the laser beam direction is required for the laser altimeter to produce accurate surface profiles. The laser pointing direction is determined with the assistance of an innovative system of CCD cameras plus calibration/validation methodologies. The combination of the laser pulse round trip time of flight and the pointing determination system provides an altitude vector. Determination of the direction of the altitude vector has an accuracy requirement of about 1.5 arcsec (or about 4.5 m on surface). In addition to the instrumentation required to produce the altitude vector, the position of a GLAS reference point with respect to the center of mass of the Earth is required. The ICESat BlackJack GPS receiver from NASA JPL has enabled determination of the radial component of the orbit to a few centimeter accuracy level. Laser-1 operated in orbit with a ground track that was controlled to within 800 m of an 8-day repeat reference track. During laser-1 operation and after the laser ceased firing on March 29, experiments were conducted to assess and improve the accuracy of off-nadir pointing, a unique capability to enhance the science return. This paper will provide an assessment of the

  1. Impact of long-range wavelength-scale distortion on fine-structure constant measurements.

    NASA Astrophysics Data System (ADS)

    Dumont, Vincent; Webb, John Kelvin

    2015-08-01

    New ideas in unification theories suggest space-time variations of dimensionless physical constants may exist and that they might be within reach of current instrumental precision available from the world's best observatories. State-of-the-art observations already hint at such an effect. If confirmed, fundamental revisions in standard physics would be required.Accurate calibrations are of course crucial in searches for space-time variations of dimensionless physical constants using spectroscopic observations from the world's best observatories. Several recent studies reveal wavelength distortions in optical echelle spectrographs. These are not yet understood and they have not yet been measured using the actual science data used to derive constraints on space-time variation of alpha (critical since they appear to vary with time). In this work we study the impact of such distortions on measurements of the fine structure constant, alpha, observed at high redshift using high-resolution quasar spectroscopy.We have carried out extensive high-performance computing calculations that quantify the effect accurately for the first time, using the same quasar spectra used to measure alpha at high redshift. The spectra we use were obtained using the Keck telescope in Hawaii and the European Southern Observatory's VLT.We explain the detailed methodologies required, using instrumental configuration information from each wavelength setting used in forming a final summed spectrum. Our results show that whilst long-range wavelength-scale distortions do exist, and hence contribute an additional systematic error, these systematics (measured directly from the science exposures themselves) are small and unlikely to explain the spatial variations alpha of reported recently.

  2. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on-orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11). PMID:26368755

  3. Calibrated fisheye imaging systems for determination of cloud-top radiances from a UAV

    NASA Astrophysics Data System (ADS)

    Shields, Janet E.; Johnson, Richard W.; Karr, Monette E.; Burden, Art R.; Baker, Justin G.

    2003-11-01

    In order to measure cloud top radiances from Unmanned Aerial Vehicles (UAVs) or other light aircraft, two small calibrated fisheye imaging systems have recently been developed. One of these systems uses a visible-wavelength CCD and is optically filtered to measure cloud top and ground radiances near 645 nm. The other uses an InGaAs detector and is optically filtered to measure radiances near 1610 nm. These sensors are specifically designed for use with DOE's Atmospheric Radiation Measurement (ARM) Program UAV Project, and it is anticipated that they will be used for comparison with a variety of satellite-borne radiance measurements. Radiometric calibration of solid-state imagers is never trivial, as the effects of exposure time, system non-linearities, temperature, gain and other system characteristics must be adequately measured and characterized. Much experience has been gained with the ground-based Day/Night Whole Sky Imagers and the Daylight Visible/NIR Whole Sky Imagers developed and used by the group for many years. New techniques for the radiometric calibration of the two new airborne systems are being developed based on this experience and the characteristics of the sensors involved. In addition, new techniques for a more accurate angular calibration have been developed.

  4. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    PubMed

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated. PMID:23586268

  5. Simple parametric model for intensity calibration of Cassini composite infrared spectrometer data.

    PubMed

    Brasunas, J; Mamoutkine, A; Gorius, N

    2016-06-10

    Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans. PMID:27409028

  6. Spectral characterization of HST calibration lamps: new Pt/Cr-Ne line catalogues and aging test

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rosa, Michael R.; Sansonetti, Craig J.; Reader, Joseph; Nave, G.; Bristow, Paul; Fiorentino, Mauro; Lercher, Georg

    2004-10-01

    The Space Telescope European Coordinating Facility's (ST-ECF) lamp project, funded directly by the European Space Agency (ESA), is dedicated to the study of hollow cathode calibration lamps as they are used onboard the Hubble Space Telescope (HST). There are two main objectives: First, we have measured the spectra of Pt/Cr-Ne lamps in order to obtain accurate and reliable wavelengths for all emission lines between 115 and 320 nm. This wavelength range corresponds to the coverage provided by the Space Telescope Imaging Spectrograph (STIS) Echelle modes. Extensive laboratory measurements were performed at the National Institute of Standard and Technology (NIST) using their 10.7 m normal incidence spectrograph and a Fourier Transform Spectrograph. Until now no good laboratory wavelengths for Cr had been available and their addition has a major impact on the wavelength calibration, in particular in the near UV. The new line list is being used in conjunction with the physical instrument model of STIS which is employed to derive an improved wavelength calibration as part of the STIS Calibration Enhancement (STIS-CE) effort. Second, we attempt to gain a better understanding of the performance of such lamps and the physical processes involved in their long term operations. Among the issues studied are the change of the spectrum as a function of current, its change as a function of time and the tolerances of alignment. The bulk of the measurements were performed on flight spares from STIS and on new space qualified lamps for the accelerated aging test. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps ever to be measured after their return from space. Together with the spectra archived from six years of on-orbit operations they provide a unique data set for studying ageing effects in these lamps. The new Pt/Cr-Ne line list has been successfully applied in the STIS-CE effort. Thereby the

  7. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  8. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  9. Calibrating echelle spectrographs with Fabry-Pérot etalons

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Zechmeister, M.; Reiners, A.

    2015-09-01

    Context. Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and fewer dynamic range problems. Fabry-Pérot interferometers provide a regular and dense grid of lines and homogeneous amplitudes, which makes them good candidates for next-generation calibrators. Aims: We investigate the usefulness of Fabry-Pérot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution, and examine potential problems. Methods: The quasi-periodic pattern of Fabry-Pérot lines was used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We tested our method with the HARPS spectrograph and compared our wavelength solution to the one derived from a laser frequency comb. Results: The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelength solution of the HARPS data reduction software. The direct comparison to the laser frequency comb shows differences of only 10 m/s at most. Conclusions: Combining hollow-cathode lamps with Fabry-Pérot interferometers can lead to substantial improvements in the wavelength calibration of echelle spectrographs. Etalons can provide economical alternatives to the laser frequency comb, especially for smaller projects.

  10. Chaos, Consternation and CALIPSO Calibration: New Strategies for Calibrating the CALIOP 1064 nm Channel

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark; Garnier, Anne; Liu, Zhaoyan; Josset, Damien; Hu, Yongxiang; Lee, Kam-Pui; Hunt, William; Vernier, Jean-Paul; Rodier, Sharon; Pelon, Jaques; Winker, David

    2012-01-01

    The very low signal-to-noise ratios of the 1064 nm CALIOP molecular backscatter signal make it effectively impossible to employ the "clear air" normalization technique typically used to calibrate elastic back-scatter lidars. The CALIPSO mission has thus chosen to cross-calibrate their 1064 nm measurements with respect to the 532 nm data using the two-wavelength backscatter from cirrus clouds. In this paper we discuss several known issues in the version 3 CALIOP 1064 nm calibration procedure, and describe the strategies that will be employed in the version 4 data release to surmount these problems.

  11. Accurate measurement of time

    NASA Astrophysics Data System (ADS)

    Itano, Wayne M.; Ramsey, Norman F.

    1993-07-01

    The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.

  12. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  13. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  14. ECM at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Copper, H. W.; Littlepage, R. S.

    1982-09-01

    ECM techniques appropriate to the millimeter wave band are examined with particular reference to the physics of the atmosphere and component performance capability. Model calculations show that even for state-of-the-art threat radars, the required ECM receiver sensitivity is well within the state-of-the-art for broadband superheterodyne systems. For ECM jammers, the most fundamental limitation arises from deficiencies in broadband/high power amplifiers. The solution to this problem will require different ECM system architectures than used at the lower frequencies. At millimeter wavelengths, atmospheric effects permit new jamming techniques requiring lower jamming power. For example, scattering by hydrometeors significantly raises the apparent sidelobe level of even low sidelobe antennas of threat radars, which reduces the power required to infringe through the sidelobes.

  15. Quadrature wavelength scanning interferometry.

    PubMed

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel

    2016-07-10

    A novel method to double the measurement range of wavelength scanning interferometery (WSI) is described. In WSI the measured optical path difference (OPD) is affected by a sign ambiguity, that is, from an interference signal it is not possible to distinguish whether the OPD is positive or negative. The sign ambiguity can be resolved by measuring an interference signal in quadrature. A method to obtain a quadrature interference signal for WSI is described, and a theoretical analysis of the advantages is reported. Simulations of the advantages of the technique and of signal errors due to nonideal quadrature are discussed. The analysis and simulation are supported by experimental measurements to show the improved performances. PMID:27409307

  16. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to

  17. Theoretical model atmosphere spectra used for the calibration of infrared instruments

    NASA Astrophysics Data System (ADS)

    Decin, L.; Eriksson, K.

    2007-09-01

    Context: One of the key ingredients in establishing the relation between input signal and output flux from a spectrometer is accurate determination of the spectrophotometric calibration. In the case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the accuracy of the set of reference spectral energy distributions (SEDs) that the spectrophotometric calibration is built on. Aims: In this paper, we deal with the spectrophotometric calibration of infrared (IR) spectrometers onboard satellites in the 2 to 200 μm wavelength range. We aim at comparing the different reference SEDs used for the IR spectrophotometric calibration. The emphasis is on the reference SEDs of stellar standards with spectral type later than A0, with special focus on the theoretical model atmosphere spectra. Methods: Using the MARCS model atmosphere code, spectral reference SEDs were constructed for a set of IR stellar standards (A dwarfs, solar analogs, G9-M0 giants). A detailed error analysis was performed to estimate proper uncertainties on the predicted flux values. Results: It is shown that the uncertainty on the predicted fluxes can be as high as 10%, but in case high-resolution observational optical or near-IR data are available, and IR excess can be excluded, the uncertainty on medium-resolution SEDs can be reduced to 1-2% in the near-IR, to ~3% in the mid-IR, and to ~5% in the far-IR. Moreover, it is argued that theoretical stellar atmosphere spectra are at the moment the best representations for the IR fluxes of cool stellar standards. Conclusions: When aiming at a determination of the spectrophotometric calibration of IR spectrometers better than 3%, effort should be put into constructing an appropriate set of stellar reference SEDs based on theoretical atmosphere spectra for some 15 standard stars with spectral types between A0 V and M0 III.

  18. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  19. Postlaunch calibration of spacecraft attitude instruments

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.

    1993-01-01

    The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).

  20. Iterative optimization calibration method for stereo deflectometry.

    PubMed

    Ren, Hongyu; Gao, Feng; Jiang, Xiangqian

    2015-08-24

    An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180

  1. Calibration and characterization of spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Polder, Gerrit; van der Heijden, Gerie W.

    2001-09-01

    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  2. Advanced geometric camera calibration for machine vision

    NASA Astrophysics Data System (ADS)

    Vo, Minh; Wang, Zhaoyang; Luu, Long; Ma, Jun

    2011-11-01

    In many machine vision applications, a crucial step is to accurately determine the relation between the image of the object and its physical dimension by performing a calibration process. Over time, various calibration techniques have been developed. Nevertheless, the existing methods cannot satisfy the ever-increasing demands for higher accuracy performance. In this letter, an advanced geometric camera calibration technique which employs a frontal image concept and a hyper-precise control point detection scheme with digital image correlation is presented. Simulation and real experimental results have successfully demonstrated the superior of the proposed technique.

  3. Obtaining Well Calibrated Probabilities Using Bayesian Binning

    PubMed Central

    Naeini, Mahdi Pakdaman; Cooper, Gregory F.; Hauskrecht, Milos

    2015-01-01

    Learning probabilistic predictive models that are well calibrated is critical for many prediction and decision-making tasks in artificial intelligence. In this paper we present a new non-parametric calibration method called Bayesian Binning into Quantiles (BBQ) which addresses key limitations of existing calibration methods. The method post processes the output of a binary classification algorithm; thus, it can be readily combined with many existing classification algorithms. The method is computationally tractable, and empirically accurate, as evidenced by the set of experiments reported here on both real and simulated datasets. PMID:25927013

  4. An automated vacuum gauge calibration system

    SciTech Connect

    Abbott, P.J.; Benner, M.S.

    1998-04-01

    An automated system for calibrating vacuum gauges over the pressure range of 10{sup {minus}6} to 0.1 Pa was designed and constructed at the National Institute of Standards and Technology (NIST) for the Department of Energy (DOE) Primary Standards Laboratory at Sandia National Laboratories (SNL). Calculable pressures are generated by passing a known flow of gas through an orifice of known conductance. The orifice conductance is derived from dimensional measurements and accurate flows are generated using metal capillary leaks. The expanded uncertainty (k = 2) in the generated pressure is estimated to be between 1% and 4% over the calibration range. The design, calibration results. and component uncertainties will be discussed.

  5. Mercury CEM Calibration

    SciTech Connect

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    sulfur emissions cap and trade. However, mercury has proven to be significantly more difficult to accurately determine than was originally thought. The purpose of the current phase of this project is to evaluate issues related to the use of dynamic elemental mercury calibrators that are based on mercury vapor headspace above elemental mercury at a particular temperature.

  6. Improved Radial Velocity Precision with a Tunable Laser Calibrator

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.

    2010-01-01

    We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.

  7. Polarization effects on hard target calibration of lidar systems

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1987-01-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.

  8. MODIS On-orbit Spectral Calibration for the Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Che, N.; Barnes, W.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) makes observations in 36 spectral bands with wavelengths from 0.41 to 14.5 microns. The bands with center wavelengths below 2.2 microns are referred as the reflective solar bands (RSB) with their radiometric calibration performed by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). This paper focuses on the MODIS spectral calibration performed by its unique on-board calibrator (OBC): the Spectro-Radiometric Calibration Assembly (SRCA). When operated in the spectral mode, the SRCA acts as a monochromator with internal spherical integration source (SIS) that measures the spectral responses for all the reflective solar bands. A wavelength calibrator, a didymium filter with known spectral profile, is utilized to calibrate the wavelength scale for the grating positions during each SRCA spectral calibration activity. The capability of self-wavelength calibration allows the SRCA to track the center wavelength shifts and to monitor the spectral response changes throughout the instruments lifetime. The MODIS spectral calibration, same for both Terra and Aqua missions, is performed every three months on-orbit. An overview of MODIS spectral characterization approach and a summary of the on-orbit results will be presented in this paper.

  9. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light. PMID:23387142

  10. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  11. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  12. Assessment of MODIS Reflected Solar Calibration Uncertainty

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Butler, James

    2011-01-01

    Determination of the calibration accuracy and traceability of a remote sensing instrument is a driving issue in the use of satellite data for calibration inter-comparisons and studying climate change. The Terra and Aqua MODerate Resolution Imaging Spectroradiometer (MODIS) instruments have successfully operated for more than 11 and 9 years, respectively. Twenty of the thirty six MODIS spectral bands are in the reflected solar region with center wavelengths ranging from 0.41 to 2.2 microns. MODIS reflective solar band (RSB) on-orbit calibration is reflectance based through the use of an on-board solar diffuser (SO). The calibration uncertainty requirements are +/-2.0% for the RSB reflectance factors at sensor specified typical scene reflectances or radiances. The SO bi-directional reflectance factor (BRF) was characterized pre-launch and its on-orbit changes are tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides an assessment of MODIS RSB on-orbit calibration traceability and uncertainty for its Level 1B (L1B) reflectance factors. It examines in details each of the uncertainty contributors, including those from pre-launch measurements as well as on-orbit observations. Common challenging issues and differences due to individual sensors' specific characteristics and on-orbit performance are also discussed in this paper. Guidance and recommendations are presented, based on lessons from MODIS RSB calibration uncertainty assessment, for the development of future instrument calibration and validation plans.

  13. Rotman lens for mm-wavelengths

    NASA Astrophysics Data System (ADS)

    Hall, Leonard T.; Hansen, Hedley J.; Abbott, Derek

    2002-11-01

    The 77 GHz band has been reserved for intelligent cruise control in luxury cars and some public transport services in America and the United Kingdom. The Rotman lens offers a cheap and compact means to extend the single beam systems generally used, to fully functional beam staring arrangements. Rotman lenses have been built for microwave frequencies with limited success. The flexibility of microstrip transmission lines and the advent of fast accurate simulation packages allow practical Rotman lenses to be designed at mm-wavelengths. This paper discusses the limitations of the conventional design approach and predicts the performance of a new Rotman lens designed at 77 GHz.

  14. GLAST Science Across Wavelengths

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2006-12-01

    The GLAST satellites is almost guaranteed to revolutionize GeV gamma ray astronomy because of the great discoveries that are being made at hard X-ray energy by the Suzaku and Swift satellites and in the TeV range using the H.E.S.S. and Magic telescopes. Unidentified EGRET sources are likely to be identified and new and fainter sources will be found. Known classes of sources blazars, pulsars, gamma ray bursts, supernova remnants, binary X-ray sources and so on will be monitored in much greater detail. Finally, there is the need to limit or even detect dark matter through its annihilation signature. The science that will emerge from GLAST will be determined in large measure by the effort that is put into multiwavelength observing. This will require significant commitments of observing time for monitoring pulsar arrival times, measuring faint galaxy spectra, detecting GeV gamma rays gamma ray bursts and so on. In this talk I will attempt to summarize current thinking on the GLAST multi-wavelength observing program and propose some new approaches.

  15. Cherenkov Source for PMT Calibrations

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ at UC Berkeley Collaboration

    2013-10-01

    My research is focused on building a deployable source for PMT calibrations in the SNO+ detector. I work for the SNO+ group at UC Berkeley headed by Gabriel Orebi Gann. SNO+ is an addition to the SNO project, and its main goal is to search for neutrinoless double beta decay. The detector will be monitored by over 9500 photomultiplier tubes (PMTs). In order to characterize the PMTs, several calibration sources are being constructed. One of which, the Cherenkov Source, will provide a well-understood source of non-isotropic light for calibrating the detector response. My goal is to design and construct multiple aspects of the Cherenkov Source. However, there are multiple questions that arose with its design. How do we keep the scintillation light inside the Cherenkov source so it does not contaminate calibration? How do we properly build the Cherenkov source: a hollow acrylic sphere with a neck? Can we maintain a clean source throughout these processes? These are some of the problems I have been working on, and will continue to work on, until the deployment of the source. Additionally, I have worked to accurately simulate the physics inside the source, mainly the energy deposition of alphas.

  16. Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration

    NASA Astrophysics Data System (ADS)

    Jessen, W.; Wilbert, S.; Nouri, B.; Geuder, N.; Fritz, H.

    2015-10-01

    Resource assessment for Concentrated Solar Power (CSP) needs accurate Direct Normal Irradiance (DNI) measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs) with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA) in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May) show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.

  17. Calibration source for remote sensors

    NASA Technical Reports Server (NTRS)

    Mclean, J. T.; Mcculloch, A.; Mohr, E. I.

    1975-01-01

    The source described was developed as a calibration target for the multispectral scanner (MSS) which was flown on the Earth Resources Technology Satellite A (LANDSAT 1). The wavelength region of interest covered the four (4) MSS bands extending from 0.5 to 1.1 micrometers, although the target was calibrated from 0.32 to 2.5 micrometers. The following characteristics for the target were required: (1) large aperture, sufficient to accommodate an instrument with a 9 inch (23 centimeters(cm)) aperture and 2 1/2 deg field of view (fov), (2) highly diffuse energy from target, (3) high spatial uniformity across aperture area of source, (4) spectrally calibrated in absolute units, (5) stable output over long periods of time (1-2 yrs), and (6) rugged, yet portable enough to be easily transported long distances without detrimental effects on the operational capabilities of the target. Two approaches were considered: a thirty (30) inch (76 cm) diameter integrating sphere with a twelve inch (30.5 cm) exit port, or the use of one hemisphere of a 76 cm sphere in conjunction with a Kodak ektolite screen. The screen has the property of reflecting back uniformly into a well defined area the majority of the light received. After some preliminary trials it seemed that the 76 cm sphere would give the most satisfactory results.

  18. OMPS SDR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.

  19. Quality assurance programs at the PNL calibrations laboratory

    SciTech Connect

    Piper, R.K.; McDonald, J.C.; Fox, R.A.; Eichner, F.N.

    1993-03-01

    The calibrations laboratory at Pacific Northwest Laboratory (PNL) serves as a radiological standardization facility for personnel and environmental dosimetry and radiological survey instruments. As part of this function, the calibrations laboratory must maintain radiological reference fields with calibrations traceable to the National Institute of Standards and Technology (NIST). This task is accomplished by a combination of (1) sources or reference instruments calibrated at or by NIST, (2) measurement quality assurance (MQA) interactions with NIST, and (3) rigorous internal annual and quarterly calibration verifications. This paper describes a representative sample of the facilities, sources, and actions used to maintain accurate and traceable fields.

  20. Implicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    This paper presents an implicit algorithm for spacecraft onboard instrument calibration, particularly to onboard gyro calibration. This work is an extension of previous work that was done where an explicit gyro calibration algorithm was applied to the AQUA spacecraft gyros. The algorithm presented in this paper was tested using simulated data and real data that were downloaded from the Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very good results. A comparison between the use of the implicit calibration algorithm used here with the explicit algorithm used for AQUA spacecraft indicates that both provide an excellent estimation of the gyro calibration parameters with similar accuracies.

  1. Definition of energy-calibrated spectra for national reachback

    SciTech Connect

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  2. Thermal infrared radiometer calibration and experimental measurements

    NASA Astrophysics Data System (ADS)

    Wei, JiAn; Wang, Difeng; Gong, Fang; Yan, Bai; He, Xianqiang

    2015-08-01

    Thermal infrared radiometers play a vital role in obtaining information in field measurements and also in verifying information from remote sensing satellite sensor data. However, the calibration precision of the thermal infrared radiometers directly affects the accuracy of the remote sensing data analysis and application. It is therefore necessary to ensure that the calibration of thermal infrared radiometers is of sufficient and reliable precision. In this paper, the theory of a six-band thermal infrared radiometer (CE 312-2 ASTER) calibration method was introduced, with the calibration being conducted by using a blackbody source in the laboratory. The sources of error during the calibration procedure were analyzed, and the results of the calibration were provided. Then, laboratory experiments using the radiometer were described. The measurements of the surface temperature of a water sample that was contained in a thermostatic water bath, performed by using the radiometer, were compared to the water sample's temperature controlled by another device. These experiments were used to evaluate the calibration precision of the CE 312-2 ASTER radiometer, by means of assessing the measurement accuracy of the experiments. The results demonstrated that the calibration coefficients of the CE 312-2 ASTER thermal infrared radiometer displayed a very good performance, with highly accurate measurements, and could be used to detect phenomena related to a thermal infrared target.

  3. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  4. LBA_Calibrator_Survey-6

    NASA Astrophysics Data System (ADS)

    Petrov, Leonid; Murphy, Tara; Tzioumis, Anastasios; Phillips, Chris; Sadler, Elaine; Burke-Spolaor, Sarah; Pogrebenko, Sergei; Bertarini, Alessandra; Booth, Roy; Fomalont, Ed; de Witt, Aletha

    2013-04-01

    We request three 24 hour observing sessions at the LBAfor finishing the 8.4~GHz observations for determining, at a milliarcsec accuracy, the coordinates of 260 sources with spectrum flatter than -0.5 in the declination range [-90deg, -30deg]. Our goal is to increase the density of calibrators with positions accurate at a milliarcsecond level in those regions in the southern hemisphere where its density is still low, in particular in the Galactic plane. We will also produce estimates of correlated flux density and snap-shot images. The output catalogue of source positions will be of use for phase-referencing observations at the LBA, as a calibrator pool for the ATCA, ALMA, and SKA, for space navigation, and as a source list for geodetic observations.

  5. LBA_Calibrator_Survey-7

    NASA Astrophysics Data System (ADS)

    Petrov, Leonid; Murphy, Tara; Tzioumis, Anastasios; Phillips, Chris; Sadler, Elaine; Burke-Spolaor, Sarah; Pogrebenko, Sergei; Bertarini, Alessandra; Booth, Roy; Fomalont, Ed; de Witt, Aletha

    2014-04-01

    We request three 24 hour observing sessions at the LBA for finishing the 8.4 GHz observations for determining, at a milliarcsec accuracy, the coordinates of 250 sources in the declination range [-90deg, -30deg]. Our goal is to increase the density of calibrators with positions accurate at a milliarcsecond level in those regions in the southern hemisphere where its density is still low, in particular in the Galactic plane. We will also produce estimates of correlated flux density and snap-shot images. The output catalogue of source positions will be of use for phase-referencing observations at the LBA, as a calibrator pool for the ATCA, ALMA, and SKA, for space navigation, and as a source list for geodetic observations.

  6. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  7. Improvements of VIIRS and MODIS solar diffuser and lunar calibration

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Butler, James; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit

    2013-09-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  8. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  9. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  10. On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Xie, Xiaobo; Barnes, William; Salomonson, Vincent

    2009-01-01

    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra

  11. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  12. The Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  13. Analytical multicollimator camera calibration

    USGS Publications Warehouse

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  14. Challenges in the Development of a Self-Calibrating Network of Ceilometers.

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Wagner, Frank; Mattis, Ina; Baars, Holger; Haefele, Alexander

    2015-04-01

    There are more than 700 Automatic Lidars and Ceilometers (ALCs) currently operating in Europe. Modern ceilometers can do more than simply measure the cloud base height. They can also measure aerosol layers like volcanic ash, Saharan dust or aerosols within the planetary boundary layer. In the frame of E-PROFILE, which is part of EUMETNET, a European network of automatic lidars and ceilometers will be set up exploiting this new capability. To be able to monitor the evolution of aerosol layers over a large spatial scale, the measurements need to be consistent from one site to another. Currently, most of the instruments do not provide calibrated, only relative measurements. Thus, it is necessary to calibrate the instruments to develop a consistent product for all the instruments from various network and to combine them in an European Network like E-PROFILE. As it is not possible to use an external reference (like a sun photometer or a Raman Lidar) to calibrate all the ALCs in the E-PROFILE network, it is necessary to use a self-calibration algorithm. Two calibration methods have been identified which are suited for automated use in a network: the Rayleigh and the liquid cloud calibration methods In the Rayleigh method, backscatter signals from molecules (this is the Rayleigh signal) can be measured and used to calculate the lidar constant (Wiegner et al. 2012). At the wavelength used for most ceilometers, this signal is weak and can be easily measured only during cloud-free nights. However, with the new algorithm implemented in the frame of the TOPROF COST Action, the Rayleigh calibration was successfully performed on a CHM15k for more than 50% of the nights from October 2013 to September 2014. This method was validated against two reference instruments, the collocated EARLINET PollyXT lidar and the CALIPSO space-borne lidar. The lidar constant was on average within 5.5% compare to the lidar constant determined by the EARLINET lidar. It confirms the validity of the

  15. Field Deployments of DWEL, A Dual-Wavelength Echidna Lidar

    NASA Astrophysics Data System (ADS)

    Howe, G.; Hewawasam, K.; Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Chakrabarti, S.; Li, Z.; Schaaf, C.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Erb, A.

    2013-12-01

    We describe the construction and operation of a terrestrial scanning lidar used for automated retrieval of forest structure. The Dual Wavelength Echidna Lidar (DWEL) distinguishes between leaf hits and those of trunks and branches by using simultaneous, co-axial laser pulses at 1548 nm, where leaf water content produces strong absorption, and at 1064 nm where leaves and trunks have similar reflectances. The DWEL instrument obtains three-dimensional locations and characteristics of scattering events by using an altitudinal scan mirror on an azimuthal rotating mount along with full waveform digitization. The instrument has seen two successful field deployments: to the Sierra National Forest, California in June of 2013 and to both the Karawatha Forest Park and Brisbane Forest Park near Brisbane, Australia in July/August 2013 as part of the Terrestrial Laser Scanner International Interest Group (TLSIIG) conference. Measurements of tree leaves, branches, and trunks were successfully made. Panels of known reflectance were used to calibrate and characterize the back scattered waveforms in the field. Preliminary maximum range measurements were shown to be over 75 meters for both wavelengths. To obtain accurate waveform data, the two lasers are triggered simultaneously and each has a full-width-half-max length of less than 10 meters. The light is then collimated and expanded to a diameter of 6 mm before diverging in user-selectable optics with divergences of either 1.25- or 2.5-mrad enabling scan resolutions of 1- and 2-mrad. The durations of complete scans are approximately 164 and 41 minutes, respectively. Mirrors and dichroic filters co-align the two NIR wavelength laser beams along with a continuous-wave green marker laser. The outgoing beams are directed by a rotating 10 cm scan mirror with effective field of view of ×110 degrees attitudinally while the instrument itself rotates for an effective azimuthal field of view of 360 degrees. Optical encoders in both planes

  16. Calibration issues in delta alpha /alpha .

    NASA Astrophysics Data System (ADS)

    Molaro, Paolo; Centurión, Miriam; Levshakov, Sergei

    Laser Comb Wavelength calibration shows that the ThAr one is locally unreliable with possible deviations of up to 100 {m s}-1 within one order range, while delivering an overall 1 {m s}-1 accuracy (Wilken et al 2009). Such deviation corresponds to delta alpha /alpha ≈ 7* 10-6 for a Fe II-Mg II pair. Comparison of line shifts among the 5 Fe II lines, with almost identical sensitivity to fine structure constant changes, offers a clean way to directly test the presence of possible local wavelength calibration errors of whatever origin. We analyzed 5 absorption systems, with zabs ranging from 1.15 to 2.19 towards 3 bright QSOs. The results show that while some lines are aligned within 20 {m s}-1, others reveal large deviations reaching 200 {m s}-1 or higher and corresponding to a delta alpha /alpha > 10-5 level. The origin of these deviations is not clearly identified but could be related to the adaptation of wavelength calibration to CCD manufacturing irregularities. These results suggest that to draw conclusions from delta alpha /alpha analysis based on one or only few lines must be done with extreme care.

  17. SO2 on Venus: A final cross-calibration with Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    In the present reporting period we have met with the Pioneer Venus PI to collaborate on the recalibration of the UV spectrometer of Pioneer Venus. The associated data reduction and analysis activities have been completed. The sensitivity of the UV spectrometer has been steadily declining since orbit insertion of Pioneer Venus in 1978 due to aging of the detector tubes. The sensitivity decline is a strong function of wavelength and the rate of decline is also a function of time. Measures were taken to reduce the light dose received by the instrument to slow down the sensitivity decline. The stellar calibration using the bright UV star Hadar in 1990 indicates that the sensitivity decline may have slowed down more than have been previously estimated. The derived amount of SO2 from Pioneer Venus depends on the accuracy of the absolute sensitivity of the UV spectrometer. The previous cross calibration between IUE and Pioneer Venus led to the use of the same solar flux data for reducing and modelling data from both IUE and Pioneer Venus. The comparison between the 1991 IUE results and the Pioneer Venus stellar calibration carried out in 1990 will allow a more accurate determination of sensitivity decline of the PV UV spectrometer. The result of this comparison will be crucial in determining the trend of SO2 in the Venus atmosphere.

  18. Flat-Field Calibration of CCD Detector for Long TraceProfilers

    SciTech Connect

    Kirschman, Jonathan L.; Domning, Edward E.; Franck, Keith D.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Morrison,Gregory Y.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.

    2007-07-31

    The next generation of synchrotrons and free electron lasersrequires x-ray optical systems with extremely high-performance,generally, of diffraction limited quality. Fabrication and use of suchoptics requires highly accurate metrology. In the present paper, wediscuss a way to improve the performance of the Long Trace Profiler(LTP), a slope measuring instrument widely used at synchrotron facilitiesto characterize x-ray optics at high-spatial-wavelengths fromapproximately 2 mm to 1 m. One of the major sources of LTP systematicerror is the detector. For optimal functionality, the detector has topossess the smallest possible pixel size/spacing, a fast method ofshuttering, and minimal non-uniformity of pixel-to-pixel photoresponse.While the first two requirements are determined by choice of detector,the non-uniformity of photoresponse of typical detectors such as CCDcameras is around 2-3 percent. We describe a flat-field calibration setupspecially developed for calibration of CCD camera photo-response and darkcurrent with an accuracy of better than 0.5 percent. Such accuracy isadequate for use of a camera as a detector for an LTP with performance of~;0.1 microradian (rms). We also present the design details of thecalibration system and results of calibration of a DALSA CCD camera usedfor upgrading our LTP-II instrument at the ALS Optical MetrologyLaboratory.

  19. GOSAT-2 and its Calibration System

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Nakajima, Teruyuki

    2014-05-01

    JAXA, MOE (Ministry of Environment) and NIES (National Institute of Environmental Studies) are now going to start the GOSAT follow on program, i.e. GOSAT-2. The sensors on- board the GOSAT-2 is TANSO-FTS2 and TANSO-CAI2. TANSO-FTS2 has several improvements from GOSAT TANSO-FTS. They are 1) addition of CO channel in SWIR bands, 2) increase of SNR for all channels, 3) intelligent pointing to avoid clouds, 4) optimal wavelength region for fluorescence measurements, etc. TANSO-CAI2 is a push broom imager with 7 to 9 channels. The improvements from GOSAT CAI are 1) addition of UV channel (340nm), 2) tilt operation to avoid sun glitter, etc. Calibration of FTS SWIR bands utilize on-board sun diffuser, deep space, LED for instrument function measurements and lunar calibration. Calibration of FTS TIR utilize on- board black body and deep space. CAI2 utilize lunar calibration and vicarious calibrations. Cross calibrations with OCO2 are also planned. The planned launch date of GOSAT-2 is fiscal 2017.

  20. Calibration methods for rotating shadowband irradiometers and optimizing the calibration duration

    NASA Astrophysics Data System (ADS)

    Jessen, Wilko; Wilbert, Stefan; Nouri, Bijan; Geuder, Norbert; Fritz, Holger

    2016-04-01

    Resource assessment for concentrated solar power (CSP) needs accurate direct normal irradiance (DNI) measurements. An option for such measurement campaigns is the use of thoroughly calibrated rotating shadowband irradiometers (RSIs). Calibration of RSIs and Si-sensors is complex because of the inhomogeneous spectral response of these sensors and incorporates the use of several correction functions. One calibration for a given atmospheric condition and air mass might not be suitable under different conditions. This paper covers procedures and requirements of two calibration methods for the calibration of rotating shadowband irradiometers. The necessary duration of acquisition of test measurements is examined with regard to the site-specific conditions at Plataforma Solar de Almería (PSA) in Spain. Seven data sets of long-term test measurements were collected. For each data set, calibration results of varying durations were compared to its respective long-term result. Our findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Calibration results within certain periods (i.e. November to January and April to May) show a higher likelihood of deviation. These effects can partially be attenuated by including more measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of year in which measurements commence.

  1. Initial Inflight Calibration Status of the OCO-2 Mission

    NASA Astrophysics Data System (ADS)

    Pollock, R.; Chapsky, L.; Lee, R.; Rosenberg, R.; Bruegge, C. J.

    2014-12-01

    The Orbiting Carbon Observatory-2 launched on July 2nd, 2014, and is scheduled to begin initial observations in early August. In addition to the standard operational science measurements, the early phase of the mission will see intensive special calibration measurements. These will seek to validate the ground radiometric, spectral and spatial calibration of the three-band spectrometer. Radiometric calibration validation will be primarily accomplished via vicarious calibration using the playa at Railroad Valley, NV, from techniques demonstrated by the joint OCO-2/GOSAT fieldwork. Additional constraints will be established via lunar calibration using the USGS ROLO database. Critical to the radiometric calibration will be dark subtraction that will be validated via regular dark measurements. Spectral calibration validation will rely heavily on the OCO-2 Level 2 algorithm. By inspecting the residual fits, it will be possible to constrain the uncertainties in wavelength error and infer possible errors in the instrument line shape model. Additional constraints on line shape stability will be provided by monitoring the Doppler shift of solar lines during an extended solar calibration. Spatial calibration validation will be based on lunar calibration, with additional information provided by observing coastline crossings. This presentation will summarize the current state of calibration knowledge leading up to the first public data release of the OCO-2 L1b data product.

  2. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  3. Ergometer calibrator. [for any ergometer utilizing rotating shaft

    NASA Technical Reports Server (NTRS)

    Gause, R. L. (Inventor)

    1975-01-01

    An apparatus is presented for accurately calibrating ergometers so that the work rate produced by the particular ergometer being calibrated is accurate. The apparatus includes a dc motor which is coupled directly to the ergometer for rotating it at various speeds. Positioned on the shaft between the dc motor and the ergometer is a torque sensor and tachometer, which feed signals to a power computer for subsequent recording. A speed controller is utilized with the dc motor.

  4. SUMS calibration test report

    NASA Technical Reports Server (NTRS)

    Robertson, G.

    1982-01-01

    Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.

  5. Low radioactivity spectral gamma calibration facility

    SciTech Connect

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.; Lavelle, M.J.; Smith, A.R.; Hearst, J.R.; Wollenberg, H.A.; Flexser, S.

    1986-01-01

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.

  6. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  7. Flux-Calibrated Emission-Line Imaging of Extended Sources Using GTC/OSIRIS Tunable Filters

    NASA Astrophysics Data System (ADS)

    Mayya, Y. D.; Rosa González, D.; Vega, O.; Méndez-Abreu, J.; Terlevich, R.; Terlevich, E.; Bertone, E.; Rodríguez-Merino, L. H.; Muñoz-Tuñón, C.; Rodríguez-Espinosa, J. M.; Sánchez Almeida, J.; Aguerri, J. A. L.

    2012-08-01

    We investigate the utility of the tunable filters (TFs) for obtaining flux-calibrated emission-line maps of extended objects such as galactic nebulae and nearby galaxies using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) at the 10.4-m Gran Telescopio Canarias (GTC). Despite the relatively large field of view (FoV) of OSIRIS (8' × 8'), the change in wavelength across the field (~80 Å) and the long tail of the TF spectral response function are hindrances for obtaining accurate flux-calibrated emission-line maps of extended sources. The purpose of this article is to demonstrate that emission-line maps useful for diagnostics of nebulae can be generated over the entire FoV of OSIRIS if we make use of theoretically well-understood characteristics of TFs. We have successfully generated the flux-calibrated images of the nearby large late-type spiral galaxy M101 in the emission lines of Hα, [N II]λ6583, [S II]λ6716 and [S II]λ6731. We find that the present uncertainty in setting the central wavelength of TFs (~1 Å) is the biggest source of error in the emission-line fluxes. By comparing the Hα fluxes of H II regions in our images with the fluxes derived from Hα images obtained using narrow-band filters, we estimate an error of ~11% in our fluxes. The flux-calibration of the images was carried out by fitting the Sloan Digital Sky Survey (SDSS) griz magnitudes of in-frame stars with the stellar spectra from the SDSS spectral database. This method resulted in an accuracy of 3% in flux-calibration of any narrow-band image, which is as good as, if not better than, what has been feasible using the observations of spectrophotometric standard stars. Thus time-consuming calibration images need not be taken. A user-friendly script under the IRAF environment was developed and is available on request. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the

  8. Spectral calibration for infrared hyperspectral imaging Fourier transform spectrometer based on absorption peaks

    NASA Astrophysics Data System (ADS)

    Li, YaSheng; Chen, Yan; Liao, Ningfang; Lyu, Hang; He, Shufang; Wan, Lifang

    2015-08-01

    A new calibration method for infrared hyperspectral imaging Fourier transform spectrometer is presented. Two kinds of common materials as Polypropylene (PP) and Polyethylene Terephthalate (PET) films which have special absorption peaks in the infrared band were used in the calibration experiment. As the wavelengths at the sharp absorption peaks of the films are known, an infrared imaging spectrometer can be calibrated on spectra with two or three peaks. With high precision and stability, this method simplifies the calibration work. It is especially appropriate for the measuring condition with a lack of calibration equipment or with inconvenience to calibrate the multiple light sources outdoors.

  9. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  10. A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)

    NASA Astrophysics Data System (ADS)

    Ruchti, G. R.; Feltzing, S.; Lind, K.; Caffau, E.; Korn, A. J.; Schnurr, O.; Hansen, C. J.; Koch, A.; Sbordone, L.; de Jong, R. S.

    2016-09-01

    The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extragalactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions.

  11. A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)

    NASA Astrophysics Data System (ADS)

    Ruchti, G. R.; Feltzing, S.; Lind, K.; Caffau, E.; Korn, A. J.; Schnurr, O.; Hansen, C. J.; Koch, A.; Sbordone, L.; de Jong, R. S.

    2016-06-01

    The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extra-galactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions.

  12. Millimeter wavelength spectroscopy and continuum studies of the planets

    NASA Technical Reports Server (NTRS)

    Vandenbout, P. A.; Davis, J. H.

    1979-01-01

    Careful observations were made at 86.1 GHz to derive the absolute brightness temperatures of the Sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7K), and Saturn (153.4 + or - 4.8 K) with a standard error of about 3%. This is a significant improvement in accuracy over previous results. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the MWO 4.9 m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5 mm wavelength.

  13. Long-wavelength scattered-light halos in ASC CCDs

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco; Clampin, Mark; Hartig, George F.; Rafal, Marc D.; Ford, Holland C.; Golimowski, David A.; Tremonti, C.; Illingworth, Garth; Blouke, Morley M.; Lesser, Michael P.; Burmester, William; Kimble, Randy A.; Sullivan, Pamela; Krebs, Carolyn A.; Yagelowicz, John

    1998-07-01

    During the ground calibration of the Space Telescope Imaging Spectrograph (STIS) large scattered light haloes were identified in images of point sources and long slit spectral images at long wavelengths (greater than 750 nm). The long wavelength scattering was traced to the SITe 1024 X 1024 CCD and its header package, raising concerns for the performance of the Advanced Camera for Surveys (ACS) CCD detectors. ACS is a third generation axial instrument for the Hubble Space Telescope (HST) and will be installed during the 1999 Servicing Mission. Two of the ACS imaging channels employ SITe CCDs, so the ACS team have conducted a study of the long- wavelength scattering, in collaboration with SITe, to assess the impact to the ACS science program and develop a solution. In this paper we discuss our solution, its implementation on ACS CCDs, and describe the results of initial tests.

  14. Calibration method for an omnidirectional multicamera system

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Sato, Tomokazu; Yokoya, Naokazu

    2003-05-01

    Telepresence systems using an omnidirectional image sensor enable us to experience remote site. A omnidirectional multi-camera system is more useful to acquire outdoor scenes than a monocular camera system, because the multi-camera system can easily capture high-resolution omnidirectional images. However, exact calibration of the camera system is necessary to virtualize the real world accurately. In this paper, we describe a geometric and photometric camera calibration and a panorama movie generation method for the omnidirectional multi-camera system. In the geometric calibration, intrinsic and extrinsic parameters of each camera are estimated using a calibration board and a laser measurement system called total station. In the photometric calibration, the limb darkening and color balances among the cameras are corrected. The result of the calibration is used in the panorama movie generation. In experiments, we have actually calibrated the multi-camera system and have generated spherical panorama movies by using the estimated camera parameters. A telepresence system was prototyped in order to confirm that the panorama movie can be used for telepresence well. In addition, we have evaluated the discontinuity in generated panoramic images.

  15. Calibration of higher eigenmodes of cantilevers

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  16. Calibration of higher eigenmodes of cantilevers.

    PubMed

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem. PMID:27475563

  17. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems

    NASA Astrophysics Data System (ADS)

    Al-Abed, N. A.; Whiteley, H. R.

    2002-11-01

    Calibrating a comprehensive, multi-parameter conceptual hydrological model, such as the Hydrological Simulation Program Fortran model, is a major challenge. This paper describes calibration procedures for water-quantity parameters of the HSPF version 10·11 using the automatic-calibration parameter estimator model coupled with a geographical information system (GIS) approach for spatially averaged properties. The study area was the Grand River watershed, located in southern Ontario, Canada, between 79° 30 and 80° 57W longitude and 42° 51 and 44° 31N latitude. The drainage area is 6965 km2. Calibration efforts were directed to those model parameters that produced large changes in model response during sensitivity tests run prior to undertaking calibration. A GIS was used extensively in this study. It was first used in the watershed segmentation process. During calibration, the GIS data were used to establish realistic starting values for the surface and subsurface zone parameters LZSN, UZSN, COVER, and INFILT and physically reasonable ratios of these parameters among watersheds were preserved during calibration with the ratios based on the known properties of the subwatersheds determined using GIS. This calibration procedure produced very satisfactory results; the percentage difference between the simulated and the measured yearly discharge ranged between 4 to 16%, which is classified as good to very good calibration. The average simulated daily discharge for the watershed outlet at Brantford for the years 1981-85 was 67 m3 s-1 and the average measured discharge at Brantford was 70 m3 s-1. The coupling of a GIS with automatice calibration produced a realistic and accurate calibration for the HSPF model with much less effort and subjectivity than would be required for unassisted calibration.

  18. Multiple-wavelength tunable laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2010-01-01

    A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

  19. AWG Filter for Wavelength Interrogator

    NASA Technical Reports Server (NTRS)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  20. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  1. Automated tank calibration system using a portable computer

    SciTech Connect

    Holt, S.H.; Harvel, C.D.; Clark, J.P.

    1990-12-31

    Manual tank calibrations often have variabilities of both a random and systematic nature that often affect the quality of the data collected for determining accurate calibration equations. When performing the calibration run, data omissions and transcriptions often occur (forgetting to tare weigh the prover vessel or miswriting a displayed value). A computer can be used to minimize these errors associated with the logging of data. This paper describes a IBM compatible, portable computer based system, developed at the Savannah River Site (SRS), that was used to calibrate three tanks in the second quarter 1990. It received data directly from instrumentation such as Ruska differential pressure sensors and electronic balances, while prompting the technicians to perform the various steps in the calibration procedure. This automated system greatly improved the quality of data for calculating the calibration equation for each of these tanks over previous calibration runs.

  2. Automated tank calibration system using a portable computer

    SciTech Connect

    Holt, S.H.; Harvel, C.D.; Clark, J.P.

    1990-01-01

    Manual tank calibrations often have variabilities of both a random and systematic nature that often affect the quality of the data collected for determining accurate calibration equations. When performing the calibration run, data omissions and transcriptions often occur (forgetting to tare weigh the prover vessel or miswriting a displayed value). A computer can be used to minimize these errors associated with the logging of data. This paper describes a IBM compatible, portable computer based system, developed at the Savannah River Site (SRS), that was used to calibrate three tanks in the second quarter 1990. It received data directly from instrumentation such as Ruska differential pressure sensors and electronic balances, while prompting the technicians to perform the various steps in the calibration procedure. This automated system greatly improved the quality of data for calculating the calibration equation for each of these tanks over previous calibration runs.

  3. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Palmer, J. M.

    1983-01-01

    The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.

  4. Photometric calibration of the EUV spectroheliometer on ATM

    NASA Technical Reports Server (NTRS)

    Reeves, E. M.; Timothy, J. G.; Withbroe, G. L.; Huber, M. C. E.

    1977-01-01

    This paper describes the derivation of the preflight photometric calibration of the UV spectrometer on Skylab. The calibration of the orbiting instrument through cross-comparison with two rocket instruments is discussed in assessing the observed changes in response to quiet solar regions during the mission. Formulas are presented for the determination of the instrument sensitivity, and an uncertainty of plus or minus 35% is assigned over most of the 296-1340-A wavelength range.

  5. Locally-calibrated light transmission visualization methods to quantify nonaqueous phase liquid mass in porous media

    NASA Astrophysics Data System (ADS)

    Wang, Huaguo; Chen, Xiaosong; Jawitz, James W.

    2008-11-01

    Five locally-calibrated light transmission visualization (LTV) methods were tested to quantify nonaqueous phase liquid (NAPL) mass and mass reduction in porous media. Tetrachloroethylene (PCE) was released into a two-dimensional laboratory flow chamber packed with water-saturated sand which was then flushed with a surfactant solution (2% Tween 80) until all of the PCE had been dissolved. In all the LTV methods employed here, the water phase was dyed, rather than the more common approach of dyeing the NAPL phase, such that the light adsorption characteristics of NAPL did not change as dissolution progressed. Also, none of the methods used here required the use of external calibration chambers. The five visualization approaches evaluated included three methods developed from previously published models, a binary method, and a novel multiple wavelength method that has the advantage of not requiring any assumptions about the intra-pore interface structure between the various phases (sand/water/NAPL). The new multiple wavelength method is also expected to be applicable to any translucent porous media containing two immiscible fluids (e.g., water-air, water-NAPL). Results from the sand-water-PCE system evaluated here showed that the model that assumes wetting media of uniform pore size (Model C of Niemet and Selker, 2001) and the multiple wavelength model with no interface structure assumptions were able to accurately quantify PCE mass reduction during surfactant flushing. The average mass recoveries from these two imaging methods were greater than 95% for domain-average NAPL saturations of approximately 2.6 × 10 - 2 , and were approximately 90% during seven cycles of surfactant flushing that sequentially reduced the average NAPL saturation to 7.5 × 10 - 4 .

  6. Solid colloidal optical wavelength filter

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.

    1990-05-01

    A method for constructing a solid colloidal optical wavelength filter is discussed. The device was developed to filter optical wavelengths for spectroscopy, protection from intense radiation, monochromatizing, and analyzing optical radiation. The filter is formed by suspending spherical particles in a coagulable medium (such as setting plastic); agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  7. Towards short wavelengths FELs workshop

    SciTech Connect

    Ben-Zvi, I.; Winick, H.

    1993-12-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  8. PERSONALISED BODY COUNTER CALIBRATION USING ANTHROPOMETRIC PARAMETERS.

    PubMed

    Pölz, S; Breustedt, B

    2016-09-01

    Current calibration methods for body counting offer personalisation for lung counting predominantly with respect to ratios of body mass and height. Chest wall thickness is used as an intermediate parameter. This work revises and extends these methods using a series of computational phantoms derived from medical imaging data in combination with radiation transport simulation and statistical analysis. As an example, the method is applied to the calibration of the In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Technology (KIT) comprising four high-purity germanium detectors in two partial body measurement set-ups. The Monte Carlo N-Particle (MCNP) transport code and the Extended Cardiac-Torso (XCAT) phantom series have been used. Analysis of the computed sample data consisting of 18 anthropometric parameters and calibration factors generated from 26 photon sources for each of the 30 phantoms reveals the significance of those parameters required for producing an accurate estimate of the calibration function. Body circumferences related to the source location perform best in the example, while parameters related to body mass show comparable but lower performances, and those related to body height and other lengths exhibit low performances. In conclusion, it is possible to give more accurate estimates of calibration factors using this proposed approach including estimates of uncertainties related to interindividual anatomical variation of the target population. PMID:26396263

  9. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  10. Radiometer Calibration and Characterization

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  11. Towards Automating Spacecraft Attitude Sensor Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph; Welter, Gary; Ottenstein, Neil

    2003-01-01

    With a view towards reducing cost and complexity for spacecraft early mission support at the NASA Goddard Space Flight Center (GSFC), efforts are being made to automate the attitude sensor calibration process. This paper addresses one of the major components needed by such a system. The beneficiaries of an improved calibration process are missions that demand moderate to high precision attitude knowledge or that need to perform accurate attitude slews. Improved slew accuracy reduces the time needed for re-acquisition of fine-pointing after each attitude maneuver, Rapid target acquisition can be very important for astronomical targeting or for off-nadir surface feature targeting by Earth-oriented spacecraft. The normal sequence of on-orbit calibration starts with alignment calibration of the star trackers and possibly the Sun sensor. Their relative alignment needs to be determined using a sufficiently large data set so their fields of view are adequately sampled. Next, the inertial reference unit (IRU) is calibrated for corrections to its alignment and scale factors. The IRU biases are estimated continuously by the onboard attitude control system, but the IRU alignment and scale factors are usually determined on the ground using a batch-processing method on a data set that includes several slews sufficient to give full observability of all the IRU calibration parameters. Finally, magnetometer biases, alignment, and its coupling to the magnetic torquers are determined in order io improve momentum management and occasionally for use in the attitude determination system. The detailed approach used for automating calibrations will depend on whether the automated system resides on the ground or on the spacecraft with an ultimate goal of autonomous calibration. Current efforts focus on a ground-based system driving subsystems that could run either on the ground or onboard. The distinction is that onboard calibration should process the data sequentially rather than in a

  12. LWIR polarimeter calibration

    NASA Astrophysics Data System (ADS)

    Blumer, Robert V.; Miller, Miranda A.; Howe, James D.; Stevens, Mark A.

    2002-01-01

    Performance reported efforts to calibrate a MWIR imaging polarimeter met with moderate success. Recent efforts to calibrate a LWIR sensor using a different technique have been much more fruitful. For our sensor, which is based on a rotating retarder, we have improved system calibration substantially be including nonuniformity correction at all measurement positions of the retarder in our polarization data analysis. This technique can account for effects such as spurious optical reflections within a camera system that had been masquerading as false polarization in our previous data analysis methodology. Our techniques will be described and our calibration results will be quantified. Data from field-testing will be presented.

  13. The Science of Calibration

    NASA Astrophysics Data System (ADS)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  14. Laser interferometer calibration station

    NASA Astrophysics Data System (ADS)

    Campolmi, R. W.; Krupski, S. J.

    1981-10-01

    The laser interferometer is a versatile tool, used for calibration over both long and short distances. It is considered traceable to the National Bureau of Standards. The system developed under this project was to be capable of providing for the calibration of many types of small linear measurement devices. The logistics of the original concept of one location for calibration of all mics, calipers, etc. at a large manufacturing facility proved unworkable. The equipment was instead used for the calibration of the large machines used to manufacture cannon tubes.

  15. Calibration of 192Ir high dose rate brachytherapy source using different calibration procedures

    PubMed Central

    Bondel, Shwetha; Ravikumar, Manickham; Supe, Sanjay Sudhakar; Reddy, Buchuppudi Rekha

    2013-01-01

    Aim To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations. Background The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies. Materials and methods The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations. Results The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively. Conclusion Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes. PMID:24944818

  16. Calibration of multi-camera systems with refractive interfaces

    NASA Astrophysics Data System (ADS)

    Belden, Jesse

    2013-02-01

    A method for performing bundle adjustment-based calibration of a multi-camera setup with refractive interfaces in the optical path is presented. The method contributes to volumetric multi-camera fluid experiments, where it is desirable to avoid tedious alignment of calibration grids in multiple locations and where a premium is placed on accurately locating world points. Cameras are calibrated from image point correspondences of unknown world points, and the location of the refractive interface need not be accurately known a priori. Physical models for two practically relevant imaging configurations are presented; the first is a planar wall separating cameras and a liquid, and the second is a liquid-containing cylindrical tank with finite wall thickness. Each model allows the cameras to be in general location and orientation relative to the interface. A thorough numerical study demonstrates the ability of the calibration method to accurately estimate camera parameters, interface orientation, and world point locations. The numerical study explores the convergence, accuracy, and sensitivity of the calibration method as a function of initialization, camera configuration, volume size, and interface type. The technique is applied to real calibration data where the algorithm is supplied with errant initial parameter estimates and shown to provide accurate results. The ease of implementation and accuracy of the refractive calibration method make the approach attractive for three-dimensional multi-camera fluid measurement methods.

  17. Error Modeling and Calibration for Encoded Sun Sensors

    PubMed Central

    Fan, Qiaoyun; Zhang, Guangjun; Li, Jian; Wei, Xinguo; Li, Xiaoyang

    2013-01-01

    Error factors in the encoded sun sensor (ESS) are analyzed and simulated. Based on the analysis results, an ESS error compensation model containing structural errors and fine-code algorithm errors is established, and the corresponding calibration method for model parameters is proposed. As external parameters, installation deviation between ESS and calibration equipment are introduced to the ESS calibration model, so that the model parameters can be calibrated accurately. The experimental results show that within plus/minus 60 degree of incident angle, the ESS measurement accuracy after compensation is three times higher on average than that before compensation. PMID:23470486

  18. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  19. Calibration of LSST Instrumental and Atmospheric Photometric Passbands

    SciTech Connect

    Burke, David L.; Axelrod, T.; Barrau, Aurelien; Baumont, Sylvain; Blondin, Stephane; Claver, Chuck; Gorecki, Alexia; Ivezic, Zeljko; Jones, Lynne; Krabbendam, Victor; Liang, Ming; Saha, Abhijit; Smith, Allyn; Smith, R.Chris; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-07-06

    The Large Synoptic Survey Telescope (LSST) will continuously image the entire sky visible from Cerro Pachon in northern Chile every 3-4 nights throughout the year. The LSST will provide data for a broad range of science investigations that require better than 1% photometric precision across the sky (repeatability and uniformity) and a similar accuracy of measured broadband color. The fast and persistent cadence of the LSST survey will significantly improve the temporal sampling rate with which celestial events and motions are tracked. To achieve these goals, and to optimally utilize the observing calendar, it will be necessary to obtain excellent photometric calibration of data taken over a wide range of observing conditions - even those not normally considered 'photometric'. To achieve this it will be necessary to routinely and accurately measure the full optical passband that includes the atmosphere as well as the instrumental telescope and camera system. The LSST mountain facility will include a new monochromatic dome illumination projector system to measure the detailed wavelength dependence of the instrumental passband for each channel in the system. The facility will also include an auxiliary spectroscopic telescope dedicated to measurement of atmospheric transparency at all locations in the sky during LSST observing. In this paper, we describe these systems and present laboratory and observational data that illustrate their performance.

  20. Imaging laser diffractometer for traceable grating pitch calibration

    NASA Astrophysics Data System (ADS)

    Pekelsky, J. R.; Eves, B. J.; Nistico, P. R.; Decker, J. E.

    2007-02-01

    A laser diffractometer for calibrating grating pitch is being developed at the National Research Council (NRC). Based on the METAS design, it features a precision rotary table, the sample grating mounted in Littrow configuration, a collimated spatially filtered laser source and the retroreflected diffraction order sent by a beamsplitter through a focusing lens to the null-position photodetector. The angle of various diffraction orders can be measured in sequence and used with knowledge of the laser wavelength to calculate the pitch of the grating. Instead of the usual quad-photodetector, the NRC system uses a charge-coupled device (CCD) video camera to capture an image of the diffraction pattern. Image processing accurately measures diffraction order centroid coordinates without a systematic error due to background noise or neighbouring pattern artefacts. The image coordinate system is also used to adjust the instrument and grating alignment and to investigate these sources of systematic error. Preliminary results with 1D sample gratings ranging in pitch from 700 nm to 10 µm are presented.

  1. Standard reference material 2036 near-infrared reflection wavelength standard.

    PubMed

    Choquette, Steven J; Duewer, David L; Hanssen, Leonard M; Early, Edward A

    2005-04-01

    Standard Reference Material 2036 (SRM 2036) is a certified transfer standard intended for the verification and calibration of the wavelength/wavenumber scale of near-infrared (NIR) spectrometers operating in diffuse or trans-reflectance mode. SRM 2036 Near-Infrared Wavelength/Wavenumber Reflection Standard is a combination of a rare earth oxide glass of a composition similar to that of SRM 2035 Near-Infrared Transmission Wavelength/Wavenumber Standard and SRM 2065 Ultraviolet-Visible-Near-Infrared Transmission Wavelength/Wavenumber Standard, but is in physical contact with a piece of sintered poly(tetrafluoroethylene) (PTFE). The combination of glass contacted with a nearly ideal diffusely reflecting backing provides reflection-absorption bands that range from 15% R to 40% R. SRM 2036 is certified for the 10% band fraction air wavelength centroid location, (10%)B, of seven bands spanning the spectral region from 975 nm to 1946 nm. It is also certified for the vacuum wavenumber (10%)B of the same seven bands in the spectral region from 10 300 cm(-1) to 5130 cm(-1) at 8 cm(-1) resolution. Informational values are provided for the locations of thirteen additional bands from 334 nm to 804 nm. PMID:15901335

  2. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  3. Data-driven approach to optimum wavelength selection for diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Dempsey, Laura A.; Cooper, Robert J.; Roque, Tania; Correia, Teresa; Magee, Elliott; Powell, Samuel; Gibson, Adam P.; Hebden, Jeremy C.

    2015-01-01

    The production of accurate and independent images of the changes in concentration of oxyhemoglobin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infrared light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and detector sensitivity. We describe the application of a data-driven approach to optimum wavelength selection for the second generation of University College London's multichannel, time-domain optical tomography system (MONSTIR II). By performing a functional activation experiment using 12 different wavelengths between 690 and 870 nm, we were able to identify the combinations of 2, 3, and 4 wavelengths which most accurately reproduced the results obtained using all 12 wavelengths via an imaging approach. Our results show that the set of 2, 3, and 4 wavelengths which produce the most accurate images of functional activation are [770, 810], [770, 790, 850], and [730, 770, 810, 850] respectively, but also that the system is relatively robust to wavelength selection within certain limits. Although these results are specific to MONSTIR II, the approach we developed can be applied to other multispectral near-infrared spectroscopy and optical imaging systems.

  4. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate robot-world, hand-eye calibration is crucial to automation tasks. In this paper, we discuss the robot-world, hand-eye calibration problem which has been modeled as the linear relationship AX equals ZB, where X and Z are the unknown calibration matrices composed of rotation and translation ...

  5. Rapid calibration of seven-hole probes

    NASA Technical Reports Server (NTRS)

    Ericksen, A. L.; Gallington, R. W.; Rao, B. M.; Barankiewicz, W. S.

    1995-01-01

    This paper summarizes the major conclusions and some of the key supporting analyses resulting from the calibration and application of two small seven hole probes at NASA Lewis Research Center. These probes can produce reasonably accurate and rapid surveys of unknown steady flow fields which may include flow angles up to 70 degrees and Mach numbers up to 0.8. The probes were calibrated with both 'complete' and 'reduced' test matrices. Both types of test matrices produced similar results suggesting the the reduced matrices are adequate for most purposes. The average accuracy fo the calibration was about the same as that achieved in previous seven hole probe calibrations. At the higher Mach numbers, the calibration was sensitive to the diameter of the free jet in the calibration facility. Over a narrow angular range at the higher Mach numbers, the system had serious repeatability problems. This lack or repeatability apparently results from aliasing of high frequency (20 to 40 Hz) noise with the data acquisition system sampling frequency of 10 Hz. Analyses show that these noise frequencies are probably not related to airflow dynamics in the connecting tubing.

  6. Barometric calibration of a luminescent oxygen probe.

    PubMed

    Golub, Aleksander S; Pittman, Roland N

    2016-04-01

    The invention of the phosphorescence quenching method for the measurement of oxygen concentration in blood and tissue revolutionized physiological studies of oxygen transport in living organisms. Since the pioneering publication by Vanderkooi and Wilson in 1987, many researchers have contributed to the measurement of oxygen in the microcirculation, to oxygen imaging in tissues and microvessels, and to the development of new extracellular and intracellular phosphorescent probes. However, there is a problem of congruency in data from different laboratories, because of interlaboratory variability of the calibration coefficients in the Stern-Volmer equation. Published calibrations for a common oxygen probe, Pd-porphyrin + bovine serum albumin (BSA), vary because of differences in the techniques used. These methods are used for the formation of oxygen standards: chemical titration, calibrated gas mixtures, and an oxygen electrode. Each method in turn also needs calibration. We have designed a barometric method for the calibration of oxygen probes by using a regulated vacuum to set multiple PO2 standards. The method is fast and accurate and can be applied to biological fluids obtained during or after an experiment. Calibration over the full physiological PO2 range (1-120 mmHg) takes ∼15 min and requires 1-2 mg of probe. PMID:26846556

  7. MODIS In-flight Calibration Methodologies

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Barnes, W.

    2004-01-01

    MODIS is a key instrument for the NASA's Earth Observing System (EOS) currently operating on the Terra spacecraft launched in December 1999 and Aqua spacecraft launched in May 2002. It is a cross-track scanning radiometer, making measurements over a wide field of view in 36 spectral bands with wavelengths from 0.41 to 14.5 micrometers and providing calibrated data products for science and research communities in their studies of the Earth s system of land, oceans, and atmosphere. A complete suite of on-board calibrators (OBC) have been designed for the instruments in-flight calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEB), and a spectro-radiometric calibration assembly (SRCA) for the spatial (all bands) and spectral (RSB only) characterization. This paper discusses MODIS in-flight Cali bration methodologies of using its on-board calibrators. Challenging issues and examples of tracking and correcting instrument on-orbit response changes are presented, including SD degradation (20% at 412nm, 12% at 466nm, and 7% at 530nm over four and a half years) and response versus scan angle changes (10%, 4%, and 1% differences between beginning of the scan and end of the scan at 412nm, 466nm, and 530nm) in the VIS spectral region. Current instrument performance and lessons learned are also provided.

  8. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  9. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  10. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  11. CALIBRATION OF PHOTOELASTIC MODULATORS IN THE VACUUM UV.

    SciTech Connect

    OAKBERG, T.C.; TRUNK, J.; SUTHERLAND, J.C.

    2000-02-15

    Measurements of circular dichroism (CD) in the UV and vacuum UV have used photoelastic modulators (PEMs) for high sensitivity (to about 10{sup -6}). While a simple technique for wavelength calibration of the PEMs has been used with good results, several features of these calibration curves have not been understood. The authors have calibrated a calcium fluoride PEM and a lithium fluoride PEM using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as a light source. These experiments showed calibration graphs that are linear bit do not pass through the graph origin. A second ''multiple pass'' experiment with laser light of a single wavelength, performed on the calcium fluoride PEM, demonstrates the linearity of the PEM electronics. This implies that the calibration behavior results from intrinsic physical properties of the PEM optical element material. An algorithm for generating calibration curves for calcium fluoride and lithium fluoride PEMs has been developed. The calibration curves for circular dichroism measurement for the two PEMs investigated in this study are given as examples.

  12. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  13. How to accurately bypass damage

    PubMed Central

    Broyde, Suse; Patel, Dinshaw J.

    2016-01-01

    Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203

  14. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  15. Calibration facility safety plan

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

  16. OLI Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  17. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, David C.; Goorvitch, D.

    1994-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  18. A Catalog of Stellar Targets and Calibrators for Next Generation Optical Interferometers

    NASA Astrophysics Data System (ADS)

    Swihart, Sam; Muterspaugh, M. W.; Garcia, E.; van Belle, G.; Stassun, K.

    2014-01-01

    The Visible Imaging System for Interferometric Observations at the Navy Precision Optical Interferometer (VISION) outside Flagstaff, Arizona is a high-resolution, six-telescope beam combiner. VISION is capable of sub-milliarcsecond resolution in visible wavelengths allowing for images of stellar surface features, such as spots and granulation. Here we present a list of the first potential science targets as well as their respective calibrators. Approximately 2900 potential science target stars in the northern hemisphere fit the criteria of being ideal for VISION having angular sizes between 2 and 4 milliarcseconds and brighter than V=6. In order to obtain good interferometric data on these targets, it is vital to establish the system response of the instrument. This is done by observing unresolved calibrator stars with visibilities near unity. The angular sizes of these calibrators must be very accurate to obtain good visibility contrast. We used a spectral energy distribution fitting code, SEDfit, which modeled each star’s angular size based on a template of the spectral type of the star obtained from the Skiff Catalogue of Stellar Spectral Classification (2009-2013). Of the nearly 2000 possible calibrators, 1485 stars have relative errors of their angular sizes less than 10%, 664 have errors less than 5%, and 37 stars have relative errors less than 2%. With this precision, our catalog will be a valuable resource for the interferometric imaging community leading to great opportunities for imaging the surface of a star other than the Sun. We acknowledge the Vanderbilt Physics and Astronomy NSF REU Program.

  19. Sandia WIPP calibration traceability

    SciTech Connect

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  20. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  1. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  2. NIST Infrared Blackbody Calibration Support for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Hanssen, L. M.; Zeng, J.; Mekhontsev, S.; Khromchenko, V.

    2012-12-01

    The National Institute of Technology (NIST) Sensor Science Division has established measurement capabilities in support of various existing and planned satellite programs, which monitor key parameters for the study of climate change, such as solar irradiance, earth radiance, and atmospheric effects. These capabilities include the characterization of infrared reference blackbody sources and cavity radiometers, as well as the materials used to coat the cavity surfaces. In order to accurately measure high levels of effective emissivity and absorptance of cavities, NIST has developed a laser- and integrating-sphere-based facility (the Complete Hemispherical Infrared Laser-based Reflectometer (CHILR)). The system is used for both radiometer and blackbody cavity characterization. Multiple laser sources with wavelengths ranging from 1.5 μm to 23 μm are used to perform reflectance (1 - emissivity (or absorptance)) measurements of radiometer cavities. Measurements have been performed for numerous instruments including the Internal Calibration Target (ICT)) blackbody source used for calibration of the Cross track Infrared Sounder (CrIS), and the Total Irradiance Monitor (TIM) instrument on the Solar Radiation and Climate Experiment (SORCE), both for the Joint Polar Satellite System (JPSS), as well as the Active Cavity Radiometer Irradiance Monitor (ACRIM) instrument, and blackbodies constructed for prototyping of an infrared instrument on the Climate Absolute Radiance and Refractivity Observatory (CLARREO). For a more comprehensive understanding of the measurement results, NIST has also measured samples of the coated surfaces of the cavities and associated baffles. This includes several types of reflectance measurements: specular, directional-hemispherical (diffuse), and bi-directional distribution function (BRDF). The first two are performed spectrally and provide information that enables estimation of the cavity performance where laser sources for CHILR are not available

  3. Accurate determination of the vapor pressure of potassium using optical absorption

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Wang, C. C.

    1983-01-01

    The vapor pressure of potassium has been measured in absorption using a CW tunable laser and calibrated against the accurate radiative lifetime of the 4s-4p doublet of potassium. An accurate value of 20,850 + or - 30 cal/mol for the heat of vaporization (from the liquid phase) at the melting point was determined.

  4. Special report, cross calibration of JHU test equipment with GSFC vacuum optical bench

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    Tests were conducted to confirm the validity of the absolute calibrations which have been performed with the Apollo 17 ultraviolet spectrometer (UVS) in the calibration test equipment (CTE) which were constructed for that purpose. To accomplish this the prototype UV spectrometer SN/01 was retrofitted to be substantially identical to the qualification unit and to the two flight units. It was renamed the cross calibration unit (CCU). The instrument was first calibrated in the JHU calibration test equipment (CTE), then installed in the vacuum optical bench (VOB) at Goddard Space Flight Center and calibrated. The following day a second CTE calibration was conducted which provided substantially the same calibration values as were obtained on the first CTE calibration, and showed remarkably close agreement with the VOB calibration values at two of the wavelengths which were studied. The VOB results at the third wavelength (1216 A) indicate the CTE calibration at 1216 A is 15% too low. This apparent discrepancy is discussed and presents a very important result of the cross calibration effort.

  5. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers.

    PubMed

    Jirauschek, Christian; Huber, Robert

    2015-07-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  6. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  7. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  8. Calibration support for the Earth Observing System Project

    NASA Technical Reports Server (NTRS)

    Guenther, B. W.

    1988-01-01

    The Earth Observing System Project (EOS) program guidelines establishes significantly more stringent requirements on calibrations of instruments. This requirement is driven by the need for long-term continuity of acquired data sets and the use of measurements in interdisciplinary investigations. Personnel from the Standards and Calibration Office have been supporting the Program and Project in interpreting these goals into specific requirements. Contributions to EOS have included participation in the Panel of Experts which produced a list of consensus items necessary for accomplishing an accurate calibration and suggested EOS Project Calibration Policy, and drafting the announcement of opportunity and bidders information package positions on instrument calibration and data product validation. Technical staffing was provided to the NASA delegates to the Committee on Earth Orbiting Satellites (club of space-faring nations) for the standing working group on Calibration and Data Validation.

  9. Altazimuth mount based dynamic calibration method for GNSS attitude measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; He, Tao; Sun, Shaohua; Gu, Qing

    2015-02-01

    As the key process to ensure the test accuracy and quality, the dynamic calibration of the GNSS attitude measuring instrument is often embarrassed by the lack of the rigid enough test platform and an accurate enough calibration reference. To solve the problems, a novel dynamic calibration method for GNSS attitude measurement based on altazimuth mount is put forward in this paper. The principle and implementation of this method are presented, and then the feasibility and usability of the method are analyzed in detail involving the applicability of the mount, calibrating precision, calibrating range, base line rigidity and the satellite signal involved factors. Furthermore, to verify and test the method, a confirmatory experiment is carried out with the survey ship GPS attitude measuring instrument, and the experimental results prove that it is a feasible way to the dynamic calibration for GNSS attitude measurement.

  10. Analysis of Camera Parameters Value in Various Object Distances Calibration

    NASA Astrophysics Data System (ADS)

    Razali Yusoff, Ahmad; Farid Mohd Ariff, Mohd; Idris, Khairulnizam M.; Majid, Zulkepli; Setan, Halim; Chong, Albert K.

    2014-02-01

    In photogrammetric applications, good camera parameters are needed for mapping purpose such as an Unmanned Aerial Vehicle (UAV) that encompassed with non-metric camera devices. Simple camera calibration was being a common application in many laboratory works in order to get the camera parameter's value. In aerial mapping, interior camera parameters' value from close-range camera calibration is used to correct the image error. However, the causes and effects of the calibration steps used to get accurate mapping need to be analyze. Therefore, this research aims to contribute an analysis of camera parameters from portable calibration frame of 1.5 × 1 meter dimension size. Object distances of two, three, four, five, and six meters are the research focus. Results are analyzed to find out the changes in image and camera parameters' value. Hence, camera calibration parameter's of a camera is consider different depend on type of calibration parameters and object distances.

  11. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, William L.; Renzi, Ronald F.

    1998-07-07

    The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.

  12. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, W.L.; Renzi, R.F.

    1998-07-07

    The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.

  13. Landsat-7 EMT+ On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    1999-01-01

    Landsat-7 was launched on April 15, 1999 and completed its on orbit initialization and verification period on June 28, 1999. The ETM+ payload is similar to the TM sensors on previous Landsat satellites and incorporates two new devices to improve its absolute radiometric calibration. The Full Aperture Solar Calibrator (FASC) is a deployable diffuser panel. This device has been deployed 9 times to date, with a normal deployment schedule of once per month. The initial analysis of the FASC data has given absolute calibration results within 5% of the prelaunch integrating sphere calibrations and a range of variation of 2% between dates. The Partial Aperture Solar Calibrator (PASC), is a set of auxiliary optics that allows the ETM+ to view the sun through a reduced aperture. Data have normally been acquired on a daily basis with the PASC. Initial results with the PASC were encouraging, despite some unexpected saturation in the shortest wavelength band. The response of the ETM+ short wavelength (silicon) bands to the PASC increased initially and has begun to decrease in some of these bands. The longer wavelength (InSb) bands have shown up to 30% oscillations that vary between detectors within the band. Studies are ongoing to better characterize the response to the PASC. The ETM+ also incorporates an internal calibrator (IC), a shutter that oscillates in front of the focal plane that directs light from the internal calibrator lamps to the focal plane. The responses to this device are also varying, though differently than the PASC results. Both the IC and PASC results are attributable to the calibration devices as opposed to the ETM+ itself.

  14. Pulsed thrust measurements using electromagnetic calibration techniques.

    PubMed

    Tang, Haibin; Shi, Chenbo; Zhang, Xin'ai; Zhang, Zun; Cheng, Jiao

    2011-03-01

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 μN s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 μN s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 μN s with 95% credibility. PMID:21456799

  15. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  16. The influence of the spectral emissivity of flat-plate calibrators on the calibration of IR thermometers

    SciTech Connect

    Cárdenas-García, D.; Méndez-Lango, E.

    2013-09-11

    Flat Calibrators (FC) are an option for calibration of infrared thermometers (IT) with a fixed large target. FCs are neither blackbodies, nor gray-bodies; their spectral emissivity is lower than one and depends on wavelength. Nevertheless they are used as gray-bodies with a nominal emissivity value. FCs can be calibrated radiometrically using as reference a calibrated IR thermometer (RT). If an FC will be used to calibrate ITs that work in the same spectral range as the RT then its calibration is straightforward: the actual FC spectral emissivity is not required. This result is valid for any given fixed emissivity assessed to the FC. On the other hand, when the RT working spectral range does not match with that of the ITs to be calibrated with the FC then it is required to know the FC spectral emissivity as part of the calibration process. For this purpose, at CENAM, we developed an experimental setup to measure spectral emissivity in the infrared spectral range, based on a Fourier transform infrared spectrometer. Not all laboratories have emissivity measurement capability in the appropriate wavelength and temperature ranges to obtain the spectral emissivity. Thus, we present an estimation of the error introduced when the spectral range of the RT used to calibrate an FC and the spectral ranges of the ITs to be calibrated with the FC do not match. Some examples are developed for the cases when RT and IT spectral ranges are [8,13] μm and [8,14] μm respectively.

  17. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  18. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  19. Self Calibrated Wireless Distributed Environmental Sensory Networks

    NASA Astrophysics Data System (ADS)

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-04-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art.

  20. Self Calibrated Wireless Distributed Environmental Sensory Networks.

    PubMed

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-01-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs' calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable's true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art. PMID:27098279