Science.gov

Sample records for accurately char particle

  1. Evaluation of char combustion models: measurement and analysis of variability in char particle size and density

    SciTech Connect

    Daniel J. Maloney; Esmail R. Monazam; Kent H. Casleton; Christopher R. Shaddix

    2008-08-01

    Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.

  2. Morphology and reactivity characteristics of char biomass particles.

    PubMed

    Avila, Claudio; Pang, Cheng Heng; Wu, Tao; Lester, Ed

    2011-04-01

    In this work, 10 different biomasses were selected which included directly grown energy crops, industrial waste material and different wood types. Each biomass was sieved into six different size fractions and pyrolysed in a fixed bed furnace preheated to 1000 °C to produce a char residue. Intrinsic reactivity during burnout was measured using a non-isothermal thermogravimetric method. Scanning electron microscopy and oil immersion microscopy were used to characterise the morphology of the products. Char morphology was summarised in terms of degree of deformation, internal particle structure and wall thickness. Intrinsic reactivity corresponded directly with these morphology groupings showing a significant correlation between char morphotypes, char reactivity and the initial biomass material. PMID:21334876

  3. The effect of model fidelity on prediction of char burnout for single-particle coal combustion

    DOE PAGES

    McConnell, Josh; Sutherland, James C.

    2016-07-09

    In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less

  4. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    SciTech Connect

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2006-11-15

    Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter of the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a

  5. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    SciTech Connect

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  6. Digital image processing applications in the ignition and combustion of char/coal particles

    SciTech Connect

    Annamalai, K.; Kharbat, E.; Goplakrishnan, C.

    1992-12-01

    Digital image processing, is employed in this remarch study in order to visually investigate the ignition and combustion characteristics of isolated char/coal particles as well as the effect of interactivecombustion in two-particle char/coal arrays. Preliminary experiments are conducted on miniature isolated candles as well as two-candle arrays.

  7. Mathematical model for the continuous combustion of char particles in a fluidized bed

    SciTech Connect

    Saxena, S.C.; Rehmat, A.

    1980-12-01

    Recently, we have developed the direct oxidation model for the combustion of a batch of char in a fluidized bed. This analysis is extended for the continuous combustion of char, and a system of general equations has been derived to relate the feed rate of char to the amount of char particles present in the fluidized bed and in the overflow stream. The size distribution of char particles and their number in the bed are also predicted. The analysis indicates that the amount of carbon present in the bed is independent of the feed particle size at fixed values of the char feed rate and fluidizing-gas velocity although the number of char bed particles depends upon the feed particle size. Further, the carbon content of the bed and the number of char particles in the bed are found to depend heavily on the char feed rate and the fluidizing-gas velocity. A discrete cut method is described whereby the particle size distribution and the number of particles present in the bed are calculated. The method provides a simplified trial-and-error procedure for those cases in which the rate of change in particle size is a complex nonintegrable function of the particle size. The discrete cut method is found to yield results which are in good agreement with the exact solutions of the integrals defining the number of particles and their size distribution. The model provides a simple base for the scale-up and design work related to fluidized-bed coal combustors.

  8. Effect of reactivity loss on apparent reaction order of burning char particles

    SciTech Connect

    Murphy, Jeffrey J.; Shaddix, Christopher R.

    2010-03-15

    Considerable debate still exists in the char combustion community over the expected and observed reaction orders of carbon reacting with oxygen. In particular, very low values of the reaction order (approaching zero) are commonly observed in char combustion experiments. These observations appear to conflict with porous catalyst theory as first expressed by Thiele, which suggests that the apparent reaction order must be greater than 0.5. In this work, we propose that this conflict may be resolved by considering the decrease in char reactivity with burnout due to ash effects, thermal annealing, or other phenomena. Specifically, the influence of ash dilution of the available surface area on the apparent reaction order is explored. Equations describing the ash dilution effect are combined with a model for particle burnout based on single-film nth-order Arrhenius char combustion and yield an analytical expression for the effective reaction order. When this expression is applied for experimental conditions reflecting combustion of individual pulverized coal particles in an entrained flow reactor, the apparent reaction order is shown to be lower than the inherent char matrix reaction order, even for negligible extents of char conversion. As char conversion proceeds and approaches completion, the apparent reaction order drops precipitously past zero to negative values. Conversely, the inclusion of the ash dilution model has little effect on the char conversion profile or char particle temperature until significant burnout has occurred. Taken together, these results suggest that the common experimental observation of low apparent reaction orders during char combustion is a consequence of the lack of explicit modeling of the decrease in char reactivity with burnout. (author)

  9. Overlapping of the devolatilization and char combustion stages in the burning of coal particles

    SciTech Connect

    Veras, C.A.G.; Saastamoinen, J.; Aho, M.; Carvalho, J.A. Jr.

    1999-03-01

    The oxygen content at the surface of a fuel particle can significantly exceed zero during the devolatilization stage of combustion, despite the flux of volatiles from the surface and also gas phase reactions. This implies that char oxidation can take place simultaneously. This overlapping of the devolatilization and char combustion stages is studied by modeling. The rates of gas phase reactions around the particle influence the availability of oxygen at the surface of a burning particle and they are accounted for by using a two-step global model for combustion of volatiles. The effects of particle size, ambient temperature, and oxygen concentration on the degree of overlap are studied. The study provides theoretical and experimental evidence that the combustion time of a particle does not always increase with its size at constant ambient conditions, but there can be a specific particle size giving a maximum combustion rate.

  10. Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier

    DOEpatents

    Donath, Ernest E.

    1976-01-01

    A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

  11. Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O2/N2 and O2/CO2 atmospheres

    DOE PAGES

    Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; Wang, Shuai

    2016-08-01

    In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO2 and H2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolution of themore » number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O2/N2 and O2/CO2 atmospheres .« less

  12. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  13. Determination of char combustion kinetics parameters: comparison of point detector and imaging-based particle-sizing pyrometry.

    PubMed

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  14. Determination of char combustion kinetics parameters: comparison of point detector and imaging-based particle-sizing pyrometry.

    PubMed

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles. PMID:25085180

  15. Char particle fragmentation and its effect on unburned carbon during pulverized coal combustion. Quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Diaz, R.; Mitchell, R.E.

    1993-04-01

    Additional samples of synthetic char were produced and characterized. These chars were prepared with lycopodium to polymer mass ratios of 0:1, 1:2, and 1:8. Combined with the char prepared with a lycopodium to polymer of 1:4 that was discussed last quarter, we now have synthetic chars varying in porosity from 17% to 37%. These chars will be used in the forthcoming char fragmentation experiments. Using both a tap density technique and mercury intrusion porosimetry on synthetic char with no macropores, a value of 0.39 was determined for the bed void fraction of tightly packed particles in the 75--125 {mu}m size range. The true density of the synthetic char was found to be 1.58 g/cc using helium pycnometry. From these measurements, the apparent density and porosity for each batch of char were determined. The mechanical grinding procedure was refined to obtain a greater size fraction of particles in the 75--125 {mu}m size range of interest. An investigation of the log-normal distribution function for describing the measured particle size distribution was performed. It was noted that a log-nominal distribution function adequately described the breadth and mean size of the size classified particles but does not completely capture the wings of the distribution. The log-normal distribution will be useful, however, in describing the changing distribution that results from mass loss and fragmentation, phenomena that tend to shift the distribution to smaller sizes. Preliminary experiments were performed with the pressurized thermogravimetric analyzer (PTGA). Combustion in air of synthetic chars having 17% and 24% porosity revealed that the overall particle burning rates of the chars were essentially the same. In the combustion tests, temperature was ramped from 300 K to 1173 K at 25{degrees}C/min. This indicates that under these conditions there were no diffusional resistances to particle burning.

  16. Radiative properties of char, fly-ash, and soot particles in coal flames. First annual report: September 15, 1992--September 15, 1993

    SciTech Connect

    Menguec, M.P.; Manickavsagam, S.; Zhang, W.

    1993-12-31

    This report covers the first twelve months of the project {open_quotes}Radiative Properties of Char, Fly-Ash, and Soot Particles in Coal Flames{close_quotes}, that is from September 15, 1992 to September 15, 1993. The objectives of this project can be summarized as follows: (1) obtain the effective radiative properties of pulverized coal/char and soot particles, and (2) determine the concentration distribution of char, fly-ash, and soot particles in coal laden flames as a function of different flame conditions. Research accomplishments in the following areas are described: effective properties of coal and char particles; multilayer sphere model; soot formation model; and soot radiative properties. The experiments are described and plans for future work are outlined.

  17. Compilation of Sandia coal char combustion data and kinetic analyses

    SciTech Connect

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  18. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  19. Modeling char oxidation behavior under Zone II burning conditions at elevated pressures

    SciTech Connect

    Ma, L.Q.; Mitchell, R.

    2009-01-15

    For accurate modeling of the coal combustion process at elevated pressures, account must be made for variations in char-particle structure. As pressure is increased, particle swelling increases during the devolatilization of certain bituminous coals, yielding a variety of char-particle structures, from uniform high-density particles to thin-walled non-uniform low-density particles having large internal void volumes. Since under Zone II burning conditions the char conversion rate depends upon the accessibility of the internal surfaces, the char structure plays a key role in determining particle burnout times. In our approach to characterize the impact of char structure on particle burning rates, effectiveness factors appropriate for thin-walled cenospherical particles and thick-walled particles having a few large cavities are defined and related to the effectiveness factor for uniform high-density particles that have no large voids, only a random distribution of pores having a mean pore size in the sub-micron range. For the uniform case, the Thiele modulus approach is used to account for Zone 11 type burning in which internal burning is limited by the combined effects of pore diffusion and the intrinsic chemical reactivity of the carbonaceous material. In the paper, the impact of having a variety of char structures in a mix of particles burning under Zone II burning conditions is demonstrated.

  20. Comparison of biomass and coal char reactivities

    SciTech Connect

    Huey, S.P.; Davis, K.A.; Hurt, R.H.; Wornat, M.J.

    1995-12-31

    Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass potential as a sustainable and renewable energy source, the change in reactivities with the extent of burnout of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to examine biomass and coal char reactivities and extinction behaviors and presents results from CPI experiments. The reactivity as a function of extent of burnout for six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, was investigated using the CPI apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

  1. Advanced automated char image analysis techniques

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Char morphology is an important characteristic when attempting to understand coal behavior and coal burnout. In this study, an augmented algorithm has been proposed to identify char types using image analysis. On the basis of a series of image processing steps, a char image is singled out from the whole image, which then allows the important major features of the char particle to be measured, including size, porosity, and wall thickness. The techniques for automated char image analysis have been tested against char images taken from ICCP Char Atlas as well as actual char particles derived from pyrolyzed char samples. Thirty different chars were prepared in a drop tube furnace operating at 1300{sup o}C, 1% oxygen, and 100 ms from 15 different world coals sieved into two size fractions (53-75 and 106-125 {mu}m). The results from this automated technique are comparable with those from manual analysis, and the additional detail from the automated sytem has potential use in applications such as combustion modeling systems. Obtaining highly detailed char information with automated methods has traditionally been hampered by the difficulty of automatic recognition of individual char particles. 20 refs., 10 figs., 3 tabs.

  2. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy

    PubMed Central

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T.; Cerutti, Francesco; Chin, Mary P. W.; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G.; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R.; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both 4He and 12C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth–dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  3. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy.

    PubMed

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T; Cerutti, Francesco; Chin, Mary P W; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  4. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  5. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  6. OXIDATION AND DEVOLATILIZATION OF NITROGEN IN COAL CHAR

    EPA Science Inventory

    The reactions of organically-bound nitrogen in coal char during combustion have been studied in a laboratory furnace using size-graded char particles prepared by the pyrolysis of a Montana lignite. The time-resolved variations of nitrogen-to-carbon ratio during char oxidation hav...

  7. Radiative properties of char, fly-ash, and soot particles in coal flames. Technical progress report, second year, October 1994--December 1994

    SciTech Connect

    Menguec, M.P.; Manickavasagam, S.; Govindan, R.; Ghosal, S.

    1995-04-01

    In large-scale coal-fired flames, radiative transfer is significant as a large portion of the energy generated during the char pyrolysis and soot oxidation is transferred to the surroundings by radiation (due to emission). The relatively cold gases and particles which are not burning yet are heated by this incoming energy (absorption), which may have originated not only from the immediate surroundings of the control volume of interest but the entire flame. It is obvious that if the emission and absorption of radiation in such a flame are not accounted for correctly, it is not possible to determine other underlying phenomena with accuracy, as the fundamental principle of conservation of energy would be violated. In order to consider the effect of radiation heat transfer in coal-fired furnaces, we have to (1) model the radiative transfer equation to satisfy the conservation of radiant energy principle; (2) use the correct radiative properties of combustion gases and particles; (3) account for the interaction of radiation with the flow and energy equations. The radiative properties for a participating medium of spherical particles can be expressed in terms of the spectral absorption, extinction, and scattering efficiencies and the phase function for a single particle, and can be calculated from the Lorenz-Mie theory. For small size particles, the expressions are based on the Rayleigh limit of Lorenz-Mie theory, and are significantly simpler. The details are readily available in the literature.

  8. Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995

    SciTech Connect

    Zygourakis, K.

    1996-02-01

    Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

  9. Accurate time-of-flight measurement of particle based on ECL-TTL Timer

    NASA Astrophysics Data System (ADS)

    Li, Deping; Liu, Jianguo; Huang, Shuhua; Gui, Huaqiao; Cheng, Yin; Wang, Jie; Lu, Yihuai

    2014-11-01

    Because of its aerodynamic diameter of the aerosol particles are stranded in different parts of different human respiratory system, thus affecting human health. Therefore, how to continue to effectively monitor the aerosol particles become increasingly concerned about. Use flight time of aerosol particle beam spectroscopy of atmospheric aerosol particle size distribution is the typical method for monitoring atmospheric aerosol particle size and particle concentration measurement , and it is the key point to accurate measurement of aerosol particle size spectra that measurement of aerosol particle flight time. In order to achieve accurate measurements of aerosol particles in time-of-flight, this paper design an ECL-TTL high-speed timer with ECL counter and TTL counter. The high-speed timer includes a clock generation, high-speed timer and the control module. Clock Generation Module using a crystal plus multiplier design ideas, take advantage of the stability of the crystal to provide a stable 500MHz clock signal is high counter. High count module design using ECL and TTL counter mix design, timing accuracy while effectively maintaining , expanding the timing range, and simplifies circuit design . High-speed counter control module controls high-speed counter start, stop and reset timely based on aerosol particles time-of-flight, is a key part of the high-speed counting. The high-speed counting resolution of 4ns, the full scale of 4096ns, has been successfully applied Aerodynamic Particle Sizer, to meet the precise measurement of aerosol particles time-of-flight.

  10. Accurate predictions of dielectrophoretic force and torque on particles with strong mutual field, particle, and wall interactions

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Reifsnider, Kenneth

    2012-11-01

    The basis of dielectrophoresis (DEP) is the prediction of the force and torque on particles. The classical approach to the prediction is based on the effective moment method, which, however, is an approximate approach, assumes infinitesimal particles. Therefore, it is well-known that for finite-sized particles, the DEP approximation is inaccurate as the mutual field, particle, wall interactions become strong, a situation presently attracting extensive research for practical significant applications. In the present talk, we provide accurate calculations of the force and torque on the particles from first principles, by directly resolving the local geometry and properties and accurately accounting for the mutual interactions for finite-sized particles with both dielectric polarization and conduction in a sinusoidally steady-state electric field. Since the approach has a significant advantage, compared to other numerical methods, to efficiently simulate many closely packed particles, it provides an important, unique, and accurate technique to investigate complex DEP phenomena, for example heterogeneous mixtures containing particle chains, nanoparticle assembly, biological cells, non-spherical effects, etc. This study was supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.

  11. On the combustion of bituminous coal chars

    SciTech Connect

    Sahu, R.

    1988-01-01

    The chars were made by pyrolyzing size-graded PSOC 1451 coal particles in nitrogen at 1000-1600K. Sized char particles were then used in subsequent experiments. Low temperature reactivities of such cenospheric chars were measured at 800K in a TGA. The effects of initial coal size, char size, pyrolysis temperature, and oxygen concentration were investigated. Single particle combustion experiments were done in both air and 50 percent oxygen ambients at 1000-1500K wall temperatures in a drop-tube laminar-flow reactor. The ignition transients of single burning particles were explained using a simple thermal model. Char samples were also partially oxidized at 1200-1500K and then physically characterized using optical and electron microscopy, gas adsorption methods, and mercury porosimetry. Results of characterization were compared to those done at 800K. Single particle combustion was numerically modeled. At first, a continuum model for asymptotic shrinking-core combustion was developed using apparent reaction rate and temperature-dependent properties. Later, a more general continuum model was developed that treated the internal morphology of the particles more realistically, as inferred from experiments. The steady-state diffusion equation was solved inside the particle to determine its theoretical temperature-time history. Good agreement with experimental results was found. The model was extended to include the effect of nonlinear kinetics. A discrete model for a cenospheric char particle was also developed, in which spherical voids were randomly placed in a spherical particle. Connectivity of the internal pore structure was accounted for.

  12. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. PMID:24642484

  13. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars.

  14. Influence of particle structure changes on the rate of coal char reaction with CO/sub 2/

    SciTech Connect

    Debelak, K.A.; Clark, M.A.; Malito, J.T.

    1982-01-01

    A common feature of gas-solid reactions is that the overall process involves several steps: (1) mass transfer of reactants and products from bulk gas phase to the internal surface of the reacting solid particle; (2) diffusion of gaseous reactants or products through the pores of a solid reactant; (3) adsorption of gaseous reactants on solid reactant sites and desorption of reaction products from solid surfaces; (4) the actual chemical reaction between the adsorbed gas and solid. In studying gas-solid reactants, we are concerned with these four phenomena and other phenomena which affect the overall rate of reaction and performance of industrial equipment in which these gas-solid reactions are carried out. These other phenomena include: heat transfer, flow of gases and solids through reactors, and changes in the solid structure, all of which affect the rate of diffusion and surface area available for reaction. Devolatilization causes structural changes reflected in an average weight loss of 41%, a decrease in the diffusion coefficient, and an increase in total surface area. The increase in surface area represents the opening of pores not accessible before devolatilization. This new pore structure has a greater resistance to diffusion. The small pores and enlarged pore form a more complex network of voids within the particles. The devolatilization causes an increase in total available surface area and a decrease in the diffusion coefficient. The heterogeneous chemical reaction causes continuous changes in the pore structure due to the consumption of carbon.

  15. An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter

    NASA Astrophysics Data System (ADS)

    Jagtiani, Ashish V.; Carletta, Joan; Zhe, Jiang

    2011-04-01

    In this paper, we present the design, impedimetric characterization and testing of a microfabricated Coulter counter for particle size measurement that uses a pair of thin film coplanar Au/Ti electrodes. An electrical equivalent circuit model of the designed device is analyzed. Accurate measurement of particle size was achieved by operating the device at a frequency for which the overall impedance is dominated by the channel resistance. A combination of design features, including the use of a pair of sensing electrodes with a surface area of 100 µm by 435 µm, a spacing of 1785 µm between the two sensing electrodes and a 350 µm long microchannel, ensures that this resistance dominates over a range of relatively low frequencies. The device was characterized for NaCl electrolyte solutions with different ionic concentrations ranging from 10-5 to 0.1 M. Results proved that the resistive behavior of the sensor occurs over a range of relatively low frequencies for all tested concentrations. The Coulter counter was then used to detect 30 µm polystyrene particles at a selected excitation frequency. Testing results demonstrated that the device can accurately measure particle sizes with small error. The design can be extended to ac Coulter counters with sub-micron sensing channels. Analysis of three designs of ac Coulter counters including sub-micron sensing channels using the electrical equivalent circuit model predicts that they can be operated at even lower frequencies, to accurately size nanoscale particles.

  16. Stereoscopic pyrometer for char combustion characterization.

    PubMed

    Schiemann, M; Vorobiev, N; Scherer, V

    2015-02-10

    For many pulverized fuels, especially coal and biomass, char combustion is the time determining step. Based on intensified ICCD cameras, a novel setup has been developed to study pulverized fuel combustion, mainly in a laminar flow reactor. For char burning characterization, the typical measurement parameters are particle temperature, size, and velocity. The working principle of the camera setup is introduced and its capabilities are discussed by examination of coal particle combustion under CO(2)-enriched, so-called oxy-fuel atmospheres with varying O(2) content. PMID:25968027

  17. Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young

    2015-07-01

    This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.

  18. Modeling sublimation of a charring ablator

    NASA Technical Reports Server (NTRS)

    Balhoff, J. F.; Pike, R. W.

    1973-01-01

    The Hertz-Knudsen analysis is shown to accurately predict the sublimation rate from a charring ablator. Porosity is shown to have a significant effect on the surface temperature. The predominant carbon species found in the vapor is C3, which agrees well with the results of previous investigations.

  19. Multi-reference-based multiple alignment statistics enables accurate protein-particle pickup from noisy images.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2013-04-01

    Data mining from noisy data/images is one of the most important themes in modern science and technology. Statistical image processing is a promising technique for analysing such data. Automation of particle pickup from noisy electron micrographs is essential, especially when improvement of the resolution of single particle analysis requires a huge number of particle images. For such a purpose, reference-based matching using primary three-dimensional (3D) model projections is mainly adopted. In the matching, however, the highest peaks of the correlation may not accurately indicate particles when the image is very noisy. In contrast, the density and the heights of the peaks should reflect the probability distribution of the particles. To statistically determine the particle positions from the peak distributions, we have developed a density-based peak search followed by a peak selection based on average peak height, using multi-reference alignment (MRA). Its extension, using multi-reference multiple alignment (MRMA), was found to enable particle pickup at higher accuracy even from extremely noisy images with a signal-to-noise ratio of 0.001. We refer to these new methods as stochastic pickup with MRA (MRA-StoPICK) or with MRMA (MRMA-StoPICK). MRMA-StoPICK has a higher pickup accuracy and furthermore, is almost independent of parameter settings. They were successfully applied to cryo-electron micrographs of Rice dwarf virus. Because current computational resources and parallel data processing environments allow somewhat CPU-intensive MRA-StoPICK and MRMA-StoPICK to be performed in a short period, these methods are expected to allow high-resolution analysis of the 3D structure of particles.

  20. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  1. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  2. An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.

    2014-11-01

    Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.

  3. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  4. Simple and accurate quantification of quantum dots via single-particle counting.

    PubMed

    Zhang, Chun-yang; Johnson, Lawrence W

    2008-03-26

    Quantification of quantum dots (QDs) is essential to the quality control of QD synthesis, development of QD-based LEDs and lasers, functionalizing of QDs with biomolecules, and engineering of QDs for biological applications. However, simple and accurate quantification of QD concentration in a variety of buffer solutions and in complex mixtures still remains a critical technological challenge. Here, we introduce a new methodology for quantification of QDs via single-particle counting, which is conceptually different from established UV-vis absorption and fluorescence spectrum techniques where large amounts of purified QDs are needed and specific absorption coefficient or quantum yield values are necessary for measurements. We demonstrate that single-particle counting allows us to nondiscriminately quantify different kinds of QDs by their distinct fluorescence burst counts in a variety of buffer solutions regardless of their composition, structure, and surface modifications, and without the necessity of absorption coefficient and quantum yield values. This single-particle counting can also unambiguously quantify individual QDs in a complex mixture, which is practically impossible for both UV-vis absorption and fluorescence spectrum measurements. Importantly, the application of this single-particle counting is not just limited to QDs but also can be extended to fluorescent microspheres, quantum dot-based microbeads, and fluorescent nano rods, some of which currently lack efficient quantification methods.

  5. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.

    PubMed

    Hu, Qiang; Yang, Haiping; Yao, Dingding; Zhu, Danchen; Wang, Xianhua; Shao, Jingai; Chen, Hanping

    2016-01-01

    The densification of bio-chars pyrolyzed at different temperatures were investigated to elucidate the effect of temperature on the properties of bio-char pellets and determine the bonding mechanism of pellets. Optimized process conditions were obtained with 128MPa compressive pressure and 35% water addition content. Results showed that both the volume density and compressive strength of bio-char pellets initially decreased and subsequently increased, while the energy consumption increased first and then decreased, with the increase of pyrolysis temperature. The moisture adsorption of bio-char pellets was noticeably lower than raw woody shavings but had elevated than the corresponding char particles. Hydrophilic functional groups, particle size and binder were the main factors that contributed to the cementation of bio-char particles at different temperatures. The result indicated that pyrolysis of woody shavings at 550-650°C and followed by densification was suitable to form bio-char pellets for application as renewable biofuels.

  6. The combustion kinetics of coal chars in oxygen-enriched environments.

    SciTech Connect

    Shaddix, Christopher R.; Murphy, Jeffrey J.

    2004-09-01

    Oxygen-enhanced and oxygen-fired pulverized coal combustion is actively being investigated to achieve emission reductions and reductions in flue gas cleanup costs, as well as for coal-bed methane and enhanced oil recovery applications. To fully understand the results of pilot scale tests and to accurately predict scale-up performance through CFD modeling, accurate rate expressions are needed to describe coal char combustion under these unconventional combustion conditions. In the work reported here, the combustion rates of two pulverized coal chars have been measured in both conventional and oxygen-enriched atmospheres. A combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometry diagnostic and a rapid-quench sampling probe has been used for this investigation. Highvale subbituminous coal and a high-volatile eastern United States bituminous coal have been investigated, over oxygen concentrations ranging from 6 to 36 mol% and gas temperatures of 1320-1800 K. The results from these experiments demonstrate that pulverized coal char particles burn under increasing kinetic control in elevated oxygen environments, despite their higher burning rates in these environments. Empirical fits to the data have been successfully performed over the entire range of oxygen concentrations using a single-film oxidation model. Both a simple nth-order Arrhenius expression and an nth-order Langmuir-Hinshelwood kinetic equation provide good fits to the data. Local fits of the nth-order Arrhenius expression to the oxygen-enriched and oxygen-depleted data produce lower residuals in comparison to fits of the entire dataset. These fits demonstrate that the apparent reaction order varies from 0.1 under near-diffusion-limit oxygen-depleted conditions to 0.5 under oxygen-enriched conditions. Burnout predictions show good agreement with measurements. Predicted char particle temperatures tend to be low for combustion in oxygen-depleted environments.

  7. Clean, premium-quality chars: Demineralized and carbon enriched

    SciTech Connect

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  8. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  9. A burnout prediction model based around char morphology

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.

  10. The effect of char structure on burnout during pulverized coal combustion at pressure

    SciTech Connect

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  11. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Du; Yang, Weitao

    2016-10-01

    An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K4), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.

  12. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation

    DOE PAGES

    Zhang, Du; Yang, Weitao

    2016-10-13

    An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less

  13. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  14. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  15. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  16. System for recycling char in iron oxide reducing kilns

    SciTech Connect

    Baker, A.C.; Keran, V.P.

    1983-03-08

    A method and means for improving the efficiency of the process for directly reducing ore containing iron oxide in a rotary kiln using a solid carbonaceous reducing agent, such as coal, introduced from the ore feed and discharge ends of the kiln, as both fuel and reductant, is disclosed wherein the charred coal or char found in the discharge product is recycled into the process at the discharge end of the kiln rather than the feed end as in the prior art. In particular, the recovered char, both coarse and finer particles, are transported to a recycle bin from which they are returned at a preselected rate to the kiln process by being injected along with the coal blown into the discharge end of the kiln. Alternatively, the recycle char alone may be fed without any coal at the discharge end of the kiln.

  17. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  18. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows

    NASA Astrophysics Data System (ADS)

    Horwitz, J. A. K.; Mani, A.

    2016-08-01

    In this work, we propose and test a method for calculating Stokes drag applicable to particle-laden fluid flows where two-way momentum coupling is important. In the point-particle formulation, particle dynamics are coupled to fluid dynamics via a source term that appears in the respective momentum equations. When the particle Reynolds number is small and the particle diameter is smaller than the fluid scales, it is common to approximate the momentum coupling source term as the Stokes drag. The Stokes drag force depends on the difference between the undisturbed fluid velocity evaluated at the particle location, and the particle velocity. However, owing to two-way coupling, the fluid velocity is modified in the neighborhood of a particle, relative to its undisturbed value. This causes the computed Stokes drag force to be underestimated in two-way coupled point-particle simulations. We develop estimates for the drag force error as function of the particle size relative to the grid size. Because the disturbance field created by the particle contaminates the surrounding fluid, correctly calculating the drag force cannot be done solely by direct interpolation of the fluid velocity. Instead, we develop a correction method that calculates the undisturbed fluid velocity from the computed disturbed velocity field by adding an estimate of the velocity disturbance created by the particle. The correction scheme is tested for a particle settling in an otherwise quiescent fluid and is found to reduce the error in computed settling velocity by an order of magnitude compared with common interpolation schemes.

  19. Comparison of the combustion reactivity of TGA and drop tube furnace chars from a bituminous coal

    SciTech Connect

    Katherine Le Manquais; Colin Snape; Ian McRobbie; Jim Barker; Victoria Pellegrini

    2009-09-15

    This paper compares the reactivity of chars generated in a drop tube furnace (DTF) to those from TGA. The implications of devolatilization temperature, heating rate and residence time are considered. For the smaller particle size ranges of the bituminous coal investigated (ATC), optimized devolatilization procedures were used to generate corresponding TGA burnout rates between the two char types. However, with fractions of >75 {mu}m, the DTF chars showed an increased burnout propensity when moving from combustion regime II to combustion regime III. Scanning electron microscope (SEM) images and internal surface areas indicate that this is because of incompatible char morphologies. Thus, while chars produced under the conditions of TGA pyrolysis strongly resemble raw coal and display an undeveloped pore network; the DTF chars are highly porous, extensively swollen and possess considerably larger internal surface areas. Subsequently, char burnout variability was quantified, with the reactivity distribution for the DTF samples found to be up to an order of magnitude more significant than for the TGA chars. This is attributed to a fluctuating devolatilization environment on the DTF. Finally, a TGA study observed a robust particle size based compensation effect for the TGA chars, with the relative reaction rates and activation energies demonstrating the presence of internal diffusion control. However this phenomenon was partly alleviated for the DTF chars, since their higher porosities reduce mass transfer restrictions. Moreover, it should be realized that DTF char fractions of <38 {mu}m, including those required to ensure true intrinsic control under the investigated burnout conditions, cannot be produced directly. This is because of bridging and sloughing in the DTF's screw-feeder. Instead, such samples must be created by grinding larger particles, which destroys the char's existing porosity. 60 refs., 9 figs., 5 tabs.

  20. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  1. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    SciTech Connect

    Molina, Alejandro; Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S.

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  2. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion

    SciTech Connect

    Molina, A.; Murphy, J.J.; Blevins, L.G.; Shaddix, C.R.; Winter, F.; Haynes, B.S.

    2009-03-15

    The conversion of nitrogen in char (char-N) to NO was studied both experimentally and computationally. In the experiments, pulverized coal char was produced from a U.S. high-volatile bituminous coal and burned in a dilute suspension at 1170 K, 1370 K and 1570 K, at an excess oxygen concentration of 8% (dry), with different levels of background NO. In some experiments, hydrogen bromide (HBr) was added to the vitiated air as a tool to alter the concentration of gas-phase radicals. During char combustion, low NO concentration and high temperature promoted the conversion of char-N to NO. HBr addition altered NO production in a way that depended on temperature. At 1170 K the presence of HBr increased NO production by 80%, whereas the addition of HBr decreased NO production at higher temperatures by 20%. To explain these results, three mechanistic descriptions of char-N evolution during combustion were evaluated with computational models that simulated (a) homogeneous chemistry in a plug-flow reactor with entrained particle combustion, and (b) homogeneous chemistry in the boundary layer surrounding a reacting particle. The observed effect of HBr on NO production could only be captured by a chemical mechanism that considered significant release of HCN from the char particle. Release of HCN also explained changes in NO production with temperature and NO concentration. Thus, the combination of experiments and simulations suggests that HCN evolution from the char during pulverized coal combustion plays an essential role in net NO production. (author)

  3. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  4. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  5. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    SciTech Connect

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered

  6. Effects of volatile-char interactions on char during pyrolysis of rice husk at mild temperatures.

    PubMed

    Liu, Peng; Zhao, Yijun; Guo, Yangzhou; Feng, Dongdong; Wu, Jiangquan; Wang, Pengxiang; Sun, Shaozeng

    2016-11-01

    In order to understand the sensitivity of volatile-char interactions to mild temperatures (600-800°C), in-situ rice husk char was prepared from fast pyrolysis (>10(3)Ks(-1)) on a fixed-bed reactor. Retention of K in char, changes in char structure and char reactivity were determined. The results showed that volatile-char interactions did not cause obvious effect on the char yield but showed an inhibitory effect on char reactivity. The inhibition began only above 650°C and intensified with temperature rise, but kept almost unchanged at 700-800°C. Char structure and retention of K have a combined effect on char reactivity. The decreased reactivity was caused by additional volatilization of K from char matrix and transformation of relatively smaller aromatic ring systems to large ring systems (>6 benzene rings) above 650°C. PMID:27544921

  7. Study on CO₂ gasification properties and kinetics of biomass chars and anthracite char.

    PubMed

    Wang, Guangwei; Zhang, Jianliang; Hou, Xinmei; Shao, Jiugang; Geng, Weiwei

    2015-02-01

    The CO2 gasification properties and kinetics of three biomass chars (WS-char, RL-char and PS-char) and anthracite char (AC-char) were investigated by thermogravimetric analysis method. Three nth-order representative gas-solid reaction models, random pore model (RPM), volume reaction model (VM) and unreacted core model (URCM) were employed to describe the reactive behavior of chars. Results show that gasification reactivity order of different chars from high to low was WS-char, PS-char, RL-char and AC-char. In addition, the chemical components as well as physical structures of four chars were systematically tested. It was found that gasification properties of char were determined by carbonaceous structure. It was concluded from kinetics analysis that RPM model was the best model for describing the reactivities of biomass chars and VM was the model that best fitted the gasification process of anthracite char. The activation energies obtained for the biomass and anthracite char samples lie in the range of 236.4-284.9 kJ/mol.

  8. Study on CO₂ gasification properties and kinetics of biomass chars and anthracite char.

    PubMed

    Wang, Guangwei; Zhang, Jianliang; Hou, Xinmei; Shao, Jiugang; Geng, Weiwei

    2015-02-01

    The CO2 gasification properties and kinetics of three biomass chars (WS-char, RL-char and PS-char) and anthracite char (AC-char) were investigated by thermogravimetric analysis method. Three nth-order representative gas-solid reaction models, random pore model (RPM), volume reaction model (VM) and unreacted core model (URCM) were employed to describe the reactive behavior of chars. Results show that gasification reactivity order of different chars from high to low was WS-char, PS-char, RL-char and AC-char. In addition, the chemical components as well as physical structures of four chars were systematically tested. It was found that gasification properties of char were determined by carbonaceous structure. It was concluded from kinetics analysis that RPM model was the best model for describing the reactivities of biomass chars and VM was the model that best fitted the gasification process of anthracite char. The activation energies obtained for the biomass and anthracite char samples lie in the range of 236.4-284.9 kJ/mol. PMID:25479395

  9. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    SciTech Connect

    Cimpoesu, Dorin Stoleriu, Laurentiu; Stancu, Alexandru

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  10. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  12. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    PubMed Central

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-01-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements. PMID:26911709

  13. Spectrally accurate numerical solution of the single-particle Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Batcho, P. F.

    1998-06-01

    We have formulated a three-dimensional fully numerical (i.e., chemical basis-set free) method and applied it to the solution of the single-particle Schrödinger equation. The numerical method combines the rapid ``exponential'' convergence rates of spectral methods with the geometric flexibility of finite-element methods and can be viewed as an extension of the spectral element method. Singularities associated with multicenter systems are efficiently integrated by a Duffy transformation and the discrete operator is formulated by a variational statement. The method is applicable to molecular modeling for quantum chemical calculations on polyatomic systems. The complete system is shown to be efficiently inverted by the preconditioned conjugate gradient method and exponential convergence rates in numerical approximations are demonstrated for suitable benchmark problems including the hydrogenlike orbitals of nitrogen.

  14. Evolution of char structure during steam gasification of the chars produced from rapid pyrolysis of rice husk.

    PubMed

    Fu, Peng; Hu, Song; Xiang, Jun; Yi, Weiming; Bai, Xueyuan; Sun, Lushi; Su, Sheng

    2012-06-01

    The structural evolution of rice husk char particles during steam gasification was studied by ultimate analysis, inductively coupled plasma atomic emission spectroscopy, scanning electronic microscope, N(2) physisorption method and X-ray diffraction. Drastic changes in char structure occurred even when the char conversion was minimal. The C, H and O content decreased by more than 85%, 67% and 91%, respectively. The H/C atomic ratio always increased, while the O/C exhibited a "∼" shape. The maximum porosity appeared at char conversion of 48.6%. D(s) and d(ave) showed a good linear relationship. Aliphatic structures and smaller aromatic rings tended to be preferentially consumed to left the char more ordered and enriched with larger aromatic ring systems. The presence of steam favored the volatilization of Na. K, Mg and Ca showed a similar behavior and their concentrations reached maxima at 60.3%. Great loss of O-containing structures caused significant volatilization of K, Mg and Ca.

  15. Sulphur in char and char desulphurization by acid leaching and hydropyrolysis

    USGS Publications Warehouse

    Chou, I.-Ming; Loffredo, D.M.

    1985-01-01

    Sulphur compounds volatilized during pyrolysis of acid-leached char were measured to determine characteristics of char desulphurization reactions. Pyrolysis of char in a hydrogen atmosphere (hydropyrolysis) produced a much higher concentration of thiophenic organics compared with that produced during pyrolysis in a nitrogen atmosphere. Hydrogen sulphide gas evolution, at progressively increasing pyrolysis temperature in a helium atmosphere, was measured on five char samples: untreated char, hydrochloric acid-leached char, and three model chars: a demineralized char and two demineralized chars incorporated with sulphur via reactions with elemental sulphur. Hydrogen sulphide gas evolution in untreated char and acid-leached char was found to peak in three temperature regions; the maxima are thought to relate to sulphur in different bonding environments. The amounts of hydrogen sulphide volatilized were much higher for acid-leached char than for untreated char. The gas evolved from each of the remaining three samples showed a single peak region corresponding closely to one of the three peak regions observed for the first two chars. The results of this study indicate that elemental sulphur was produced during hydrochloric acid leaching of the untreated char and suggested that the improved rate of desulphurization observed in the char that had been acid-leached before hydropyrolysis was due in part to the conversion of strongly bound mineral sulphur forms to more weakly bound sulphur forms that are predominantly elemental sulphur in character, and are more easily removed by hydrogen. ?? 1985.

  16. Combustion of coal chars in oxygen-enriched atmospheres

    SciTech Connect

    Bejarano, P.A.; Levendis, Y.A.

    2007-07-01

    This work pertains to the high-temperature combustion of pulverized coal chars under oxygen-enriched atmospheres. Single char particles were burned in a drop-tube furnace, electrically-heated to 1300-1500 K, in 21%, 50% and 100% O{sub 2}, in a balance of N{sub 2}. Their luminous combustion histories were observed with two-color ratio pyrometry. A solution of the Planckian ratio-pyrometry equation for temperature was implemented, extending on Wien's approximation. The temperature and time histories for 45-53 {mu}m bituminous chars experienced wide particle-to-particle disparity, and varied depending on oxygen mole fraction and furnace temperature. Average char surface temperatures increased from 1600-1800 K in air, to 2100-2300 K in 50% O-2, to 2300-2400 K in 100% O{sub 2}, at gas temperatures of 1300-1500 K, respectively. Combustion durations decreased from 25-45 ms in air, to 8-17 ms in 50% O{sub 2}, to 6-13 in 100% O{sub 2}. Thus, average particle temperatures increased by up to 45%, whereas burnout times decreased by up to 87% as combustion was progressively enriched in O{sub 2} until 100% was attained. The apparent and intrinsic reactivity of the chars burning at 1500 K gas temperature were found to increase by factors of to 8 and 35, respectively, as the oxygen mole fraction increased by a factor of five, from 21% to 100%.

  17. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  18. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  19. Kinetics of oil shale char gasification

    SciTech Connect

    Thomson, W.J.; Gerber, M.A.; Hatter, M.A.; Oakes, D.G.

    1981-01-01

    The kinetics of oil shale char gasification have been studied for Colorado oil shale from the Parachute Creek member. Reaction rate expressions similar to those previously reported for coal char were obtained for the H/sub 2/O-char, CO/sub 2/-char, and water gas shift reactions. Evidence is presented to suggest that CaO, a product of mineral decomposition, catalyzes the H/sub 2/O-char reaction and that indigenous iron catalyzes the water gas shift reaction. The latter reaction proceeds rapidly so that the make-gas consists primarily of H/sub 2/ and CO/sub 2/. 12 references.

  20. Process for reducing sulfur in coal char

    DOEpatents

    Gasior, Stanley J.; Forney, Albert J.; Haynes, William P.; Kenny, Richard F.

    1976-07-20

    Coal is gasified in the presence of a small but effective amount of alkaline earth oxide, hydroxide or carbonate to yield a char fraction depleted in sulfur. Gases produced during the reaction are enriched in sulfur compounds and the alkaline earth compound remains in the char fraction as an alkaline earth oxide. The char is suitable for fuel use, as in a power plant, and during combustion of the char the alkaline earth oxide reacts with at least a portion of the sulfur oxides produced from the residual sulfur contained in the char to further lower the sulfur content of the combustion gases.

  1. Accurate validation of visible infrared double extinction simultaneous measurements of particle sizes and number densities by using densely laden standard media.

    PubMed

    Guidt, J B; Gouesbet, G; Toulouzan, J N

    1990-03-01

    Simultaneous measurements of particle sizes and number densities by means of the visible infrared double extinction technique are carried out and accurately validated. Accurate validation has been made possible by using a new kind of standard media, i.e., embedding the particles under study in a high viscosity gel. A byproduct of the work is a discussion of Beer-Lambert law limitations for multiple scattering in densely laden media.

  2. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles.

    PubMed

    Walkiewicz, Marcin P; Morral, Nuria; Engel, Daniel A

    2009-08-01

    Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay.

  3. Accurate crystal molecular dynamics simulations using particle-mesh-Ewald: RNA dinucleotides — ApU and GpC

    NASA Astrophysics Data System (ADS)

    Lee, Hsing; Darden, Thomas; Pedersen, Lee

    1995-09-01

    Long molecular dynamics (MD) simulations for two crystal RNA dinucleotides ApU (2.0 ns) and GpC (1.5 ns) were performed, starting from the crystallographic positions of all heavy atoms in the crystals. By employing the particle-mesh-Ewald algorithm [Darden et al., J. Chem. Phys. 98 (1993) 10089] to accommodate the long-range Coulomb interactions, highly accurate MD structures were obtained for both crystals. The instantaneous root-mean-square positional deviations of the heavy atoms equilibrate at approximately 0.4 Å for both systems, while the experimental and calculated temperature factors are comparable in size. These results describe the first successful crystal MD simulation of RNA molecules.

  4. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles.

    PubMed

    Walkiewicz, Marcin P; Morral, Nuria; Engel, Daniel A

    2009-08-01

    Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay. PMID:19406166

  5. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. PMID:19896769

  6. Kinetics characteristics of straw semi-char gasification with carbon dioxide.

    PubMed

    Xiao, Ruirui; Yang, Wei

    2016-05-01

    The gasification process has promising potential as a solution for the current global energy problem. Kinetics characteristics of straw semi-char gasification were investigated. The main influence factors of gasification, which include bio-char particle size, pyrolysis temperature and pyrolysis atmosphere, were studied. The smaller the particle size is, the higher is the conversion rate. The gasification reactivity of semi-chars increases with pyrolysis temperature and reaches its maximum at approximately 400°C. The straw semi-char obtained in an H2 pyrolysis atmosphere has the best gasification reactivity, while the semi-char obtained in a CO2 atmosphere has the worst reactivity. In addition, characteristics of semi-char were systematically tested. A random pore model, unreacted core shrinking model and integrated model were employed to describe the reactive behavior of semi-chars. Gasification kinetics parameters were calculated. The random pore model fitting result is in better agreement with the experiments than that of the other two models.

  7. Properties of gasification-derived char and its utilization for catalytic tar reforming

    NASA Astrophysics Data System (ADS)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst

  8. Evaluation of gravimetric and volumetric dispensers of particles of nuclear material. [Accurate dispensing of fissile and fertile fuel into fuel rods

    SciTech Connect

    Bayne, C.K.; Angelini, P.

    1981-08-01

    Theoretical and experimental studies compared the abilities of volumetric and gravimetric dispensers to dispense accurately fissile and fertile fuel particles. Such devices are being developed for the fabrication of sphere-pac fuel rods for high-temperature gas-cooled light water and fast breeder reactors. The theoretical examination suggests that, although the fuel particles are dispensed more accurately by the gravimetric dispenser, the amount of nuclear material in the fuel particles dispensed by the two methods is not significantly different. The experimental results demonstrated that the volumetric dispenser can dispense both fuel particles and nuclear materials that meet standards for fabricating fuel rods. Performance of the more complex gravimetric dispenser was not significantly better than that of the simple yet accurate volumetric dispenser.

  9. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOEpatents

    Roach, P.D.; Raptis, A.C.

    1980-11-24

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  10. Investigation of Pyrolyzed Chars from Physic Nut Waste for the Preparation of Activated Carbon

    NASA Astrophysics Data System (ADS)

    Pechyen, Chiravoot; Atong, Duangduen; Aht-Ong, Duangdao; Sricharoenchaikul, Viboon

    Fixed bed pyrolysis of physic nut waste was conducted to investigate the influence of different operating conditions, such as sample size, final temperature and hold time, on properties of the pyrolyzed chars. The obtained chars were characterized by a thermogravimetric analyzer (TGA) for proximate analyses and by Brunauer-Emmett-Teller (BET) for determination of their accelerated surface area. The surface morphology of char was investigated using scanning electron microscopy (SEM). For chemical characterization, an X-ray diffractometer (XRD) and a Fourier transform infrared spectroscope (FTIR) were used to identify inorganic components and surface organic functional groups of the char. In this work, the FTIR analysis indicated the existence of phosphonate groups, carboxyl groups and amine groups on char surface. The XRD pattern of the surface also verified the presence of graphite as main carbon structure. The conditions yielding char with maximum BET surface area of 249.60 m2·g-1 and high fixed carbon are final temperature of 800°C, hold time of 15 minutes, and heating rate of 20°C/min for 0.425-0.5 mm particle. Generally, high temperature pyrolysis of raw materials with short hold time results in char with favorable smooth, porous surface with large cavities.

  11. Multidimensional modeling of pyrolysis gas transport inside orthotropic charring ablators

    NASA Astrophysics Data System (ADS)

    Weng, Haoyue

    During hypersonic atmospheric entry, spacecraft are exposed to enormous aerodynamic heat. To prevent the payload from overheating, charring ablative materials are favored to be applied as the heat shield at the exposing surface of the vehicle. Accurate modeling not only prevents mission failures, but also helps reduce cost. Existing models were mostly limited to one-dimensional and discrepancies were shown against measured experiments and flight-data. To help improve the models and analyze the charring ablation problems, a multidimensional material response module is developed, based on a finite volume method framework. The developed computer program is verified through a series of test-cases, and through code-to-code comparisons with a validated code. Several novel models are proposed, including a three-dimensional pyrolysis gas transport model and an orthotropic material model. The effects of these models are numerically studied and demonstrated to be significant.

  12. Oxy-combustion of pulverized coal : modeling of char combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  13. Oxy-combustion of pulverized coal : modeling of char-combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  14. Heat capacity of coal chars

    SciTech Connect

    Wang, W.Y.

    1982-01-01

    The selected starting materials were, a North Dakota lignite, an Illinois No. 6 bituminous and a Virginia coking coal. The carbon content of these coals ranged from 59 to 75 wt% (mineral matter included). Half of each of the received coal sample was demineralized using a standard procedure. Chars were prepared from the received and demineralized pulverized coals by pyrolysis. Heating rate of 5/sup 0/C/minute was employed for the pyrolysis under dry nitrogen gas atmosphere. The pyrolysis temperatures were 700, 900 and 1100/sup 0/C for periods of 0.1, 1 and 24. The char samples were characterized by chemical composition analysis, x-ray diffraction and porosimetry. Heat capacity data were collected over 75 to 300/sup 0/K temperature range using an adiabatic calorimeter. The heat capacity of these samples increases, with increasing temperature and moisture content, and its behavior and order of magnitude are similar to that of carbon when compared on a moisture free basis. Due to the uncertainties of the chemical forms of the mineral matter and the water phase below room temperature, all the heat capacity data are analyzed on a dry mineral matter free basis.

  15. Evaluating phenanthrene sorption on various wood chars

    USGS Publications Warehouse

    James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K.

    2005-01-01

    A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 ??gl-1, the organic carbon-normalized sorption coefficients (log Koc) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of log Koc values reported in previous research for aquifer materials containing wood chars. ?? 2004 Elsevier Ltd. All rights reserved.

  16. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification.

  17. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions.

    PubMed

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-12-20

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that 'zero-aggregation' collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a 'one particle at a time' manner, based on which accurate particle sizing with a resolution of 1-2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates).

  18. Combustion of char from plastic wastes pyrolysis

    NASA Astrophysics Data System (ADS)

    Saptoadi, Harwin; Rohmat, Tri Agung; Sutoyo

    2016-06-01

    A popular method to recycle plastic wastes is pyrolysis, where oil, gas and char can be produced. These products can be utilized as fuels because they are basically hydrocarbons. The research investigates char properties, including their performance as fuel briquettes. There are 13 char samples from PE (Polyethylene) pyrolyzed at temperatures of around 450 °C, with and without a catalyst. Some of the samples were obtained from PE mixed with other types, such as Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Others. Char properties, such as moisture, ash, volatile matter, and fixed carbon contents, are revealed from the proximate analysis, whereas calorific values were measured with a bomb calorimeter. Briquettes are made by mixing 4 g of char with 0.5 - 1 g binder. Briquettes are hollow cylinders with an outer and inner diameter of around 1.75 cm and 0.25 cm, respectively. Combustion is carried out in a furnace with wall temperatures of about 230°C and a constant air velocity of 0.7 m/s. Five out of 13 char briquettes are not feasible because they melt during combustion. Briquettes made from 100% PE wastes burn in substantially shorter duration than those from mixed plastic wastes. Char #1 and #5 are excellent due to their highest energy release, whereas #10 show the worst performance.

  19. Clean, premium-quality chars: Demineralized and carbon enriched. Quarterly report, September 1, 1991--Novemer 30, 1991

    SciTech Connect

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  20. Microwave-enhanced CO2 gasification of oil palm shell char.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2014-04-01

    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively. PMID:24607454

  1. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  2. Microwave-enhanced CO2 gasification of oil palm shell char.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2014-04-01

    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively.

  3. Microbial oxidation of pyrrhotites in coal chars

    USGS Publications Warehouse

    Miller, K.W.; Risatti, J.B.

    1988-01-01

    The ability of Thiobacillus ferrooxidans to oxidize pyrrhotite minerals occurring in coal chars was investigated, to evaluate the feasibility of microbial char desulphurization. Bio-oxidation of pyrrhotites in chars produced by two different processes was demonstrated conclusively. Microbial removal of sulphur from a char and its parent coal proceeded at the rate of 3.5% and 12% day-1, respectively with a total of 48% and 81% removal after 27 days. The pH of shake flask cultures containing the coal dropped naturally to a final value of 2.2, while the pH of cultures containing the corresponding char rose and had to be lowered artificially with additional acid. Amending char cultures with elemental sulphur to increase acidity upon bio-oxidation and prevent precipitation of ferric iron was successful; however, the extent of pyrrhotite removal, as demonstated by X-ray diffraction analysis, was not improved. As yet, there is no explanation for the failure of microbial removal of pyrrhotitic sulphur to go to completion. ?? 1988.

  4. Effects of catalytic mineral matter on CO/CO[sub 2] temperature and burning time for char combustion

    SciTech Connect

    Longwell, J.P.; Sarofim, A.F.; Lee, C.H.

    1992-01-01

    The high temperature oxidation of char is of interest in a number of applications in which coal must be burned in confined spaces. These include: the conversion of oil-fired boilers to coal using coal-water slurries, the development of a new generation of pulverized-coal-fired cyclone burners, the injection of coal into the tuyeres of blast furnaces, the use of coal as a fuel in direct-fired gas turbines in large-bore low-speed diesels, and entrained flow gasifiers. In addition, there is a need to better understand the temperature history of char particles in conventional pulverized-coal-fired boilers in order to better understand the processes governing the formation of pollutants and the transformation of mineral matter. The temperature of a char particle burning in an oxygen containing atmosphere is the product of a strongly coupled balance between particle size and physical properties, heat transfer from the particle, surface reactivity, CO/CO[sub 2] ratio and gas phase diffusion in the surrounding boundary layer and within the particle. In addition to its effects on burning rate, particle temperature has major effects on ash proper-ties and mineral matter vaporization. Measurements of the temperature of individual burning char particles have become available in recent years and have clearly demonstrated large particle to particle temperature variations which depend strongly on particle size and on panicle composition. These studies, done with pulverized coal, do not allow direct determination of the CO/CO[sub 2] ratio produced at the char surface or the catalytic effects of mineral matter in the individual char particles and it has generally been assumed that CO is the only product of the carbon-oxygen reaction and that CO[sub 2] is formed by subsequent gas phase reaction More recent work, however, has pointed out the need to take CO[sub 2] Production into consideration in order to account for observed particle temperatures.

  5. Coal combustion: Effect of process conditions on char reactivity. Ninth quarterly technical report, September 1, 1992--December 1, 1993

    SciTech Connect

    Zygourakis, K.

    1993-12-31

    Our efforts during the past quarter focused on the development of an image processing technique for characterizing the macropore structure of chars produced from Illinois No. 6 coal. Pyrolysis experiments were carried out in a microscope-stage reactor in inert and reacting atmospheres and at various pyrolysis heating rates. Particles from several pyrolysis runs were embedded in an epoxy resin block and polished sections . were prepared. Digital images of char particle cross-sections were acquired and analyzed to measure the structural properties of the chars. The macropore analysis procedure is presented here in detail. Future reports will present the data showing the effects of pyrolysis conditions on the macropore structure of Illinois No. 6 chars.

  6. Corrosion of metals in coal char environments. [FMC, Husky, and Synthane chars

    SciTech Connect

    Foerster, T.F.W.; Levy, A.V.; Newman, J.S.

    1981-01-01

    It is demonstrated that a layer of coal char covering a metal surface affects the sulfur and oxygen partial pressures at the metal surface and thus the rate and extent of corrosion. Experiments demonstrating the effect of char composition and depth and bulk gas composition and flow rate on the rate of sulfidation are carried out.

  7. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Geng, Wei-wei; Zhang, Jian-liang; Wang, Guang-wei

    2015-04-01

    This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activation energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, respectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.

  8. An accurate treatment of diffuse reflection boundary conditions for a stochastic particle Fokker-Planck algorithm with large time steps

    NASA Astrophysics Data System (ADS)

    Önskog, Thomas; Zhang, Jun

    2015-12-01

    In this paper, we present a stochastic particle algorithm for the simulation of flows of wall-confined gases with diffuse reflection boundary conditions. Based on the theoretical observation that the change in location of the particles consists of a deterministic part and a Wiener process if the time scale is much larger than the relaxation time, a new estimate for the first hitting time at the boundary is obtained. This estimate facilitates the construction of an algorithm with large time steps for wall-confined flows. Numerical simulations verify that the proposed algorithm reproduces the correct boundary behaviour.

  9. Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-08-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  10. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    EPA Science Inventory

    Abstract

    Monosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  11. Coal gasification pilot plant support studies. Subtask 2-2. High-temperature characteristics of fluidized coal chars in the sintering regime. [Temperature dependence and fluidization velocity

    SciTech Connect

    Not Available

    1980-10-01

    This investigation was conducted to determine the effects of temperature, fluidizing gas oxygen concentration, and ash content on the minimum fluidizing velocity needed to prevent sintering. The work was carried out in a 6-in. diameter reactor. Husky lignite char, gasified Husky lignite char, and char from a ROM Illinois No. 6 bituminous coal were tested in the investigation. Each of these materials was screened to give a particle size distribution of approximately -10 + 80 mesh. Batch tests with Husky lignite char using only nitrogen as the fluidizing gas did not produce sinters at bed temperatures as high as 2050/sup 0/F. Because of this, the unit was converted to a continuous solids feed and discharge system capable of running with oxygen in the feed gas. At oxygen concentrations of 2%, 5%, and 10% in the fluidizing gas, no sintering occurred at temperatures below 1950/sup 0/F with Husky lignite char. At a 15% oxygen concentration in the fluidizing gas the fluidizing velocity could not be increased to a value which would prevent sintering for the size of Husky lignite char used. From the tests made with Husky lignite char, it was found that the minimum excess velocity needed to prevent sintering was linearly proportional to the bed temperature and to the feed gas oxygen concentration to the 1.5 power. Some of the Husky lignite char containing about 15% to 23% ash was gasified to increase the ash content to 31% to 33%. The normalized excess fluidization velocity needed to prevent sintering for the gasified Husky lignite char was greater than that needed to prevent sintering for the non-gasified Husky lignite char. Runs were also made with Illinois No. 6 ROM bituminous char. This material was found to sinter much more readily than the two Husky lignite chars tested.

  12. Evolution of porosity and thermal conductivity during char oxidation

    SciTech Connect

    Weiss, Y.; Benari, Y.; Kantorovich, I.I.; Bar-Ziv, E.; Krammer, G.; Modestino, A.; Sarofim, A.F.

    1994-05-01

    Measurements of the natural convection drag and the photophoretic force have been conducted for Spherocarb char particles as a function of carbon conversion. These forces were obtained by measuring the balancing voltage with and without laser heating during the reaction of single particles in an electrodynamic balance. The photophoretic force was determined by subtraction of the calculated natural convection force, after an initial transient corresponding to about five percent carbon conversion during which the natural convection force was dominant. The particle conductivity inferred from the photophoretic force was found to increase by more than one order of magnitude as the reaction progressed, qualitatively in agreement with models of the dependence of conductivity on porosity. Confirmation of the temperature gradient across the particle was provided by the development of asphericity in the particles when heated from below but not when heated uniformly. The simultaneous measurements of the mass, diameter, and particles conductivity as a function of carbon conversion provides a critical test of pore evolution models since the reaction rate is dependent on the accessibility of the internal surface area to the reactant gas through the open pore structure and the thermal conductivity is dependent on the connectivity of the solid structure. Induction periods were observed before the reaction rate accelerated and the particle conductivity declined, confirming the influence of pore structure on both. Particles could be reacted to a high conversion of greater than 95 percent without any evidence of fragmentation providing further insight on the connectivity of the solid surfaces.

  13. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    PubMed

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction. PMID:19604685

  14. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments

    PubMed Central

    Han, Y.M.; Bandowe, B.A.M.; Wei, C.; Cao, J.J.; Wilcke, W.; Wang, G.H.; Ni, H.Y.; Jin, Z.D.; An, Z.S.; Yan, B.Z.

    2016-01-01

    The knowledge of the association of polycyclic aromatic hydrocarbons (PAHs) with organic matter and carbonaceous materials is critical for a better understanding of their environmental transport, fate, and toxicological effects. Extensive studies have been done with regard to the relationship of PAHs with total organic carbon (TOC) and elemental carbon (EC) in different environmental matrices. The relationship between PAHs and the two subtypes of EC, char (combustion residues) and soot (produced via gas-to-particle conversion) also has been tested in field and laboratory experiments using reference materials. However, a direct comparison of associations of PAHs between with char and with soot in real environmental matrices has to our knowledge not yet been reported because of a lack of methodology to differentiate them. In this study, char and soot were measured using the IMPROVE method to test their associations with 12 EPA priority PAHs measured in topsoil samples (N = 22, top 10 cm) collected from the Guanzhong Plain and in surface sediment samples (N = 32, top 5 cm) from the Wei River (central China). In both soils and sediments, Σ12PAHs were more strongly associated with soot than with char, mainly due to the fact that soot and PAHs were produced in the same gas phase during combustion, had a strong affinity for each other, and were transported and deposited together, while char, the combustion residue, was transported differently to PAHs due to its large particle size. Stronger correlations between PAHs and the different carbon fractions (TOC, soot, and char) in sediments than in soils were observed, which is associated with the redistribution of PAHs among the organic matter pools in water because of the processes during soil erosion and sedimentation in the river. PMID:24656973

  15. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    NASA Technical Reports Server (NTRS)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  16. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  17. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  18. The role of pore structure on char reactivity. Quarterly progress report, October 1994--December 1994

    SciTech Connect

    Sarofim, A.F.

    1995-01-01

    In order to examine the role of pore structure, studies will be conducted on coal chars in the electrodynamic balance. Larger particles will also be examined using a fluidized bed to examine diffusion control reactions, and soot will also be investigated to examine the role of meso- and micro-pores without macro-pore interference. These studies will allow a full range of particles sizes and temperatures to be investigated and eventually modeled.

  19. High temperature deactivation of coal chars

    SciTech Connect

    Beeley, T.J.; Gibbins, J.R.; Man, C.K.

    1994-12-31

    High levels of char burnout, typically to less than 5% by weight of residual carbon in the fly ash, are desirable in large, multi-burner utility boilers fired with pulverised coal in order to optimise plant efficiency and allow the ash to be incorporated in building materials. Achieving high levels of char burnout can be a particular problem with air-staged low-NOx combustors, where air/fuel ratios (and flame temperatures) have to be constrained to give satisfactory emission levels. Switching to imported low-sulphur coals can also be associated with a need to at least assess the potential for burnout problems. In general the levels of carbon in ash required represent very high overall fuel conversion. For example, a coal with 10%w/w ash dry basis giving 5% carbon in ash will still achieve 99.4% conversion. The difference between satisfactory and unsatisfactory burnout thus depends on whether a very small fraction of the coal does or does not burn. This study examined the effect of time and temperature on char reactivity. Fly ash samples containing char were obtained from plant trials.

  20. The correlation contracted Schrödinger equation: An accurate solution of the G-particle-hole hypervirial

    NASA Astrophysics Data System (ADS)

    Alcoba, D. R.; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.

    The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE.

  1. Polyparameter linear free energy relationship for wood char-water sorption coefficients of organic sorbates.

    PubMed

    Plata, Desiree L; Hemingway, Jordon D; Gschwend, Philip M

    2015-07-01

    Black carbons, including soots, chars, activated carbons, and engineered nanocarbons, have different surface properties, but the extent to which these affect their sorbent properties is not known. To evaluate this for an environmentally ubiquitous form of black carbon, biomass char, the surface of a well-studied wood char was probed using 14 sorbates exhibiting diverse functional groups, and the data were fit with a polyparameter linear free energy relationship to assess the importance of the various possible sorbate-char surface interactions. Sorption from water to water-wet char evolved with the sorbate's degree of surface saturation and depended on only a few sorbate parameters: log K(d)L/kg) = [(4.03 ± 0.14) + (-0.15 ± 0.04) log a(i)] V + [(-0.28 ± 0.04) log a(i)] S + (-5.20 ± 0.21) B, where a(i) is the aqueous saturation of the sorbate i, V is McGowan's characteristic volume, S reflects polarity, and B represents the electron-donation basicity. As is generally observed for activated carbon, the sorbate's size encouraged sorption from water to the char, whereas its electron donation and proton acceptance discouraged sorption from water. The magnitude and saturation dependence differed significantly from what has been seen for activated carbons, presumably reflecting the unique surface chemistries of these 2 black carbon materials and suggesting that black carbon-specific sorption coefficients will yield more accurate assessments of contaminant mobility and bioavailability, as well as evaluation of a site's response to remediation.

  2. Water-soluble characteristics of chlorine in char derived from municipal solid wastes.

    PubMed

    Hwang, I H; Matsuto, T; Tanaka, N

    2006-01-01

    Chlorine in char derived from municipal solid waste (MSW) was characterized and quantified based on its water solubility: easily water-soluble, hardly water-soluble, and non-water-soluble chlorine. For that, a four-cycle process of water-washing, heating or carbonation were carried out. In order to confirm the characteristics of non-water-soluble chlorine, additional thermal treatment and an alkali-acid washing process were applied to washed char. It was found that a large particle size of char (0.5-1.0 mm) significantly contributed to the amount of non-water-soluble chlorine. Pulverization and HNO3-HF digestion were performed to identify a factor to interfere chlorine release from char with a large particle size. Pulverization was proven ineffective for release of non-water-soluble chlorine, whereas approximately 32% of non-water-soluble chlorine was extracted by HNO3-HF digestion. Therefore, the presence of non-water-soluble chlorine is likely to originate from its chemical property rather than simply from its physical one.

  3. Charring temperatures are driven by the fuel types burned in a peatland wildfire

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Yearsley, Jonathan M.

    2014-01-01

    Peatlands represent a globally important carbon store; however, the human exploitation of this ecosystem is increasing both the frequency and severity of fires on drained peatlands. Yet, the interactions between the hydrological conditions (ecotopes), the fuel types being burned, the burn severity, and the charring temperatures (pyrolysis intensity) remain poorly understood. Here we present a post-burn assessment of a fire on a lowland raised bog in Co. Offaly, Ireland (All Saints Bog). Three burn severities were identified in the field (light, moderate, and deeply burned), and surface charcoals were taken from 17 sites across all burn severities. Charcoals were classified into two fuel type categories (either ground or aboveground fuel) and the reflectance of each charcoal particle was measured under oil using reflectance microscopy. Charcoal reflectance shows a positive relationship with charring temperature and as such can be used as a temperature proxy to reconstruct minimum charring temperatures after a fire event. Resulting median reflectance values for ground fuels are 1.09 ± 0.32%Romedian, corresponding to estimated minimum charring temperatures of 447°C ± 49°C. In contrast, the median charring temperatures of aboveground fuels were found to be considerably higher, 646°C ± 73°C (3.58 ± 0.77%Romedian). A mixed-effects modeling approach was used to demonstrate that the interaction effects of burn severity, as well as ecotope classes, on the charcoal reflectance is small compared to the main effect of fuel type. Our findings reveal that the different fuel types on raised bogs are capable of charring at different temperatures within the same fire, and that the pyrolysis intensity of the fire on All Saints Bog was primarily driven by the fuel types burning, with only a weak association to the burn severity or ecotope classes. PMID:25566288

  4. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres

    SciTech Connect

    Angeles G. Borrego; Diego Alvarez

    2007-12-15

    In this study, two coals of different rank (a high volatile and a low volatile bituminous) have been burned in a drop tube reactor using O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures with increasing oxygen content from 0 to 21%. Various oxygen concentrations have been selected for each set of experiments in order to follow both the progress of combustion and the influence of oxygen content in the devolatilization behavior of coal. Results show that a higher amount of O{sub 2} in CO{sub 2} than in N{sub 2} is needed to achieve similar burnout levels. Significant differences were found in the influence of oxygen content on the devolatilization behavior of the lower and higher rank coal. The limited amount of oxygen in the reacting atmosphere resulted in volatile release inhibition for the high volatile bituminous coal, whereas the more plastic low volatile coal was hardly affected. The presence of variable amounts of oxygen in CO{sub 2} had a small influence on the char particle appearance. The chars from both the combustion series (O{sub 2}/N{sub 2}) and the oxy-fuel series (O{sub 2}/CO{sub 2}) were similar for each parent coal in terms of reactivity and micropore surface area measured by CO{sub 2} adsorption. The main difference between both series of chars relied on the surface area determined by N{sub 2} adsorption (SBET) and on the size distribution of pores which was shifted to a larger size for the oxy-fuel series. The difference between both series of chars was larger for the high volatile bituminous coal chars than for the low volatile bituminous coal chars. This might have important implications for combustion under the diffusion-controlled regime. 29 refs., 13 figs., 1 tab.

  5. Coal combustion: Effect of process conditions on char reactivity

    SciTech Connect

    Zygourakis, K.

    1991-01-01

    The project will quantify the effect of the following pyrolysis conditions on the macropore structure and on the subsequent reactivity of chars: (a) pyrolysis heating rate; (b) final heat treatment temperature (HTT); (c) duration of heat treatment at HTT (or soak time); (d) pyrolysis atmosphere (N{sub 2} or O{sub 2}/N{sub 2} mixtures); (e) coal particle size (100 {endash} 1000 {mu}m in diameter); (f) sulfur-capturing additives (limestone); and (g) coal rank. Pyrolysis experiments will be carried out for three coals from the Argonne collection: (1) a high-volatile bituminous coal with high ash content (Illinois {number sign}6), (2) a bituminous coal with low ash content (Utah Blind Canyon) and (3) a lower rank subbituminous coal (Wyodak-Anderson seam).

  6. Kinetics of oil shale char gasification

    SciTech Connect

    Thomson, W.J.; Gerber, M.A.; Hatter, M.M.; Oakes, D.G.

    1980-01-01

    Experimental work on gasification of oil shale char with CO/sub 2/ and steam are presented in this report. All of the gasification experiments were conducted with the same apparatus employed in the earlier oxidation work. As before, powdered shale samples (200 mesh) of previously retorted oil shale from the Parachute Creek member in Colorado were suspended from an electrobalance and placed in a furnace. In this way continuous gravimetric readings were available to monitor the consumption of the char. The off-gases were analyzed on a Carle gas chromatograph equipped with a Carbosieve B column. The retorted raw shale assayed at 50 GPT and was exposed to CO/sub 2/ pressures as high as 100 KPa and H/sub 2/O pressures as high as 75 KP/sub a/. Because there was evidence of the water gas shift reaction during steam gasification, separate experiments were also conducted in order to determine the rate of this reaction as a function of temperature and concentration of the reactant gases. The Livermore results predicted char consumption rates which were much higher than those observed for mixed gasification runs with P/sub CO/sub 2// > 10 KPa. The kinetic results from this work gave reasonable matches to the data at P/sub CO/sub 2// < 15 KPa but also predicted much higher rates at CO/sub 2/ pressures greater than 20 KPa. The data exhibit a much lower char consumption rate than predicted. Also shown in this figure are the predictions assuming that only CO/sub 2/ gasification takes place. The assumption provides a reasonable match to the experimental data and suggests that the presence of CO/sub 2/ is somehow inhibiting steam gasification.

  7. Effects of catalytic mineral matter on CO/CO{sub 2} temperature and burning time for char combustion. Quarterly progress report No. 11, April--June 1992

    SciTech Connect

    Longwell, J.P.; Sarofim, A.F.; Lee, C.H.

    1992-10-01

    The high temperature oxidation of char is of interest in a number of applications in which coal must be burned in confined spaces. These include: the conversion of oil-fired boilers to coal using coal-water slurries, the development of a new generation of pulverized-coal-fired cyclone burners, the injection of coal into the tuyeres of blast furnaces, the use of coal as a fuel in direct-fired gas turbines in large-bore low-speed diesels, and entrained flow gasifiers. In addition, there is a need to better understand the temperature history of char particles in conventional pulverized-coal-fired boilers in order to better understand the processes governing the formation of pollutants and the transformation of mineral matter. The temperature of a char particle burning in an oxygen containing atmosphere is the product of a strongly coupled balance between particle size and physical properties, heat transfer from the particle, surface reactivity, CO/CO{sub 2} ratio and gas phase diffusion in the surrounding boundary layer and within the particle. In addition to its effects on burning rate, particle temperature has major effects on ash proper-ties and mineral matter vaporization. Measurements of the temperature of individual burning char particles have become available in recent years and have clearly demonstrated large particle to particle temperature variations which depend strongly on particle size and on panicle composition. These studies, done with pulverized coal, do not allow direct determination of the CO/CO{sub 2} ratio produced at the char surface or the catalytic effects of mineral matter in the individual char particles and it has generally been assumed that CO is the only product of the carbon-oxygen reaction and that CO{sub 2} is formed by subsequent gas phase reaction More recent work, however, has pointed out the need to take CO{sub 2} Production into consideration in order to account for observed particle temperatures.

  8. Development of porosity in a char during reaction with steam or supercritical water.

    PubMed

    Molina-Sabio, Miguel; Sánchez-Montero, M Jesús; Juarez-Galan, Juan M; Salvador, Francisco; Rodríguez-Reinoso, Francisco; Salvador, Aurelio

    2006-06-29

    Two series of activated carbon have been prepared by reaction of a char (from olive stones) with supercritical water (SCW) with the objective of studying the effect of temperature and residence time on the development of porosity. The results have been compared with those obtained using the same char but with classical activation with steam. Both procedures develop porosity, but (i) the reaction rate is critical in the development of porosity for steam but not for SCW activation, and (ii) SCW activation produces a larger development of microporosity at low degrees of burnoff, whereas steam produces more meso- and macroporosity. The differences have been explained by assuming that the mechanism for the carbon-water reaction is common but the transport properties of water in the supercritical state are more favorable to facilitate the access of water to the interior of the char particles. In contrast, when steam is used for the activation of the char, the diffusion of the molecules cannot keep up with the chemical rate and, consequently, the reaction is preferentially taking place at the most accessible surface sites, thus facilitating the development of larger pores and the widening of microporosity.

  9. Synthesis and characterization of resorcinol-formaldehyde resin chars doped by zinc oxide

    NASA Astrophysics Data System (ADS)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Oranska, Olena I.; Urubkov, Iliya V.; Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga

    2014-06-01

    Polycondensation polymerization of resorcinol-formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol-formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10-40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20-130 nm in diameter and 1-3 μm in length. At a small content of zinc acetate (1 mol per 100-500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  10. Integrated methods for production of clean char and its combustion properties. Interim final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Gullett, B.K.; Benson, S.A.; Toman, D.L.

    1992-12-31

    An integrated method consisting of physical coal cleaning, mild gasification (MG) and low temperature oxidation (LTO) is proposed to produce chars with SO{sub 2} emissions at least 50% lower than those of their parent coals. Mild gasification and char desulfurization studies are conducted in both a batch fluidized-bed reactor and in a continuous rotary kiln reactor. MG chars were subjected to a LTO step to remove additional sulfur. Under non-optimized conditions, SO{sub 2} emissions of the MG chars were decreased 657%, representing on average over 60% reduction in SO{sub 2} emissions from the coals. Physical coal cleaning, mild gasification and char desulfurization reduced the SO{sub 2} emissions of IBC-104 and IBC-105 coals about 71%. LTO chars prepared from four of the six coals tested had SO{sub 2} emissions of less than 2.5 lbs SO{sub 2}/MMBtu. The VM contents of LTO chars were about 18%, which includes contributions from stable C-0 complexes formed by adsorption of oxygen on the surface of the chars. The average yield of low sulfur char obtained after MG and LTO was nearly 64% by weight of the original coal. A series of LTO optimization tests were conducted using IBC-102 coal. Results suggest that the greatest reduction in SO{sub 2} emissions was obtained using smaller particle diameters, steam during both MG and LTO, a higher temperature and higher oxygen partial pressure. The order of importance of process variables on SO{sub 2} emissions reduction of coals was: particle diameter > steam pyrolysis > oxygen partial pressure > steam oxidation {much_gt} temperature.

  11. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  12. Modeling of single char combustion, including CO oxidation in its boundary layer

    SciTech Connect

    Lee, C.H.; Longwell, J.P.; Sarofim, A.F.

    1994-10-25

    The combustion of a char particle can be divided into a transient phase where its temperature increases as it is heated by oxidation, and heat transfer from the surrounding gas to an approximately constant temperature stage where gas phase reaction is important and which consumes most of the carbon and an extinction stage caused by carbon burnout. In this work, separate models were developed for the transient heating where gas phase reactions were unimportant and for the steady temperature stage where gas phase reactions were treated in detail. The transient char combustion model incorporates intrinsic char surface production of CO and CO{sub 2}, internal pore diffusion and external mass and heat transfer. The model provides useful information for particle ignition, burning temperature profile, combustion time, and carbon consumption rate. A gas phase reaction model incorporating the full set of 28 elementary C/H/O reactions was developed. This model calculated the gas phase CO oxidation reaction in the boundary layer at particle temperatures of 1250 K and 2500 K by using the carbon consumption rate and the burning temperature at the pseudo-steady state calculated from the temperature profile model but the transient heating was not included. This gas phase model can predict the gas species, and the temperature distributions in the boundary layer, the CO{sub 2}/CO ratio, and the location of CO oxidation. A mechanistic heat and mass transfer model was added to the temperature profile model to predict combustion behavior in a fluidized bed. These models were applied to data from the fluidized combustion of Newlands coal char particles. 52 refs., 60 figs.

  13. Compositions and sorptive properties of crop residue-derived chars

    USGS Publications Warehouse

    Chun, Y.; Sheng, G.; Chiou, G.T.; Xing, B.

    2004-01-01

    Chars originating from the burning or pyrolysis of vegetation may significantly sorb neutral organic contaminants (NOCs). To evaluate the relationship between the char composition and NOC sorption, a series of char samples were generated by pyrolyzing a wheat residue (Triticum aestivum L) for 6 h at temperatures between 300 ??C and 700 ??C and analyzed for their elemental compositions, surface areas, and surface functional groups. The samples were then studied for their abilities to sorb benzene and nitrobenzene from water. A commercial activated carbon was used as a reference carbonaceous sample. The char samples produced at high pyrolytic temperatures (500-700 ??C) were well carbonized and exhibited a relatively high surface area (>300 m2/g), little organic matter (20% oxygen). The char samples exhibited a significant range of surface acidity/basicity because of their different surface polar-group contents, as characterized by the Boehm titration data and the NMR and FTIR spectra. The NOC sorption by high-temperature chars occurred almost exclusively by surface adsorption on carbonized surfaces, whereas the sorption by low-temperature chars resulted from the surface adsorption and the concurrent smaller partition into the residual organic-matter phase. The chars appeared to have a higher surface affinity for a polar solute (nitrobenzene) than for a nonpolar solute (benzene), the difference being related to the surface acidity/basicity of the char samples.

  14. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks.

    PubMed

    Hodgson, E; Lewys-James, A; Rao Ravella, S; Thomas-Jones, S; Perkins, W; Gallagher, J

    2016-08-01

    The objective of this work was to identify biomass feedstocks and optimum pyrolysis process conditions to produce a biochar capable of adsorbing metals from polluted groundwater. Taguchi experimental design was used to determine the effects of slow-pyrolysis process conditions on char yield and zinc adsorption. Treatments were repeated using six candidate feedstocks (Lolium perenne, Lolium perenne fibre, Miscanthus x giganteus, Salix viminalis, Fraxinus excelsior and Picea sitchensis) and the resultant chars were tested for metal adsorption performance. Chars produced from L. perenne and its extracted fibre displayed the greatest zinc adsorption performance and removed 83.27-92.96% respectively. Optimum process conditions in terms of both char yield and zinc adsorption performance were achieved from slow-pyrolysis at 300°C for 2h using a feedstock with a particle size of less than 1mm.

  15. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.

    PubMed

    Salameh, Yousef; Al-Muhtaseb, Ala'a H; Mousa, Hasan; Walker, Gavin M; Ahmad, Mohammad N M

    2014-01-01

    In this work, the removal of arsenite, As(III), and arsenate, As(V), from aqueous solutions onto thermally processed dolomite (charred dolomite) via microcolumn was evaluated. The effects of mass of adsorbent (0.5-2 g), initial arsenic concentration (50-2000 ppb) and particle size (<0.355-2 mm) on the adsorption capacity of charred dolomite in a microcolumn were investigated. It was found that the adsorption of As(V) and As(III) onto charred dolomite exhibited a characteristic 'S' shape. The adsorption capacity increased as the initial arsenic concentration increased. A slow decrease in the column adsorption capacity was noted as the particle size increased from>0.335 to 0.710-2.00 mm. For the binary system, the experimental data show that the adsorption of As(V) and As(III) was independent of both ions in solution. The experimental data obtained from the adsorption process were successfully correlated with the Thomas Model and Bed Depth Service Time Model. PMID:25244130

  16. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Marlon, J. R.; Cao, J. J.; Jin, Z. D.; An, Z. S.

    2012-12-01

    Black or elemental carbon (EC), including soot and char, are byproducts of anthropogenic fossil-fuel and biomass burning, and also of wildfires. EC, and particularly soot, strongly affects atmospheric chemistry and physics and thus radiative forcing; it can also alter regional climate and precipitation. Pre-industrial variations in EC as well as its source areas and controls however, are poorly known. Here we use a lake-sediment EC record from China to reconstruct Holocene variations in soot (combustion emissions formed via gas-to-particle conversion processes) and char (combustion residues from pyrolysis) measured with a thermal/optical method. Comparisons with sedimentary charcoal records (i.e., particles measured microscopically), climate and population data are used to infer variations in biomass burning and its controls. During the Holocene, positive correlations are observed between EC and an independent index of regional biomass burning. Negative correlations are observed between EC and monsoon intensity, and tree cover inferred from arboreal pollen percentages. Abrupt declines in temperature are also linked with widespread declines in fire. Our results 1) confirm the robustness of a relatively new method for reconstructing variations in EC; 2) document variations in regional biomass burning; 3) support a strong climatic control of biomass burning throughout the Holocene; and 4) indicate that char levels are higher today than at any time during the Holocene.

  17. Structural and compositional transformations of biomass chars during combustion

    SciTech Connect

    Wornat, M.J.; Hurt, R.H.; Yang, N.Y.C.; Headley, T.J.

    1994-02-01

    In an investigation of the physical and chemical transformations of biomass chars during combustion, we have subjected two chars, produced from the pyrolysis of pine and switchgrass, to combustion at 1600 K in a laminar flow reactor. In order to obtain time-resolved data on the structural and compositional transformations of the biomass chars, samples are extracted from the reactor at different residence times and subjected to a variety of analytical techniques: elemental analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and high resolution transmission electron microscopy. The results point to several changes in both the organic and inorganic constitutents of the chars. The early stages of conversion are characterized by devolatilization, which leads to the removal of amorphous material and the release of oxygen- and hydrogen-rich gases. After devolatilization, combustion is accompanied by: vaporization of some metals (particularly Na and K), surface migration and coalescence of inorganic material, and the incorporation of metals (particularly Ca) into silicate structures. The latest stages of combustion reveal the transformation of inorganic constituents from amorphous phases to crystalline forms. Some short-range order appears in the carbon-rich portions of the chars as combustion proceeds, but the high levels of oxygen originally present in these chars foster cross-linking, which limits the extent of order ultimately attained. The transformations of the biomass chars are compared with those of coal chars, and the implications of these observations -- with respect to reactivity and ash behavior -- are discussed.

  18. Apparatus for mixing char-ash into coal stream

    DOEpatents

    Blaskowski, Henry J.

    1982-03-16

    Apparatus for obtaining complete mixing of char with coal prior to the introduction of the mixture into the combustor (30) of a coal gasifier (10). The coal is carried in one air stream (22), and the char in another air stream (54), to a riffle plate arrangement (26), where the streams of solid are intimately mixed or blended.

  19. Evaluation of solid fuel char briquettes from human waste.

    PubMed

    Ward, Barbara J; Yacob, Tesfayohanes W; Montoya, Lupita D

    2014-08-19

    The developing world faces dual crises of escalating energy demand and lack of urban sanitation infrastructure that pose significant burdens on the environment. This article presents results of a study evaluating the feasibility of using human feces-derived char as a solid fuel for heating and cooking and a potential way to address both crises. The study determined the energy content and the elemental composition of chars pyrolyzed at 300, 450, and 750 °C. Fecal chars made at 300 °C were found to be similar in energy content to wood chars and bituminous coal, having a heating value of 25.6 ± 0.08 MJ/kg, while fecal chars made at 750 °C had an energy content of 13.8 ± 0.48 MJ/kg. The higher heating values of the studied chars were evaluated using their elemental composition and a published predictive model; results found good agreement between the measured and predicted values. Fecal chars made at low temperatures were briquetted with molasses/lime and starch binders. Briquettes made with 10% starch had an average impact resistance index of 79 and a higher heating value of 25 MJ/kg. These values are comparable to those of commercial charcoal briquettes, making fecal char briquettes a potential substitute that also contributes to the preservation of the environment. PMID:25020243

  20. Influence of sulfur in coals on char morphology and combustion

    SciTech Connect

    Marsh, H.

    1991-01-01

    During coal carbonization (pyrolysis), as during the combustion process of pulverized coal in a combustor, not all of the sulfur is released. Significant proportions become pat of the structure of the resultant coke and char. The combustion process of the char within the flames of the combustor in influenced dominantly by char morphology. This, in turn, controls the accessibility of oxidizing gases to the surfaces of the carbonaceous substance of the char. Mineral matter content, its extent and state of distribution, also exerts an influence on char morphology created during pyrolysis/carbonization. This complexity of coal renders it a very difficult material to study, systematically, to distinguish and separate out the contributing factors which influence combustion characteristics. Therefore, in such circumstances, it is necessary to simplify the systems by making use of model chars/cokes/carbons which can be made progressively more complex, but in a controlled way. In this way complicating influence in chars from coals can be eliminated, so enabling specific influences to be studied independently. It is important to note that preliminary work by Marsh and Gryglewicz (1990) indicated that levels of sulfur of about 3 to 5 wt % can reduce reactivities by 10 to 25%. The overall purpose of the study is to provide meaningful kinetic data to establish, quantitatively, the influence of organically-bound sulfur on the reactivity of carbons, and to ascertain if gasification catalysts are effective in the preferential removal of sulfur from the chars.

  1. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    SciTech Connect

    ROBERT H. HURT

    1998-09-08

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal-fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following two goals:  to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history.  to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: Task 1 Experimental technique development. The goal of this task is to develop and demonstrate an apparatus and procedure for measuring transient, high-temperature, thermal deactivation of coal chars. While peak gas temperatures in boilers are often in the range 1800 - 2000 K, peak particle temperatures can be much higher due to high rates of heat release at the particle surface due to exothermic carbon oxidation. The prototype transient heat treatment apparatus is based on an inert-gas purged graphite-rod sample holder that is subjected to rapid Joule heating to

  2. Chars pyrolyzed from oil palm wastes for activated carbon preparation

    SciTech Connect

    Lua, A.C.; Guo, J.

    1999-01-01

    Chars pyrolyzed from extracted oil palm fibers for the preparation of activated carbons were studied. The effects of pyrolysis temperature and hold time on density, porosity, yield, BET and micropore surface areas, total pore volume, and pore size distributions of chars were investigated. The optimum conditions for pyrolysis were found to be at a pyrolysis temperature of 850 C for a hold time of 3.5 h. Scanning electron micrographs of the char surfaces verified the presence of porosities. The experimental results showed that it was feasible to produce chars with high BET and micropore surface areas from extracted oil palm fibers. The resulting chars will be subjected to steam or carbon dioxide activation to prepare activated carbons for use as gas adsorbents for air pollution control.

  3. The effects of the conditions of char formation on the physical properties of charred phenolic-nylon

    NASA Technical Reports Server (NTRS)

    Smyly, E. D.; Pears, C. D.

    1972-01-01

    A study was made of the effects of the conditions of char formation on the physical properties of charred phenolic nylon of 0.577 gm/cu cm density. It was found that the thermal conductivity and several of the monitors correlate well with degradation conditions. The monitors included electrical resistivity, sonic velocity, porosity, lattice spacing and crystallite size.

  4. Development and Verification of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes, the capability to account for surface-to-surface radiation exchange in complex geometries is critical. This paper presents recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute geometric view factors for radiation problems involving multiple surfaces. Verification of the code's radiation capabilities and results of a code-to-code comparison are presented. Finally, a demonstration case of a two-dimensional ablating cavity with enclosure radiation accounting for a changing geometry is shown.

  5. Dwarf char, a new form of chars (the genus Salvelinus) in Lake Kronotskoe

    USGS Publications Warehouse

    Pavlov, S.D.; Pivovarov, E.A.; Ostberg, C.O.

    2012-01-01

    Lake Kronotskoe is situated in the Kronotskii State Nature Reserve and is a unique natural heritage of Kamchatka. The lake–river system of the reserve includes numerous springs and small streams and three large inflowing rivers, Listvennichnaya, Unana, and Uzon, which form the main bays of Lake Kronotskoe; one river (Kronotskaya) flows from the lake. This river is characterized by several rapids, which are assumed to be unsurmountable barriers for fish migration. The ichthyofauna of the lake has been isolated for a long time, and some endemic fishes appeared, including char of the genus Salvelinus and the residential form of red salmon Oncorhynchus nerka (the local name is kokanee). These species are perfect model objects to study microevolution processes. Char of Lake Kronotskoe are characterized by significant polymorphism and plasticity [1–3]; therefore, they are extremely valuable for studying the processes of speciation and form development. That is why the populations of char in Lake Kronotskoe are unique and attract special attention of researchers. 

  6. Mechanical properties of acacia and eucalyptus wood chars

    SciTech Connect

    Kumar, M.; Verma, B.B.; Gupta, R.C.

    1999-10-01

    In the present investigation the effects of carbonization conditions (temperature and heating rate) on the mechanical properties (such as crushing and impact strengths and shatter index) of acacia and eucalyptus wood chars have been determined. The crushing and impact strengths of both the acacia and eucalyptus wood chars (made by slow carbonization) decreased with increase of preparation temperature up to 600 C, followed by an increase thereafter. These wood chars showed a continuous increase in shatter index values with carbonization temperature. In contrast to slow carbonization (heating rate 4 C min{sup {minus}1}), rapid carbonization (heating rate 30 C min{sup {minus}1}) yielded chars of lower crushing strengths. Slowly carbonized eucalyptus wood gave chars of superior crushing and impact strengths than those produced from acacia wood under the same carbonization conditions. The crushing and impact strengths of these wood chars, in general, have shown an increase with increase in their apparent density. The crushing strength of cubic-shaped wood char decreased with increase in size.

  7. Visualizing the Stability of Char: Molecular- to Micron-scale Observations of Char Incubated in a Tropical Soil

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Ramon, C.; Weber, P. K.; Torn, M. S.; Pett-Ridge, J.; Nico, P. S.

    2014-12-01

    The persistence of pyrogenic materials (hereafter referred to as char) in terrestrial ecosystems is of interest both from a carbon cycle modelling perspective and a climate change mitigation standpoint. However, the fate of newly introduced char in soils remains unclear. Recent reviews attempting to summarize trends in char decomposition have come to differing conclusions, further stressing the complexity of factors dictating char stability in soils. The current dataset specifically addresses the stability of char additions to a tropical clay-rich soil, possible priming effects, and interactions among char, microbial communities and the mineral matrix. 13C- and 15N-labeled Acer rubrum(red maple) wood was combusted at 400°C and added to surface (0-10 cm) and subsurface (20-30 cm) soils from the Luquillo Experimental Forest, Puerto Rico. Soils were incubated for 13 and 345 days at 26°C. Following incubation, intact microaggregates were frozen and cryosectioned into thin sections of approximately 5 μm thickness and mounted on gold-coated quartz slides. Thin sections were examined by synchrotron-based Fourier transform infrared spectroscopy (SR-FTIR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), and high resolution secondary ion mass spectrometry (nanoSIMS). The combination of these μm to nm scale techniques allowed us to create corresponding spatial maps of native organic matter, char, and mineral phase distribution, track spatial variability in organic matter molecular structure, and dispersion of 13C and 15N isotopic labels. We present preliminary results indicating a high degree of stability of char in these wet tropical soils throughout the incubation period, suggesting that applied char may persist for long periods of time in similar soils.

  8. Char Crystalline Transformations During Coal Combustion and Their Implication for Carbon Burnout

    SciTech Connect

    Hurt, Robert H

    1997-12-30

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following two goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history. to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: Task 1 Experimental technique development. The goal of this task is to develop and demonstrate an apparatus and procedure for measuring transient, high-temperature, thermal deactivation of coal chars. While peak gas temperatures in boilers are often in the range 1800 - 2000 K, peak particle temperatures can be much higher due to high rates of heat release at the particle surface due to exothermic carbon oxidation. The prototype transient heat treatment apparatus is based on an inert-gas purged graphite-rod sample holder that is subjected to rapid Joule heating to

  9. Char reactivities and their relationship to pore characteristics

    SciTech Connect

    Kata, S.; Keairns, D.L.

    1980-01-01

    Relative reactivities of chars in a H/sub 2/O-N/sub 2/-H/sub 2/ atmosphere were measured in a laboratory fluidized bed. Results were analyzed on the basis of Ergun's rate equation, and the relative reactivities were calculated with reference to coke breeze. Surface areas of chars were obtained by means of CO/sub 2/ adsorption, and pore volumes were measured by means of mercury penetration porosimetry. A correlation can be identified between the relative reactivity versus the surface areas and the mean pore diameter for the limited number of chars investigated in the present study. Additional studies should be conducted to establish the range of validity with additional chars and drawbacks of this approach.

  10. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    PubMed Central

    Gil, Stanisław

    2015-01-01

    The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K. PMID:26065028

  11. Hydrogen inhibition in steam gasification of annealed Saran char

    NASA Astrophysics Data System (ADS)

    Lussier, Michael Gerard, Jr.

    1998-12-01

    Annealed Saran and coal chars were gasified in mixtures of H2O/H 2/Ar at 1123 K and varying pressures to varying extents of conversion, followed by transient kinetic desorption and TPD to 1773 K, in order to characterize hydrogen adsorbed onto char surfaces during gasification and to identify the mode(s) of hydrogen inhibition at varying extents of char conversion. Adsorbed hydrogen concentration on annealed Saran char was found to be independent of reactant gas composition and pressure, to increase from an initial surface concentration of 3 x 10-5 to 1.5 x 10 -3 0--3 mmolH2(STP)/m2 over the first 1% conversion, and to increase very gradually after this. Gasification rate declines significantly over the initial 1% carbon conversion and is inhibited mainly by dissociative hydrogen adsorption over this range. Linearized Langmiur-Hinshellwood type rate expressions based on the three primary modes of hydrogen inhibition have been developed for all gasification data above 1% char conversion. The expression which indicates reverse oxygen exchange or "associative" hydrogen adsorption fits the data well, while the expression for dissociative hydrogen adsorption does not. Calculation of the equilibrium constant for oxygen exchange (k1/k-1 = 0.029) indicates a low fractional coverage of adsorbed oxygen complexes (C(O)), while the equilibrium constant for "associative" hydrogen adsorption (k3/k-3 = 425 MPa-1) stipulates a high fractional coverage of "associatively" adsorbed hydrogen. Because no "associatively" bound hydrogen was detected and because low concentrations of surface oxides were found during gasification, it is concluded that reverse oxygen exchange is the primary mode of hydrogen inhibition past 1% char conversion for Saran char. Active site propagation along graphitic zig-zag edges is proposed as the main source of surface carbon consumption for steady-state char gasification in steam.

  12. Structural and compositional transformations of biomass chars during combustion

    SciTech Connect

    Wornat, M.J.; Hurt, R.H.; Yang, N.Y.C. ); Headley, T.J. )

    1995-01-01

    In an investigation of the physical and chemical transformations of biomass chars during combustion, the authors have subjected two chars, produced from the pyrolysis of pine and switchgrass, to combustion at 1,600 K in a laminar flow reactor. In order to obtain time-resolved data on the structural and compositional transformations of the biomass chars, samples are extracted from the reactor at different residence times and subjected to a variety of analytical techniques: elemental analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy. The results point to several changes in both the organic and inorganic constituents of the chars. The early stages of conversion are characterized by devolatilization, which leads to the removal of amorphous material and the release of oxygen- and hydrogen-rich gases. After devolatilization, combustion is accompanied by: vaporization of some metals (particularly Na and K), surface migration and coalescence of inorganic material, and the incorporation of metals (particularly Ca) into silicate structures. The latest stages of combustion reveal the transformation of inorganic constituents from amorphous phases to crystalline forms. Some short-range order appears in the carbon-rich portions of the chars as combustion proceeds, but the high levels of oxygen originally present in these chars foster cross-linking, which limits the extent of order ultimately attained. The transformation of the biomass chars are compared with those of coal chars, and the implications of these observations--with respect to reactivity and ash behavior--are discussed.

  13. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. PMID:20940079

  14. Production of activated carbon from coconut shell char in a fluidized bed reactor

    SciTech Connect

    Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.

    1997-09-01

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters are identified.

  15. Coal combustion: Effect of process conditions on char reactivity. Quarterly technical report, July 1, 1994--September 30, 1994

    SciTech Connect

    Zygourakis, K.

    1994-12-31

    The project will quantify the effect of the following pyrolysis conditions on the macropore structure and on the subsequent reactivity of chars: (a) pyrolysis heating rate; (b) final heat treatment temperature (HTT); (c) duration of heat treatment at HTT (or soak time); (d) pyrolysis atmosphere (N{sub 2} or O{sub 2}/N{sub 2} mixtures); (e) coal particle size (100-1,000 {mu}m in diameter); (f) sulfur-capturing additives (limestone); and (g) coal rank. Pyrolysis experiments will be carried out for three coals from the Argonne collection: (1) a high-volatile bituminous coal with high ash content (Illinois {number_sign}6), (2) a bituminous coal with low ash content (Utah Blind Canyon) and (3) a lower rank subbituminous coal (Wyodak-Anderson seam). A mathematical model was developed to study the thermal ignition of char particles. The model assumes a bimodal pores size distribution with small micropores (of the order of a few {angstrom}) and large micropores in the {mu}m size range. All the model parameters can be estimated using data obtained previously in our laboratory. We are currently testing this model to determine its validity and to investigate how char properties (porosity, particle size, macropore surface area, micropore radius) and operating conditions (temperature, oxygen concentration, flow rate) affect ignition phenomena.

  16. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    SciTech Connect

    Hardesty, D.R.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  17. Influence of sulfur in coals on char morphology and combustion. Final report, September 1, 1991--August 31, 1992

    SciTech Connect

    Marsh, H.; Crelling, J.C.

    1992-12-31

    The experimental approach involves the preparation of 34 model compounds and the study of their gasification behavior, including surface characterization by adsorption techniques and microscopy. Sulfur was incorporated into the model carbon structures by co- carbonization of the acenaphthylene and resol with elemental sulfur and dibenzothiophene sulfone, heating at 5{degrees}C min {sup {minus}1}, under argon to 900{degrees}C. Total surface areas were measured by adsorption of carbon dioxide at 195 K.The use of a CAHN microbalance allows for active surface area measurements to be made. Gasifications in oxygen, using a microbalance to 25 wt.% bum-off generate intemal surface areas dependent on the carbon being studied, varying from 35 to {approximately}900 m{sup 2} g{sup {minus}1}. Similarly, as seen from the scanning electron micrographs there are differences in the topographies developed during gasification. This must reflect differences in structures. Conclusions of the study are summarized as follows. Sulfur within chars from coals influences the mode of gasification of the char. Oxides of sulfur are evolved ahead of the main carbon oxide peaks. This indicates preferential oxidation of sulfur atoms from the carbon lattice. This preferential removal appears to enhance the reactivity of the internal carbon surface. The reactivity of these internal surfaces is sensitive to new structures generated within the carbons/chars by the incorporation of sulfur in some way within the surface during carbonizations. Incorporation of sulfur within chars may be a significant parameter in terms of methods of gasification of char particles, generation of cenospheres, etc.

  18. Bio-char from treated and untreated oil palm fronds

    NASA Astrophysics Data System (ADS)

    Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

    2013-05-01

    The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

  19. Preparation and characterization of activated carbon from demineralized tyre char

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  20. Characterization of char from slow pyrolysis of sewage sludge.

    PubMed

    Xu, Wen-Ying; Wu, Di

    2016-01-01

    The effects of final pyrolysis temperature Tend from 300 ºC to 550 ºC, heating rates β of 2 ºC/min, 3 ºC/min and 5 ºC/min, retention time RT from 45 min to 90 min, and the moisture content MC from 0 to 70% on characteristics of the pyrolysis char from sewage sludge were investigated using a tube furnace in this study. The resulting chars were characterized by sorption of nitrogen (surface area and pore volume). Their adsorption characteristics were evaluated via iodine value and methylene blue value. Either the pore structures or adsorption characteristics depend on the pyrolysis processing and moisture content of the sludge precursors. In terms of iodine value and surface area of the char, Tend of 450 ºC, RT of 75 min and β of 3 ºC/min proved the optimum combination of pyrolysis parameters. The chars have an undeveloped mesopore and macropore structure and a developed micropore structure. The sodium phenoxide adsorption equilibrium data fit well with the Langmuir model of adsorption, suggesting monolayer coverage of sodium phenoxide molecules at the surface of the char. Its adsorption mechanism is mainly physical in nature, enhanced by chemisorption. PMID:27191557

  1. Task 3 -- Bench-scale char upgrading and utilization study

    SciTech Connect

    Jha, M.C.; McCormick, R.L.

    1989-08-02

    This report describes the results of the bench-scale char upgrading study conducted as Task 3 of Development of an Advanced, Continuous Mild Gasification Process for the Production of Coproducts. A process where the char is gasified to produce methane in a first stage reactor was investigated. This methane is then decomposed to produce carbon and hydrogen for recycle in a second stage. The results indicate that both reaction steps are feasible using mild gasification char as the starting feedstock. Conditions for methanation are 700 to 800 C and 200 to 400 psig. Carbon formation conditions are 1,200 to 1,400 C at atmospheric pressure. The carbon produced has properties similar to those of carbons which are commercially marketed as carbon black.

  2. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  3. Studying the specific features pertinent to combustion of chars obtained from coals having different degrees of metamorphism and biomass chars

    NASA Astrophysics Data System (ADS)

    Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.

    2013-12-01

    Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.

  4. [Genetic divergence of mitochondrial DNA in white char Salvelinus albus and northern Dolly Varden char Salvelinus malma malma].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Brykov, Vl A

    2010-03-01

    Comparative analysis of mitochondrial DNA variation was performed in white char Salvelinus albus and in its putative ancestor species, northern Dolly Varden char Salvelinus malma malma. Highly statistically significant differentiation of S. albus and S. m. malma in the areas of sympatric (Kamchatka River basin) and allopatric (Kronotskoe Lake and Kronotskaya River) residence was demonstrated. The mtDNA divergence between S. albus and S. m. malma did not exceed the range ofintraspecific variation in the populations of northern Dolly Varden char. At the same time, clusterization pattern of the Salvelinus chars provides hypothesis on the common origin of two allopatric populations of white char. Genealogical analysis of haplotypes indicates that S. albus and S. m. malma currently demonstrate incomplete radiation of mitochondrial lineages. The low nucleotide divergence estimates between S. albus and S. m. malma reflect the short time period since the beginning of the radiation of ancestral lineages. These estimates are determined by ancestral polymorphism and haplotype exchange between the diverged phylogenetic groups as a result of introgressive hybridization.

  5. The batch study of Sr(2+) sorption by bone char.

    PubMed

    Smiciklas, I; Dimovic, S; Sljivic, M; Plecas, I

    2008-02-01

    Considering the excellent sorption properties of synthetic calcium hydroxyapatite (HAP) towards many divalent cations, the potential application of bone char, the natural source of HAP, for sequestering Sr(2+)ions from aqueous solutions has been studied in batch conditions. Contact time, initial solution pH and initial Sr(2+) concentrations were varied to examine the effect of these process parameters on the amount of Sr(2+) sorbed. The kinetics of Sr(2+) sorption was found to be a 2-step process, with contact time of 24 h required for attaining equilibrium. The sorption isotherm was well fitted with Langmuir and DKR theoretical models. Sorption of Sr(2+) on bone char was found to be a favorable, thermodynamically feasible and spontaneous process, with the maximum sorption capacity of 0.271 mmol/g and sorption energy of 11.09 kJ/mol. The sorption was pH-independent in the initial pH range 4-10, as a result of excellent buffering properties of bone char (constant final pH), while for pH > 10 sorbed amounts of Sr(2+) increased due to attractive electrostatic forces between negatively charged sorbent surface and positively charged metal ions. On the basis of the amount of Ca(2+) released and final pH decrease in respect to the point of zero charge of bone char (pH(PZC)), two possible mechanisms of Sr(2+) sorption were identified: ion-exchange and the formation of complex compounds with HAP and carbon active surface sites. The amounts of Sr(2+) leached from bone char increased with the increase of Ca(2+) content and the decrease of solution pH. In comparison with synthetic HAP, bone char represents a cost-effective alternative for Sr(2+) sequestering. PMID:18172814

  6. Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions

    SciTech Connect

    Lewis, Aaron D.; Holland, Troy M.; Marchant, Nathaniel R.; Fletcher, Emmett G.; Henley, Daniel J.; Fuller, Eric G.; Fletcher, Thomas H.

    2015-02-26

    Three bituminous coal chars (Illinois #6, Utah Skyline, and Pittsburgh #8) were gasified separately at total pressures of 10 and 15 atm in an entrained-flow reactor using gas temperatures up to 1830 K and particle residence times <240 ms. The experiments were performed at conditions where the majority of particle mass release was due to H2O gasification, although select experiments were performed at conditions where significant mass release was due to gasification by both H2O and CO2. The measured coal data we recorded were fit to three char gasification models including a simple first-order global model, as well as the CCKNand CCK models that stem from the CBK model. The optimal kinetic parameters for each of the three models are reported, and the steam reactivity of the coal chars at the studied conditions is as follows: Pittsburgh #8 > Utah Skyline > Illinois #6.

  7. Formation, Structure and Properties of Amorphous Carbon Char from Polymer Materials in Extreme Atmospheric Reentry Environments

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2010-01-01

    Amorphous carbonaceous char produced from the pyrolysis of polymer solids has many desirable properties for ablative heat shields for space vehicles. Molecular dynamics simulations are presented to study the transformation of the local atomic structure from virgin polymer to a dense, disordered char [1]. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated. Thermal conductivity and mechanical response of the resulting char are evaluated [2]. During reenty, the optical response and oxidative reactivity of char are also important properties. Results of ab initio computations of char optical functions [3] and char reactivity [4] are also presented.

  8. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  9. [Genetic Connectivity Between Sympatric Populations of Closely Related Char Species, Dolly Varden Salvelinus malma and White Char Salvelinus albus].

    PubMed

    Salmenkova, E A

    2016-01-01

    The closely related chars Salvelinus malma and Salvelinus albus, which sympatrically inhabit the Kamchatka River basin and Kronotsky Lake (Kamchatka), attract the attention of the researchers because of their debated origin and taxonomic status. Previous studies of sympatric populations of these chars revealed small but statistically significant genetic differences between these species at a number of molecular markers, suggesting the presence of the genetic exchange and hybridization. In this study, based on genotypic characterization of nine microsatellite loci, a considerable level of historical and contemporary genetic migration between sympatric populations of these chars was demonstrated. At the individual level a high degree of hybridization was observed, mainly among the Dolly Varden individuals from the studied populations. The obtained evidence on the genetic connectivity between sympatric S. malma and S. albus do not support the separate species status of S. albus.

  10. Evaluation of current techniques for isolation of chars as natural adsorbents

    USGS Publications Warehouse

    Chun, Y.; Sheng, G.; Chiou, C.T.

    2004-01-01

    Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.

  11. Char BC amendments for soil and sediment amelioration: BC quantification and field pilot trials

    NASA Astrophysics Data System (ADS)

    Cornelissen, G.; Braendli, R. C.; Eek, E.; Henriksen, T.; Hartnik, T.; Breedveld, G. D.

    2008-12-01

    Background Activated char BC binds organic contaminants and possibly mercury so strongly that their bioaccumulation and transport to other environmental compartments are reduced. The advantages of black carbon amendment over many other remediation methods include i) it can be used as an in situ risk reduction method, ii) the price is low, and iii) it overcomes significant controversies associated with disposal of dredged and excavated materials. In this study BC amendment is used in pilot trials in the field for soil and sediment amelioration. Quantification of amended char BC Two methods for char BC quantification were tested: i) chemothermal oxidation (CTO) at a range of temperatures and ii) wet chemical oxidation with a potassium dichromate/sulfuric acid solution. The amount of BC amended to three soils was accurately determined by CTO at 375°C. For two sediments, much of the BC disappeared during combustion at 375°C, which could probably be explained by catalytic effects caused by sediment constituents such as metals, mineral oxides and salts. Attempts to avoid these effects through rinsing with acid before combustion did not result in higher char BC recoveries. CTO at lower temperatures (325-350°C) was a feasible alternative for one of the sediments. Wet oxidation with potassium dichromate/sulfuric acid proved to effectively function for BC quantification in sediments, since almost complete BC recovery (81-92 %) was observed for both sediments, while the amount of organic carbon remaining was low (5-16 %). Field pilots Earlier, we showed the effectiveness of BC amendment in the laboratory. In the laboratory it was shown that BC amendments (2 %) reduced freely dissolved porewater concentrations (factor of 10-50) and bioaccumulation (factor of 5). This presentation will describe 50 × 50 m pilot field trials in Norway (2007-2008): Trondheim Harbor (sediment) and Drammen (soil). The presentation will focus on physical monitoring (distribution of BC in the

  12. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory § 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  13. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory § 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  14. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory § 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  15. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory § 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  16. HCN and NH3 formation during coal/char gasification in the presence of NO.

    PubMed

    Lin, Jian-Ying; Zhang, Shu; Zhang, Lian; Min, Zhenhua; Tay, Huiling; Li, Chun-Zhu

    2010-05-15

    Understanding the conversion of coal-N during gasification is an important part of the development of gasification-based power generation technologies to reduce NO(x) emissions from coal utilization. This study investigated the conversion of coal-N in the presence of NO during the gasification of three rank-ordered coals and their chars in steam and low-concentration O(2). Our results show that NO can be incorporated into the char structure during gasification. The inherent char-N and the N incorporated into the char from NO-char reactions behave very similarly during gasification. During the gasification in steam, significant amounts of HCN and NH(3) can be formed from the incorporated N structure in char, especially for the relatively "aged" chars, mainly due to the availability of abundant H radicals on the char surface during the gasification in steam. During the gasification in 2000 ppm O(2), the formation of HCN or NH(3) from the N structures in char, including those incorporated into the char from the NO-char reactions, was not a favored route of reaction mainly due to the lack of H on char surface in the presence of O(2).

  17. Recovery of a Charred Painting Using Atomic Oxygen Treatment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.

    1999-01-01

    A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.

  18. Numerical Modeling and Simulation of Flame Spread Over Charring Materials

    NASA Astrophysics Data System (ADS)

    McGurn, Matthew T.

    The overall objective of this dissertation is the development of a modeling and simulation approach for upward flame spread. This objective is broken into two primary tasks: development of a porous media charring model for carbon-epoxy composites and an algorithm to couple flow and structural solvers. The charring model incorporates pyrolysis decomposition, heat and mass transport, individual species tracking and volumetric swelling using a novel finite element algorithm. Favorable comparisons to experimental data of the heat release rate (HRR) and time-to-ignition as well as the final products (mass fractions, volume percentages, porosity, etc.) are shown. The charring model and flow solvers are coupled using a newly developed conjugate heat and mass transfer algorithm designed for complex geometries in fire environments. Highlights of the coupling algorithm include: a level set description of complex moving geometry, perfect conservation of energy and mass transfer across the interface, a no-slip and no-penetration ghost-fluid interface description, and a patch level set update system that balances accuracy and computational efficiency by reducing the resolution of the Lagrangian model away from the interface. A systematic study of grid convergence order and comparison to analytical benchmark problems is conducted to show the soundness of the approach. The interface methodology is combined with the carbon-epoxy charring model and is used to study burning composites. Comparison of simulations to experimental data show good agreement of composite material response and flame spread (critical heat flux).

  19. Measurements and modeling of pulverized fuel char in an entrained flow reactor

    NASA Astrophysics Data System (ADS)

    Kebria, Mazdak

    In recent years, the combustion zone of utility boilers were modified for NOx control and this made the task of maintaining low residual carbon levels in boiler fly ash much more difficult. To predict the relationships between boiler operating conditions and residual carbon-in-ash, there is a need for improvements in determining the appropriate char reactivity to use in simulating coal-fired combustors and in relating this reactivity to unburned coal characteristics. To aid in this effort, a tubular, downward-fired, refractory-lined, laminar entrained flow reactor (EFR) was built to provide a pilot scale environment with 2 seconds residence time for studying coal combustion. Using a commercial CFD code (FLUENT), a three dimensional numerical model of coal burning in the EFR was created to evaluate common char burnout kinetic modeling approaches. EFR experimental data was obtained for operating conditions adjusted to reproduce particle Lagrangian temperature and oxygen concentration time histories typically found in coal-fired utility boilers. The radial temperature profiles were measured at different axial locations in the EFR with a suction pyrometer and thermocouples. The temperature distribution in the reactor agreed well with the simulations. A gas analyzer with a quenching probe was used to measure the oxygen distribution to similarly confirm oxygen distribution in the EFR. A semi-isokinetic particulate sampling probe was used to extract ash samples at different heights in the reactor to measure the evolution of loss on ignition (LOI). Measured LOI values were used to validate the model against predicted values. Reaction kinetics rates in the model were adjusted to bring agreement between calculated LOI and the measured values from the experimental results. The LOI predictions by kinetic-diffusion and CBK model are very similar at the late stage of char burnout. The results indicate that we can achieve sufficient accuracy for the prediction of final carbon

  20. Integrated methods for production of clean char and its combustion properties. Interim final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Gullett, B.K.; Benson, S.A.; Toman, D.L.

    1992-12-31

    An integrated method consisting of physical coal cleaning, mild gasification (MG) and low temperature oxidation (LTO) is proposed to produce chars with S0{sub 2} emissions at least 50% lower than those of their parent coals. MG and char desulfurization studies are conducted in both a batch fluidized-bed reactor (FBR) and in a continuous rotary tube kiln (RTK). Combustion properties and ash deposition behaviors of desulfurized chars are determined at the US EPA in a 14 kW pilot-scale combustor and at UNDEERC in a drop tube furnace (DTF). This project is cost-shared with the US EPA and the US DOE through UNDEERC. MG chars were prepared from l00 {times} 200 mesh size fractions of each of six coals selected from the Illinois Basin Coal (IBC) Sample Program in a FBR. under non-optimized conditions, desulfurized chars with S0{sub 2} emissions 60--71% lower than the parent coals were made, depending on the coal. Chars prepared from four of the six coals had SO{sub 2} emissions less than 2.5 lbs S0{sub 2}/MMBtu. Optimization of LTO conditions revealed that the greatest reduction in S0{sub 2} emissions was obtained using smaller particle diameters, steam during both MG and LTO, a higher temperature and higher oxygen partial pressure. Under optimized conditions, S0{sub 2} emissions of one of the coals were reduced nearly 67%, from 4.60 to 1.49 lbs S0{sub 2}/MMBtu. About 40 pounds of low-sulfur char were prepared from IBC-102 in the RTK. The amount of sulfur removed in the RTK was less than in the FBR, and gave a char with S0{sub 2} emissions of about 2.4 lbs S0{sub 2}/MMBtu. The greater sulfur removal in the FBR was attributed to a smaller mean particle diameter, better gas-solid contact and/or decreased partial pressure of S0{sub 2}.

  1. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 3. Final report

    SciTech Connect

    1996-05-01

    Testing of an atmospheric circulating bed pyrolyzer was done at Southern Illinois University. A variety of experiments have been conducted in a laboratory scale pyrolyzer with coal input flow rates from 2 to 6 lb/h. three feed coal particle sizes, corresponding to a nominal -40 mesh, -30 mesh and -18 mesh were used. The limestone used in the tests was a Genstar limestone. Parameters investigated in the tests include the influence of superficial velocity, temperature and coal-air mass ratios. Char particle size distributions under various test conditions have been measured and the char composition determined. Fuel gas composition, yields and heating values have been investigated. Char morphology has been studied using scanning electron microscopy. Char reactivity for selected samples has been measures, and the influence of feed coal size, bed temperature and superficial velocity has been determined. Material balance calculations have been performed and found to be in very good agreement. Energy audit calculations for the process have been made to investigate the flow of energy and to estimate the losses during the process. Full details of the data, results obtained and conclusions drawn are presented.

  2. Effects of catalytic mineral matter on CO/CO{sub 2} temperature and burning time for char combustion. Quarterly progress report No. 15 (Final report), October 1993--December 1993

    SciTech Connect

    Longwell, J.P.; Sarofim, A.F.; Lee, C.H.

    1993-12-31

    The high temperature oxidation of char is of interest in a number of applications in which coal must be burned in confined spaces including the conversion of oil-fired boilers to coal using coal-water slurries, the development of a new generation of pulverized-coal-fired cyclone burners, the injection of coal into the tuyeres of blast furnaces, the use of coal as a fuel in direct-fired gas turbines and in large-bore low-speed diesels, and entrained flow gasifiers. There is a need to understand the temperature history of char particles in conventional pulverized-coal-fired boilers to better explain the processes governing the formation of pollutants and the transformation of mineral matter. The temperature of char particle burning is the product of a strongly coupled balance between particle physical properties, heat and mass transfer, surface reaction, and CO/CO{sub 2} ratio. Particle temperature has major effects not only on the burning rate but also on ash properties and mineral matter vaporization. Measurements of the temperature of individual burning char particles have clearly demonstrated large particle-to-particle temperature variations which depend strongly on particle size and on particle composition. This report consists of two major parts. In the first part, experimental measurements of CO/CO{sub 2} ratio for a single spherocarb particle is presented along with a kinetic model which allows estimation of CO/CO{sub 2} generated at a carbon surface for temperatures higher than those reported in the experimental work. In the second part, modeling of a temperature profile during a char combustion is reported, and also progress in modeling the complex sets of coupled phenomena involving full gas phase reaction kinetics, heat transfer, and mass transfer is summarized. In the appendix progress on construction and testing of an improved electrodynamic balance is presented.

  3. Structure Based Predictive Model for Coal Char Combustion

    SciTech Connect

    Robert Hurt; Joseph Calo; Robert Essenhigh; Christopher Hadad

    2000-12-30

    This unique collaborative project has taken a very fundamental look at the origin of structure, and combustion reactivity of coal chars. It was a combined experimental and theoretical effort involving three universities and collaborators from universities outside the U.S. and from U.S. National Laboratories and contract research companies. The project goal was to improve our understanding of char structure and behavior by examining the fundamental chemistry of its polyaromatic building blocks. The project team investigated the elementary oxidative attack on polyaromatic systems, and coupled with a study of the assembly processes that convert these polyaromatic clusters to mature carbon materials (or chars). We believe that the work done in this project has defined a powerful new science-based approach to the understanding of char behavior. The work on aromatic oxidation pathways made extensive use of computational chemistry, and was led by Professor Christopher Hadad in the Department of Chemistry at Ohio State University. Laboratory experiments on char structure, properties, and combustion reactivity were carried out at both OSU and Brown, led by Principle Investigators Joseph Calo, Robert Essenhigh, and Robert Hurt. Modeling activities were divided into two parts: first unique models of crystal structure development were formulated by the team at Brown (PI'S Hurt and Calo) with input from Boston University and significant collaboration with Dr. Alan Kerstein at Sandia and with Dr. Zhong-Ying chen at SAIC. Secondly, new combustion models were developed and tested, led by Professor Essenhigh at OSU, Dieter Foertsch (a collaborator at the University of Stuttgart), and Professor Hurt at Brown. One product of this work is the CBK8 model of carbon burnout, which has already found practical use in CFD codes and in other numerical models of pulverized fuel combustion processes, such as EPRI's NOxLOI Predictor. The remainder of the report consists of detailed technical

  4. A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char.

    PubMed

    Islam, Md Azharul; Auta, M; Kabir, G; Hameed, B H

    2016-01-01

    The combustion characteristics of Karanj fruit hulls char (KFH-char) was investigated with thermogravimetry analysis (TGA). The TGA outlined the char combustion thermographs at a different heating rate and isoconversional methods expressed the combustion kinetics. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods authenticated the char average activation energy at 62.13 and 68.53kJ/mol respectively, enough to derive the char to burnout. However, the Coats-Redfern method verified the char combustion via complex multi-step mechanism; the second stage mechanism has 135kJ/mol average activation energy. The TGA thermographs and kinetic parameters revealed the adequacy of the KFH-char as fuel substrate than its precursor, Karanj fruit hulls (KFH).

  5. Corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres

    SciTech Connect

    Douglass, D.L.; Bhide, V.S.; Vineberg, E.

    1981-08-01

    310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 1600/degree/ and 18000/degree/F. The chars, FMC and Husky, contained 2.7% and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was sulfidation. An interfacial reaction was the rate-controlling step. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None will be acceptable for use in contact with char unless coatings are applied. 7 refs.

  6. Life Cycle Assessment of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, M.; Woods, J.

    2012-04-01

    One of the most significant challenges faced by modern-day society is that of global warming. An exclusive focus on reducing the greenhouse gas (GHG) emissions will not suffice and therefore technologies capable of removing CO2 directly from the atmosphere at low or minimal cost are gaining increased attention. The production and use of biochar is an example of such an emerging mitigation strategy. However, as with any novel product, process and technology it is vital to conduct an assessment of the entire life cycle in order to determine the environmental impacts of the new concept in addition to analysing the other sustainability criteria. Life Cycle Assessment (LCA), standardized by ISO (2006a), is an example of a tool used to calculate the environmental impacts of a product or process. Imperial College London will follow the guidelines and recommendations of the ISO 14040 series (ISO 2002, ISO 2006a-b) and the International Life Cycle Data System (ILCD) Handbook (EC JRC IES, 2010a-e), and will use the SimaPro software to conduct a LCA of the biochar supply chains for the EuroChar project. EuroChar ('biochar for Carbon sequestration and large-scale removal of GHG from the atmosphere') is a project funded by the European Commission under its Seventh Framework Programme (FP7). EuroChar aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar and, in particular, explore a possible introduction into modern agricultural systems in Europe, thereby moving closer to the determination of the true potential of biochar. EuroChar will use various feedstocks, ranging from wheat straw to olive residues and poplar, as feedstocks for biochar production and will focus on two conversion technologies, Hydrothermal Carbonization (HTC) and Thermochemical Carbonization (TC), followed by the application of the biochar in crop-growth field trials in England, France and Italy. In April 2012, the EuroChar project will be at its halfway mark and

  7. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.

    PubMed

    Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J

    2010-12-28

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar

  8. Simulation of coal and char nitrogen reactions in combustion. [Final report, September 1992--August 1993

    SciTech Connect

    Kumpaty, S.K.

    1993-10-01

    The observed rate of increase of N{sub 2}O (0.18% to 0.26% annually) is a matter of increasing concern both because N{sub 2}O is a greenhouse gas and has a major and unfavorable influence on the ozone layer (Weiss, 1981). The combustion contribution to the overall nitrous oxide budget is difficult to assess; yet the emission of N{sub 2}O from fluidized bed combustion (FBC) has been identified in the past few years as significant. It was concluded in the European workshop, 1988 that the emission level from a coal-fired fluidized bed boiler is 50--200 ppM but it is only 1--20 ppM in boilers equipped with other types of combustion devices. For this reason it is worthwhile to investigate the emissions from FBC more thoroughly. Gaseous fuels (Miller and Bowman, 1989), but the N{sub 2}O emissions under fluidized bed conditions is poorly understood. In fluidized bed combustion, N{sub 2}O can arise from homogeneous gas phase reactions involving amines and cyano species (Hiltunen et al, 1991) or it can be formed from heterogeneous reactions (eg. char oxidation). Removal of N{sub 2}O can be brought about by gas phase reactions or by catalytic or non-catalytic heterogeneous reduction on char/limestone. This work was carried out with an objective of enhancing the fundamental understanding of coal and char nitrogen reaction pathways in fluidized bed combustion environment. The formation and destruction of HCN and N{sub 2}O under variety of influential parameters were investigated. This simulation contained a nonisothermal single particle combustion in a preheated reactor and a gas phase reaction are designed to stimulate the nitrogen chemistry in a circulating fluidzied bed. The LSODE differential equation solver used for single particle combustion and the CHEMKIN package, developed by Sandia National Laboratories, was applied for gas phase reactions. This computational work was done as an exploratory research program under the solicitation of the DOE fossil energy utilization.

  9. The effect of mineral species on oil shale char combustion

    SciTech Connect

    Cavalieri, R.P.; Thompson, W.J.

    1983-02-01

    In order to increase the energy efficiency of above-ground oil shale processes, the carbonaceous residue (''char'') remaining on retorted oil shale (''spent'' shale) will either be combusted or gasified. Although there is no great difficulty in combusting the char, it is important that combustion be carried out in a controlled fashion. Failure to do so can result in high temperatures (>900/sup 0/K) and the decomposition of mineral carbonates. These decomposition reactions are not only endothermic but some of the products have the potential to cause environmental disposal problems. Control of oil shale char combustion is more easily managed if there is a knowledge of how the rate of combustion depends on O/sub 2/ concentration and temperature. This motivation led to an earlier study of the combustion kinetics of spent shale from the Parachute Creek Member in western Colorado. That study provided evidence that one or more of the mineral species present in the shale acted as an oxidation catalyst. Consequently it was decided to follow up on that investigation by examining the combustion activity of other oil shales; specifically those with differing elemental and/or mineral compositions. Six oil shale samples were selected for evaluation and comparison: one from the Parachute Creek Member (PCM), one from a deep core sample in the C-a tract (C-a), two from the saline zone in western Colorado (S-A and S-B), one from the Geokinetics site in eastern Utah (GEOK) and one sample of Antrim shale from Michigan (ANT). On the basis of the studies conducted here, it is readily apparent that the presence of minerals can drastically alter the reactivity of the residual char on spent oil shale. More detailed quantitative studies are necessary in order to be able to assess their importance under typical oil shale processing conditions and will be the subject of future manuscripts from this laboratory.

  10. Reactivity of young chars via energetic distribution measurements

    SciTech Connect

    Calo, J.M.; Zhang, L.H.; Lu, W.; Lilly, W.D.

    1992-06-10

    We have developed what we believe to be the very first a priori prediction technique for the gasification reactivity of coal char. With this method the gasification reactivity of a coal char as function of temperature can be predicted from a single temperature programmed desorption (TPD) experiment following mild gasification at a single temperature (Calo et al., 1989; Hall and Calo, 1990a). This approach has been demonstrated for C0{sub 2} gasification of coal chars where the gasification reactivity is controlled by the thermal desorption of oxygen surface complexes formed during gasification. This approach may be extended to other oxidant species, such as steam, and carbon-hydrogen complexes for hydrogen gasification as well. In the current report, we present a summary of the work that has been conducted to date in constructing a new TGA/TPD-MS experimental system which provides us with the capability of simultaneous monitoring of transient sample mass data, as well as gas phase composition during thermal desorption experiments. In addition, we present some steam reactivity data obtained with another TGA (Cahn 113 system) which has been modified for steam gasification experiments.

  11. Structure-Based Predictive model for Coal Char Combustion.

    SciTech Connect

    Hurt, R.; Colo, J; Essenhigh, R.; Hadad, C; Stanley, E.

    1997-09-24

    During the third quarter of this project, progress was made on both major technical tasks. Progress was made in the chemistry department at OSU on the calculation of thermodynamic properties for a number of model organic compounds. Modelling work was carried out at Brown to adapt a thermodynamic model of carbonaceous mesophase formation, originally applied to pitch carbonization, to the prediction of coke texture in coal combustion. This latter work makes use of the FG-DVC model of coal pyrolysis developed by Advanced Fuel Research to specify the pool of aromatic clusters that participate in the order/disorder transition. This modelling approach shows promise for the mechanistic prediction of the rank dependence of char structure and will therefore be pursued further. Crystalline ordering phenomena were also observed in a model char prepared from phenol-formaldehyde carbonized at 900{degrees}C and 1300{degrees}C using high-resolution TEM fringe imaging. Dramatic changes occur in the structure between 900 and 1300{degrees}C, making this char a suitable candidate for upcoming in situ work on the hot stage TEM. Work also proceeded on molecular dynamics simulations at Boston University and on equipment modification and testing for the combustion experiments with widely varying flame types at Ohio State.

  12. NO sub x -char reactions: Kinetics and transport aspects

    SciTech Connect

    Calo, J.M.; Suuberg, E.M.

    1990-01-01

    The present project is motivated by the need to reduce NO{sub x} emissions from combustors, especially coal combustors. Reactions with carbon are known to be effective at reducing No to N{sub 2}, and remain interesting candidates in a wide variety of possible applications. These reactions are known to be important in reducing NO{sub x} emissions from fluidized bed coal combustors, in which the coal char itself serves as the reducing agent. The principal goal of this project is to develop a mechanistic understanding of the processes by which carbons reduce NO to N{sub 2}. The carbon was a char derived from phenol-formaldehyde resin. This material has been noted to be a reasonable model for coal chars in most respects, expect that its gasification behavior is not complicated by catalytic processes due to minerals. In the first phases of the project, the global kinetics of the process were established. In more recent work, attention has been turned to the individual steps in the mechanism. Recent quarterly reports have detailed the role of both chemisorption and desorption processes in determining the course and kinetics of the process. This report continues the reporting of results obtained along these lines, and draws an important new conclusion concerning the number of separate processes involved in determining the kinetics. 40 refs., 3 figs., 2 tabs.

  13. Silica reinforcement and char reactions in the Apollo heat shield.

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Goldstein, H.; Parker, J. A.

    1972-01-01

    Reactions of the silica reinforcement fiber and ablation char of the Apollo heat shield have been investigated by laboratory tests in an arc image furnace (at temperature levels up to 5000 R, pressures up to 0.7 atm, and heat flux similar to reentry) and by an actual reentry test. Microchemical analyses and X-ray diffraction studies have been made to determine the presence of SiC formation in the char. Experimental data and analytical predictions of thermal and density profiles have been compared for the ablation of virgin heat shield and precharred materials to determine the effects of SiC formation on ablation performance. In all analyses, general agreement was found between chemical composition and the thermal predictions for laboratory tests and reentry materials. In all ablated materials, SiC was formed in the front surface of the char. The highest SiC content found was 58% by weight and found in a high-pressure environment. The SiC formed was found to act as a heat sink in the ablation process and can lower the front surface temperature by 300 R.

  14. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data

    NASA Astrophysics Data System (ADS)

    Pyle, L.; Hockaday, W. C.; Boutton, T. W.; Zygourakis, K.; Kinney, T.; Masiello, C. A.

    2014-12-01

    Charcoal plays a significant role in the long-term carbon cycle and its use as a soil amendment is becoming a viable carbon sequestration strategy (biochar). One challenge in this research area has been comparing results between studies in part due to the diversity of lab and field production conditions. Although the highest treatment temperature (HTT) is often used to describe pyrolysis conditions, several studies have shown that length of time at the highest temperature can also cause changes to the physicochemical qualities of charcoal and ignoring this effect may introduce inter-comparison problems. Addressing this issue becomes especially important in the discussion of optimizing biochar for soil remediation and carbon sequestration, and in discussions of charcoal use in reconstructing past fire regimes, as increasing time at temperature may cause changes in charcoal properties similar to the changes caused by increasing HTT. Here we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in this property with pyrolysis temperature and reaction duration. We found two types of responses to CI: either a linear or a threshold relationship. We show that a threshold exists where %C, %N and δ15N begin exhibiting large changes, and this CI threshold co-occurred with an increase in charcoal aromaticity. Mass yield decreased linearly with charring intensity and carbon isotopes did not change from original biomass values in our controlled laboratory experiments. Analysis of these data shows that pyrolysis parameters should be defined in the literature as a combination of temperature and duration conditions, and that biomass that has undergone pyrolysis may be influencing soil organic nitrogen. Additionally, the lack of alteration in carbon isotopes across our matrix supports the efficacy of using pyrolyzed material for archaeological reconstructions.

  15. Toxicity of char residues produced in the co-pyrolysis of different wastes.

    PubMed

    Bernardo, Maria; Lapa, N; Gonçalves, M; Barbosa, R; Mendes, B; Pinto, F; Gulyurtlu, I

    2010-04-01

    Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars. The chars were subjected to the leaching test ISO/TS 21268 - 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE). The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars. Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes. PMID:19932606

  16. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    PubMed

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures. PMID:26773946

  17. [Variability of nucleotide sequences of the mitochondrial DNA cytochrome c gene in dolly varden and taranetz char].

    PubMed

    Radchenko, O A; Derenko, M V; Maliarchuk, B A

    2000-07-01

    Nucleotide sequence of the 307-bp fragment of the mitochondrial DNA cytochrome b gene was determined in representatives of the three species of the Salvelinus genus, specifically, dolly varden char (S. malma), taranetz char (S. taranetzi), and white-spotted char (S. leucomaenis). These results pointed to a high level of mitochondrial DNA (mtDNA) divergence between white-spotted char and dolly varden char, on the one hand, and taranetz char, on the other (the mean d value was 5.45%). However, the divergence between the dolly varden char and taranetz char was only 0.81%, which is comparable with the level of intraspecific divergence in the dolly varden char (d = 0.87%). It was shown that the dolly varden char mitochondrial gene pool contained DNA lineages differing from the main mtDNA pool at least in the taranetz char-specific mitochondrial lineages. One of these dolly varden char mtDNA lineages was characterized by the presence of the restriction endonuclease MspI-D variant of the cytochrome b gene. This lineage was widely distributed in the Chukotka populations but it was not detected in the Yana River (Okhotsk sea) populations. These findings suggest that dolly varden char has a more ancient evolutionary lineage, diverging from the common ancestor earlier than did taranetz char.

  18. Kinetic modeling of inherent mineral catalyzed NO reduction by biomass char.

    PubMed

    Wu, X Y; Song, Q; Zhao, H B; Zhang, Z H; Yao, Q

    2014-04-01

    The evolution of rice straw char reactivity during reaction with NO was examined in differential reactor at 900 and 1000 °C. Original and acid-washed rice straw chars were used. Surface area and mineral content of char samples with different conversion were analyzed. The reactivity of the acid-washed char increased until conversion Xchar = 20%, remained constant, and then decreased continuously to zero. The reactivity of the original char decreased continuously to zero throughout the reaction, with a faster decrease at 1000 °C. Mineral transformation during original char reaction was obvious. Concentration of acid-soluble K decreased about 56% and 90% at 900 and 1000 °C. Ca and Mg released little to gas phase, but reacted with SiO2 in a small amount. The evolution of the acid-washed char reactivity correlated well with the development of surface area and was well predicted by random pore model. The reactivity of the original char depended not only on the development of surface area, but also on transformation of inherent minerals, mainly K. A two-reaction model was built which well predicted inherent K transformation. A modified random pore model was developed, which successfully simulated inherent mineral catalyzed char-NO reaction. PMID:24588459

  19. Influence of carbonization conditions on the pyrolytic carbon deposition in acacia and eucalyptus wood chars

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1997-04-01

    The amount of deposited pyrolytic carbon (resulting from the cracking of volatile matter) was found to depend on wood species and carbonization conditions, such as temperature and heating rate. Maximum pyrolytic carbon deposition in both the acacia and eucalyptus wood chars has been observed at a carbonization temperature of 800 C. Rapid carbonization (higher heating rate) of wood significantly reduces the amount of deposited pyrolytic carbon in resulting chars. Results also indicate that the amount of deposited pyrolytic carbon in acacia wood char is less than that in eucalyptus wood char.

  20. Production of activated char from Illinois coal for flue gas cleanup

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  1. Study of char gasification in a reaction/adsorption apparatus

    SciTech Connect

    Sotirchos, S.V.; Crowley, J.A.

    1987-09-01

    The reaction of an activated carbon (coconut char) with CO/sub 2/ was studied in a reaction/adsorption apparatus which allows successive reactivity and physical adsorption measurements to be made on the same solid sample. Reaction and surface area evolution data were obtained in the temperature range from 800 to 900/sup 0/C. All reaction rate trajectories obtained in this study showed a maximum in the reaction rate, 2-3 times higher than the initial rate, at about 85% conversion. There was no correlation between these results and the evolution of the internal surface area although the reaction appeared to take place initially in the kinetically controlled regime.

  2. STRUCTURE BASED PREDICTIVE MODEL FOR COAL CHAR COMBUSTION

    SciTech Connect

    Robert Hurt; Joseph Calo; Robert Essenhigh; Christopher Hadad

    2001-06-15

    This report is part on the ongoing effort at Brown University and Ohio State University to develop structure based models of coal combustion. A very fundamental approach is taken to the description of coal chars and their reaction processes, and the results are therefore expected to have broad applicability to the spectrum of carbon materials of interest in energy technologies. This quarter, the project was in a period no-cost extension and discussions were held about the end phase of the project and possible continuations. The technical tasks were essentially dormant this period, but presentations of results were made, and plans were formulated for renewed activity in the fiscal year 2001.

  3. Is this charred material from a VHS video cassette?

    NASA Astrophysics Data System (ADS)

    Fruchtenicht, Tara; Blackledge, Robert D.; Williams, Teresa R.

    2010-06-01

    At his residence, a victim in a double homicide had installed a home-built video surveillance system. The suspects either knew of or discovered this system and removed it. In a backyard at a location associated with the suspects was a barrel used for burning trash. Could charred debris recovered from a metal bowl found among the contents of the barrel be the remains of a VHS video cassette? A positive answer to the question was obtained through a combination of optical microscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and Energy Dispersive Spectroscopy (EDS).

  4. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    PubMed

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  5. Effects of Pressure on the Properties of Coal Char Under Gasification Conditions at High Initial Heating Rates

    NASA Astrophysics Data System (ADS)

    Shurtz, Randy Clark

    The effects of elevated pressure and high heating rates on coal pyrolysis and gasification were investigated. A high-pressure flat-flame burner (HPFFB) was designed and built to conduct these studies. The HPFFB was designed to provide an environment with laminar, dispersed entrained flow, with particle heating rates of ˜105 K/s, pressures of up to 15 atm, and gas temperatures of up to 2000 K. Residence times were varied from 30 to 700 ms in this study. Pyrolysis experiments were conducted at particle heating rates of ˜10 5 K/s and maximum gas temperatures of ˜1700 K at pressures of 1 to 15 atm. A new coal swelling correlation was developed that predicts the effects of heating rate, pressure, and coal rank on the swelling ratio at heating rates above ˜104 K/s. A coal swelling rank index system based on 13C-NMR chemical structural parameters was devised. The empirical swelling model requires user inputs of the coal ultimate and proximate analyses and the use of a transient particle energy balance to predict the maximum particle heating rate. The swelling model was used to explain differences in previously reported bituminous coal swelling ratios that were measured in facilities with different heating rates. Char gasification studies by CO2 were conducted on a subbituminous coal and 4 bituminous coals in the HPFFB. Pressures of 5, 10, and 15 atmospheres were used with gas compositions of 20, 40, and 90 mole % CO2. Gas conditions with peak temperatures of 1700 K to 2000 K were used, which resulted in char particle temperatures of 1000 K to 1800 K. Three gasification models were developed to fit and analyze the gasification data. A simple 1 st--order model was used to show that the measured gasification rates were far below the film-diffusion limit. The other two models, designated CCK and CCKN, were based on three versions of the CBK models. CCKN used an nth--order kinetic mechanism and CCK used a semi-global Langmuir-Hinshelwood kinetic mechanism. The two CCK

  6. Kinetics of Coal Char Combustion in Oxygen-Enriched Environment

    NASA Astrophysics Data System (ADS)

    Czakiert, T.; Nowak, W.

    The influence of oxygen-enriched gaseous atmosphere on coal char combustion was studied. Two different coals, i.e. lignite and bituminous coal, were used as a basic fuel and the reacting gases of oxygen & CO2 were used to simulate flue gas recirculation. Moreover, a broad range of in-furnace conditions, i.e. five temperatures of 873, 973, 1073, 1173, 1273K and five oxygen concentrations of 20, 40, 60, 80, 100%vol., was investigated. Thermogravimetric method of measurement was employed to obtain the processing data on fuel conversion rate under foregoing investigated conditions. For further calculations, simplified Shrinking-Core Model was introduced. Finally, fundamental kinetic parameters, i.e. pre-exponential factor, activation energy and reaction order, were established and then on the basis of their values reaction-controlling regime for coal char combustion in oxygen-enriched environment was predicted. The investigations, financially supported by Polish Government, are a part of Framework Project "Supercritical Coal-fired Power Units".

  7. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents.

    PubMed

    Kwon, Seokjoon; Pignatello, Joseph J

    2005-10-15

    Black carbon (BC; char and soot) particles emitted to the environment typically are formed with high microporosity and surface area, properties that are responsible for their presumed important role in adsorption of anthropogenic organic compounds in soils and sediments. An issue that has received little direct attention is the possibility that naturally occurring organic matter attenuates the surface activity of BC. We found that simulated "aging" of prepared wood char particles in a soil-water suspension leads to a strong decline in char total surface area (TSA) by N2 adsorption at 77 K with BET analysis and a more modest decline in affinity for dissolved benzene. To help determine the underlying cause, we measured the effects of adsorbed natural lipids or lipid fractions of humic substances, modeled by triglycerides of a commercial vegetable oil. With increasing lipid loading (up to 40% by char weight) from aqueous mixtures, N2 TSA was strongly suppressed (up to 100-fold), while CO2 cumulative surface area (CSA, 0-1.4 nm) at 273 K and benzene adsorption at 293 K were hardly affected. In addition, the rate of CO2 adsorption was retarded. We propose that externally adsorbed lipid molecules occupy pore throats with access to interior pore networks. At 77 K, as opposed to the higher temperatures, lipid chains are too inflexible to allow passage of adsorbate. It is concluded that benzene adsorption to char predominates at interior pore sites and does not correlate with N2-probed micropore properties when the char accrues pore-blocking substances from the surroundings. The findings question the suitability of N2 for probing hydrophobic microporosity of BC in soils and sediments.

  8. The effect of char {open_quotes}age{close_quotes} on gasification reactivity

    SciTech Connect

    Calo, J.M.; Zhang, L.; Lu, W.

    1996-10-01

    It is well known that {open_quotes}age{close_quotes} (i.e., the degree of pyrolysis severity) can significantly affect char reactivity, generally with {open_quotes}younger{close_quotes} chars being more reactive than {open_quotes}older{close_quotes} chars. In the current work we investigate this issue via the analysis of post-reaction thermal desorption data for a few different char samples (coal chars and a resin char), that were prepared under different conditions of pyrolysis severity, in both CO{sub 2} and steam. It is observed that the total amount of desorbed oxygen increases with char {open_quotes}age,{close_quotes} in both CO{sub 2} and steam, while the reactivity decreases significantly. The CO TPD spectra for the samples gasified in one atmosphere of CO{sub 2} are analyzed using a kinetic model based on energetic heterogeneity of the char surface. It is demonstrated that this model correlates the variation in reactivity with {open_quotes}age{close_quotes} very well. These results support a conclusion that reactivity decrease with age is dependent on a decrease in the active site population in addition to a shift in the energetic distributions to higher values.

  9. Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic elements in biomass feedstocks can influence thermochemical reactions as well as the resultant chars elemental, compositional, and thermal characteristics. Chars were produced using slow pyrolysis at less than 400 and at higher than 500 degree Celsius from sugarcane bagasse, peanut hulls,...

  10. Studies of NO-char reaction kinetics obtained from drop-tube furnace and thermogravimetric experiments

    SciTech Connect

    Shaozeng Sun; Juwei Zhang; Xidong Hu; Shaohua Wu; Jiancheng Yang; Yang Wang; Yukun Qin

    2009-01-15

    Four coal chars were prepared in a flat flame flow reactor (FFR), which can simulate the temperature and gas composition of a real pulverized coal combustion environment. The pore structure of chars was measured by mercury porosimetry and nitrogen adsorption, and the Hg and Brunauer-Emmett-Teller (BET) surface areas were obtained. The kinetics of NO-char was studied in a drop-tube furnace (DTF) and thermogravimetric analyzer (TGA). In the TGA experiments, the random pore model (RPM) was applied to describe the NO-char reactions and obtain the intrinsic kinetics. By presenting the data of DTF and TGA experiments on the same Arrhenius plot, it can be concluded that TGA is an available tool to study the kinetics of a high-temperature NO-char reaction. With respect to the DTF experiments, in comparison to the BET surface area, the Hg surface area is a better basis for normalizing the reactivity of different coal chars because of less scatter in the measured values, better agreement with TGA experimental data, and more stable values during the process of reaction. Moreover, by comparing the Hg surface area of chars before and after reactions, it is believed that the Hg surface area basis is more appropriate for high-rank coal chars. The determined kinetic rate constants are in good agreement with other data in the literature, and a new rate constant expression is proposed. 30 refs., 8 figs., 7 tabs.

  11. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.

    PubMed

    Bernardo, Maria; Mendes, Sandra; Lapa, Nuno; Gonçalves, Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena; Fonseca, Isabel

    2013-11-01

    The effectiveness of chars from the co-pyrolysis of pine, used tires and plastic wastes for the removal of lead (Pb(2+)) from aqueous medium, was investigated. The chars were predominantly of macroporous nature, but the introduction of tires in the pyrolysis feedstock enhanced their mesoporous content as well as surface area. Pb(2+) sorption with the chars was a slow and unstable process in which sorption-desorption seems to be competing. The highest Pb(2+) removal (88%) was attained by the char resulting from the pyrolysis of a mixture composed by equal mass ratios of used tires and plastics, at 48 h of contact time. This char was also the one with the overall better performance for Pb(2+) sorption, achieving almost 100% of Pb(2+) removal on the study of the effect of adsorbent dose. Mixing the three raw materials for pyrolysis had no advantage for the resulting char concerning the removal efficiency of Pb(2+). The sorption mechanisms varied according to the pyrolysis feedstock: in chars from feedstock with pine, chemisorption involving complexation with oxygenated surface functional groups followed by cation exchange was the presumable mechanism. In tire rubber derived chars, cation exchange with Ca(2+), K(+), and Zn(2+) played the major role on Pb(2+) sorption.

  12. Active sites in char gasification. Quarterly technical progress report, 1 January 1984-31 March 1984. [Polymers of phenol-formaldehyde family; chars produced from model compounds

    SciTech Connect

    Calo, J.M.; Suubers, E.M.; Wojtowicz, M.; Lilly, W.

    1984-05-01

    This project is concerned with the study of the nature and behavior of active sites in gasification of chars produced from synthesized model compounds, primarily of the phenol-formaldehyde family of resins. The current technical progress report presents further developments on resin synthesis and characterization and the design of a pyro-gasifier reactor for transient kinetic studies of the chars produced from the model compounds. 7 references, 12 figures, 2 tables.

  13. Fast pyrolysis char - Assessment of alternative uses within the bioliq® concept.

    PubMed

    Funke, A; Niebel, A; Richter, D; Abbas, M M; Müller, A-K; Radloff, S; Paneru, M; Maier, J; Dahmen, N; Sauer, J

    2016-01-01

    Experiments with a process development unit for fast pyrolysis of biomass residues of 10kgh(-1) have been performed to quantify the impact of two different product recovery options. Wheat straw, miscanthus and scrap wood have been used as feedstock. A separate recovery of char increases the organic oil yield as compared to a combined recovery of char and organic condensate (OC). Furthermore, it allows for an alternative use of the byproduct char which represents an important product fraction for the high ash biomass residues under consideration. The char produced shows little advantage over its biomass precursor when considered as energy carrier due to its high ash content. Significant value can be added by demineralizing and activating the char. The potential to increase the economic feasibility of fast pyrolysis is shown by an assessment of the bioliq® process chain. PMID:26609947

  14. Investigating the morphology and reactivity of chars from Triplochiton scleroxylon pyrolysed under varied conditions.

    PubMed

    Oluoti, Kehinde; Pettersson, Anita; Richards, Tobias

    2016-05-01

    A gasifier may be optimised via a good understanding of the char formation, morphology and reactivity. The effects of varying the pyrolysis pressure and heating rate on the morphology of the char were investigated using a thermogravimetric analyser (TGA), scanning electron microscope (SEM) and micrograph spot analyser. The gasified chars were produced at heating rates of 5, 10 and 20°C/min and pressures of 0.1, 0.4 and 0.6 MPa. All the chars have different degrees of apparent gasification reactivity. The random pore model (RPM) provided a better description of the experiment, with low average error values, θ, in all of the cases considered. The alkaline and alkaline earth metals (AAEM) in the tropical wood biomass Arere (Triplochiton scleroxylon) consist predominantly of calcium and could altogether be partly responsible for the noticeably high reactivity nature of the tropical Arere chars. PMID:26926201

  15. Evaluating paint-sludge chars for adsorption of selected paint solvents

    SciTech Connect

    Kim, B.R.; Kalis, E.M.; Salmeen, I.T.; Kruse, C.W.; Demir, I.; Rostam-Abadi, M.; Carlson, S.L.

    1996-06-01

    At Ford, a study had been carried out to investigate the technical feasibility of converting paint sludge to activated char and reusing the char in paint spray-booth water to capture paint solvents from spray-booth air. As part of the study, several chars were made from a paint sludge and six dried paints to evaluate their effectiveness as adsorbents by conducting a series of liquid-phase adsorption experiments. Three commonly-used paint solvents and p-nitrophenol were selected as adsorbates. The three paint solvents were toluene, 2-methyl-1-propanol (iso-butanol), and 2-butoxyethanol (butylcellosolve). In this paper, the results of the pyrolysis and adsorption experiments are presented along with practical implications. The primary findings include the following: (1) Black-paint chars showed substantially larger surface area and higher adsorption capacity (based on total weight) than white-paint chars which had high ash contents due to the white pigment, titanium dioxide; (2) the adsorption capacity of the paint-sludge char was between those of black-paint and white-paint chars, and was 5--20% that of a commercial activated carbon; (3) titanium dioxide in white-paint chars did not improve the chars` affinity for hydrophilic compounds such as 2-methyl-1-propanol and 2-butoxyethanol; (4) coal could be added to paint sludge to improve the quality of the resulting char and to reduce ash content; and (5) the pyrolysis of paint sludge could present an attractive opportunity for reusing and recycling a waste product for pollution abatement and as a vehicle component.

  16. Developmental toxicity of selenium to Dolly Varden char (Salvelinus malma).

    PubMed

    McDonald, Blair G; deBruyn, Adrian M H; Elphick, James R F; Davies, Martin; Bustard, David; Chapman, Peter M

    2010-12-01

    Gametes were collected from Dolly Varden char (Salvelinus malma) from waterbodies in a region exposed to mining-related selenium (Se) releases in British Columbia, Canada. Fertilized eggs were incubated in a laboratory and deformities were assessed on newly-hatched alevins using a graduated severity index. No effects were observed on egg or alevin survival or larval weight across the studied exposure range of 5.4 to 66 mg/kg dry weight in egg. Length of some larvae was reduced at the highest egg Se concentrations and a clear residue-response relationship was observed for larval deformity. The egg concentration corresponding to a 10% increase in the frequency of deformity (EC10) was 54 mg/kg dry weight, which is substantially higher than reported for other cold-water fish species. PMID:20891017

  17. Developmental toxicity of selenium to Dolly Varden char (Salvelinus malma).

    PubMed

    McDonald, Blair G; deBruyn, Adrian M H; Elphick, James R F; Davies, Martin; Bustard, David; Chapman, Peter M

    2010-12-01

    Gametes were collected from Dolly Varden char (Salvelinus malma) from waterbodies in a region exposed to mining-related selenium (Se) releases in British Columbia, Canada. Fertilized eggs were incubated in a laboratory and deformities were assessed on newly-hatched alevins using a graduated severity index. No effects were observed on egg or alevin survival or larval weight across the studied exposure range of 5.4 to 66 mg/kg dry weight in egg. Length of some larvae was reduced at the highest egg Se concentrations and a clear residue-response relationship was observed for larval deformity. The egg concentration corresponding to a 10% increase in the frequency of deformity (EC10) was 54 mg/kg dry weight, which is substantially higher than reported for other cold-water fish species.

  18. Animal bone char solubilization with itaconic acid produced by free and immobilized Aspergillus terreus grown on glycerol-based medium.

    PubMed

    Vassilev, Nikolay; Medina, Almudena; Eichler-Löbermann, Bettina; Flor-Peregrín, Elena; Vassileva, Maria

    2012-11-01

    Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L(-1)) and itaconic acid production (26.9 g L(-1)) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5-0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g L(-1) proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg L(-1) soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch.

  19. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  20. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  1. Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials.

    PubMed

    Bernardo, M; Mendes, S; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Lopes, H

    2014-09-01

    The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.

  2. Combustion and gasification characteristics of chars from raw and torrefied biomass.

    PubMed

    Fisher, E M; Dupont, C; Darvell, L I; Commandré, J-M; Saddawi, A; Jones, J M; Grateau, M; Nocquet, T; Salvador, S

    2012-09-01

    Torrefaction is a mild thermal pretreatment (T<300°C) that improves biomass milling and storage properties. The impact of torrefaction on the gasification and oxidation reactivity of chars from torrefied and raw biomass was investigated. Thermogravimetric analysis was used to study the differences in O(2) and steam reactivity, between chars prepared from torrefied and raw willow, under both high- and low-heating-rate conditions. High-heating-rate chars were prepared at 900°C with a residence time of 2s. Low-heating-rate chars were prepared with a heating rate of 33°C/min, a maximum temperature of 850 or 1000°C, and a residence time of 30 min or 1h, respectively, at the maximum temperature. Pretreatment by torrefaction consistently reduced char reactivity. Torrefaction's impact was greatest for high-heating-rate chars, reducing reactivity by a factor of two to three. The effect of torrefaction on a residence time requirements for char burnout and gasification was estimated.

  3. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    PubMed

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model.

  4. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    PubMed

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model. PMID:26523420

  5. The corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres

    SciTech Connect

    Douglas, D.L.; Bhide, V.S.; Vineberg, E.

    1981-08-01

    Six alloys, 310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 160/sup 0/C and 1800/sup 0/C. The chars, FMC and Husky, contained 2.7% and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was strictly sulfidation when the char was replenished every 24 hr or less. The kinetics of reaction were nearly linear with time. The reaction resulted in thick external sulfide scales with extensive internal sulfidation in the substrate. The kinetics and reaction-product morphologies suggested that diffusion through the sulfide scale played a minor role, and that an interfacial reaction was the rate-controlling step. A mathematical model was developed which supported this hypothesis. The reaction rates showed a relatively minor role on alloy composition, depending upon whether the alloys were tested singularly or in combination with others. Inconel 671, the best alloy in CGA environments, consistently corroded the most rapidly of the chromia-former types regardless of char sulfur content or of the temperature. Type 310 stainless was marginally better than Inconel 671. Incoloy 800 was intermediate, wheras, Haynes 188 and Hastelloy X exhibited the best corrosion resistance. The FeCrAlY alloys reacted very rapidly in the absence of preoxidation treatments. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None of the alloys will be acceptable for use in contact with char unless coatings are applied.

  6. From organic matter to pyrogenic char to ash: the role of smouldering combustion in wildfires

    NASA Astrophysics Data System (ADS)

    Rein, G.; Hadden, R.; Zarccone, C.

    2012-04-01

    Smouldering combustion of natural organic layers like peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. Smouldering wildlfires propagate slowly during several months consuming organic matter and threatening to release ancient carbon stored deep in the soil. Recent figures at the global scale estimate that on average, greenhouse gas emissions from smouldering peat is annually equivalent to ~15% of man-made emissions. In-depth spread over thick peat layers consumes biomass in the order of ~100 kg/m^2, this is 50 to 100 times larger than flaming fires. Because smouldering combustion involves both the production and consumption of pyrogenic char, it has become a topic of global interest linked to ecosystem perturbations, carbon sequestration and climate change. In this presentation, we investigate experimentally the chemical reactions and fate of organic matter during smouldering. Vertical and horizontal samples of peat (~100 g) are ignited on one side and a smouldering front is allow to freely propagate. We track the spread rate, mass loss rate, and the evolution of peat, char and ash mass fractions. We observed a heterogeneous kinetic scheme of three reactions: competing peat pyrolysis and peat oxidation, and subsequent char oxidation. The measurements show that char species is formed by the simultaneous pyrolysis and oxidation reactions, which initially results in net char production and later become net char consumption. Most of the energy for combustion propagation is released during char consumption. The carbon balance shows that the fraction of carbon in char is approximately 1.5 times higher than the virgin dry peat (70 vs. 51%). This results in a carbon density of the char approximately twice that of the peat (133 vs. 77 kg-C/m^3). Meanwhile, the carbon content of the ash is approximately half that of peat (27%, 10 kg-C/m^3). The rest of the carbon is emitted mostly as carbon dioxide and carbon

  7. Thermochemical tests on resins: Char resistance of selected phenolic cured epoxides

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1982-01-01

    Curing epoxy resins with novalac phenolic resins is a feasible approach for increasing intact char of the resin system. Char yields above 40% at 700 C were achieved with epoxy novalac (DEN 438)/novalac phenolic (BRWE 5833) resin systems with or without catalyst such as ethyl tri-phenyl phosphonium iodide. These char yields are comparable to commercially used epoxy resin systems like MY-720/DDS/BF3. Stable prepregs are easily made from a solvent solution of the epoxy/phenolic system and this provides a feasible process for fabrication of same into commercial laminates.

  8. Graphite fiber surface treatment to improve char retention and increase fiber clumping

    NASA Technical Reports Server (NTRS)

    Paul, J. T., Jr.; Weldy, W. E.

    1980-01-01

    Composites containing carbon and graphite fibers can release fibers into the atmosphere during a fire. This release can potentially cause failure in some types of electrical equipment. Reduced fiber dispersion during and after combustion will reduce risks. Epoxidized char forming systems were synthesized which will react with commercially available surface treated carbon fiber. Fibers modified with these char formers retained adhesion in a specific epoxy matrix resin. Small scale combustion testing indicates that using these char former modified fibers in laminates will help to reduce the dispersement of fibers resulting from exposure to fire without sacrificing resin to fiber adhesion.

  9. Complete mitochondrial genome of the white char Salvelinus albus (Salmoniformes, Salmonidae).

    PubMed

    Balakirev, Evgeniy S; Parensky, Valery A; Kovalev, Mikhail Yu; Ayala, Francisco J

    2016-09-01

    The complete mitochondrial genome was sequenced in two individuals of white char Salvelinus albus. The genome sequences are 16 653 bp in size, and the gene arrangement, composition, and size are very similar to the salmonid fish genomes published previously. The low level of sequence divergence detected between the genome of S. albus and the GenBank complete mitochondrial genomes of the Northern Dolly Varden char S. malma (KJ746618) and the Arctic char S. alpinus (AF154851) may likely be due to recent divergence of the species and/or historical hybridization and interspecific replacement of mtDNA.

  10. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  11. Subcellular distribution of trace elements and liver histology of landlocked Arctic char (Salvelinus alpinus) sampled along a mercury contamination gradient.

    PubMed

    Barst, Benjamin D; Rosabal, Maikel; Campbell, Peter G C; Muir, Derek G C; Wang, Xioawa; Köck, Günter; Drevnick, Paul E

    2016-05-01

    We sampled landlocked Arctic char (Salvelinus alpinus) from four lakes (Small, 9-Mile, North, Amituk) in the Canadian High Arctic that span a gradient of mercury contamination. Metals (Hg, Se, Tl, and Fe) were measured in char tissues to determine their relationships with health indices (relative condition factor and hepatosomatic index), stable nitrogen isotope ratios, and liver histology. A subcellular partitioning procedure was employed to determine how metals were distributed between potentially sensitive and detoxified compartments of Arctic char livers from a low- and high-mercury lake (Small Lake and Amituk Lake, respectively). Differences in health indices and metal concentrations among char populations were likely related to differences in feeding ecology. Concentrations of Hg, Se, and Tl were highest in the livers of Amituk char, whereas concentrations of Fe were highest in Small and 9-Mile char. At the subcellular level we found that although Amituk char had higher concentrations of Tl in whole liver than Small Lake char, they maintained a greater proportion of this metal in detoxified fractions, suggesting an attempt at detoxification. Mercury was found mainly in potentially sensitive fractions of both Small and Amituk Lake char, indicating that Arctic char are not effectively detoxifying this metal. Histological changes in char livers, mainly in the form of melano-macrophage aggregates and hepatic fibrosis, could be linked to the concentrations and subcellular distributions of essential or non-essential metals.

  12. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.

  13. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    PubMed

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.

  14. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    PubMed

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field. PMID:21958525

  15. Genetic analysis of sympatric char populations in western Alaska: Arctic char (Salvelinus alpinus) and Dolly Varden (Salvelinus malma) are not two sides of the same coin.

    PubMed

    Taylor, E B; Lowery, E; Lilliestråle, A; Elz, A; Quinn, T P

    2008-11-01

    The North Pacific Ocean has been of great significance to understanding biogeography and speciation in temperate faunas, including for two species of char (Salmonidae: Salvelinus) whose evolutionary relationship has been controversial. We examined the morphology and genetics (microsatellite and mitochondrial DNA) of Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) in lake systems in western Alaska, the eastern and western Arctic, and south of the Alaskan Peninsula. Morphologically, each lake system contained two forms: one (Arctic char) largely confined to lake habitats and characterized by greater numbers of pyloric caeca, gill rakers, and shallower bodies, and another (Dolly Varden) predominated in adjacent stream habitats and was characterized by fewer pyloric caeca, gill rakers, and deeper bodies. MtDNA partial (550 bp) d-loop sequences of both taxa were interspersed with each other within a single 'Bering' clade and demographic inferences suggested historical gene flow from Dolly Varden to Arctic char had occurred. By contrast, the taxa were strongly differentiated in sympatry across nine microsatellite loci in both lakes. Our data show that the two taxa are highly genetically distinct in sympatry, supporting their status as valid biological species, despite occasional hybridization. The interaction between these species highlights the importance of the North Pacific, and Beringia in particular, as an evolutionary wellspring of biodiversity.

  16. Pyrolysis of flax straw: Characterization of char, liquid, and gas as fuel

    NASA Astrophysics Data System (ADS)

    Tushar, Mohammad Shahed Hasan Khan

    The demand for energy continues to outstrip its supply and necessitates the development of renewable energy options. Biomass has been recognized as a major renewable energy source to supplement the declining fossil fuel source of energy. It is the most popular form of renewable energy and, currently, biofuel production is becoming more promising. Being carbon neutral, readily available, and low in sulphur content makes biomass a very promising source of renewable energy. In the present research, both the isothermal and non-isothermal pressurized pyrolysis of flax straw is studied for the first time. In case of isothermal pyrolysis, the influence of pyrolysis temperature and reaction time on char yield and morphology was investigated. The applied pyrolysis temperature was varied between 300 and 500°C. The reaction time was varied from 15 to 60 min. The char yield was found to decrease as pyrolysis temperature and reaction time increased. The char structure and surface morphology were thoroughly investigated by means of x-ray diffraction (XRD), temperature-programmed oxidation (TPO), and scanning electron microscopy (SEM). The degree of porosity and graphitization increased as pyrolysis temperature and time increased. In fact, the experiment performed at 500°C for 1h duration did not yield any char; only residual ash could be obtained. The TPO studies on the char samples corroborated the XRD findings and showed the presence of two types of carbon, namely, amorphous filamentous carbon and graphitic carbon. A thermogravimetric analysis (TGA) of the char was performed to gain an understanding of combustion kinetics and reactivity. It implied that the reactivity of the char decreases as temperature increases, and this finding is well supported by the TPO, TGA, SEM, and XRD characterization data. Furthermore, an empirical global model was devised based on the power law to estimate activation energy and other kinetic parameters. For the non-isothermal pressurized

  17. Synthesis and structural features of resorcinol-formaldehyde resin chars containing nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Galaburda, M. V.; Bogatyrov, V. M.; Skubiszewska-Zięba, J.; Oranska, O. I.; Sternik, D.; Gun'ko, V. M.

    2016-01-01

    A series of meso- and microporous carbons containing magnetic Ni nanoparticles (Ni/C) with a variety of Ni loadings were synthesized by a simple one-pot procedure through carbonization of resorcinol-formaldehyde polymers containing various amounts of nickel(II) acetate. Such composite materials were characterized by N2 sorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Transmission electron microscope (TEM). The XRD patterns reveal peaks corresponding to face centered cubic nickel with the average size of crystallites of 17-18 nm. SEM and TEM results reveal that the formation of the nanoparticles took place mainly in the carbon spheres (1-2 μm in size) and on the outer surface as well. The as-prepared composites are characterized by a core-shell structure with well-crystallized graphitic shells about 8-15 nm in thickness. The Raman spectra show that Ni content influences the structure of the carbon. It was also shown that the morphology (particle shape and sizes) and porosity (pore volume and pore size distribution) of the chars are strongly dependent on water and nickel contents in the blends. One of the applications of Ni/C was demonstrated as a magnetically separable adsorbent.

  18. Sorption of diuron, atrazine, and copper ion on chars with long-term natural oxidation in soils

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Lin, T.; Lai, C.

    2011-12-01

    Biochar has been proposed as a measure to sequestrate carbon (C) and to increase soil fertility in sustainable agriculture. However, its sorption characteristics to herbicides, such as lowing herbicides efficacy, may constrain its agricultural application. This assertion may be arguable because most studies so far were conducted with the newly produced char and barely considered the "ageing effect" of old char since it could be oxidized over long time. In this study, historical char samples were collected and compared with the newly produced char. Batch sorption studies of diuron, atrazine, and copper ion onto chars was performed. Greater sorption of Cu was observed on the historical char samples and reached a saturated sorption at 30 mg g-1 for Cu, much higher adsorption value than newly produced char at 4 mg g-1. In contrast, sorption of diuron and atrazine on newly produced char had the highest sorption capacity than the historical char samples. The historical chars also had much higher negative charge than the newly produced char, but its surface area were lower than the new char. The results indicated that change in surface functional groups through natural oxidation rather than the change of surface area may have more pronounced influences on sorption characteristics, in which the negative charge on the historical chars' surface could hinder the adsorption of diuron and atrazine while enhance the sorption to copper ion. Biological assay to test the toxicity of diuron and copper ion for both historical and new chars on rye seed were conducted and will be presented in our poster.

  19. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  20. Investigation of Celotex trademark charring depths in the DT-18 shipping container

    SciTech Connect

    Anderson, J.C.

    1992-03-01

    Celotex {trademark}, the insulating material used between the outer and inner containers of the DT-18 shipping package, undergoes decomposition, combustion, or both when heated to temperatures exceeding 150{degrees}C. Several DT-18 packages that had previously undergone hypothetical thermal accident testing were opened and Celotex {trademark} charring depths ranging from {1/2} to 1 {1/2} in. were recorded. The majority of char depth data taken was between 3/4 and 1 {1/4} in. One-dimensional HEATING 7.1 models of the DT-18 package were developed. HEATING predicts charring depths of 1 to 1 1/8 in., which are in good agreement with measured values. Both experimental and analytical data indicate that charring is fairly uniform over the DT-18 package. 7 refs.

  1. Investigation of Celotex{trademark} charring depths in the DT-18 shipping container

    SciTech Connect

    Anderson, J.C.

    1992-03-01

    Celotex {trademark}, the insulating material used between the outer and inner containers of the DT-18 shipping package, undergoes decomposition, combustion, or both when heated to temperatures exceeding 150{degrees}C. Several DT-18 packages that had previously undergone hypothetical thermal accident testing were opened and Celotex {trademark} charring depths ranging from {1/2} to 1 {1/2} in. were recorded. The majority of char depth data taken was between 3/4 and 1 {1/4} in. One-dimensional HEATING 7.1 models of the DT-18 package were developed. HEATING predicts charring depths of 1 to 1 1/8 in., which are in good agreement with measured values. Both experimental and analytical data indicate that charring is fairly uniform over the DT-18 package. 7 refs.

  2. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  3. Coal combustion: Effect of process conditions on char reactivity. Quarterly technical report, September 1, 1991--December 1, 1991

    SciTech Connect

    Zygourakis, K.

    1991-12-31

    The project will quantify the effect of the following pyrolysis conditions on the macropore structure and on the subsequent reactivity of chars: (a) pyrolysis heating rate; (b) final heat treatment temperature (HTT); (c) duration of heat treatment at HTT (or soak time); (d) pyrolysis atmosphere (N{sub 2} or O{sub 2}/N{sub 2} mixtures); (e) coal particle size (100 {endash} 1000 {mu}m in diameter); (f) sulfur-capturing additives (limestone); and (g) coal rank. Pyrolysis experiments will be carried out for three coals from the Argonne collection: (1) a high-volatile bituminous coal with high ash content (Illinois {number_sign}6), (2) a bituminous coal with low ash content (Utah Blind Canyon) and (3) a lower rank subbituminous coal (Wyodak-Anderson seam).

  4. Study of char gasification in a differential fixed-bed reactor

    SciTech Connect

    Sotirchos, S.Y.; Crowley, J.A.

    1985-01-01

    The reaction of a low-ash coconut char with CO/sub 2/ was studied in a flow-type reaction/adsorption apparatus equipped with a thermal conductivity detector. The gaseous reactant (CO/sub 2/) is used as carrier gas. The concentration of CO in the product stream and hence the reaction rate, is monitored continuously by the TC detector. The experimental data obtained in this study are compared with the predictions of models for char gasification.

  5. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    SciTech Connect

    Kuchynka, D.

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  6. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents. PMID:27160635

  7. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.

  8. Sulfidation of a Novel Iron Sorbent Supported on Lignite Chars during Hot Coal Gas Desulfurization

    NASA Astrophysics Data System (ADS)

    Yin, Fengkui; Yu, Jianglong; Gupta, Sushil; Wang, Shaoyan; Wang, Dongmei; Yang, Li; Tahmasebi, Arash

    The sulfidation behavior of novel iron oxide sorbents supported using activated-chars during desulfurization of hot coal gases has been studied. The sulfidation of the char-supported sorbents was investigated using a fixed-bed quartz reactor in the temperature range of 673K to 873K. The product gases were analyzed using a GC equipped with a TCD and a FPD detector. The sorbent samples before and after sulfidation were examined using SEM and XRD.

  9. Effect of volatile-char interaction on the NO emission from coal combustion.

    PubMed

    Yao, Mingyu; Che, Defu; Liu, Yanhua; Liut, Yinhe

    2008-07-01

    To clarify the effects of volatile-char interaction on the redistribution of fuel-N to N2 during devolatilization and the reduction of NO through gas-solid reactions during combustion, two types of experiments were performed on a novel reactor. The separate combustion of volatile and char and the combustion of entrained pulverized coal, and the formation of NO was examined between 800 and 1100 degrees C by using four typical Chinese coals with different ranks. The effect of volatile-char interaction on fuel-N conversion to NO during combustion was elucidated through comparing the NO emissions from the two types of combustion experiments. The results show that the volatile-char interaction is more important in the redistribution of fuel-N to N2 during devolatilization than in the reduction of NO over 900 degrees C, and a contrary conclusion is obtained below 850 degrees C for all used coals. A specific parameter has been proposed to characterize the relative importance of the volatile-char interaction in the redistribution of fuel-N to N2 during devolatilization to the interaction in the reduction of NO to N2 during simulataneous combustion of volatile and char. The results are of significance for minimizing the NO formation in industrial combustion processes.

  10. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption

    NASA Astrophysics Data System (ADS)

    Leng, Lijian; Yuan, Xingzhong; Huang, Huajun; Shao, Jianguang; Wang, Hou; Chen, Xiaohong; Zeng, Guangming

    2015-08-01

    Bio-chars produced by liquefaction of sewage sludge with methanol, ethanol, or acetone as the solvent at 260-380 °C were characterized in terms of their elemental composition, thermogravimetric characteristics, surface area and pore size distribution, and oxygen-containing functional groups composition. The surface area and total volume of the bio-chars were low, but the contents of oxygen-containing functional groups were high. The bio-chars were effective on Malachite green (MG) and Methylene blue (MB) removal from aqueous solution. The MG adsorption equilibrium data showed excellent fit to the Langmuir model and the kinetic data fitted well to the Pseudo-second-order model. Thermodynamic investigations indicated that MG adsorption on bio-char was spontaneous and endothermic. The MG adsorption mechanism appears to be associated with cation release and functional group participation. Additionally, liquefaction of SS with acetone as the solvent at low temperature (280 °C) would favor the production of bio-char adsorbent in terms of bio-char yield and MG and MB adsorption capacity.

  11. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution

    USGS Publications Warehouse

    Tsui, L.; Roy, W.R.

    2008-01-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N2. In contrast, when the corn stillage was pyrolyzed under N2, the yield was only 22%. The N2-BET surface area of corn stillage activated carbon was 439 m2/g, which was much greater than the maximum compost char surface area of 72 m2/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N2-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon. ?? 2007 Elsevier Ltd. All rights reserved.

  12. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number.

  13. Characterization of chars produced in the co-pyrolysis of different wastes: decontamination study.

    PubMed

    Bernardo, M; Gonçalves, M; Lapa, N; Barbosa, R; Mendes, B; Pinto, F

    2012-03-15

    The present work is devoted to the study of the decontamination of chars obtained in the co-pyrolysis of plastics, biomass and tyre wastes. The chars were extracted with several organic solvents of different polarities either individually or in sequence. The ability of each selected extractant to remove toxic pollutants was evaluated by comparing the extraction yields and by characterizing the crude extracts with a combination of chemical analysis and toxicity bioassays. Also, the mineral composition of the treated and non-treated chars was assessed. The results obtained in this study indicate that hexane is the more efficient extraction solvent to be used in the organic decontamination of chars obtained in the co-pyrolysis of plastics, tyres and biomass. A sequential extraction with solvents of increasing polarity can provide a better decontamination of the raw pyrolysis char than any individual extraction. The compounds removed from the char during the decontamination process are mainly aliphatic hydrocarbons and aromatic hydrocarbons, therefore a material that may be upgraded to be used as a fuel and/or as raw material for the organic chemical industry. PMID:21899951

  14. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  15. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry

    SciTech Connect

    McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J.

    2007-09-15

    We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues are indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.

  16. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.

  17. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    SciTech Connect

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  18. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation

    PubMed Central

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-01-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2–3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char. PMID:26356310

  19. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation.

    PubMed

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-08-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.

  20. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Ullah, Sami; Ahmad, Faiz; Shariff, A. M.; Bustam, M. A.

    2014-10-01

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.

  1. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    SciTech Connect

    Ullah, Sami Shariff, A. M. E-mail: azmibustam@petronas.com.my; Bustam, M. A. E-mail: azmibustam@petronas.com.my; Ahmad, Faiz

    2014-10-24

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.

  2. Integrated methods for production of clean char and its combustion properties

    SciTech Connect

    DeBarr, J.A.

    1991-01-01

    The overall objective of this two-year program is to produce clean char using an integrated process scheme which combines physical coal cleaning, mild gasification and char oxydesulfurization. Low sulfur chars which could be used in utility boilers to meet 1995 emission standards of 2.5 lbs DO{sub 2}/MMBtu are produced from Illinois coals having emissions of >5 lbs SO{sub 2}/MMBtu. Mild gasification and low temperature oxidation studies for sulfur removal are conducted with selected coals from the Illinois Basin Coal (IBC) Sample Program in a batch fixed-bed reactor at the ISGS. Pound quantities of chars for combustion testing are prepared in a continuous rotary kiln reactor under optimized conditions of mild gasification and oxydesulfurization. Burning characteristics and ash deposition behaviors of desulfurized chars are determined to ensure that a useable fuel is produced. These tests are done at the University of North Dakota Energy and Environmental Research Center (UNDEERC) in a drop tube furnace (DTF), and at the US EPA in a 14 kW pilot-scale combustor. In some tests, methane is examined as an auxiliary fuel, and high-surface-area hydrated lime developed at ISGS is used to further reduce SO{sub 2} emissions. Complete analyses of the fuels are obtained to aid char desulfurization studies and help explain combustion and SO{sub 2} emission characteristics of the char. This project is a cooperative effort between the ISGS, UNDEERC and the US EPA and is cost-shared with US EPA and the US DOE through UNDEERC.

  3. Gasification of the char derived from distillation of granulated scrap tyres.

    PubMed

    López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén; López-Delgado, Aurora; Fermoso, Javier

    2012-04-01

    This work reports the effect of pressure on the steam/oxygen gasification at 1000°C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank. In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34MJkg(-1). The combustion properties of the char (E(A)≈50 kJ mol(-1)), its temperature of self-heating (≈264°C), ignition temperature (≈459°C) and burn-out temperature (≈676°C) were found to be similar to those of a semi-anthracite. It is observed that the yield, H(2) and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm(3)kg(char)(-1) of syngas was produced, containing 28%v/v of H(2) and CO and with a HHV around 3.7 MJ Nm(-3). At 1.5 MPa, the syngas yield achieved 4.9N m(3)kg(char)(-1) with 30%v/v of H(2)-CO and HHV of 4.1 MJ Nm(-3). Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa. It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure.

  4. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  5. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  6. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  7. Integrated methods for production of clean char and its combustion properties. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Gullett, B.K.; Benson, S.A.; Toman, D.L.

    1992-08-01

    The overall objective of this two-year program is to produce low sulfur char using an integrated process scheme which combines physical coal cleaning, mild gasification and char desulfurization. The goal of the project is to produce chars with 50% or more lower sulfur emissions than that of the parent coal, and at minimum meet 1995 emission standards of 2.5 lbs S0{sub 2}/MMBtu. This project is a cooperative effort between the ISGS, UNDEERC and the US EPA and is cost-shared with the US EPA and the US DOE through UNDEERC. Mild gasification and char desulfurization studies are conducted with six coals selected from the Illinois Basin Coal (IBC) Sample Program in a batch fluidized-bed reactor at the ISGS. Pound quantities of chars for combustion testing are prepared in a continuous rotary kiln reactor under optimized conditions of mild gasification and char desulfurization. Burning characteristics and ash deposition behaviors of desulfurized chars are determined at the US EPA in a 14 kill pilot-scale combustor and at UNDEERC in a drop tube furnace (DTF). In some tests, methane is examined as an auxiliary fuel, and high-surface-area hydrated lime developed at ISGS is used to further reduce S0{sub 2} emissions. Complete analyses of the fuels are obtained to aid char desulfurization studies and help explain combustion and S0{sub 2} emission characteristics of the char.

  8. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-03-01

    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.

  9. Coal combustion: Effect of process conditions on char reactivity. Quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect

    Zygourakis, K.

    1995-08-01

    The project will quantify the effect of the following pyrolysis conditions on the macropore structure and on the subsequent reactivity of chars: (a) pyrolysis heating rate; (b) final heat treatment temperature (HTT); (c) duration of heat treatment at HTT (or soak time); (d) pyrolysis atmosphere (N{sub 2} or O{sub 2}/N{sub 2} mixtures); (e) coal particle size (100--1000 {mu}m in diameter); (f) sulfur-capturing additives (limestone); and (g) coal rank. Pyrolysis experiments will be carried out for three coals from the Argonne collection: (1) a high-volatile bituminous coal with high ash content (Illinois {number_sign}6), (2) a bituminous coal with low ash content (Utah Blind Canyon) and (3) a lower rank subbituminous coal (Wyodak-Anderson seam). A systematic study was carried out in the past quarter to validate the mathematical model for ignition phenomena presented in the previous quarterly report. Model predictions of the effect of pyrolysis heating rate, particle size, and oxygen concentration on ignition behavior are in excellent agreement with experimental results. Moreover, our results show that the model can be used to estimate the particle temperature during ignition and the minimum ignition temperature for various process conditions.

  10. Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance

    NASA Astrophysics Data System (ADS)

    Elmquist, Marie; Cornelissen, Gerard; Kukulska, Zofia; Gustafsson, Örjan

    2006-06-01

    Sequestration in sediments of black carbon (BC) from vegetation fires and fuel combustion may constitute a significant sink of otherwise rapidly cycling carbon from the atmosphere-biosphere cycle. It also has the potential to provide a historical record of atmospheric BC loadings. Previous treatments of BC as one homogeneous entity are being replaced with the growing awareness of a BC combustion continuum, a range spanning from slightly charred biomass to soot and graphite. Here the relative recalcitrance of different BC forms is evaluated, and implications for both BC quantification and environmental stability are considered. The stabilities of four BC reference materials against thermal oxidation in air were quite distinct with T50%BC values (i.e., the temperature where 50% BC remained in the residue) of 444°C (diesel soot-BC), 388°C (n-hexane soot-BC), 338°C (wood char-BC), and 266°C (grass char-BC). The implications for BC quantification have been illustrated for a thermal oxidation (the CTO-375) method commonly applied to study BC in sediments. This technique measured BC:TOC ratios of 78.3 ± 1.3% for the diesel soot-BC and 45.3 ± 6.1% for n-hexane soot-BC, whereas no CTO375-BC was detected for the two analyzed char-BC materials. The greater lability of char-BC compared to soot-BC likely reflects higher accessibility to internal microporosity in char-BC, facilitating internal O2 transfer. Decreasing the temperature cutoff below 375°C to also include char-BC is not possible as thermograms of nonpyrogenic reference materials indicated that such material would then be artifactually quantified as BC. The presence of mineral oxides in the sediment matrix may lead to a catalytically mediated lowering of the activation energy for soot-BC oxidation but not for char-BC or nonpyrogenic organic material. Several recent studies combine to challenge the proposition of complete recalcitrance of BC. Particularly, the thermal lability of char-BC from grassland fires

  11. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration.

    PubMed

    Mao, J-D; Johnson, R L; Lehmann, J; Olk, D C; Neves, E G; Thompson, M L; Schmidt-Rohr, K

    2012-09-01

    Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of ~6 fused aromatic rings substituted by COO(-) groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S. (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (~40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.

  12. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  13. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration.

    PubMed

    Mao, J-D; Johnson, R L; Lehmann, J; Olk, D C; Neves, E G; Thompson, M L; Schmidt-Rohr, K

    2012-09-01

    Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of ~6 fused aromatic rings substituted by COO(-) groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S. (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (~40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter. PMID:22834642

  14. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    PubMed

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. PMID:22325640

  15. Char characterization-thermal decomposition chemistry of poly(vinyl alcohol)

    SciTech Connect

    Gilman, J.W.; VanderHart, D.L.; Kashiwagi, Takashi

    1995-12-01

    Currently, due to concerns over the environmental effects of halogenated compound, there is an international demand for the control of polymer flammability without the use of halogenated additives. An alternative to the use of halogenated fire retardants, which control flammability primarily in the gas phase, is to control polymer flammability by manipulating the condensed phase chemistry. Our approach is to increase the amount of char that forms during polymer combustion. Char formation reduces, through crosslinking reactions, the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat feedback to the polymer surface. The char also insulates the underlying virgin polymer. The polymer we chose to investigate was polyvinyl alcohol, PVA, because it is one of the few linear, non-halogenated, aliphatic, polymers with a measurable (approximately 4%) char yield. We report the CP/MAS {sup 13}C NMR characterization of the fundamental condensed phase processes and structures which lead to char formation during the pyrolysis of poly (vinyl-alcohol), PVA, and PVA with nonhalogenated additives.

  16. Study of arsenic(V) adsorption on bone char from aqueous solution.

    PubMed

    Chen, Yun-Nen; Chai, Li-Yuan; Shu, Yu-De

    2008-12-15

    Arsenic is a toxic element and may be found in natural waters as well as in industrial waters. Leaching of arsenic from industrial wastewater into groundwater may cause significant contamination, which requires proper treatment before its use as drinking water. The present study described the removal of As(V) on bone char in batch studies conducted as a function of pH, dosage of adsorbent, and contact time. Kinetics revealed that uptake of As(V) ion by bone char was very rapid in the first 30min and equilibrium time was independent of initial As(V) concentration. And the adsorption process followed a first-order kinetics equation. The arsenic removal was strongly dependent on pH and dosage of adsorbent. Fourier transform infrared spectra of bone char before and after As(V) adsorption demonstrated that Ca-OH functional group plays an important role for As(V) ions removal, and the mechanisms of the removal of As(V) on bone char was complex mechanism where both co-precipitation and ion exchange. The results suggested that bone char can be used effectively for the removal of As(V) ion from aqueous solution.

  17. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    PubMed

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated.

  18. Pyrolysis of tire rubber: Porosity and adsorption characteristics of the pyrolytic chars

    SciTech Connect

    Miguel, G.S.; Fowler, G.D.; Sollars, C.J.

    1998-06-01

    Tire rubber has been pyrolyzed at various temperatures under a nitrogen atmosphere. The resulting chars have been analyzed for their porosity using nitrogen gas adsorption and for their aqueous adsorption characteristics using phenol, methylene blue, and the reactive dyes Procion Turquoise H-A and Procion Red H-E3B. Nitrogen adsorption isotherms were modeled to the BET and Dubinin-Astakhov (DA) equations to determine effective surface areas, mesopore volumes, and micropore volumes. Results showed that pyrolysis of tire rubber was essentially complete at 500 C and resulted in a char yield of approximately 42 wt%. Pyrolytic chars exhibited BET surface areas up to 85 m{sup 2}/g and micropore volumes up to 0.04 mL/g. Owing to their poorly developed micropore structure, the pyrolytic chars exhibited limited aqueous adsorption capacity for compounds of small molecular weight, such as phenol. However, the chars possessed significantly greater adsorption capacity for species of large molecular weight which was attributed to the presence of large mesopore volumes (up to 0.19 mL/g).

  19. Combustion of dense streams of coal particles

    SciTech Connect

    Annamalai, K.

    1992-01-01

    Ignition of the high volatile isolated coal particles in vitiated environment seems to occur heterogeneously at the leading edge of the particle. Volatiles are observed to be ejected upward as jets in the direction of the convective flow but only after heterogeneous ignition. The volatiles burn in the gas phase homogeneously and form a wake flame; a black inner zone (unburned volatile) is formed (see Fig.A.3 for many common characteristics of isolated flames).Intermittent volatile ignition and combustion are observed to occur during the combustion process for a few of the isolated particle combustion experiments on high volatile non-swelling coal. The medium volatile coal particles ignite faster than the high volatile coal; but the intermittent ignition is not observed. The low volatile isolated coal particles combust in shorter time. The isolated char particles ignite at the surface of the particle heterogeneously with little volatile ejected, yet are not sufficient to form a volatile flame, resulting in a subsequent heterogeneous combustion. A group flame is formed for the two-particle arrays at closer interparticle spacing (Fig.A.4). Also, intermittent ignition does not occur for the high volatile particles when the two particles are at farther distances which suggests that radiation interaction between the particles might be occurring. However this conclusion is purely speculative. The char arrays experience heterogeneous ignition at the leading edge; combustion proceeds heterogeneously.

  20. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  1. Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.

    2011-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  2. Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.

    2010-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  3. A computational study of heterogeneous char reactions in a full-scale furnace

    SciTech Connect

    Mann, A.P.; Kent, J.H. . Dept. of Mechanical Engineering)

    1994-10-01

    Driven by the need for more efficient means of power generation, computational simulation of furnace operation has assumed an increasingly important role. Computational tools make it possible to predict trends in furnace performance characteristics, such carbon burnout, with reasonable accuracy. Char burnout in a furnace occurs primarily by reaction with molecular oxygen in the surrounding gas. Consequently, most models of carbon burnout used in furnace codes only consider the char-O[sub 2] reaction. However, char reactions with other gas phase species, such as carbon dioxide and water become important where oxygen concentrations are low. Using a numerical model of a full-scale tangentially fired furnace, this work quantifies the relative importance of these reactions.

  4. Determination of the calcium species in coal chars by Ca K-edge XANES analysis

    NASA Astrophysics Data System (ADS)

    Liu, Li-Juan; Liu, Hui-Jun; Cui, Ming-Qi; Hu, Yong-Feng; Zheng, Lei; Zhao, Yi-Dong; Ma, Chen-Yan; Xi, Shi-Bo; Yang, Dong-Liang; Guo, Zhi-Ying; Wang, Jie

    2013-02-01

    Ca-based additives have been widely used as a sulfur adsorbent during coal pyrolysis and gasification. The Ca speciation and evolution during the pyrolysis of coal with Ca additives have attracted great attention. In this paper, Ca species in the coal chars prepared from the pyrolysis of Ca(OH)2 or CaCO3-added coals are studied by using Ca K-edge X-ray absorption near-edge structural spectroscopy. The results demonstrate that Ca(OH)2, CaSO4, CaS and CaO coexist in the Ca(OH)2-added chars, while Ca(OH)2 and CaSO4 are the main species in the Ca(OH)2-added chars. Besides, a carboxyl-bound Ca is also formed during both the pyrolysis for the Ca(OH)2-added and the CaCO3-added coals. A detailed discussion about the Ca speciation is given.

  5. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  6. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  7. Pyrolysis of pine and gasification of pine chars--influence of organically bound metals.

    PubMed

    Aho, A; DeMartini, N; Pranovich, A; Krogell, J; Kumar, N; Eränen, K; Holmbom, B; Salmi, T; Hupa, M; Murzin, D Yu

    2013-01-01

    Pyrolysis of pine and gasification of pine chars was studied in this work, focusing on the influence of organically bound metals. Selective leaching of the major ash-forming elements in pine wood was performed with different acids, namely, nitric, sulfuric, hydrochloric and oxalic acids. No other major changes in the chemical composition of the biomass were observed except the removal of the metals. The effect of organically bound sodium, potassium, magnesium and calcium was studied in both pyrolysis and gasification. Removal of the metals had a positive effect on the pyrolysis, resulting in higher bio-oil, lower char and gas yields. PMID:23196217

  8. Mathematical modeling of pneumatic char injection in a direct reduction rotary kiln

    SciTech Connect

    Ramakrishnan, V.; Sai, P.S.T.

    1999-10-01

    A one-dimensional steady-state mathematical model is proposed for direct reduction process in rotary kilns akin to the SL/RN process. The model takes into account pneumatic coal char injection from the discharge end of the kiln to supplement the heat availability. The model is based on material and energy conservation principles, and the empirical equations for kinetics and heat transfer are obtained from the literature. Predictions are carried out for both iron oxide reduction and ilmenite beneficiation processes. Improvement in the performance was predicted with pneumatic char injection.

  9. A comparison of the charring and carbonisation of oxygen-rich precursors with the thermal reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    McDonald-Wharry, John; Manley-Harris, Merilyn; Pickering, Kim

    2015-12-01

    Chars and carbonised chars were produced from two oxygen-rich precursors (Phormium tenax leaf fibres and sucrose crystals) and compared to thermally reduced graphene oxide (TRGO) samples using a range of analytical techniques. A hypothesis that carbonised chars are chemically and nanostructurally more similar to TRGOs than to other proposed structural analogues such as graphites and fullerenes was investigated. The greatest similarities in chemical structural features were observed between the well-carbonised chars and thermally reduced graphene oxide both of which had been prepared using heat treatment temperatures above ≈700 °C. However, thermal analysis and infra-red spectroscopy demonstrated how the char formation process differs from the early stages of the thermal reduction of graphene oxide. Major differences in morphology between TRGOs and various chars were also clearly observable using scanning electron microscopy. Prominent signals indicating the presence of aromatic C-H functional groups were observable in char samples and negligible in the thermally reduced graphene oxide samples when both were analysed by infra-red spectroscopy. The similarities and differences on a nanostructural scale between carbonised chars and thermally reduced graphene oxide are discussed with a focus on clarifying existing models for non-graphitisable carbons produced from oxygen-rich precursors.

  10. Influence of sulfur in coals on char morphology and combustion. Technical report, 1 September 1991--30 November 1991

    SciTech Connect

    Marsh, H.

    1991-12-31

    During coal carbonization (pyrolysis), as during the combustion process of pulverized coal in a combustor, not all of the sulfur is released. Significant proportions become pat of the structure of the resultant coke and char. The combustion process of the char within the flames of the combustor in influenced dominantly by char morphology. This, in turn, controls the accessibility of oxidizing gases to the surfaces of the carbonaceous substance of the char. Mineral matter content, its extent and state of distribution, also exerts an influence on char morphology created during pyrolysis/carbonization. This complexity of coal renders it a very difficult material to study, systematically, to distinguish and separate out the contributing factors which influence combustion characteristics. Therefore, in such circumstances, it is necessary to simplify the systems by making use of model chars/cokes/carbons which can be made progressively more complex, but in a controlled way. In this way complicating influence in chars from coals can be eliminated, so enabling specific influences to be studied independently. It is important to note that preliminary work by Marsh and Gryglewicz (1990) indicated that levels of sulfur of about 3 to 5 wt % can reduce reactivities by 10 to 25%. The overall purpose of the study is to provide meaningful kinetic data to establish, quantitatively, the influence of organically-bound sulfur on the reactivity of carbons, and to ascertain if gasification catalysts are effective in the preferential removal of sulfur from the chars.

  11. Reactivity of young chars via energetic distribution measurements. Final report, 1 September 1990--31 December 1994

    SciTech Connect

    Calo, J.M.; Zhang, L.; Lu, W.; Lilly, W.D.

    1996-01-01

    We have developed what we believe to be the very first, a priori, correlation/prediction technique for the gasification reactivity of coal char. With this method the gasification reactivity of a coal char as a function of temperature can be correlated using the data from a temperature programmed desorption (TPD) experiment following gasification under conditions where the reactivity is controlled by the thermal desorption of oxygen surface complexes formed during gasification. The current project was directed at extending and developing related techniques for the characterization and prediction/correlation of the reactivity of the ``young`` chars to CO{sub 2} and steam. Of particular interest was mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions.

  12. Combustion properties of coal-char blends: NO{sub x} emission characteristics. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Rostam-Abadi, M.; Khan, L.; Khan, S.; Smoot, L.D.; Germane, G.J.; Eatough, C.N.

    1993-09-01

    Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO{sub x} by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower NO{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x}, emissions. The project will provide important combustion data required to establish the feasibility of utilizing chars in industrial combustion applications and the advantages of burning coal-char blends in reducing NO{sub x} and SO{sub 2} emissions. During the reporting period, 19 runs were made with a continuous feed charring oven (CFCO) to produce 237 pounds of char(about 16%vm) required for preparing coal-char blends.

  13. Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800{degree}C

    SciTech Connect

    Xin Guo; Hui Ling Tay; Shu Zhang; Chun-Zhu Li

    2008-11-15

    Char structure is an important factor influencing its reactivity during gasification. This study aims to investigate the changes in char structure during the gasification of brown coal. A Victorian brown coal was gasified in a fluidized-bed/fixed-bed reactor at 800{degree}C in atmospheres containing 15% H{sub 2}O, 2000 ppm O{sub 2}, or 15% H{sub 2}O and 2000 ppm O{sub 2}, respectively. Although the char gasification in 2000 ppm O{sub 2} was mainly rate-limited by the external diffusion of O{sub 2}, the char-H{sub 2}O reaction was mainly rate-limited by the chemical reactions. The structural features of char at different levels of char gasification conversion were examined with FT-Raman spectroscopy. Our results show that the chars from the gasification in the mixture of 2000 ppm O{sub 2} and 15% H{sub 2}O had almost the same features as the chars from the gasification in 15% H{sub 2}O alone when the same levels of char conversion were achieved. Both the thermal decomposition of char and the char gasification reactions could result in changes in char structure during gasification. 29 refs., 5 figs., 1 tab.

  14. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  15. The role of pore structure on char reactivity

    SciTech Connect

    Sarofim, A.F.

    1993-01-01

    The principal areas being looked at currently are using the fluidized bed for large particles and thermo-gravimetric analyzer (TA) for soot reactions. The fluidized bed will be used to work on the large particles. Early on, it was decided that only one particle would be examined, that it should be removable at any point in the reaction, and that a continuous CO[sub 2] analyzer be used to give better resolution in the bed. The soot particles needed to test the TA are being examined and modified to meet our needs. Since we wish to examine the evolution of the distance between graphite planes as the soot reacts, we felt that slight graphitization needed to take place in order to give good X-ray diffraction results. The corresponding TEM pictures of the soots at for the base soot and after 1500[degrees]C graphitization are shown in Figures 1 and 2. As can be seen, there as a fairly substantial amount of graphitization by 1500[degrees]C, as expected from Busek's work.

  16. Can chlorofluorocarbon sorption to black carbon (char) affect groundwater age determinations?

    PubMed

    Choung, Sungwook; Allen-King, Richelle M

    2010-06-15

    Although adsorption is not generally considered important in low f(oc) (fraction organic carbon) aquifers, we show that chlorofluorocarbon (CFC) adsorption to black carbon (BC) is sufficiently large to retard transport and affect groundwater ages obtained with CFCs. Sorption isotherms of CFC-11, -12, and -113 to synthetic wood char were nonlinear (Freundlich n = 0.71-0.94) while humic acid isotherms were linear. Moreover, sorption to char was 10-1000 times greater than to humic acid for all three CFCs at the lowest observed concentrations, C(w)/S approximately 10(-8)-10(-7). We used the observed isotherms for char and humic acid to represent sorption to BC and amorphous organic matter, respectively, in a dual mode model to estimate retardation factors for a low f(oc) aquifer (= 0.06% gC g(-1)). The estimated retardation factors for the char-containing aquifer (presumed BC fraction = 9% of f(oc)) were approximately 6.8-10.6 at C(w)/S = 10(-8) and >5 times those estimated assuming amorphous organic matter partitioning only. The results indicate that unless CFC adsorption to BC is evaluated in transport, the groundwater age determined may be biased toward older than true ages. The CFC data archived in BC-containing aquifers may contain information about its adsorbent properties that could be useful to predict retardation of other chlorinated organic contaminants.

  17. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD...

  18. Role of char during reburning of Nnitrogen oxides. Second quarterly report, 1996

    SciTech Connect

    Chen, Wei-Yin; Fan, L.T.; Lu, Te-Chang; Tang, Lin; Meng, Fang

    1996-07-01

    Reburning is an emerging three-stage combustion technology designed for the reduction of NO by introducing a small amount of reburning fuel above the primary flame where the majority of NO is chemically reduced to nitrogen. While coal, in general, has not been considered an effective reburning fuel, research at the University of Mississippi suggested that lignite has a reburning efficiency even higher than that of methane. Furthermore, heterogeneous mechanisms are more important than homogeneous mechanisms for char/NO reaction. The objectives of this research are to investigate: (1) implications of pore structure analysis, (2) parameters governing heterogeneous reactions, and (3) estimation of rates of NO reduction and mass transfer limitations. Experiments have been performed in a flow reactor with a simulated fuel gas at a stoichiometric ratio (SR) 1.1. Reburning fuels in this study include chars derived from Pittsburgh No.8 bituminous coal and Mississippi lignite. Chars were produced in N{sub 2} by suspending a sample basket in a tube furnace. Pore structure analyses include BET-N{sub 2}, BET-CO{sub 2}, and DR-CO{sub 2} surface pore size distribution, micropore volume, total pore volume, and average pore radius. These studies suggest that neither BET-N{sub 2} nor DR- CO{sub 2} surface area is a normalization factor of chars of different origin. Reaction with NO leads to closures of pores, which may be contributed by formation of surface complexes.

  19. Microscopic and spectroscopic features of gunpowder and its documentation in gunshot wounds in charred bodies.

    PubMed

    Dolinak, David; Wise, Steven H; Jones, Curtiss

    2008-12-01

    Determining the direction and range of fire of gunshot wounds in charred bodies can be difficult because soot resulting from thermal injury can grossly be identical to soot arising from a contact or close-range firearm discharge. Two charred bodies had gunshot wounds of the head and neck region that were distorted by thermal effect, precluding determination of the direction and range of fire by gross findings alone. By microscopy, deep wound tissue from each charred body had foreign material suggestive of gunpowder. Samples of the foreign material were examined by Fourier transform infrared (FT-IR) microscopy and determined to be cellulose nitrate (nitrocellulose), a main component of gunpowder. In addition, 12 cases of suicide in well-preserved bodies with contact gunshot wounds were examined with FT-IR microscopy, confirming the presence of cellulose nitrate in 6 (50%) of the cases. Identification of cellulose nitrate in the tracks of gunshot wounds can assist in the determination of direction and range of fire when the surface features are charred.

  20. Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Char produced from the gasification of post-seed harvest Kentucky bluegrass residues could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might h...

  1. Char-amended farm soils – effects on soil chemistry and wheat growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm gasification of agricultural residues, the non-food byproducts from crop harvests, could provide a means to generate value-added income from the production of fuel or electrical generation. Char produced during the process also has potential value as a soil amendment to adjust acid soil pH (...

  2. SwiftLase: a new technology for char-free ablation in rectal surgery

    NASA Astrophysics Data System (ADS)

    Arnold, David A.

    1995-05-01

    We describe layer-by-layer char-free ablation of hemorrhoids and other rectal lesions at very low CO2 laser power levels with a miniature `SwiftLaser' optomechanical flashscanner. Increased speed with excellent control, very shallow thermal damage, and less postoperative pain are the main advantages of the flashscan technology in rectal surgery.

  3. Microanalysis of vitrous char and associated polymers: reference and ancient assemblages

    NASA Astrophysics Data System (ADS)

    Allue, E.; Bonnamy, S.; Courty, M. M.; Gispert I Guirado, F.

    2012-12-01

    Formation of vitrous char that occur in ancient charcoal assemblages have remained unsolved. Laboratory experiments refuted vitrification to resulting from high temperature charring of green or resinous wood. This puzzling problem has been refreshed by showing the association to the charcoal and vitrous char of plastics that were originally supposed to only be produced by petroleum industry. Extraction of similar polymers within geological glassy products from cosmic airbursts has suggested impact processes to possibly forming the carbonaceous polymorphs. The pulverisation at the ground in the Angles village (French Eastern Pyrenees) following the 2011 August 2nd high altitude meteor explosion of exotic debris with vitrous char and polymers, just alike the puzzling ones of the geological and archaeological records, has provided potential reference materials. We present here their microanalysis by Environmental SEM with EDS, Raman micro-spectrometry and FTIR, XRD, TEM, ICP-MS and isotope analyses. The characterization helps elucidating how the carbonaceous polymorphs formed by transient heating and transient high pressure of atmospheric aerosols. Under TEM the vesicular, dense, vitrous char show high structural organization with a dense pattern of nano-sized graphitized domains, metals and mineral inclusions. The coupled Raman-ESEM has allowed identifying a complex pattern at micro scales of ordered "D" peak at 1320-1350 cm-1 and the graphitic, ordered peak at 1576-1590 cm-1, in association to amorphous and poorly graphitic ordered carbon. The later occurs within plant cells that have been extracted from the dense vitrous char by performing controlled combustion under nitrogen up to 1000°C. In contrast, the brittle, vesicular vitrous char and the polymers encountered at the rear of the pulverised airburst debris reveal to be formed of agglutinated micro spherules of amorphous carbon with rare crystallized carbon nano-domains and scattered mineral inclusions. They

  4. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  5. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    SciTech Connect

    Kuchynka, D.

    1995-12-31

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. Versatility of the treatment technology, volume reduction and containment of the radioactive component of the mixed waste streams are three criteria to be considered when evaluating potential treatment technologies. The ChemChar thermolytic detoxification process being developed under this R and D contract is a thermal, chemically reductive technology that converts the organic portion of a mixed waste stream to an energy-rich synthesis gas while simultaneously absorbing volatile inorganic species (metals and acid gases) on a macroporous, carbon-based char. The latter is mixed with the waste stream prior to entering the reactor. Substoichiometric amounts of oxidant are fed into the top portion of the cylindrical reactor generating a thin, radial thermochemical reaction zone. This zone generates all the necessary heat to promote the highly endothermic reduction of the organic components in the waste in the lower portion of the reactor, producing, principally, hydrogen and carbon monoxide. The solid by-product is a regenerated carbon char that, depending on the inorganic loading, is capable for reuse. The in situ scrubbing of contaminants by the char within the reactor coupled with a char filter for final polishing produce an exceptionally clean synthesis gas effluent suitable for on-site generation of heat, steam or electricity. Despite the elevated temperatures in the thermochemical reaction zone, the reductive nature of the process precludes formation of nitrogen oxides and halogenated organic compound by-products.

  6. Preparation of mulberry branch biomass char and its usage in wastewater treatment.

    PubMed

    Wu, Dong Lei; Wang, Wei; Zhang, Jing Hui; Fu, Hao; Lv, Xiao Shu; Xu, Xin Hua

    2012-11-01

    Biomass char was prepared from mulberry branches by physical activation. An examination by Fourier transform infrared spectroscopy (FTIR) indicated that the functional groups of Si-O were mostly burnt out, significantly decreasing the ash content Analysis of data from a scanning electron microscope (SEM) and a Brunauer-Emmett-Teller (BET) test also revealed increased surface roughness and pore structure, which improved the adsorption capacity of biomass char after preparation. The optimum conditions for preparation were found to be pyrolysis at 700 degrees C for 30 minutes, and then activation at 750 degrees C for one hour, with 3.4% steam content for the activating agent. The prepared biomass char was then employed to adsorb ammonium, copper(II) actetate [Cu(II)] and hexavalent chromium [Cr(VI)] in a solution. The results indicated that the prepared biomass char had a better adsorptive performance than the raw material. Moreover, the removal of determinands increased along with the dosage, and the highest adsorption efficiency of ammonium, copper(II) acetate [Cu(II)] and hexavalent chromium [Cr(VI)] were found to be 20%, 100% and 50%, respectively. The adsorptions of ammonium and hexavalent chromium [Cr(VI)] can be simulated by a pseudo-second order model, while the adsorption of copper(II) acetate [Cu(II)] is better simulated by a pseudo-first order model. The adsorption isotherms of copper(II) acetate [Cu(II)] by biomass char were also investigated, and the Langmuir isotherm was found to best describe the adsorption process. PMID:23356022

  7. Determination of the radiative of pulverized-coal particles. Technical progress report, third quarter of the third year, March 15, 1990--June 15, 1990

    SciTech Connect

    Menguec, M.P.; Dsa, D.; Manickavasagam, S.; Dutta, P.; Mahadeviah, A.

    1991-12-31

    For accurate modeling of radiative transfer in combustion systems, radiative properties of combustion products are required. It is usually difficult to calculate the properties of nonhomogeneous and irregular-shaped pulverized-coal and char particles, because of the lack of information on optical constants and unavailability of simple and accurate theoretical models. Because of this, it is preferable to determine the required properties from experiments in situ. This can be accomplished by combining optical diagnostic techniques with inverse analyses of radiative transfer problem. In this study, experiments were conducted using a CO{sub 2}-laser nephelometer to measure angular distribution of light scattered by a cold-layer of pulverized-coal particles. The data obtained from the experiments were used along with a new step-phase function approximation in a numerical inverse radiation scheme to obtain ``effective`` extinction coefficient and scattering phase function for coal particles in narrow size distributions. In addition to that, a mercury-arc-lamp monochromator system was used to obtain spectral absorption coefficient of coal particles as a function of wavelength and coal size.

  8. Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass.

    PubMed

    Ahmaruzzaman, M

    2008-07-01

    Higher heating value (HHV) and analysis of chars obtained from cocracking of petroleum vacuum residue (XVR) with coal (SC), biomass (BG, CL) and plastics (PP, PS, BL) are important which define the energy content and determine the clean and efficient use of these chars. The main aim of the present study is to analyze the char obtained from cocracking in terms of their proximate analysis data and determination of the HHV of the chars. The char obtained from XVR+PP cocracking showed a HHV of 32.84 MJ/kg, whereas that from CL cracking showed a HHV of 18.52 MJ/kg. The experimentally determined heating values of the char samples obtained from cocracking have been correlated with the theoretical equation based on proximate analysis data. There exists a variety of correlations for predicting HHV from proximate analysis of fuels. Based upon proximate analysis data, the models were tested. The best results show coefficient of determination (R2) of 0.965 and average absolute and bias error of 3.07% and 0.41%, respectively. The heating values obtained from the model were in good agreement with that obtained by experiment. Proximate analysis of the chars obtained from the cocracking of XVR with coal, biomass and plastics showed that there exists a definite interaction of the reactive species, when they were cocracked together.

  9. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars.

    PubMed

    Lattao, Charisma; Cao, Xiaoyan; Mao, Jingdong; Schmidt-Rohr, Klaus; Pignatello, Joseph J

    2014-05-01

    Chars from wildfires and soil amendments (biochars) are strong adsorbents that can impact the fate of organic compounds in soil, yet the effects of solute and adsorbent properties on sorption are poorly understood. We studied sorption of benzene, naphthalene, and 1,4-dinitrobenzene from water to a series of wood chars made anaerobically at different heat treatment temperatures (HTT) from 300 to 700 °C, and to graphite as a nonporous, unfunctionalized reference adsorbent. Peak suppression in the NMR spectrum by sorption of the paramagnetic relaxation probe TEMPO indicated that only a small fraction of char C atoms lie near sorption sites. Sorption intensity for all solutes maximized with the 500 °C char, but failed to trend regularly with N2 or CO2 surface area, micropore volume, mesopore volume, H/C ratio, O/C ratio, aromatic fused ring size, or HTT. A model relating sorption intensity to a weighted sum of microporosity and mesoporosity was more successful. Sorption isotherm linearity declined progressively with carbonization of the char. Application of a thermodynamic model incorporating solvent-water and char-graphite partition coefficients permitted for the first time quantification of steric (size exclusion in pores) and π-π electron donor-acceptor (EDA) free energy contributions, relative to benzene. Steric hindrance for naphthalene increases exponentially from 9 to 16 kJ/mol (∼ 1.6-2.9 log units of sorption coefficient) with the fraction of porosity in small micropores. π-π EDA interactions of dinitrobenzene contribute -17 to -19 kJ/mol (3-3.4 log units of sorption coefficient) to sorption on graphite, but less on chars. π-π EDA interaction of naphthalene on graphite is small (-2 to 2 kJ/mol). The results show that sorption is a complex function of char properties and solute molecular structure, and not very predictable on the basis of readily determined char properties.

  10. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars.

    PubMed

    Lattao, Charisma; Cao, Xiaoyan; Mao, Jingdong; Schmidt-Rohr, Klaus; Pignatello, Joseph J

    2014-05-01

    Chars from wildfires and soil amendments (biochars) are strong adsorbents that can impact the fate of organic compounds in soil, yet the effects of solute and adsorbent properties on sorption are poorly understood. We studied sorption of benzene, naphthalene, and 1,4-dinitrobenzene from water to a series of wood chars made anaerobically at different heat treatment temperatures (HTT) from 300 to 700 °C, and to graphite as a nonporous, unfunctionalized reference adsorbent. Peak suppression in the NMR spectrum by sorption of the paramagnetic relaxation probe TEMPO indicated that only a small fraction of char C atoms lie near sorption sites. Sorption intensity for all solutes maximized with the 500 °C char, but failed to trend regularly with N2 or CO2 surface area, micropore volume, mesopore volume, H/C ratio, O/C ratio, aromatic fused ring size, or HTT. A model relating sorption intensity to a weighted sum of microporosity and mesoporosity was more successful. Sorption isotherm linearity declined progressively with carbonization of the char. Application of a thermodynamic model incorporating solvent-water and char-graphite partition coefficients permitted for the first time quantification of steric (size exclusion in pores) and π-π electron donor-acceptor (EDA) free energy contributions, relative to benzene. Steric hindrance for naphthalene increases exponentially from 9 to 16 kJ/mol (∼ 1.6-2.9 log units of sorption coefficient) with the fraction of porosity in small micropores. π-π EDA interactions of dinitrobenzene contribute -17 to -19 kJ/mol (3-3.4 log units of sorption coefficient) to sorption on graphite, but less on chars. π-π EDA interaction of naphthalene on graphite is small (-2 to 2 kJ/mol). The results show that sorption is a complex function of char properties and solute molecular structure, and not very predictable on the basis of readily determined char properties. PMID:24758543

  11. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  12. Mechanism of corrosion of structural materials in contact with coal chars in coal gasifier atmospheres. Final report

    SciTech Connect

    Douglass, D.L.; Bhide, V.S.; Vineberg, E.

    1980-05-01

    Six alloys, 310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 1600 and 1800/sup 0/F. The chars, FMC and Husky, contained 2.7 and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was strictly sulfidation when the char was replenished every 24 hours or less. The kinetics of reaction were nearly linear with time. The reaction resulted in thick external sulfide scales with extensive internal sulfidation in the substrate. The kinetics and reaction-product morphologies suggested that diffusion through the sulfide scale played a minor role and that an interfacial reaction was the rate-controlling step. A mathematical model was developed which supported this hypothesis. The reaction rates showed a relatively minor role on alloy composition, depending upon whether the alloys were tested singularly or in combination with others. Inconel 671, the best alloy in CGA environments, consistently corroded the most rapidly of the chromia-former types regardless of char sulfur content or of the temperature. Type 310 stainless was marginally better than Inconel 671. Incoloy 800 was intermediate, whereas, Haynes 188 and Hastelloy X exhibited the best corrosion resistance. The FeCrAlY alloys reacted very rapidly in the absence of preoxidation treatments. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None of the alloys will be acceptable for use in contact with char unless coatings are applied.

  13. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.

    PubMed

    Alvarez, Jon; Lopez, Gartzen; Amutio, Maider; Bilbao, Javier; Olazar, Martin

    2014-10-01

    The overall valorization of rice husk char obtained by flash pyrolysis in a conical spouted bed reactor (CSBR) has been studied in a two-step process. Thus, silica has been recovered in a first step and the remaining carbon material has been subjected to steam activation. The char samples used in this study have been obtained by continuous flash pyrolysis in a conical spouted bed reactor at 500°C. Extraction with Na2CO3 allows recovering 88% of the silica contained in the rice husk char. Activation of the silica-free rice husk char has been carried out in a fixed bed reactor at 800°C using steam as activating agent. The porous structure of the activated carbons produced includes a combination of micropores and mesopores, with a BET surface area of up to 1365m(2)g(-1) at the end of 15min.

  14. Influence of sulfur in coals on char morphology and combustion. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Marsh, H.; Crelling, J.C.

    1992-08-01

    During coal pyrolysis, in applications such as in a utility boiler, sulfur which is present in the original coal is transferred to the resultant char, to be burnt (combusted) subsequently. The influence of sulfur on char reactivity to combustion gases is not well-documented and this study addresses that problem. Because coal is such a heterogeneous material several complexities have to be separated out. Hence, initial experiments make use of model organic compounds to synthesize char structures which resemble chars from coals. Catalytic impurities can be added to the model compounds to simulate the effects of mineral matter. The equipments needed fr these experimentations have all been commissioned, even though some presented some difficulties initially. The major carbonizations have been completed and initial surface area and reactivity measurements have been made. The microscopy is working very well.

  15. Effect of in-situ heat treatment on coal char reactivity. Final report, March 15, 1984-March 14, 1986. Part 2

    SciTech Connect

    Shaw, D.W.; Essenhigh, R.H.; Bailey, E.G.

    1986-06-01

    A two-color pyrometer was designed, built, and used to measure char-particle temperatures in a flame. The pyrometer had water-cooled optical and background probes allowing local temperature measurement. A flat flame temperature profile was found, confirming the assumption of plug flow. The temperatures measured using the two-color pyrometer and a suction pyrometer were in close agreement. Significant temporal fluctuations were found in the measured temperatures. These were attributed to variations in temperature and obscured fraction of field of view. The temperature ''excess'' over the mean was found to be a monotonic function of the ''excess'' obscured fraction of field of view. 58 refs., 28 figs., 2 tabs.

  16. Time resolved quantitative imaging of charring in materials at temperatures above 1000 K

    NASA Astrophysics Data System (ADS)

    Böhrk, Hannah; Jemmali, Raouf

    2016-07-01

    A device is presented allowing for in situ investigation of chemically changing materials by means of X-ray imaging. A representative cork ablator sample, additionally instrumented with thermocouples, is encapsulated in an evacuated cell heating a sample surface with a heat flux of 230 kW/m2. The images show the sample surface and the in-depth progression of the char front dividing the char layer from the virgin material. Correlating the images to thermocouple data allows for the deduction of a reaction temperature. For the representative cork ablator investigated at the present conditions, the progression rate of the pyrolysis layer is determined to 0.0285 mm/s and pyrolysis temperature is 770 or 737 K, depending on the pre-existing conditions. It is found that the novel device is ideally suited for volume process imaging.

  17. Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements.

    PubMed

    Dupont, Capucine; Nocquet, Timothée; Da Costa, José Augusto; Verne-Tournon, Christèle

    2011-10-01

    A study was performed on the influence of wood variability on char steam gasification kinetics. Isothermal experiments were carried out in a thermobalance in chemical regime on various wood chars produced under the same conditions. The samples exhibited large differences of average reaction rate. These differences were linked neither with the biomass species nor age and may be related to the biomass inorganic elements. A modelling approach was developed to give a quantitative insight to these observations. The grain model was used on one biomass of reference for temperatures between 750 and 900 °C and steam partial pressures between 0 and 0.27 bar. The model was applied to the other samples through the addition of an integral parameter specific to each sample. A satisfactory correlation was found between this parameter and the ratio potassium/silicium. This result highlighted the catalytic effect of potassium and inhibitor effect of silicium on the reaction. PMID:21862327

  18. Transient behavior of devolatilization and char reaction during steam gasification of biomass.

    PubMed

    Moon, Jihong; Lee, Jeungwoo; Lee, Uendo; Hwang, Jungho

    2013-04-01

    Steam gasification of biomass is a promising method for producing high quality syngas for polygeneration. During the steam gasification, devolatilization and char reaction are key steps of syngas production and the contributions of the two reactions are highly related to gasification conditions. In this study, the transient characteristics of devolatilization and char reaction in biomass steam gasification were investigated by monitoring cumulative gas production and composition changes in terms of reaction temperature and S/B ratio. Contribution of each reaction stage on the product gas yield was studied in detail. The results provide important insight for understanding the complex nature of biomass gasification and will guide future improvements to the biomass gasification process.

  19. Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics.

    PubMed

    Alongi, Jenny; Camino, Giovanni; Malucelli, Giulio

    2013-02-15

    Thermal behaviour of polymers is generally assessed by relatively low heating rate, such as in thermogravimetry (typically at 10 °C/min), which leads to progressive decomposition of chemical bonds with increasing dissociation energy under thermodynamic control. However, polymer materials may be accidentally exposed to high heating rates such as in a fire, when their thermal decomposition, occurring through competing paths, becomes kinetically controlled and may lead to heating rate dependence of their degradation mechanisms and products. In the present paper, thermogravimetry at 100, 200 and 300 °C/min heating rates has been carried out on cotton, poly(ethylene terephthalate) and their blend fabrics, which decompose with partial charring. The obtained results show that the char, produced by thermal and thermo-oxidative degradation of such polymer materials, is affected by the heating rate essentially in terms of thermal stability and yield, depending on the type of polymer and the absence or presence of air oxygen.

  20. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  1. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    SciTech Connect

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  2. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  3. Cooperative research on the combustion characteristics of cofired desulfurized Illinois coal and char with natural gas. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Buckius, R.O.; Wu, Cheng-Kang; Krier, H.; Peters, J.E.

    1992-12-31

    The DTFF is extended to larger sample collecting capability and higher temperatures, resulting in the establishment of the Ash Characterization Facility and the High Temperature Drop Tube Furnace. The Ash Characterization Facility enables continuous coal injection and sampling under controlled conditions. Several hundred milligrams of char or ash can be collected in one-half hour. The High Temperature Drop Tube Furnace uses a plasma torch to preheat the gas to over 2000 K and inject it into a ceramic tube which enters a furnace designed for 1700{degrees}C (1973 K) operation, so that temperatures and heating rates encountered by pulverized coal particles in the flames of large boilers or in the advanced slagging cyclone combustors can be simulated. An aerodynamic coal feeder works well in supplying coal continuously to the drop tube. A watercooled, Helium-quench sampling probe collects the solid samples. A scanning electron microscope is used to study the morphology of ash and char particles. A sulfur determinator, a gas chromatograph provide analytical means in the laboratory, and the Illinois State Geological Survey performs other necessary analyses of the samples. Tests on cofiring coal with I to 4% methane show that sulfur retention in ash was related to temperature and residence time. The addition of methane caused changes in gas temperature profile in the tube and also changes in chemical composition of the gases. The overall effect on sulfur retention is seen to be a result of several complex interacting factors. Further detailed studies are necessary to clarify the contribution of each factor and to provide clues to the mechanism of the process.

  4. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus

    PubMed Central

    Min-Oo, Gundula; Fortin, Anny; Pitari, Giuseppina; Tam, Mifong; Stevenson, Mary M.; Gros, Philippe

    2007-01-01

    Mouse strains AcB55 and AcB61 are resistant to malaria by virtue of a mutation in erythrocyte pyruvate kinase (PklrI90N). Linkage analysis in [AcB55 × A/J] F2 mice detected a second locus (Char9; logarithm of odds = 4.74) that regulates the blood-stage replication of Plasmodium chabaudi AS independently of Pklr. We characterized the 77 genes of the Char9 locus for tissue-specific expression, strain-specific alterations in gene expression, and polymorphic variants that are possibly associated with differential susceptibility. We identified Vnn1/Vnn3 as the likely candidates responsible for Char9. Vnn3/Vnn1 map within a conserved haplotype block and show expression levels that are strictly cis-regulated by this haplotype. The absence of Vnn messenger RNA expression and lack of pantetheinase protein activity in tissues are associated with susceptibility to malaria and are linked to a complex rearrangement in the Vnn3 promoter region. The A/J strain also carries a unique nonsense mutation that leads to a truncated protein. Vanin genes code for a pantetheinase involved in the production of cysteamine, a key regulator of host responses to inflammatory stimuli. Administration of cystamine in vivo partially corrects susceptibility to malaria in A/J mice, as measured by reduced blood parasitemia and decreased mortality. These studies suggest that pantetheinase is critical for the host response to malaria. PMID:17312006

  5. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    PubMed

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants. PMID:26803031

  6. [A preliminary study on wood-inhabiting fungi on charred wood in Daxinganling forest areas].

    PubMed

    Yu, Changjun; Dai, Yucheng; Wang, Zhengquan

    2004-10-01

    Study on wood-inhabiting fungi is one of the active fields of mycology during past 30 years in China, and the study mostly focused on natural forest without fire disturbing. Forest fire changes forest ecology dramatically, and the fungi on charred wood are different from those in nature forests without fires. In this paper, we focused on the wood-inhabiting fungi growing on charred wood in Daxinganling forest areas. Seventeen species were reported: Antrodia sp., Antrodia rantha, Ceriporiopsis mucida, Diplomitoporus lindbladii, Gloeophyllum carbonarium, Gloeophyllum sepiarium, Gloeoporus taricola, Laurilia sulcata, Oligoporus sericeomollis, Phellinus igniarius, Postia caesia, Postia leucomallella, Postia tephroleuca, Schizopora flavipora, Skeletocutis ochroalba, Skeletocutis vulgaris, and Trichaptum fuscoviolaceum. Among them, eight species caused brown rot, and nine species caused white rot. Based on our field studies, eight species were pioneer fungi in charred wood, four species were common one, and three species were rare or threatened in the studied area. Setting up nature reserve should be the best way to protect the rare or threatened species of wood-inhabiting fungi. PMID:15624808

  7. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    NASA Astrophysics Data System (ADS)

    Arogundade, A. I.; Megat-Yusoff, P. S. M.; Bhat, A. H.; Faiz, A.

    2015-07-01

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  8. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    SciTech Connect

    Arogundade, A. I. Megat-Yusoff, P. S. M. Faiz, A.; Bhat, A. H.

    2015-07-22

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  9. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  10. [Analysis on the target product from sewage sludge pyrolysis and experiments on using the char for enhancing plant cultivation].

    PubMed

    Song, Xue-Ding; Chen, De-Zhen; Wang, Zhong-Hui; He, Wei

    2011-09-01

    Characteristics of sewage sludge pyrolysis under low temperatures were studied and the influences of reaction temperature and moisture content on products distribution and their properties were also investigated with a purpose to select a proper target product. After a dissective comparison, char produced from the pyrolysis process was chosen as the target product and then its effect on plant cultivation was checked by using it to plant garlic when blended into normal soil; also its heavy metals contents and their transfer to the garlic were investigated. The primary research results showed that with the moisture content reduced to a certain level, char production was above 40% of sewage sludge when the pyrolysis process took place under 550 degrees C; ash content of the char is around 60% - 65%, but it is rich with nitrogen, phosphorus and potassium contents. The heavy metal contents in the char meet up with the limitations for land use, and the garlic stems planted in the soil blended with the char grew much faster than those planted in normal soil with their averaged height being 3-4 cm higher; however the heavy metal contents in the fast-growing garlic stems were a little higher than that in the normal ones, which was not suitable for edible plants. The results obtained suggested that char produced from sewage sludge pyrolysis process could be a target product arranged for land use especially for non-edible plant cultivation.

  11. Micropore diffusion in coal chars under reactive conditions: Annual topical report, 15 September 1987--15 September 1988

    SciTech Connect

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1988-01-01

    The current project is concerned with the development and application of a new technique to measure micropore diffusion under actual gasification conditions. The method is an outgrowth of and related to the transient kinetics approach to the measurement of kinetic rate parameters for char-gas reactions that has been developed in our laboratory. It can be shown that the initial transient behavior of a species introduced as a step-function into a ''gradientless'' reactor in which char is present, is controlled by the transport resistance offered by the char micropores. Therefore, this data can be analyzed for micropore diffusion time constants. In addition, due to the time-resolved nature of the process in the reactor, the initial diffusion step is separated (in time) from any subsequent gas-solid reaction steps. Therefore, diffusion measurements can be performed under gasification conditions. Diffusion time constant data have been obtained for a few microporous carbonaceous materials, including a Sigma (pine wood) char, a Fischer coconut char and PSOC-467 (Deadman No. 2) subbituminous coal char, in addition to the previously reported (DOE/PC/90529-Annual-1) 5A zeolite data. These data have been compared to other results, where possible, and, for the most part, they behave as expected. 65 refs., 12 figs.

  12. [Carbonization of heavy metal Cu implanted sewage sludge and stability of heavy metal in the resulting char].

    PubMed

    Dou, Xiao-Min; Chen, De-Zhen; Dai, Xiao-Hu

    2014-11-01

    In this research, a new method for sewage sludge (SS) disposal was introduced, by which heavy metals were implanted into sewage sludge before pyrolysis. Cu was adopted as the representative of heavy metals to test this process and was implanted in the form of CuCl2. Effects of Cu implanting concentration and reaction temperature on the residual ratio and immobilization of heavy metals in pyrolysis char were studied. Meanwhile, two leaching methods were employed with the purpose to determine the maximum capacity of heavy metal immobilization in the char. The primary research results showed that when the Cu implanting concentration was 0.5% (mass fraction), more than 90% of Cu remained in the char after carbonization, and the leachability of heavy metals in the char was related to pyrolysis temperature. Cu leaching from the char increased with increasing pyrolysis temperature. There was also a limitation for Cu implanting concentration in the sewage sludge, which was determined by the destination of the pyrolyzed char. If it went to sanitary landfill, the limitation would be 0.5%. The primary results showed that sewage sludge could be kneaded with other wastes containing heavy metals before pyrolysis to achieve co-processing. PMID:25639117

  13. Combustion properties of coal-char blends: No{sub x} emission characteristics. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Rostam-Abadi, M.; Khan, L.; Smoot, L.D.; Germane, G.J.; Eatough, C.N.; Honea, F.

    1993-05-01

    Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO, by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower No{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x} emissions. Char samples will be prepared in a continuous rotary tube kiln under mild gasification conditions. Combustion testing will be conducted with the coal and coal-char blends in a combustor located at BYU. The effect of coal/char ratio, formation characteristics, ignition characteristics, flame stability, and combustion efficiency will be determined. Physical and chemical properties of the fuels will be measured to help explain combustion and emission characteristics of fuels.

  14. Detection of pre-charring optical behavior at a laser catheter-tip in blood: ex vivo and in vivo study

    NASA Astrophysics Data System (ADS)

    Takahashi, Mei; Ito, Arisa; Kajihara, Takuro; Arai, Tsunenori

    2011-03-01

    We studied a pre-charring optical behavior of blood at a laser catheter-tip during a red laser irradiation (663 nm, CW) with around 50 W/cm2 in blood to prevent charring at the laser catheter-tip. The laser irradiated red-blood-cell shape changes were microscopically observed. A round formation, aggregation, and hemolysis were found until blood charring (ex vivo). A time-history of diffuse-reflected light power and transmitted light power from a thin blood layer which was irradiated by the red laser were measured with microscope optics to investigate the charring process. The diffusereflected light power decreased following a gentle peak before the charring. This decrease indicated the pre-charring behavior which might be induced by scattering and absorption changes due to red-blood-cell degenerations described above. Using the laser catheter located in porcine heart, we successfully detected the pre-charring behavior by a backscattering light power (in vivo). We demonstrated charring prevention availability with the laser power control (ex vivo). We think that the backscattering light power measurement and laser power control via the laser catheter might be useful to detect pre-charring behavior, and to prevent the charring for therapeutic laser irradiation in blood under catheterization such as arrhythmia treatment with photodynamic therapy.

  15. Stable Carbon Isotopic Fractionation in Smoke and Char Produced During Biomass Burning

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hsieh, Y.

    2006-12-01

    Stable isotopic ratio of carbon has been used extensively as a tracer of carbon sources in the environment. It has been documented that burning of C4 grasses resulted in significant depletion of C13 in the charcoal while burning of wood and C3 grass did not. This study was initiated to investigate the stable carbon isotopic fractionation of the smoke and char produced during biomass burnings. Samples of Juncus romerianus (C3 salt marsh grass) and Spartina alterniflora (C4 salt marsh grass), Eremochloa ophiuroides (centipede, a C4 lawn grass) and woody debris of a pine forest were colleted and burned in open air fire place. The particulate matter with diameters less than 2.5 micron (PM2.5) emitted from the burning was collected using a PM sampler. The original biomass, PM2.5, black C in PM2.5 and char (ash) were analyzed for their C, N and S thermograms using a multi-elemental scanning thermal analyzer and their stable C isotopic ratios were measured using an EA-IRMS. The results indicate that burning of wood and C3 grass did not produce significant C isotopic fractionation in PM2.5, black C in PM2.5 and char with respect to the original material. However, there was a significant C13-depletion in PM2.5 (-6.2 per mil), black C in PM2.5 (-4.6 per mil) and chars (-4.6 per mil) produced by burning of the C4 centipede grass; whereas the C4 Spartina salt marsh grass produced a C13-depletion in PM2.5 (-2.3 per mil) and black C in PM2.5 (-3.6 per mil), and a slight C13-enrichment in char (0.5 per mil). The isotope fractionation associated with burning of C4 vegetation is probably dependent on species and burning conditions and warrant further study.

  16. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    NASA Astrophysics Data System (ADS)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  17. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  18. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  19. Construction of higher order accurate vortex and particle methods

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1986-01-01

    The standard point vortex method has recently been shown to be of high order of accuracy for problems on the whole plane, when using a uniform initial subdivision for assigning the vorticity to the points. If obstacles are present in the flow, this high order deteriorates to first or second order. New vortex methods are introduced which are of arbitrary accuracy (under regularity assumptions) regardless of the presence of bodies and the uniformity of the initial subdivision.

  20. Integrated methods for production of clean char and its combustion properties. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    DeBarr, J.A.

    1991-12-31

    The overall objective of this two-year program is to produce clean char using an integrated process scheme which combines physical coal cleaning, mild gasification and char oxydesulfurization. Low sulfur chars which could be used in utility boilers to meet 1995 emission standards of 2.5 lbs DO{sub 2}/MMBtu are produced from Illinois coals having emissions of >5 lbs SO{sub 2}/MMBtu. Mild gasification and low temperature oxidation studies for sulfur removal are conducted with selected coals from the Illinois Basin Coal (IBC) Sample Program in a batch fixed-bed reactor at the ISGS. Pound quantities of chars for combustion testing are prepared in a continuous rotary kiln reactor under optimized conditions of mild gasification and oxydesulfurization. Burning characteristics and ash deposition behaviors of desulfurized chars are determined to ensure that a useable fuel is produced. These tests are done at the University of North Dakota Energy and Environmental Research Center (UNDEERC) in a drop tube furnace (DTF), and at the US EPA in a 14 kW pilot-scale combustor. In some tests, methane is examined as an auxiliary fuel, and high-surface-area hydrated lime developed at ISGS is used to further reduce SO{sub 2} emissions. Complete analyses of the fuels are obtained to aid char desulfurization studies and help explain combustion and SO{sub 2} emission characteristics of the char. This project is a cooperative effort between the ISGS, UNDEERC and the US EPA and is cost-shared with US EPA and the US DOE through UNDEERC.

  1. Near infrared spectroscopic examination of charred pine wood, bark, cellulose and lignin: Implications for the quantitative determination of charcoal in soils

    USGS Publications Warehouse

    Reeves, J. B.; McCarty, G.W.; Rutherford, D.W.; Wershaw, R. L.

    2007-01-01

    The objective of this research was to investigate the effect of charring on near infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred carbon in soils. Four materials (cellulose, lignin, pine bark and pine wood) and char from these materials created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450??C) were studied. Near infrared spectra and measures of acidity (total acids, carboxylic acids, lactones and phenols as determined by titration) were available for 56 different samples (Not all samples charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature and duration of charring. Examination of spectra and correlation plots indicated that changes in the constituents of the materials in question, such as loss of OH groups in carbohydrates, rather than direct determination of typical products produced by charring, such as carboxylic acids, lactones and phenols, were the basis for the spectral changes. Finally, while the spectral changes resulting from charring appeared to be relatively unique to each material, PLS calibrations for total acids, carboxylic acids, lactones and phenols were successfully created (with R2 of 0.991, 0.943, 0.931 and 0.944, respectively) indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific set of charring conditions (i.e. material, temperature and time of heating). ?? IM Publications 2007.

  2. Use of Laboratory Drag Measurements in Evaluating Hot-Gas Filtration of Char from the Transport Gasifier at the Power Systems Development Facility

    SciTech Connect

    Dahlin, R.S.; Landham, E.C.

    2002-09-19

    The initial objective of this study was to better understand the reasons for the substantial increase in filter DP that was observed after the gasifier recycle loop modifications. Beyond this specific objective, a secondary goal was to develop a meaningful method of evaluating the effect of particle size and other particle properties on dustcake drag and filter DP. As mentioned earlier, the effect of particle size on dustcake drag and filter DP can be a very important consideration in the selection and specification of a precleaner cyclone for use upstream of the hot-gas filter. Installing a cyclone ahead of a hot-gas filter will reduce the transient areal loading of dust to the filter, but the beneficial effect of the reduced areal loading may be offset by an increase in drag associated with a finer particle-size distribution. The overall goal of this study was to better understand these tradeoffs and to ultimately develop a procedure that would be useful in analyzing the performance of hot-gas filters and in sizing new hot-gas filters. In addition to the obvious effects of a cyclone on dust loading and particle size, other indirect effects on particulate properties and flow resistance may occur when the cyclone is incorporated into the gasifier recycle loop as was the case at the PSDF. To better understand the importance of these other effects, this study sought to separate the particle-size effect from these other effects by measuring the drag of size-fractionated char samples collected before and after the recycle loop modifications.

  3. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.

    PubMed

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles

    2015-04-01

    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate.

  4. Integrated methods for production of clean char and its combustion properties. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Gullett, B.K.; Benson, S.A.

    1993-09-01

    An integrated method consisting of physical coal cleaning, mild gasification (MG) and low temperature oxidation (LTO) is proposed to produce chars with SO{sub 2} emissions at least 50% lower than those of their parent coals. MG and char desulfurization studies are conducted in both a batch fluidized-bed reactor (FBR) and in a continuous rotary tube kiln (RTK). Combustion properties and ash deposition behaviors of desulfurized chars are determined at the US EPA in a 14 kill pilotscale combustor and at UNDEERC in a drop tube furnace (DTF). This project is cost-shared with the US EPA and the US DOE through UNDEERC. During the first year of this two year project, six coals from the IBC sample program (IBC-101, 102, 104, 105, 106 and 109) were studied. Under non-optimized conditions in the FBR, desulfurized chars were made with SO{sub 2} emissions 60--71% lower than the parent coals, depending on the coal. Chars prepared from four of the six coals had SO{sub 2} emissions less than 2.5 lbs SO{sub 2}/MMBtu. Under optimum conditions, SO{sub 2} emissions of one of the coals were reduced nearly 67%, from 4.60 to 1.49 lbs SO{sub 2}/MMBtu. MG reduced the chlorine content of one coal 93%.

  5. Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation

    NASA Astrophysics Data System (ADS)

    Rojas-Mayorga, C. K.; Bonilla-Petriciolet, A.; Silvestre-Albero, J.; Aguayo-Villarreal, I. A.; Mendoza-Castillo, D. I.

    2015-11-01

    New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency - cost tradeoff is crucial for implementing new defluoridation technologies.

  6. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    PubMed

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars.

  7. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    PubMed

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars. PMID:27459684

  8. Fasting augments PCB impact on liver metabolism in anadromous arctic char

    USGS Publications Warehouse

    Vijayan, M.M.; Aluru, N.; Maule, A.G.; Jorgensen, E.H.

    2006-01-01

    Anadromous arctic char (Salvelinus alpinus) undertake short feeding migrations to seawater every summer and accumulate lipids, while the rest of the year is spent in fresh water where the accumulated lipid reserves are mobilized. We tested the hypothesis that winter fasting and the associated polychlorinated biphenyls' (PCBs) redistribution from lipid depots to critical tissues impair the liver metabolic capacity in these animals. Char were administered Aroclor 1254 (0, 1, 10, and 100 mg/ kg body mass) orally and maintained for 4 months without feeding to mimic seasonal winter fasting, while fed groups (0 and 100 mg Aroclor 1254/kg) were maintained for comparison. A clear dose-related increase in PCB accumulation and cytochrome P4501A (CYP1A) protein content was observed in the livers of fasted fish. This PCB concentration and CYP1A response with the high dose of Aroclor were 1.5-fold and 3-fold greater in the fasted than in the fed fish, respectively. In fed fish, PCB exposure lowered liver glycogen content, whereas none of the other metabolic indicators were significantly affected. In fasted fish, PCB exposure depressed liver glycogen content and activities of glucose-6-phosphate dehydrogenase, alanine aminotransferase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase and elevated 3-hydroxyacylcoA dehydrogenase activity and glucocorticoid receptor protein expression. There were no significant impacts of PCB on heat shock protein 70 (hsp70) and hsp90 contents in either fed or fasted fish. Collectively, our study demonstrates that winter emaciation associated with the anadromous lifestyle predisposes arctic char to PCB impact on hepatic metabolism including disruption of the adaptive metabolic responses to extended fasting. ?? 2006 Oxford University Press.

  9. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  10. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  11. Type of litter determines the formation and properties of charred material during wildfires

    NASA Astrophysics Data System (ADS)

    Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin

    2014-05-01

    Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some

  12. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems

  13. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    SciTech Connect

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  14. Mild gasification technology development process: Task 3, Bench-scale char upgrading study, February 1988--November 1990

    SciTech Connect

    Carty, R.H.; Onischak, M.; Babu, S.P.; Knight, R.A.; Wootten, J.M.; Duthie, R.G.

    1990-12-01

    The overall objective of this program is to develop mild gasification technology and co-product utilization. The objective of Task 3 was to investigate the necessary steps for upgrading the mild gasification char into potential high-market-value solid products. Recommendations of the Task 1 market survey section formed the basis for selecting three value-added solid products from mild gasification char: form coke, smokeless fuel, and activated adsorbent char. The formation and testing for the form coke co-product involved an evaluation of its briquette strength and reactivity. The measured tensile strength and reactivity of the form coke sample briquettes were in the range of commercial coke, and development tests on a larger scale are recommended. The reaction rate of the form coke carbon with carbon dioxide at 1825{degree}F was measured using a standard procedure. A smokeless fuel briquette with limestone added to control sulfur can be made from mild gasification char in a simple manner. Test results have shown that briquettes with limestone have a heating value comparable to other solid fuels and the limestone can retain up to 88% of the sulfur during combustion in a simple bench-scale combustion test, almost all of it as a stable calcium sulfate. Adsorbent chars were prepared with a standard steam activation procedure and tested for a variety of pertinent property and performance values. Such adsorbents may be better suited for use in some areas, such as the adsorption of low-molecular-weight substances, because of the smaller pore sizes measured in the char. 5 refs., 17 figs., 6 tabs.

  15. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    NASA Astrophysics Data System (ADS)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  16. Arsenic(V) biosorption by charred orange peel in aqueous environments.

    PubMed

    Abid, Muhammad; Niazi, Nabeel Khan; Bibi, Irshad; Farooqi, Abida; Ok, Yong Sik; Kunhikrishnan, Anitha; Ali, Fawad; Ali, Shafaqat; Igalavithana, Avanthi Deshani; Arshad, Muhammad

    2016-01-01

    Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L(-1) optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g(-1)) for COP than NOP (32.7 mg g(-1)). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the -OH, -COOH, and -N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique 'charred' materials from the widely available biowastes, with enhanced As(V) sorption properties.

  17. Arsenic(V) biosorption by charred orange peel in aqueous environments.

    PubMed

    Abid, Muhammad; Niazi, Nabeel Khan; Bibi, Irshad; Farooqi, Abida; Ok, Yong Sik; Kunhikrishnan, Anitha; Ali, Fawad; Ali, Shafaqat; Igalavithana, Avanthi Deshani; Arshad, Muhammad

    2016-01-01

    Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L(-1) optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g(-1)) for COP than NOP (32.7 mg g(-1)). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the -OH, -COOH, and -N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique 'charred' materials from the widely available biowastes, with enhanced As(V) sorption properties. PMID:26552612

  18. Combustion of sponge iron plant wastes -- Char and fly ash in FBC boilers

    SciTech Connect

    Rajavel, M.; Muthukrishnan, M.; Banerjee, M.; Natarajan, R.

    1997-12-31

    Coal based sponge iron plants generate large quantity of waste materials in the form of kiln char and fly ash. This material has a very little fuel value owing to the fact that it contains a large percentage of ash and it is almost free from volatiles. Added to this, wide size range of the kiln rejects makes it practically impossible to burn in conventional firing. However, it is realized that the overall economy of the sponge iron plant is likely to be greatly enhanced if the char, the fly ash and a considerable quantity of coal fines, separated in the coal preparation plant, can be utilized. The only possible way to gainfully use these fuels is by fluidized bed combustion. Extensive tests were conducted with these fuels in bubbling fluidized bed combustion test facilities at BHEL, Tiruchirapalli, India. The presentation highlights the experience gained with the above waste fuels in BHEL test facilities and discusses the findings which were subsequently used to design large size FBC boilers.

  19. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

  20. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  1. Char crystalline transformations during coal combustion and their implications for carbon burnout

    SciTech Connect

    Hurt, R.H.

    1999-07-07

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: (1) To determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history. (2) To characterize the effect of the thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  2. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  3. Optimization of char for NO{sub x} removal. Semiannual report, June 30--December 31, 1996

    SciTech Connect

    Phillips, J.; Radovic, L.R.

    1997-03-18

    The overall goal of this program is to develop a coal char or carbon capable of selectively removing NOx species from combustion exhaust streams (e.g., exhaust from coal burning power plants) containing both oxygen and NOx. Inexpensive methods to achieve NOx abatement from such streams is presently a major environmental concern. Both fundamental studies of carbon/coal char surface chemistry and tests of different materials under realistic conditions are underway. Work performed for this study demonstrates that the identity of the treatment gas strongly impacts the surface chemistry of activated carbon. Carbon treated in an inert gas will have dangling carbons on the surface which strongly react with oxygen, and NO, at 300 K. In contrast, hydrogen treated activated carbon will adsorb very little NO at 300 K, but will adsorb significant amounts of NO. The relative selectivity of hydrogen treated carbons toward NO adsorption makes this material a candidate for removal of NO from the exhaust of lean burn combustors.

  4. Re-use of fluoride contaminated bone char sludge in concrete.

    PubMed

    Rao, Sudhakar M; Reddy, B V Venkatarama; Lakshmikanth, S; Ambika, N S

    2009-07-30

    Managing sludge generated by treating groundwater contaminated with geogenic contaminants (fluoride, arsenic, and iron) is a major issue in developing nations. Their re-use in civil engineering applications is a possible pathway for reducing the impact on the geo-environment. This paper examines the re-use of one such sludge material, namely, fluoride contaminated bone char sludge, as partial replacement for fine aggregate (river-sand) in the manufacture of dense concrete specimens. Bone char sludge is being produced by defluoridation of contaminated groundwater in Nalagonda District, Andhra Pradesh, India. The impact of admixing 1.5-9% sludge contents on the compression strength and fluoride leaching potential of the sludge admixed concrete (SAC) specimens are examined. The compression strengths of the SAC specimens are examined with respect to strength criteria for manufacture of dense, load-bearing concrete blocks. The fluoride release potential of the SAC specimens is examined with respect to standards specific to disposal of treated leachate into inland surface water.

  5. Char crystalline transformations during coal combustion and their implications for carbon burnout

    SciTech Connect

    Hurt, R.H.

    1999-03-11

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  6. Colorectal polyp type and the association with charred meat consumption, smoking, and microsomal epoxide hydrolase polymorphisms.

    PubMed

    Burnett-Hartman, Andrea N; Newcomb, Polly A; Mandelson, Margaret T; Adams, Scott V; Wernli, Karen J; Shadman, Mazyar; Wurscher, Michelle A; Makar, Karen W

    2011-01-01

    We determined the association between charred meat consumption, cigarette smoking, microsomal epoxide hydrolase (mEH) polymorphisms (rs1051740 and rs2234922), and colorectal adenomas and hyperplastic polyps (HPs) and explored gene-environment interactions. Men and women with colorectal adenomas (n = 519), HPs (n = 691), or concurrently with both types of polyps (n = 227) and polyp-free controls (n = 772) receiving a colonoscopy from December 2004 to September 2007 were recruited. Participants completed telephone interviews and provided buccal cell samples; genotyping of mEH was completed using Taqman assays. We conducted polytomous regression and calculated odd ratios (OR) and 95% confidence intervals. Interactions were evaluated using Wald chi-square tests. Consumption of >3 servings of charred meat per week was associated with distal HPs (OR = 2.0, 1.2-3.4) but not adenomas nor either type of proximal polyp. Heavy cigarette smoking (≥ 22 pack-years) was associated with an increased risk for colorectal adenomas (OR = 1.7, 95% CI: 1.2-2.4), HPs (OR = 2.4, 95% CI: 1.7-3.3), and both types (OR = 2.8, 95% CI: 1.8-4.3) with the strongest association for distal polyps. There was no association between mEH genotype and colorectal polyps, nor were any statistically significant gene-environment interactions identified. Future investigation of BaP exposure and colorectal neoplasia should analyze whether associations are dependent upon anatomic location.

  7. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    NASA Astrophysics Data System (ADS)

    Assari, Mohamad javad; Rezaee, Abbas; Rangkooy, Hossinali

    2015-07-01

    The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg0) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV-VIS-NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg0 determination. Dynamic capacity of nanocomposite for Hg0 was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg0. It could be applied for the laboratory and field studies.

  8. Biochemical stability of sewage sludge chars and their impact on soil organic matter of a Mediterranean Cambisol

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Knicker, Heike

    2016-04-01

    Transformation of sewage sludge (SS) into char achieves sludge hygienisation, which is necessary prior its application into agricultural soils. The pyrolysis of SS increases its stability in a degree which depends on the thermal treatment used. Thus, chars produced by using hydrothermal carbonization are typically more stable than normal soil organic matter (SOM), but less stable than chars from dry pyrolysis (Libra et al., 2011). Addition of highly-recalcitrant SS-chars to soil will likely increase its carbon sequestration potential; however the fertilizing properties of SS may be compromised due to its alteration during the pyrolysis. The main goal of this work was to investigate the biochemical recalcitrance of two 13C-enriched SS-chars once applied in a Mediterranean Cambisol as well as to evaluate their impact on the SOM quality and carbon stability. Thus, we studied the distribution of 13C between plants and soil after the addition of the 13C-enriched chars (2 atm%) to the soil. Therefore, we performed a greenhouse incubation experiment, using a Mediterranean Cambisol as matrix and tested the following treatments: control (soil alone), raw SS, SS-hydrochar, SS-pyrochar. The SS was produced in a pilot-scale waste-water plant and enriched with 13C by the addition of 13C-glucose during the treatment. The amendment was only applied to the upper 2 cm of the soil matrix where it accounted for 5% of its dry weight. Per pot, 25 seeds of Lolium perenne were sowed and incubated under controlled conditions. The biomass production as well as the concentration of 13C in leaves and roots was determined after 1, 2 and 5 months. The partitioning of the 13C between soil and plant and its transformation into bioavailable forms were monitored by stable isotopic mass spectrometry. The 13C-enrichment of the chars allowed the use of solid-state 13C NMR spectroscopy as a means for the detection of chemical alterations of the chars during their aging. Libra J., Ro K., Kammann C

  9. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: Implications for the quantitative determination of charcoal in soils

    USGS Publications Warehouse

    Reeves, J. B.; McCarty, G.W.; Rutherford, D.W.; Wershaw, R. L.

    2008-01-01

    Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 ??C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration) were determined for 56 different samples (not all samples were charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature, and duration of charring. Despite the wide range of spectral changes seen with the differing materials and length/temperature of charring, partial least squares calibrations for total acids, carboxylic acids, lactones, and phenols were successfully created (coefficient of determination and root mean squared deviation of 0.970 and 0.380; 0.933 and 0.227; 0.976 and 0.120; and 0.982 and 0.101 meq/g, respectively), indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific material or condition of char formation. ?? 2008 Society for Applied Spectroscopy.

  10. Combustion of char-coal waste pellets for high efficiency and low NO{sub x}. Quarterly report, 1 December 1994--28 February 28, 1995

    SciTech Connect

    Rajan, S.

    1995-12-31

    High efficiencies can be obtained from combined cycle power plants where fuel gas produced in a carbonizer is used to power the topping cycle turbines, while the residual char is burnt to raise steam for the bottoming Rankine cycle plant. Illinois coals are excellent fuels for these high efficiency power plants as the sulfur in the fuel gas is removed in the carbonization process by adding dolomite, thus producing a clean burning fuel gas. The residual char has essentially no volatiles, and is of low density. Because of these characteristics the char requires a longer residence time for efficient combustion. This research is directed towards improving the residence time of the char by pelletizing it with a waste coal, while at the same time reducing the sulfur dioxide emissions from the char combustion. During this quarter, extensive experimentation has been performed to determine the char-gob waste proportions necessary for forming pellets with desirable compression strength for feeding into the circulating fluidized bed combustor. Carbonizer char-gob coal pellets have been made with 5, 10 and 15 weight percent of cornstarch binder. Based on the test data presented, it is concluded that 10--15% weight percent of binder will be required when pelletizing char-gob coal waste mixtures containing 30-40 percent by weight of gob coal. During the next quarter, these pellets will be made in larger quantities and their combustion and emissions properties will be evaluated in a bench scale 4-inch diameter circulating fluidized bed combustor.

  11. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  12. Accurate momentum transfer cross section for the attractive Yukawa potential

    SciTech Connect

    Khrapak, S. A.

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  13. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  14. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    NASA Astrophysics Data System (ADS)

    Stenberg, J.; Frederick, W. J.; Boström, S.; Hernberg, R.; Hupa, M.

    1996-05-01

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700-900 °C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300-400 °C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40° below the furnace temperature.

  15. Role of charred wood, heat-shock, and light in germination of postfire phrygana species from the Eastern Mediterranean Basin

    USGS Publications Warehouse

    Keeley, J.E.; Baer-Keeley, M.

    1999-01-01

    Seeds of 22 species collected from recently burned phrygana were tested for their response to fire-type cues of charred wood and heat-shock. All Cistus species were stimulated by brief heat-shock, as shown in previous studies; however, none responded to charred wood. Only one of the 22 species was stimulated by charred wood, and only in dark-inhibited seeds, and this response did not occur in the light. The lack of charred-wood-induced germination is in contrast to the substantial proportion of species with this germination response reported for mediterranean-type vegetation in California, the Cape region of South Africa, and Western Australia. Phrygana has many species with heat-shock-stimulated germination, primarily in the Fabaceae and Cistaceae. This germination cue is widespread in these two families, thus, the presence of heat-shock-stimulated germination is a result of homologous, rather than covergent, adaptations in mediterranean-climate ecosystems. Germination response to light was not randomly distributed with respect to fire-type response. Heat-shock-stimulated species were almost uniformly light neutral, in contrast to more opportunistic colonizing species with non-refractory seeds, in which half of the species responded positively or negatively to light.

  16. Task 5.4 -- Stable and supercritical chars. Semi-annual report, January 1--June 30, 1995

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1995-12-31

    The use of chars and carbons as absorbents and catalyst supports could be expanded if their stability to reactive gases were improved. The purpose of this task is to develop methods for applying surface coatings of boron carbide, silicon carbide, and titanium carbide on the char. Formation of these composites will increase stability and improve structural strength and, consequently, resistance to abrasion. The first objective of this task is to develop methods for coating low-rank coal (LRC) chars and carbons by chemical vapor deposition (CVD) to produce high surface area composites that are inert to reactive atmospheres. The proposed coating layers will be formed from elements known to form extremely hard and stable carbide materials. The second objective is to determine the feasibility of using supercritical extraction to prepare an activated carbon with a very high surface area. During this report period supercritical solvent extraction was investigated as a means of producing very large microporous structures in chars. Wyodak subbituminous coal, Gascoyne lignite, and Velva lignite were used for the supercritical extractions.

  17. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    NASA Astrophysics Data System (ADS)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  18. Role of charred wood, heat-shock and light in germination of postfire phrygana species from the eastern Mediterranean Basin

    USGS Publications Warehouse

    Keeley, Jon E.; Babr-Keeley, Melanie

    1999-01-01

    Seeds of 22 species collected from recently burned phrygana were tested for their response to fire-type cues of charred wood and heat-shock. All Cistus species were stimulated by brief heat-shock, as shown in previous studies; however, none responded to charred wood. Only one of the 22 species was stimulated by charred wood, and only in dark-inhibited seeds, and this response did not occur in the light. The lack of charred-wood-induced germination is in contrast to the substantial proportion of species with this germination response reported for mediterranean-type vegetation in California, the Cape region of South Africa, and Western Australia. Phrygana has many species with heat-shock-stimulated germination, primarily in the Fabaceae and Cistaceae. This germination cue is widespread in these two families, thus, the presence of heat-shock-stimulated germination is a result of homologous, rather than covergent, adaptations in mediterranean-climate ecosystems. Germination response to light was not randomly distributed with respect to fire-type response. Heat-shock-stimulated species were almost uniformly light neutral, in contrast to more opportunistic colonizing species with non-refractory seeds, in which half of the species responded positively or negatively to light.

  19. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    PubMed

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons.

  20. Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil

    DOEpatents

    Rodgers, Billy R.; Edwards, Michael S.

    1977-01-01

    Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

  1. The scattering phase function coefficients of pulverized-coal particles in flames

    SciTech Connect

    Manickavasagam, S.; Menguec, M.P.

    1992-12-31

    The most significant mode of heat transfer in large-scale combustion systems is radiative transfer. To model such systems, radiation heat transfer should be accounted for correctly, which requires a thorough knowledge of the radiative properties of combustion products (Viskanta and Menguec, 1987; Menguec and Webb, 1992). It is usually difficult to calculate the properties of coal/char particles and soot agglomerates from theory, as they are non-homogeneous and irregularly shaped. Therefore, it is desirable to determine the effective radiative properties of these particles directly from experiments. The information available for the optical and radiative properties of burning coal/char particles in the infrared region of the wavelength spectrum is scarce. It is more desirable to estimate the effective parameters required in the solution of the radiative transfer equation (RTE), i.e., the absorption and scattering coefficients and the scattering phase function of coal and char particles. In the present study, we determined the scattering characteristics of pulverized-coal particles heated in a premixed flame directly from experiments. The details of the theoretical models considered for data reduction were already reported in another paper (Menguec, et al., 1991). In the following sections, first we will briefly discuss the experimental system used. After that the results will be presented and compared against those obtained from the Lorenz-Mie theory for spherical particles.

  2. Crystallographic oxide phase identification of char deposits obtained from space shuttle Columbia window debris

    NASA Astrophysics Data System (ADS)

    Olivas, J. D.; Wright, M. C.; Christoffersen, R.; Cone, D. M.; McDanels, S. J.

    2010-09-01

    Char deposits on recovered fragments of space shuttle Columbia windowpanes were analyzed to further understand the events that occurred during orbiter reentry and breakup. The TEM analysis demonstrated that oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicated that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reactions, expectedly metal combustion of a Ti-6Al-4V structure, had to occur for oxide formation. Results are significant for aerospace vehicles, where thermal protection system (TPS) breaches could cause material originally designed for substructural applications to be in direct path with reentry plasma.

  3. [Factors responsible for spatial population genetic Structure in white-spotted char Salvelinus leucomaensis (Pallas)].

    PubMed

    Salmenkova, E A; Omelchenko, V T

    2014-12-01

    Using personal data obtained earlier on the spatial population genetic structure of white-spotted char at ten microsatellite loci, an analysis of factors shaping the interpopulation divergence was performed. The primary role of genetic drift in population differentiation over the distribution range was demonstrated, compared to the practically absent role of stepwise mutation process. This result points to the common origin and relative connections between southern and northern population groups. In the majority of populations, no bottleneck effect was detected. Exclusion of the genetically peculiar Primorye population from the analysis resulted in the identification of the isolation by distance signatures among the examined populations. Such an association can be determined by the migratory exchange between the populations, or it could have formed during the historical post-Pleistocene colonization of the range.

  4. Crystallographic Oxide Phase Identification of Char Deposits Obtained from Space Shuttle Columbia Window Debris

    NASA Technical Reports Server (NTRS)

    Olivas, J. D.; Wright, M. C.; Christoffersen, R.; Cone, D. M.; McDanels, S. J.

    2009-01-01

    Analyzing the remains of Space Shuttle Columbia has proven technically beneficial years after the vehicle breakup. This investigation focused on charred deposits on fragments of Columbia overhead windowpanes. Results were unexpected relative to the engineering understanding of material performance in a reentry environment. The TEM analysis demonstrated that the oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicate that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reaction, expectedly metal combustion of a Ti structure, had to be present for oxide formation. Results are significant for aerospace vehicles where thermal protection system (TPS) breaches cause substructures to be in direct path with the reentry plasma. 1

  5. [Phylogeography of southern Asian Dolly Varden char Salvelinus malma krascheninnikovi: genealogical analysis of mitochondrial DNA].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Chukova, E I

    2010-02-01

    Phylogeography of southern Asian Dolly Varden char was studied using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained using PCR-RFLP analysis. Analysis of contemporary population genetic structure showed that S. m. krascheninnikovi throughout the whole species range was characterized by high population differentiation in combination with rather small differences between the populations from remote regions. The genealogy of mtDNA haplotypes was reconstructed and nested clade analysis of geographical distances was performed. Geographical distribution of mtDNA haplotypes of S. m. krascheninnikovi was explained by population genetic processes (restricted gene flow), as well as by historical demographic events (range expansion and fragmentation). It was demonstrated that the main demographic events were associated with cyclic processes of the geological formation of the Sea of Japan and adjacent territories. Furthermore, genealogical tree of S. m. krascheninnikovi contained the traces of secondary contact between isolated phylogeographical lineages.

  6. Population connectivity: dam migration mitigations and contemporary site fidelity in arctic char

    PubMed Central

    2011-01-01

    Background Animal feeding and spawning migrations may be limited by physical barriers and behavioral interactions. Dam constructions (e.g. hydropower) commonly include gateways for fish migrations to sustain ecological connectivity. Relative genetic impacts of fish passage devices versus natural processes (e.g. hybrid inferiority) are, however, rarely studied. We examined genetic (i.e. microsatellite) population connectivity of highly migrating lake-dwelling Arctic char (Salvelinus alpinus), introduced 20 generations ago, across and within two subalpine lakes separated by a dam with a subterranean tunnel and spill gates after 7 generations. Due to water flow regime, the time window for fish migration is highly restricted. Results Char populations, with similar genetic structuring and diversity observed across and within lakes, were admixed across the dam with fishways during feeding. For spawning, however, statistically significant, but very low population differentiation (θ; 0.002 - 0.013) was found in nine out of ten reproductive site comparisons, reflecting interactions between extensive migration (mean first generation (F0) = 10.8%) and initial site fidelity. Simulations indicated that genetic drift among relatively small effective populations (mean Ne = 62) may have caused the observed contemporary differentiation. Novel Bayesian analyses indicated mean contributions of 71% F0 population hybrids in spawning populations, of which 76% had maternal or paternal native origin. Conclusions Ecological connectivity between lakes separated by a dam has been retained through construction of fishways for feeding migration. Considerable survival and homing to ancestral spawning sites in hybrid progeny was documented. Population differentiation despite preceding admixture is likely caused by contemporary reduced reproductive fitness of population hybrids. The study documents the beginning stages of population divergence among spatial aggregations with recent common

  7. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.

    PubMed

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: "CharStreamer". The speller can be used with an instruction as simple as "please attend to what you want to spell". The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.

  8. Reactivity of young chars via energetic distribution measurement. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Calo, J.M.; Mackinnon, J.A.; Zhang, L.H.

    1992-12-31

    The correlation and prediction of kinetic rates and mechanisms of the reactions of gas phase species with coal chars represent a difficulty undertaking under the best of circumstances. Solid phase heterogeneity and impurities, complex pore structure, transport limitation, and evolution of active surface represent just a few of the well known problems. Temperature programmed desorption (TPD) has become a standard technique for investigating the physics-chemical state of adsorbed species on surfaces. The predecessor of TPD-type methods was the flash filament technique, whereby gases adsorbed on wire filaments are rapidly desorbed upon rapid heating in an ultrahigh vacuum. This technique was subsequently adapted to catalytic surfaces. Experimental methods and interpretation of TPD spectra for well defined crystalline surfaces have been well established. However, corresponding techniques for polycrystalline, amorphous, and heterogeneous materials are not as well developed. TPD spectra usually consist of one or more peaks. The shapes of the peaks and the position of the peak maxima with respect to temperature are related in a fundamental manner to the desorption process, and, therefore, provide basic information regarding the energetics of the desorbed species. The current project is directed at developing related techniques for the characterization and prediction/correlation of the reactivity of ``young`` chars to steam and oxygen. Of particular interest is mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions; i.e., heating rate and ultimate temperature. In this quarterly report, TPD results on two CO{sub 2}-gasified chars are summarized.

  9. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.

    1992-12-31

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Minois Basin coal. There are two processing steps: physical cleaning of the coal and devolatilization of coal under different environments (He, H{sub 2}, He/O{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2}) to form chars. Also, as-received and clean coal samples were mixed with hectorite, Ca-montmorillonite, and kaolinite to evaluate the potential effects of these clays on chars yield and agglomeration during devolatilization processes. Three different techniques were used: thermogravimetric analysis, differential thermogravimetric analysis, differential scanning calorimetry (DSC), and in-situ diffuse reflectance FTIR (ISDR-FTIR). Thermogravimetric measurements showed that reactive gases (except He) dissolve in the softened coal. Also, these gases convert some of the coal mineral matter into catalyst by chemical reduction and oxidation. Coal reactivity increases by adding clays because they may be catalyst for methane activation, may prevent coal agglomeration, and may modify the geometric structure of the coal surface. DSC measurements show that clean coal devolatilizes at a lower temperature than as-received sample and preoxidation lowers the devolatilization temperature. Additionally, kaolinite addition increase yields of chars from IBC-102 coal in He. In-situ diffuse reflectance FTIR experiments show that thermal decomposition of coal either increases -CH{sub 3}, content in char or alters the physical structure of -CH{sub 3}. Also, phenol groups of the coal play an important role in cross-linkage the coal structure when coal is thermally treated.

  10. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M.

    2008-07-01

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  11. [Karyological differences of the Northern Dolly Varden Salvelinus malma malma and the white char Salvelinus albus from the Kamchatka River basin].

    PubMed

    Frolov, S V

    2001-03-01

    The karyotypes of northern Dolly Varden and white char, sympathrically inhabiting the Kamchatka River basin, were studied. The karyotype of Dolly Varden was stable: 2n = 78 and NF = 98 + 2, while in white char, polymorphism and mosaicism for the chromosome number were revealed: 2n = 76-79, NF = 98 + 2. Using a routine chromosome staining technique, the karyotype of white char (2n = 78) was shown to be identical to that of Dolly Varden. In both karyotypes, similar sets of marker chromosomes were present: two pairs of submetacentric (SM), one pair of submeta-subtelocentric (SM-ST), one pair of large acrocentric (A), and one pair of large sub-telocentric (ST) chromosomes. However, the karyotypes of Dolly Varden and white char differed in the number and location of nucleolus organizer regions (NORs). In Dolly Varden, single NORs located in the telomeric regions of the marker SM-ST chromosomes were observed. In white char, NORs were multiple and located both in the telomeric regions of the marker SM-ST chromosomes and on the short and long arms of large ST chromosomes. The identical marker chromosomes indicate considerable phylogenetic relatedness between Dolly Varden and white char from the Kamchatka River basin. Variation in NORs provides evidence for the reproductive isolation of these chars and their species status.

  12. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  13. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  14. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  15. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies.

    PubMed

    Liu, Jing; He, Lile; Dong, Faqin; Hudson-Edwards, Karen A

    2016-06-01

    Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8-246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage.

  16. Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Lizzio, A.A.; DeBarr, J.A.; Rostram-Abadi, M.; Rood, M.J.

    1994-06-01

    During this reporting period, a thermogravimetric technique was developed to determine the kinetics of SO{sub 2} adsorption on a series of chars prepared from IBC-102 coal. Also, a temperature programmed desorption (TPD) method was developed to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the surface of the char. An attempt was made to relate this information to observed SO{sub 2} adsorption behavior. An IBC-102 char prepared with an N{sub 2}-BET surface area of 10 m{sup 2}/g adsorbed significantly less SO{sub 2} than chars prepared with surface areas > 200 m{sup 2}/g. However, for chars with surface areas > 200 m{sup 2}/g, the amount of available surface area was not as important as the chemistry of the surface. A steam activated char adsorbed the most SO{sub 2}, comparable to the amount adsorbed by a commercial activated carbon. TPD performed on the steam activated char revealed the presence of CO-forming C-O complexes which were basic in nature. The other chars all contained significant amounts of more acidic CO{sub 2}-forming complexes. Because SO{sub 2} is an acid gas, a carbon adsorbent with a basic surface should adsorb more SO{sub 2}. To enhance SO{sub 2} adsorption, a novel char preparation method was devised to 2 create a basic surface with up to ten times more CO-forming C-O complexes than formed by steam activation.

  17. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.

    PubMed

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan

    2016-01-01

    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process. PMID:26819399

  18. Preparation of char from lotus seed biomass and the exploration of its dye removal capacity through batch and column adsorption studies.

    PubMed

    Nethaji, S; Sivasamy, A; Kumar, R Vimal; Mandal, A B

    2013-06-01

    Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ∆G, ∆H, and ∆S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles.

  19. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    SciTech Connect

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  20. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  1. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] report, December 1, 1991--February 29, 1992

    SciTech Connect

    Kruse, C.W.

    1992-08-01

    The first step in the integrated, mufti-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps convert low-ash coal to high-value, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  2. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Kruse, C.W.

    1991-12-31

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  3. Environmental Impacts of the Production and Application of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, Mireille; Woods, Jeremy

    2014-05-01

    One of the potential benefits of biochar is carbon sequestration. To determine the overall net sequestration potential it is important to analyse the full supply chain, assessing both the direct and indirect emissions associated with the production and application of biochar. However, it is essential to also incorporate additional environmental impact categories to ensure the assessment of a more complete environmental impact profile. This paper uses a full life-cycle assessment (LCA) methodology to evaluate the results from the EuroChar, 'biochar for carbon sequestration and large-scale removal of GHG from the atmosphere', project. This EU Seventh Framework Programme project aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar, and in particular explore possible pathways for its introduction into modern agricultural systems in Europe. The LCA methodology, according to the ISO standards, is applied to the project-specific supply chains to analyse the environmental impacts of biochar production and application. Two conversion technologies for the production of biochar are assessed, gasification and hydrothermal carbonization (HTC), in order to provide conversion efficiencies and emission factors for the biochar production component of the supply chain. The selected feedstocks include those derived from waste residues and dedicated crops. For the end use stage, various forms and methods for biochar application are considered. In addition to the Global Warming Potential category, other environmental impact categories are also included in the analysis. The resulting 'feedstock * conversion technology' matrix provides nine pathways for the production and application of biochar, which are applied as a representative basis for the scenario modelling. These scenarios have been developed in order to assess the feedstock and land availability in Europe for the production and application of biochar and to give an order of

  4. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  5. Clean, premium-quality chars: Demineralized and carbon enriched. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E.

    1993-09-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two differents techniques were used, in-situ Diffuse Reflectance FTIR measurements and BTU measurements. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis. Drying coal causes hydrogen bonds between water and coal to be broken. Liquids produced above 500{degrees}C are much higher in aromatic content, thus, effectively reducing the concentration of aliphatic groups in the overall liquid yield. BTU values of coals after methane treatment are higher than after helium treatment.

  6. Clean, premium-quality chars: Demineralized and carbon enriched. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E.; Banerjee, D.

    1993-05-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two different techniques were used: BET surface area analyzer and in-situ Diffuse Reflectance FTIR. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. It was found that the cleaning not only removes the minerals but has changed also the porous structure of the coals. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis.

  7. Pyrolysis of polymeric materials. I - Effect of chemical structure, temperature, heating rate, and air flow on char yield and toxicity

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.

    1979-01-01

    Various polymeric materials, including synthetic polymers and cellulosic materials, were evaluated at different temperatures, heating rates and air flow rates for thermophysical and toxicological responses. It is shown that char yields appeared to be a function of air access as much as of the chemical structure of the material. It is stated that the sensitivity of the apparent thermal stability of some materials to air access is so marked that thermogravimetric studies in oxygen-free atmospheres may be a consistently misleading approach to comparing synthetic polymers intended to increase fire safety. Toxicity also appeared to be a function of temperature and air access as much as of the chemical structure of the material. Toxicity of the gases evolved seemed to increase with increasing char yield for some polymers.

  8. Effects of fire on decomposition: assessing the relative importance of soil environment versus charring on decomposition in boreal conifer forests

    NASA Astrophysics Data System (ADS)

    Manies, K.; Turetsky, M. R.; Harden, J. W.

    2014-12-01

    Boreal forests are experiencing significant changes in climate and disturbance regimes, including increases in the frequency and severity of fires. Fires impact the carbon (C) cycle of this region in many ways, including through changes to C inputs to the ecosystem (i.e., loss of all living vegetation, followed post-fire regrowth), changes in mycorrhizal relationships, the altering soil temperature and moisture regimes, and the charring of surface organic soil. All of these factors have the potential to impact decomposition rates. We were interested in comparing the relative importance of changes in soil temperature and moisture (soil environmental conditions) versus surface organic soil quality (charring) on decomposition rates. To disentangle the effects of environmental factors versus charring on mass loss, we performed a reciprocal transplant experiment. Our design included burned and unburned feather moss litter, collected from the field and placed within litterbags, which were then placed into triplicate burned and unburned black spruce dominated stands in interior Alaska. Litterbags were collected after one, three, and seven years, after which mass loss and changes in C and N pools were quantified. Exponential decomposition (k) values varied with litter type (burned/unburned) by environment (burned/unburned site) interactions. Averaged across both types of environments, decomposition rates were almost double for unburned versus burned litter. Decomposition rates were approximately 30 percent faster for unburned versus burned sites. Our results to date show that changes to soil quality due to charring have a larger effect in controlling post-burn decomposition rates than changes in soil environmental conditions.

  9. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process

    PubMed Central

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  10. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    PubMed

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.

  11. Evaluating the combustion reactivity of drop tube furnace and thermogravimetric analysis coal chars with a selection of metal additives

    SciTech Connect

    Katherine Le Manquais; Colin E. Snape; Ian McRobbie; Jim Barker

    2011-03-17

    Opportunities exist for effective coal combustion additives that can reduce the carbon content of pulverized fuel ash (PFA) to below 6%, thereby making it saleable for filler/building material applications without the need for postcombustion treatment. However, with only limited combustion data currently available for the multitude of potential additives, catalytic performance under pulverized fuel (PF) boiler conditions has received relatively little attention. This paper therefore compares the reactivity of catalyzed bituminous coal chars from thermogravimetric analysis (TGA) with those generated by devolatilization in a drop tube furnace (DTF). The principal aim was to explore the fundamental chemistry behind the chosen additives' relative reactivities. Accordingly, all eight of the investigated additives increased the TGA burnout rate of the TGA and DTF chars, with most of the catalysts demonstrating consistent reactivity levels across chars from both devolatilization methods. Copper(I) chloride, silver chloride, and copper nitrate were thus identified as the most successful additives tested, but it proved difficult to establish a definitive reactivity ranking. This was largely due to the use of physical mixtures for catalyst dispersion, the relatively narrow selection of additives examined, and the inherent variability of the DTF chars. Nevertheless, one crucial exception to normal additive behavior was discovered, with copper(I) chloride perceptibly deactivating during devolatilization in the DTF, even though it remained the most effective catalyst tested. As a prolonged burnout at over 1000{sup o}C was required to replicate this deactivation effect on the TGA, the phenomenon could not be detected by typical testing procedures. Subsequently, a comprehensive TGA study showed no obvious relationship between the catalyst-induced reductions in the reaction's apparent activation energy and the samples recorded burnout rates.

  12. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    PubMed

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  13. Pyrolysis-GC/MS of charred purified condensed tannin: towards identification of tannin-derived black carbon in environmental samples

    NASA Astrophysics Data System (ADS)

    Kaal, Joeri; Nierop, Klaas G. J.; Kraal, Peter; Preston, Caroline M.

    2010-05-01

    Tannins account for a significant proportion of plant biomass and are therefore a possible source of Black C in the charred remains from wildfires. Nonetheless, in contrast with other major biocomponents such as lignin and cellulose, the thermal degradation of tannins has not been investigated in laboratory charring experiments. We used pyrolysis-GC/MS to investigate the effects of furnace charring (30 min at fixed temperatures up to 600 °C under limited oxygen supply) on the degradation of pure condensed tannin (CT) isolated from Corsican pine (Pinus nigra) needles. The experiments showed a rapid loss (at 300 °C and higher) of the pyrogallol moieties of the B-ring of prodelphinidin-type CT, due to dehydroxylation. The relative abundance of catechols (from procyanidin-type CT) decreased at 350 °C and higher temperatures. This led to the formation of phenols that were strongly enriched between 300 and 400 °C. At higher temperatures, further dehydroxylation caused a decline in contributions of phenols producing a series of monocyclic aromatics ((alkyl)benzenes) and condensation of aromatics produced polycyclic aromatic hydrocarbons (PAHs), i.e. the typical pyrolysis fingerprint of strongly charred biomass. We conclude that (i) the thermal degradation of CT can be successfully monitored by pyrolysis-GC/MS, (ii) thermal degradation of CT is characterized by dehydroxylation of phenolic groups and condensation of aromatics that increase with temperature and (iii) CT-derived Black C may be recognized by catechol enrichments at low temperatures and possibly (relative) abundance of phenol and biphenyl at higher levels of thermal breakdown. Applying the same method to natural charcoal from gorse bushfires indicated that pyrolysis-GC/MS fingerprinting may allow for tannin identification in environmental Black C samples.

  14. Complete mitochondrial genomes of the Northern (Salvelinus malma) and Southern (Salvelinus curilus) Dolly Varden chars (Salmoniformes, Salmonidae).

    PubMed

    Balakirev, Evgeniy S; Romanov, Nikolai S; Ayala, Francisco J

    2016-01-01

    The complete mitochondrial genomes were sequenced from the Northern and Southern Dolly Varden chars, Salvelinus malma and S. curilus. The genome sequences are 16,654 bp in size in both species, and the gene arrangement, composition, and size are very similar to the salmonid fish genomes published previously. The level of sequence divergence between S. malma and S. curilus inferred from the complete mitochondrial genomes is relatively low (1.88%) indicating recent divergence of the species and/or historical hybridization.

  15. Nutritional Status of under 5 Children belonging to Tribal Population Living in Riverine (Char) Areas of Dibrugarh District, Assam

    PubMed Central

    Islam, Safikul; Mahanta, Tulika Goswami; Sarma, Ratna; Hiranya, Saikia

    2014-01-01

    Context: Assam's main lifeline, the Brahmaputra river, braided nature created numerous sand bars and islands known as chars/sapories. They are home to more than 3 million people. Over 90% of the cultivated land on the river islands is flood-prone; the flood leaves the islands completely separated from mainland, preventing access to health infrastructure and services. Aims: To assess the nutritional status of under 5 children residing in the char areas of Dibrugarh district and to identify the factors influencing their nutritional status. Settings and Design: A community-based cross-sectional study conducted in the riverine areas of Dibrugarh district of Assam. Materials and Methods: Nutritional status was assessed using anthropometry. Undernutrition was classified using World Health Organization (WHO) recommended Z- score system. Data collection was done by house to house visit of all chars using proportionate allocation. Statistical Analysis Used: Rates, ratios, proportions, and chi-square test. Results: Overall prevalence of underweight, stunting, and wasting was 29%, 30.4%, and 21.6%, respectively. Prevalence of underweight and stunting was less than the prevalence of underweight (36.4%) and stunting (46.5%) in Assam, but the prevalence of wasting was more than that of Assam (13.7%) as observed in National Family Health Survey-3. Significant association was observed between the prevalence of undernutrition and socioeconomic status, literacy status of parents, infant, and young child feeding practices and size of the family (P < 0.05). Conclusions: Special focus is needed for nutritional improvement of under 5 living in char areas to prevent preventable morbidities and to achieve optimum development. PMID:25136158

  16. Elemental and molecular evidence of soot- and char-derived black carbon inputs to New York City's atmosphere during the 20th century

    SciTech Connect

    Patrick Louchouarn; Steven N. Chillrud; Stephane Houel; Beizhan Yan; Damon Chaky; Cornelia Rumpel; Claude Largeau; Gerard Bardoux; Dan Walsh; Richard F. Bopp

    2007-01-01

    Soot black carbon (here expressed as GBC) is present in sediments of Central Park and Prospect Park Lakes, New York City (NYC), and peaks in the middle of the 20th Century at the highest values (1-3% dry weight) ever reported in urban lakes. During that period ({approximately} 1940-1970), the GBC represents up to 28% of the total organic carbon (OC). Radionuclide-normalized whole core inventories of accumulated GBC are similar in the two lakes which are separated by {approximately} 15 km, suggesting that emissions of fine soot particles may have accumulated homogeneously over at least the urban center of NYC. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments is decoupled from that of GBC. The highest levels of total PAHs correspond to peak coal use for space heating in NYC in the early 1900s. In contrast, GBC concentrations were highest in the mid 1900s, a period when oil combustion dominated local fossil fuel use and incineration of municipal solid waste (MSW) was common practice in NYC. Decreases in GBC levels observed in more recently deposited sediments are consistent with improvements in particle emissions control systems. Non-soot BC (char) was identified by a high carbon to nitrogen (C/N) ratio that persisted after correction for GBC. This likely tracer of MSW incineration was estimated to contribute an additional {approximately} 35% of total organic carbon found in the sediments deposited during the peak period of combustion. The temporal trends of soot-BC observed in our lake cores do not agree with published historical reconstructions based on fuel consumption and estimated emission factors. 43 refs., 4 figs., 1 tab.

  17. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.

  18. Reactivity of young chars via energetic distribution measurements. Quarterly technical progress report, 15 December 1991--15 March 1992

    SciTech Connect

    Calo, J.M.; Zhang, L.H.; Lu, W.; Lilly, W.D.

    1992-06-10

    We have developed what we believe to be the very first a priori prediction technique for the gasification reactivity of coal char. With this method the gasification reactivity of a coal char as function of temperature can be predicted from a single temperature programmed desorption (TPD) experiment following mild gasification at a single temperature (Calo et al., 1989; Hall and Calo, 1990a). This approach has been demonstrated for C0{sub 2} gasification of coal chars where the gasification reactivity is controlled by the thermal desorption of oxygen surface complexes formed during gasification. This approach may be extended to other oxidant species, such as steam, and carbon-hydrogen complexes for hydrogen gasification as well. In the current report, we present a summary of the work that has been conducted to date in constructing a new TGA/TPD-MS experimental system which provides us with the capability of simultaneous monitoring of transient sample mass data, as well as gas phase composition during thermal desorption experiments. In addition, we present some steam reactivity data obtained with another TGA (Cahn 113 system) which has been modified for steam gasification experiments.

  19. Radiocarbon dating of charred human bone remains preserved in urns excavated from medieval Buddhist cemetery in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshio; Sagawa, Shinichi; Yamada, Tetsuya; Kanehara, Masaaki; Tsuchimoto, Norio; Minami, Masayo; Omori, Takayuki; Okuno, Mitsuru; Ohta, Tomoko

    2010-04-01

    For a preliminary test of 14C dating of cremated human remains, we have collected charred bone and wood-charcoal fragments from cremated remains contained in cinerary urns that had been excavated from medieval Buddhist cemetery at the Hoenji temple in Aichi prefecture, central Japan. More than 230 urn vessels were discovered from the excavated area of ca. 14 m wide and 14 m long. The identification of charred bone or charcoal fragments among the remains was performed by observation of surface appearance, inspection of fine structures by a microscope, bubble formation during the HCl treatments in preparing target material for AMS 14C dating, carbon and nitrogen contents, δ13C and δ15N values of the fragments. All 14C ages obtained for the samples that were identified as charred bone remains were almost consistent with the archeological age estimated based on typological analysis of respective urns. On the other hand, some 14C ages for the remains identified as wood charcoal, which had been produced from firewood or a wooden coffin during the cremation, were not consistent with archeological estimation, shifting toward older 14C ages, most probably as the result of old wood effect.

  20. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. PMID:26775155

  1. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-10-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  2. Influence of sulfur in coals on char morphology and combustion. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Marsh, H.; Crelling, J.C.

    1992-10-01

    During coal pyrolysis, in applications such as in a utility boiler, sulfur which is present in the original coal is transferred to the resultant char, to be burnt (combusted) subsequently. The effect of sulfur on char reactivity during combustion is poorly understood and this study addresses the problem. Due to the complex nature of coal, initial experiments make use of organic model compounds which can be related to chars from coals. This approach allows for clear identification of the important parameters which influence reactivity, in this instance namely; phenolic resin concentration, sulfur and/or iron content. The addition of iron serves to mimic the effect of catalytic mineral matter in coals. The experimental approach involves the preparation of model compounds and the study of their gasification behavior, including surface characterization by adsorption techniques and microscopy. The equipment necessary to this study has been commissioned and progress has been made. Previous results indicated that increasing phenolic resin (resol) content led to greater yields and that carbons with less than 20 wt.% resol were optically anisotropic, whereas carbons with higher concentrations of resol were isotropic. Due to the high volatility of thiophene it was decided to incorporate sulfur into the model carbon structure by the addition of elemental sulfur and dibenzothiophene sulfone.

  3. Effect of preoxidation on the corrosion of some alloys in coal chars and sulfur vapor. Final report

    SciTech Connect

    Douglass, D.L.; Sheybany, S.

    1980-05-01

    Preoxidation of several chromia-former and of several alumina-former alloys at temperatures ranging from 1800 to 2300/sup 0/F in either water-saturated argon or in air was performed prior to corrosion in coal char or in sulfur vapor. Chromia films offered no protection to sulfidation in both char and sulfur vapor environments. The chromia films were adherent but permitted rapid inward penetration of sulfur and outward penetration of cations to form extensive sulfides. Alumina films offered protection for much longer times than chromia films but localized cracking and/or spalling of the alumina permitted rapid attack at the exposed areas. The addition of yttrium as either a metallic element or as an oxide dispersion improved the mechanical stability of the films and prolonged the period of protectiveness. A binary alloy, Fe-13Al, sulfidized more raidly after preoxidation than before preoxidation. Alumina films would provide an excellent protective barrier if thick, crack-free films could be grown at reasonable temperatures. The low growth rates at very high temperatures and the susceptibility of alumina films to crack and spall during thermal cycling suggest that preoxidation will not offer adequate corrosion resistance for alloys exposed to char in goal gasifiers.

  4. Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals

    SciTech Connect

    Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi

    2009-04-15

    HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

  5. Magnetic particle characterization-magnetophoretic mobility and particle size.

    PubMed

    Zhou, Chen; Boland, Eugene D; Todd, Paul W; Hanley, Thomas R

    2016-06-01

    Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.

  6. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    PubMed Central

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-01-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283

  7. Estimation of surface heat flux for ablation and charring of thermal protection material

    NASA Astrophysics Data System (ADS)

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  8. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: Effect of feedstock composition.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-09-01

    Eucalyptus grandis (E. grandis) wood and char products derived from pyrolysis of E. grandis wood, were gasified in supercritical water at 450°C - with and without the use of a homogeneous (K2CO3) and heterogeneous (Ni/Al2O3-SiO2) catalyst. Gas yields and gasification efficiencies were measured experimentally and compared to calculated thermodynamic equilibrium values, specifically considering the effects of the O/C ratio and volatile matter content of the feed material. Thermodynamically, feed material with lower O/C ratios (0.22) typically resulted in higher CH4 yields (30mol/kgfeed,dry) and gasification efficiencies (188%). However, experimentally, feed material with lower O/C ratios and lower volatile matter resulted in the lowest CH4 yields and gasification efficiencies. Furthermore, a linear relationship between the carbon efficiency (CE) and both the volatile matter content and O/C ratio of the feed material was found to hold true in both catalytic and non-catalytic experiments. PMID:27343456

  9. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    PubMed

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-06-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized.

  10. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  11. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char.

    PubMed

    Acosta, R; Fierro, V; Martinez de Yuso, A; Nabarlatz, D; Celzard, A

    2016-04-01

    Tyre pyrolysis char (TPC), produced when manufacturing pyrolysis oil from waste tyre, was used as raw material to prepare activated carbons (ACs) by KOH activation. KOH to TPC weight ratios (W) between 0.5 and 6, and activation temperatures from 600 to 800 °C, were used. An increase in W resulted in a more efficient development of surface area, microporosity and mesoporosity. Thus, ACs derived from TPC (TPC-ACs) with specific surface areas up to 814 m(2) g(-1) were obtained. TPC, TPC-ACs and a commercial AC (CAC) were tested for removing Tetracycline (TC) in aqueous phase, and systematic adsorption studies, including equilibrium, kinetics and thermodynamic aspects, were performed. Kinetics was well described by the pseudo-first order model for TPC, and by a pseudo second-order kinetic model for ACs. TC adsorption equilibrium data were also fitted by different isotherm models: Langmuir, Freundlich, Sips, Dubinin-Radushkevich, Dubinin-Astokov, Temkin, Redlich-Peterson, Radke-Prausnitz and Toth. The thermodynamic study confirmed that TC adsorption onto TPC-ACs is a spontaneous process. TC adsorption data obtained in the present study were compared with those reported in the literature, and differences were explained in terms of textural properties and surface functionalities. TPC-ACs had similar performances to those of commercial ACs, and might significantly improve the economic balance of the production of pyrolysis oil from waste tyres.

  12. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char.

    PubMed

    Acosta, R; Fierro, V; Martinez de Yuso, A; Nabarlatz, D; Celzard, A

    2016-04-01

    Tyre pyrolysis char (TPC), produced when manufacturing pyrolysis oil from waste tyre, was used as raw material to prepare activated carbons (ACs) by KOH activation. KOH to TPC weight ratios (W) between 0.5 and 6, and activation temperatures from 600 to 800 °C, were used. An increase in W resulted in a more efficient development of surface area, microporosity and mesoporosity. Thus, ACs derived from TPC (TPC-ACs) with specific surface areas up to 814 m(2) g(-1) were obtained. TPC, TPC-ACs and a commercial AC (CAC) were tested for removing Tetracycline (TC) in aqueous phase, and systematic adsorption studies, including equilibrium, kinetics and thermodynamic aspects, were performed. Kinetics was well described by the pseudo-first order model for TPC, and by a pseudo second-order kinetic model for ACs. TC adsorption equilibrium data were also fitted by different isotherm models: Langmuir, Freundlich, Sips, Dubinin-Radushkevich, Dubinin-Astokov, Temkin, Redlich-Peterson, Radke-Prausnitz and Toth. The thermodynamic study confirmed that TC adsorption onto TPC-ACs is a spontaneous process. TC adsorption data obtained in the present study were compared with those reported in the literature, and differences were explained in terms of textural properties and surface functionalities. TPC-ACs had similar performances to those of commercial ACs, and might significantly improve the economic balance of the production of pyrolysis oil from waste tyres. PMID:26855221

  13. Effect of sewage sledge and their bio-char on some soil qualities

    NASA Astrophysics Data System (ADS)

    Fathi, Hamed; Movahedi Naeini, Seyed Alireza; Mirzanejad, Mojan

    2015-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of biochar on the soil physical properties, nutrient status and plant production. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 6%.

  14. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: Effect of feedstock composition.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-09-01

    Eucalyptus grandis (E. grandis) wood and char products derived from pyrolysis of E. grandis wood, were gasified in supercritical water at 450°C - with and without the use of a homogeneous (K2CO3) and heterogeneous (Ni/Al2O3-SiO2) catalyst. Gas yields and gasification efficiencies were measured experimentally and compared to calculated thermodynamic equilibrium values, specifically considering the effects of the O/C ratio and volatile matter content of the feed material. Thermodynamically, feed material with lower O/C ratios (0.22) typically resulted in higher CH4 yields (30mol/kgfeed,dry) and gasification efficiencies (188%). However, experimentally, feed material with lower O/C ratios and lower volatile matter resulted in the lowest CH4 yields and gasification efficiencies. Furthermore, a linear relationship between the carbon efficiency (CE) and both the volatile matter content and O/C ratio of the feed material was found to hold true in both catalytic and non-catalytic experiments.

  15. [Population genetic structure of northern Dolly Varden char Salvelinus malma malma in Asia and North America].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Brykov, Vl A

    2011-12-01

    The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplotype and nucleotide diversity were 0.5261 +/- 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise phi(ST) values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Nested analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  19. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  20. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  1. Anadromous char as an alternate food choice to marine animals: a synthesis of Hg concentrations, population features and other influencing factors.

    PubMed

    Evans, Marlene S; Muir, Derek C G; Keating, Jonathan; Wang, Xiaowa

    2015-03-15

    This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine

  2. Current status, between-year comparisons and maternal transfer of organohalogenated compounds (OHCs) in Arctic char (Salvelinus alpinus) from Bjørnøya, Svalbard (Norway).

    PubMed

    Bytingsvik, J; Frantzen, M; Götsch, A; Heimstad, E S; Christensen, G; Evenset, A

    2015-07-15

    High levels of organohalogenated compounds (OHCs) have been found in Arctic char from Lake Ellasjøen at Bjørnøya (Svalbard, Norway) compared to char from other arctic lakes. The first aim of the study was to investigate the OHC status, contaminant profile, and partitioning of OHCs between muscle and ovary tissue in spawning female char from the high-polluted Lake Ellasjøen and the low-polluted Lake Laksvatn. The second aim was to investigate if OHC levels in muscle tissue have changed over time. Between-lake comparisons show that the muscle levels (lipid weight) of hexachlorobenzene (HCB), chlordanes (∑CHLs), mirex, dichlorodiphenyltrichloroethanes (∑DDTs) and polychlorinated biphenyls (∑PCBs) were up to 36 times higher in char from Ellasjøen than in Laksvatn, and confirm that the char from Ellasjøen are still heavily exposed compared to char from neighboring lake. A higher proportion of persistent OHCs were found in Ellasjøen compared to Laksvatn, while the proportion of the less persistent OHCs was highest in Laksvatn. A between-year comparison of OHC levels (i.e., HCB, DDTs, PCBs) in female and male char shows higher levels of HCB in female char from Ellasjøen in 2009/2012 compared to in 1999/2001. No other between-year differences in OHC levels were found. Due to small study groups, findings associated with between-year differences in OHC levels should be interpreted with caution. OHCs accumulate in the lipid rich ovaries of spawning females, resulting in up to six times higher levels of OHCs in ovaries compared to in muscle (wet weight). The toxic equivalent (TEQ)-value for the dioxin-like PCBs (PCB-105 and -118) in ovaries of the Ellasjøen char exceeded levels associated with increased egg mortality in rainbow trout (Oncorhynchus mykiss). Hence, we suggest that future studies should focus on the reproductive health and performance abilities of the high-exposed population of char inhabiting Lake Ellasjøen. PMID:25864154

  3. Effects of catalytic mineral matter on CO/CO[sub 2] ratio, temperature and burning time for char combustion

    SciTech Connect

    Longwell, J.P.; Sarofim, A.F.; Bar-Ziv, E.; Lee, Chun-Hyuk.

    1990-01-01

    We have extended our recently reported method for determining the surface area of single microporous particles, Dudek et al., 1989 using an electrodynamic chamber (EDC) by increasing the operating pressures from 1 at to 25 at. The value of total surface area is determined from adsorption measurements of CO[sub 2] assuming monolayer adsorption. Measurements of CO[sub 2] desorption were also carried out to yield a point to point difference from the adsorption measurements of about 1%. Adsorption-desorption cycles were carried out for 10 particles to yield a scatter of less than 5% in the measured value for saturation adsorption. The major advantage of using high pressure measurements for evaluating the saturation value for CO[sub 2] adsorption is the improved accuracy of the extrapolation procedure. Previous measurements with the EDC at atmospheric pressure, Dudek, et al., 1989, yielded values for the surface area for similar particles of comparable value with a relative error of about 15%. The results of the high pressure measurements are however bounded with an error of about 3%. Also, the equilibrium adsorption-desorption coefficient was found with a high accuracy, whereas from atmospheric measurements it was not practical to obtain an accurate value.

  4. Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction

    SciTech Connect

    Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya

    2009-05-15

    The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

  5. Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.; Rostam-Abadi, M.; Donnals, G.L.; Rood, M.J.

    1994-09-01

    Carbon adsorbents have been shown to remove sulfur oxides from flue gas, and also serve as a catalyst for reduction of nitrogen oxides at temperatures between 80 and 150{degrees}C. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of activated char which could be used as a catalyst for combined SO{sub 2}/NO{sub x} removal, and to evaluate the potential application of the products in flue gas cleanup. Key production variables will be identified to help design and engineer activated char with the proper pore structure and surface chemistry to enable the development of an effective SO{sub 2}/NO{sub x} removal catalyst. The ISGS agreed to provide 500 pounds of activated char to STEAG for tests in a demonstration unit to clean flue gas from a U.S. waste incinerator. The STEAG process requires an activated char with a N{sub 2} BET surface area < 300 m{sup 2}/g, i.e., lower than that of most commercially available activated carbons. An extensive series of tests was conducted to determine process conditions for making such an adsorbent from a Colchester No. 2 coal (Industry Mine coal). Using a 4 in. ID continuous rotary tube kiln (RTK) and a continuous feed charring oven, pound quantities of activated char were produced that matched well the properties of the adsorbent currently used by STEAG. A three step process, which included preoxidation, pyrolysis, and activation, was devised to produce a suitable char from this caking coal.

  6. Linking Pyrogenic Organic Matter Reactivity in Soil to its Charring Temperature and Wood Source

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Gibson, C. D.; Hatton, P. J.; Dastmalchi, K.; Chatterjee, S.; Nadelhoffer, K. J.; Stark, R. E.; Bird, J.

    2014-12-01

    Understanding the link between the chemical and structural properties of pyrogenic organic matter (PyOM) and its subsequent reactivity in soil is critical to predict how future increases in forest fire frequency and intensity will affect C and N cycling. Herein, we present results from a laboratory incubation that investigated the effects of wood species and charring temperature on the decomposition of PyOM and native soil organic carbon (SOC) dynamics in a sandy soil from a northern temperate forest (University of Michigan Biological Station, Pellston, MI, USA). PyOM was produced from highly 13C/15N-labeled red maple (RM; Acer rubrum) and jack pine (JP; Pinus banksania) at 0 (native wood), 200, 300, 450 and 600 °C. PyOM amendments to soil were at 11 % total soil C. After 3 months of this ongoing incubation, 13CO2 evolution indicates that both pyrolysis temperature and species played a significant role in PyOM and native SOC mineralization. For both species, PyOM-C mineralization decreased with increasing temperature and PyOM ≥200 °C additions decreased SOC mineralization relative to controls.. In addition, PyOM-C mineralization of RM-derived PyOM was enhanced relative to JP-derived PyOM at temperatures <600 °C. Soils with added RM-derived PyOM exhibited significantly lower SOC mineralization at 300 and 450 °C than from JP-derived PyOM additions. These results highlighting interactive temperature and species effects are consistent with our detailed spectroscopic, elemental and isotope analysis of the PyOM samples across this pyrolysis gradient, which shows significant physicochemical changes at 300 °C for JP and between 300 and 450 °C for RM. Efforts will be made in this paper to link PyOM structural and chemical properties to the PyOM and native SOC turnover rates.

  7. Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability.

    PubMed

    Siebers, Nina; Leinweber, Peter

    2013-01-01

    Soil contamination with Cd from P fertilizer and other anthropogenic and geogenic sources is a serious problem. In situ immobilization by P application to soil is known as an applicable remediation technique leading to reduced Cd uptake by plants, and use of a Cd-free P fertilizer from renewable sources would be most favorable. Bone char (BC) (15% P, 28% Ca, 0.7% Mg) may be used as such a quality P fertilizer, but it is unknown if its dissolution in soil provides sufficient P and immobilizes Cd in moderately contaminated soils. We incubated BC and triple superphosphate (TSP) in 11 soils that contained between 0.3 to 19.6 mg Cd kg and determined the kinetics of P dissolution during a time period of 145 d. The concomitant Cd immobilization was determined by extracting the mobile Cd with 1 mol L NHNO solution. For most soils, BC increased the concentration of labile P immediately after application, reaching a maximum after 34 d, although the solubility was below that of TSP (2.9-19.3 vs. 4.1-24.0%). Among five kinetic models, the Langmuir-type equation provided the best description of P dissolution from BC and TSP. The Cd immobilization resulting from BC dissolution exceeded that of TSP by a factor of 1.4 to 2.7. The P dissolution from BC was negatively correlated with pH and positively with P sorption capacity, whereas Cd immobilization was positively correlated with soil pH. These causal relationships were expressed in multiple equations that enable predictions of P dissolution and Cd immobilization and thus may help to introduce BC as sustainable P fertilizer and useful soil amendment. PMID:23673832

  8. Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability.

    PubMed

    Siebers, Nina; Leinweber, Peter

    2013-01-01

    Soil contamination with Cd from P fertilizer and other anthropogenic and geogenic sources is a serious problem. In situ immobilization by P application to soil is known as an applicable remediation technique leading to reduced Cd uptake by plants, and use of a Cd-free P fertilizer from renewable sources would be most favorable. Bone char (BC) (15% P, 28% Ca, 0.7% Mg) may be used as such a quality P fertilizer, but it is unknown if its dissolution in soil provides sufficient P and immobilizes Cd in moderately contaminated soils. We incubated BC and triple superphosphate (TSP) in 11 soils that contained between 0.3 to 19.6 mg Cd kg and determined the kinetics of P dissolution during a time period of 145 d. The concomitant Cd immobilization was determined by extracting the mobile Cd with 1 mol L NHNO solution. For most soils, BC increased the concentration of labile P immediately after application, reaching a maximum after 34 d, although the solubility was below that of TSP (2.9-19.3 vs. 4.1-24.0%). Among five kinetic models, the Langmuir-type equation provided the best description of P dissolution from BC and TSP. The Cd immobilization resulting from BC dissolution exceeded that of TSP by a factor of 1.4 to 2.7. The P dissolution from BC was negatively correlated with pH and positively with P sorption capacity, whereas Cd immobilization was positively correlated with soil pH. These causal relationships were expressed in multiple equations that enable predictions of P dissolution and Cd immobilization and thus may help to introduce BC as sustainable P fertilizer and useful soil amendment.

  9. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  10. Combustion of dense streams of coal particles. Quarterly progress report No. 9, August 29, 1992--November 28, 1992

    SciTech Connect

    Annamalai, K.

    1992-12-31

    Ignition of the high volatile isolated coal particles in vitiated environment seems to occur heterogeneously at the leading edge of the particle. Volatiles are observed to be ejected upward as jets in the direction of the convective flow but only after heterogeneous ignition. The volatiles burn in the gas phase homogeneously and form a wake flame; a black inner zone (unburned volatile) is formed (see Fig.A.3 for many common characteristics of isolated flames).Intermittent volatile ignition and combustion are observed to occur during the combustion process for a few of the isolated particle combustion experiments on high volatile non-swelling coal. The medium volatile coal particles ignite faster than the high volatile coal; but the intermittent ignition is not observed. The low volatile isolated coal particles combust in shorter time. The isolated char particles ignite at the surface of the particle heterogeneously with little volatile ejected, yet are not sufficient to form a volatile flame, resulting in a subsequent heterogeneous combustion. A group flame is formed for the two-particle arrays at closer interparticle spacing (Fig.A.4). Also, intermittent ignition does not occur for the high volatile particles when the two particles are at farther distances which suggests that radiation interaction between the particles might be occurring. However this conclusion is purely speculative. The char arrays experience heterogeneous ignition at the leading edge; combustion proceeds heterogeneously.

  11. Evaluation of the energy transfer in the char zone during ablation. Part 2: In-depth response of ablative composites, volume 1. Ph.D. Thesis, 1975. Final Report

    NASA Technical Reports Server (NTRS)

    Pike, R. W.; Delvalle, E. G.

    1974-01-01

    The decomposition of ablative composites is described along with the transport phenomena of pyrolysis gases which result from the decomposition of these plastics as they flow through the porous char of char-forming ablators. The pyrolysis products are those formed by the thermal degradation of nylon-phenolic resin and silicone elastomer composites. Emphasis is placed on the nature and extent of chemical reactions of the pyrolysis products and the char, along with the energy absorbed by the combined pyrolysis and char zone. Chemical reactions with thermodynamically consistent kinetic data are determined in order to develop a realistic analysis for predicting the thermal performance of ablative heat shields.

  12. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char

    SciTech Connect

    Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li

    2008-07-15

    Experimental results performed with a fluidized-bed reactor supported the feasibility of the three processes including direct reduction of iron oxide by char, H{sub 2} production by the steam-iron process, and the oxidation of Fe{sub 3}O{sub 4} resulting from the steam-iron process to the original Fe{sub 2}O{sub 3} by air. Chars resulting from a Chinese lignite loaded with K{sub 2}CO{sub 3} were used successfully as a reducing material, leading to the reduction of Fe{sub 2}O{sub 3} to FeO and Fe for the steam-iron process, which was confirmed by both the off-gases concentrations and X-ray diffractometer analysis. The reduction of Fe{sub 2}O{sub 3} by K-10-char at 1073 K is desirable from the perspective of the carbon conversion rate and high concentration of CO{sub 2}. The carbon in char was completely converted to CO{sub 2} when the mass ratio of Fe{sub 2}O{sub 3}/K-10-char was increased to 10/0.3. The oxidation rate of K-10-char by Fe{sub 2}O{sub 3} without a gasifying agent was comparable to the K-10-char steam gasification rate. The fractions of FeO and Fe in the reduced residue were 43 and 57%, respectively, in the case of 3 g of Fe{sub 2}O{sub 3} and 0.5 g of K-10-char, which was verified by the total H{sub 2} yield equaling 1000 mL/g K-10-char from the steam-iron process. The time that it took to achieve complete oxidation of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} by air with an 8.7% O{sub 2} concentration at 1073 K was about 15 min. 53 refs., 19 figs., 5 tabs.

  13. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  14. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    PubMed

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source. PMID:22336747

  15. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    PubMed

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source.

  16. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters

    NASA Astrophysics Data System (ADS)

    Masoudi Soltani, Salman; Yazdi, Sara Kazemi; Hosseini, Soraya

    2013-05-01

    One-step pyrolysis was applied to synthesize mesoporous charred carbon from used cigarette filters. Proximate analysis suggested that cigarette filters are decent carbon precursors due to their moderate carbon (around 11 %) and low ash (around 0.1 %) contents. To investigate the effects of pyrolysis parameters on porous surface area, a full factorial design of experiment including heating rate, soaking time and pyrolysis temperature was used with each factor at three levels. The analysis of variance revealed that the temperature and heating rate had the most significant effects on total surface area of the synthesized carbon. Response surface model (RSM) was applied to best fit a surface through the experimental data. It was seen that the quadratic RSM model with a reasonable R 2 value of 63 % was the best developed model. The maximum BET surface area (597 m2/g) was reached at a pyrolysis temperature of 900 °C when the precursor was heated at 5 °C/min and hold at this temperature for 3 h. The produced N2 adsorption-desorption isotherm showed a certain degree of mesoporosity in the charred carbon with an average pore size of 3.32 nm calculated by Barrett-Joyner-Halenda method. Scanning electron microscopy also showed the presence of macroporosity on the charred carbon surface. Fourier transform infrared spectroscopy revealed the presence of acidic surface functional groups such as carboxyl and phenol which were accordingly confirmed by Boehm titration. In addition, Boehm titration showed that the produced carbon's surface was more acidic than basic in nature.

  17. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters

    NASA Astrophysics Data System (ADS)

    Masoudi Soltani, Salman; Yazdi, Sara Kazemi; Hosseini, Soraya

    2014-06-01

    One-step pyrolysis was applied to synthesize mesoporous charred carbon from used cigarette filters. Proximate analysis suggested that cigarette filters are decent carbon precursors due to their moderate carbon (around 11 %) and low ash (around 0.1 %) contents. To investigate the effects of pyrolysis parameters on porous surface area, a full factorial design of experiment including heating rate, soaking time and pyrolysis temperature was used with each factor at three levels. The analysis of variance revealed that the temperature and heating rate had the most significant effects on total surface area of the synthesized carbon. Response surface model (RSM) was applied to best fit a surface through the experimental data. It was seen that the quadratic RSM model with a reasonable R 2 value of 63 % was the best developed model. The maximum BET surface area (597 m2/g) was reached at a pyrolysis temperature of 900 °C when the precursor was heated at 5 °C/min and hold at this temperature for 3 h. The produced N2 adsorption-desorption isotherm showed a certain degree of mesoporosity in the charred carbon with an average pore size of 3.32 nm calculated by Barrett-Joyner-Halenda method. Scanning electron microscopy also showed the presence of macroporosity on the charred carbon surface. Fourier transform infrared spectroscopy revealed the presence of acidic surface functional groups such as carboxyl and phenol which were accordingly confirmed by Boehm titration. In addition, Boehm titration showed that the produced carbon's surface was more acidic than basic in nature.

  18. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting.

    PubMed

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-02-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition to composting hen manure and barley straw at low flow rates proved most effective in reducing cumulative NH3 and CH4 losses. Addition of bio-char in combination with barley straw to hen manure at both high and low flow rates reduced total GHG emissions (as CO2-equivalents) by 27-32% compared with barley straw addition alone. Comparisons of flow rates showed that low flow could be an alternative strategy for reducing NH3 losses without any significant change in N2O emissions, pointing to the need for well-controlled composting conditions if gaseous emissions are to be minimised.

  19. Kinetics and mechanisms of NO{sub x} - char reduction. Quarterly technical progress report, May 1, 1995--July 31, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-12-01

    The emission of nitrogen oxides from combustion of coal remains a problem of considerable interest, whether the concern is with acid rain, stratospheric ozone chemistry, or {open_quotes}greenhouse{close_quotes} gases. Whereas earlier the concern was focused mainly on NO (as a primary combustion product) and to a lesser extent NO{sub 2} (since it is mainly a secondary product of combustion), in recent years the emissions of N{sub 2}O have also captured considerable attention, particularly in the context of fluidized bed combustion, in which the problem appears to be most acute. The research community has only recently begun to take solid hold on the N{sub 2}O problem. This is in part because earlier estimates of the importance of N{sub 2}O in combustion processes were clouded by artifacts in sampling which have now been resolved. This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}O, but that the NO-carbon reactions might also contribute to formation of N{sub 2}O. The precise role of carbon in N{sub 2}O reduction and formation has yet to be established, since in one case the authors of a recent study were compelled to comment that {open_quotes}the basic knowledge of N{sub 2}O formation and reduction still has to be improved{close_quotes}. The same can be said of the NO-carbon system. In this program, carbons studied include graphite, resin char, coconut char, and a Wyodak coal char.

  20. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  1. Rare particles

    SciTech Connect

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of /sup 14/C from /sup 223/Ra. 35 references. (WHK)

  2. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOEpatents

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  3. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    PubMed

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking. PMID:26985627

  4. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  5. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  6. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    SciTech Connect

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti

    2009-03-15

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  7. Kinetics and mechanisms of NO{sub x}: Char reduction. Quarterly technical progress report, 31 January 1995--30 April 1995

    SciTech Connect

    Suuberg, E.M.; Lilly, W.D.; Aarna, I.

    1995-08-01

    This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}. The precise role of carbon in N{sub 2} reduction and formation has yet to be established. Interest in the N{sub 2} and N{sub 2}O-char reactions has been significant in connection with both combustor modeling, as well as in design of post-combustion NO{sub x} control strategies. In our studies, a DuPont thermogravimetric analyzer (TGA) is used for the char reactivity studies. The temperature and mass are recorded as function of time, using a Macintosh computer and software for simultaneous apparatus control and data acquisition. Specific surface areas of char samples were determined by the N{sub 2} BET method at 77 K. A standard flow-type adsorption device (Quantasorb) was used for the measurements. Prior to surface area analysis, all samples were outgassed in a flow of nitrogen at 573 K for 3 hours. The carbonaceous solids used were resin char, graphite, coconut char and a Wyodak coal char. As was noted in the last report, carbons derived from different original materials show quite similar behaviors, in terms of the trends, but there are significant differences in actual reaction rates. It was shown that the spread of the reaction rate data from different studies, when expressed on a mass of carbon reactant- or surface area-basis, was almost the same.

  8. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    PubMed

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  9. Influence of changing particle structure on the rate of gas-solid gasification reactions. Final report, July 1981-March 1984

    SciTech Connect

    Not Available

    1984-04-04

    The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.

  10. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    PubMed

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention. PMID:27152745

  11. Effect of sewage sledge and their bio-char on some soil qualities in Second year cropping

    NASA Astrophysics Data System (ADS)

    fathi dokht, hamed; Movahedi Naeini, Seyed Alireza; Dordipor, Esmaeil; mirzanejad, moujan

    2016-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of sewage sledge and their bio-char on the soil physical properties, nutrient status and plant production in Second year cropping. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 7%.

  12. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.

    1993-12-31

    The overall objective of this two-year project was to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. The two processing steps, physical cleaning and devolatilization under different environments, led to the following results. Cleaning coal incompletely removes mineral matter which decreases catalytic activity and increases micropore structure. Water forms hydrogen bonds to oxygen functional groups in coal, and during drying, coals undergo structural changes which affect mild gasification. When methane reacts wit coal, devolatilization and carbon deposition occur, the rates of which depend on temperature and amount of ash. Thermal decomposition of IBC-101 coal starts at 300 C, which is much lower than previously believed, but maximum yields of liquids occur at 500 C for IBC-101 coal and at 550 C for IBC-102 coal. Aliphatic-to-aromatic ratios increase with increasing pyrolysis temperatures to 300 C and then decrease; therefore, liquids formed during gasification of 550 C or higher contain mainly aromatic compounds. Btu values of chars are higher after methane treatment than after helium treatment.

  13. Odor and VOC Emissions from Pan Frying of Mackerel at Three Stages: Raw, Well-Done, and Charred

    PubMed Central

    Ahn, Jeong-Hyeon; Szulejko, Jan E.; Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won

    2014-01-01

    Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel) were analyzed at three different cooking stages (stage 1 = raw (R), stage 2 = well-done (W), and stage 3 = overcooked/charred (O)). Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O), e.g., 465 (trimethylamine) and 106 ppb (acetic acid). In contrast, at stage 2 (W), the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R)) and during overcooking leading to charring (stage 3 (O)). As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality. PMID:25405596

  14. Reconstruction of Biomass Combustion History Using Soot, Char, and Polycyclic Aromatic Hydrocarbons at Linsley Pond, Conn, USA

    NASA Astrophysics Data System (ADS)

    Yan, B.; Han, Y.; Peteet, D. M.

    2013-12-01

    Biomass burning has become recognized as one of key elements of climate change. The occurrence of fires is a complex function of climate, moisture, vegetation and landscape type. Fires impact environments in multiple ways, e.g., increase in soil erosion, change of vegetation type, and increase in nutrient levels in soils and lakes that receive runoff from burned areas. Sediment cores that contain an archive of deposition of combustion products can help reconstruct the history of past fires. In this study, alkylated PAHs and black carbon (char and soot) were used to explore the paleofire history reflected in a sediment core collected from Linsley Pond, Connecticut (41°18'N, 72 °45'W). Biomass type and combustion levels of these fires and whether they occurred locally or regionally can be derived from these indicators. Such details, together with other paleoenvironmental indicators recorded in sediment cores (e.g., pollen, macrofossils, and LOI) helped unravel the environmental conditions before and after fires. Alkanes, PAHs, alkylated PAHs, and the ratio of soot to char indicate that in the Younger Dryas, fire occurred at a relatively low temperature (i.e. smoldering), followed by an abrupt increase of flaming combustion of softwood (white pine) at the Holocene boundary. Our paleofire data supports the previous interpretations of a shift towards a warm and dry climate in the southern New England region at this time.

  15. Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery.

    PubMed

    Sarkar, Omprakash; Agarwal, Manu; Naresh Kumar, A; Venkata Mohan, S

    2015-02-01

    Algal biomass grown hetrotrophically in domestic wastewater was evaluated as pyrolytic feedstock for harnessing biogas, bio-oil and bio-char. Freshly harvested microalgae (MA) and lipid extracted microalgae (LEMA) were pyrolysed in packed bed reactor in the presence and absence of sand as additive. MA (without sand additive) depicted higher biogas (420 ml/g; 800 °C; 3 h) and bio-oil (0.70 ml/g; 500 °C; 3 h). Sand addition enhanced biogas production (210 ml/g; 600 °C; 2 h) in LEMA operation. The composition of bio-gas and bio-oil was found to depend on the nature of feedstock as well as the process conditions viz., pyrolytic-temperature, retention time and presence of additive. Sand additive improved the H2 composition while pyrolytic temperature increment caused a decline in CO2 fraction. Bio-char productivity increased with increasing temperature specifically with LEMA. Integration of thermo-chemical process with microalgae cultivation showed to yield multiple resources and accounts for environmental sustainability in the bio-refinery framework.

  16. Greenhouse gas production in mixtures of soil with composted and noncomposted biochars is governed by char-associated organic compounds.

    PubMed

    Borchard, Nils; Spokas, Kurt; Prost, Katharina; Siemens, Jan

    2014-05-01

    Biochar application to soil has the potential to increase soil productivity while reducing anthropogenic greenhouse gas (GHG) emissions to the atmosphere. However, techniques for conditioning this material for maximizing its effects as a soil amendment require elucidation. We examined changes of organic matter associated with two biochars after 175 d of composting and the resulting effects on GHG emissions during a 150-d incubation period. Composting decreased the amount of organic compounds that could be thermally released from the biochars and affected their molecular nature. These thermally desorbable organic compounds from initial biochars likely stimulated the oxidation of CH and inhibited the production of NO in soil-biochar mixtures. However, these reductions of GHG emissions disappeared together with thermally desorbable organic compounds after the composting of chars. Instead, addition of composted gasification coke and charcoal stimulated the formation of CH and increased NO emissions by 45 to 56%. Nitrous oxide emissions equaled 20% of the total amount of N added with composted biochars, suggesting that organic compounds and N sorbed by the chars during composting fueled GHG production. The transient nature of the suppression of CH and NO production challenges the long-term GHG mitigation potential of biochar in soil.

  17. Swimming endurance of bull trout, lake trout, arctic char, and rainbow trout following challenge with Renibacterium salmoninarum

    USGS Publications Warehouse

    Jones, D.T.; Moffitt, C.M.

    2004-01-01

    We tested the swimming endurance of juvenile bull trout Salvelinus confluentus, lake trout S. namaycush, Arctic char S. alpinus, and rainbow trout Oncorhynchus mykiss at 9??C and 15??C to determine whether sublethal infection from a moderate challenge of Renibacterium salmoninarum administered months before testing affected the length of time fish could maintain a swimming speed of 5-6 body lengths per second in an experimental flume. Rainbow trout and Arctic char swam longer in trials than did bull trout or lake trout, regardless of challenge treatment. When we tested fish 14-23 weeks postchallenge, we found no measurable effect of R. salmoninarum on the swimming endurance of the study species except for bull trout, which showed a mixed response. We conducted additional trials with bull trout 5-8 weeks postchallenge to determine whether increasing the challenge dose would affect swimming endurance and hematocrit. In those tests, bull trout with clinical signs of disease and those exposed to the highest challenge doses had significantly reduced swimming endurance compared with unchallenged control fish. Fish hematocrit levels measured at the end of all swimming endurance tests varied among species and between test temperatures, and patterns were not always consistent between challenged and control fish.

  18. Temperature measurement from the brain and rectum in charred corpses: a pilot study on an animal model.

    PubMed

    Gibelli, Daniele; Cantatore, Angela; Porta, Davide; Poppa, Pasquale; Sala, Remo; Marco, Grandi; Cattaneo, Cristina

    2014-03-01

    Measurement of body temperature provides relevant data on postmortem interval, and different studies have been so far attempted to apply temperature assessment methods also under extreme environmental conditions; however, none of them has been performed yet on charred or heated bodies, where temperature measurement is presumed to be unreliable because of the possible influence of heating. This study aimed at verifying any possible early-stage alterations of rectal and endocranial temperature due to fire on an animal model during the charring process. Three pigs, 2 adults (pigs 1 and 2) whose weight was about 50 kg each and 1 piglet weighing 3 kg, were heated and burnt on a natural fire lit on top of a wooden stack, without the use of accelerants; 2 thermocouples were positioned in the rectum and in the cranium to record second-by-second rectal and endocranial temperature values. Results demonstrate that the rectal temperature does not seem to increase in adult pigs for 40 to 50 minutes after the body has been exposed to fire, probably because of the thermal insulating characteristics of the adipose tissue. Therefore, temperature may still be of some help for estimating postmortem interval on heated or burnt cadavers.

  19. The influence of limestone and alumina on NO{sub x} and N{sub 2}O emissions from char combustion in a fluidized bed combustor

    SciTech Connect

    Liu, H.; Gibbs, B.M.

    1999-07-01

    The effect of limestone on the conversion of coal-N, volatile-N to NO/NO{sub x} and N{sub 2}O under fluidized bed combustion conditions has been extensively investigated and well-documented by many researchers. However, so far few studies have specifically investigated the influence of limestone on the conversion of char-N under fluidized bed combustion conditions. In this study, a series of batch-type, char combustion tests was carried out on a bench-scale, electrically heated, bubbling fluidized bed reactor. Char was produced in situ within the reactor. Char combustion tests were conducted with three sets of bed materials, namely silica sand, limestone diluted by silica sand and alumina ({gt}95% {gamma}-Al{sub 2}O{sub 3}) diluted by silica sand. Comparisons of NO{sub x} and N{sub 2}O emissions from char combustion between different bed materials reveal that bed materials containing limestone always results in more NO{sub x} and less N{sub 2}O than the pure sand bed under otherwise identical char combustion conditions. Two possible explanations for this observation have been given. One is that limestone/calcium oxide catalyses the decomposition of N{sub 2}O and promotes the conversion of char-N to NO/NO{sub x}; as in the case of volatile-N. The other is that limestone reduces the SO{sub 2} level in the combustor and hence results in an increase in the pool of H, OH and/or O radicals, which in turn results in an increase in NO{sub x} and a decrease in N{sub 2}O. Experimental results also show that alumina has a similar effect on N{sub 2}O emissions as limestone. However, in contrast to limestone, alumina does not promote the conversion of char-N to NO{sub x}, which suggests that partially replacing sand with alumina may reduce the total emissions of N{sub 2}O and NO{sub x} from coal-fired fluidized bed combustors.

  20. [The divergence of the dolly varden char Salvelinus malma in Asian Northern Pacific populations inferred from the PCR-RFLP analysis of the mitochondrial DNA].

    PubMed

    Oleĭnik, A G; Skurikhina, L A; Brykov, V A

    2002-10-01

    Genetic differentiation of the dolly varden char Salvelinus malma Walbaum was studied in five populations from the western part of the Northern Pacific. Using restriction analysis (RFLP), we examined polymorphism of three mitochondrial DNA (mtDNA) fragments amplified in polymerase chain reaction (PCR). MtDNA haplotypes were shown to fall into two phylogenetic groups, which probably reflect the existence of two previously described subspecies of Asian dolly varden, S. malma malma and S. malma krascheninnikovi. The divergence of mtDNA nucleotide sequences in the dolly varden subspecies (about 4%) corresponds to the differences between the valid char species from the genus Salvelinus.

  1. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  2. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  3. Enhancing Asphalt Binder's Rheological Behavior and Aging Susceptibility Using Nano-Particles

    NASA Astrophysics Data System (ADS)

    Walters, Renaldo C.

    The life expectancy of Asphalt Binder (AB) has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact that nano-particles and bio modification have on the aging susceptibility of asphalt binder. As such, the following hypothesis was investigated: Introduction of nano particles to asphalt binder will reduce asphalt oxidation aging by increasing the inter layer spacing of the nano particles. Two nano scale materials were used for this study, nano-clay and bio-char as well as one micro scale material, silica fume. Nano-clay (Cloisite 30B) is a naturally occurring inorganic mineral. Bio-char is the waste product from bio-binder production. Bio-binder is produced from swine manure using a thermochemical conversion process. This process is then followed by a filtration procedure where the bio-char is produced. Chemical and physical properties of bio-char showed a significant presence of carbon which could in turn reduce the rate of asphalt oxidation. Silica Fume is an ultra-fine powder collected as a by-product of silicon and ferrosilicon alloy production and consists of spherical particles. In this study several mixtures are designed and evaluated using RV testing (Rotational Viscometer), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-clay is blended at 2% and 4% by weight of dry mass, with and without bio-binder (5% by weight of dry mass). Bio-char is grinded to nano scale and added to the virgin asphalt binder (PG 64-22) at 2%, 5% and 10% by weight of dry mass. Silica Fume is added to virgin asphalt binder (PG 64-22) at 2%, 4% and 8% by weight of dry mass. The optimum percent of nano scale material that is added to virgin asphalt binder is expected to reduce aging susceptibility of asphalt binder, extending its service life.

  4. Yukawa particles in a confining potential

    SciTech Connect

    Girotto, Matheus Levin, Yan; Santos, Alexandre P. dos; Colla, Thiago

    2014-07-07

    We study the density distribution of repulsive Yukawa particles confined by an external potential. In the weak coupling limit, we show that the mean-field theory is able to accurately account for the particle distribution. In the strong coupling limit, the correlations between the particles become important and the mean-field theory fails. For strongly correlated systems, we construct a density functional theory which provides an excellent description of the particle distribution, without any adjustable parameters.

  5. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  6. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  7. Mid-intrared Diffuse Reflectance Spectroscopic (DRIFTS) Examination of Charred Pine Wood, Bark Cellulose and Lignin: Implications for the Quantitative Determination of Charcoal in Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fires in terrestrial ecosystems produce large amounts of charcoal which is persistent in the environment and represents a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be presen...

  8. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  9. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. PMID:27544914

  10. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixtures and calcined dolomite in a fixed-bed reactor

    SciTech Connect

    Seshadri, K.; Shamsi, A.

    1998-10-01

    A distillation fraction of a coal-derived liquid (tar) was cracked over a char-dolomite mixture, calcined dolomite, and silicon carbide in a fixed-bed reactor. The char-dolomite mixture (FWC) was produced from Pittsburgh No. 8 coal and dolomite in a Foster Wheeler carbonizer. The experiments were conducted under nitrogen and simulated coal gas (SCG), which was a mixture of CO, CO{sub 2}, H{sub 2}S, CH{sub 4}, N{sub 2}, and steam, at 1 and 17 atm. The conversion over these materials under nitrogen was much higher at 17 atm than at 1 atm. At higher pressures, tar molecules were trapped in the pores of the bed material and underwent secondary reactions, resulting in the formation of excess char. However, when nitrogen was replaced by SCG, the reactions that induce char formation were suppressed, thus increasing the yield of gaseous products. The analysis of the gaseous products and the spent bed materials for organic and inorganic carbons suggested that the product distribution can be altered by changing the carrier gas, temperature, and pressure.

  11. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively.

  12. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    PubMed

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS.

  13. Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. Technical report, September 1--November 30, 1993

    SciTech Connect

    Lizzio, A.A.; DeBarr, J.A.; Rostam-Abadi, M.

    1993-12-31

    Carbon adsorbents have been shown to remove sulfur oxides from flue gas, and also serve as a catalyst for reduction of nitrogen oxides at temperatures between 80 and 150{degrees}C. The overall objective of this project is to determine whether Illinois coal is a suitable feed stock for the production of activated char which could be used as a catalyst for removal of SO{sub 2}/NO{sub x} from combustion flue gas, and to evaluate the potential application of the products in flue gas cleanup. Key production variables will be identified to help design and engineer activated char with the proper pore structure and surface chemistry. During this reporting period, a series of chats was prepared from an Illinois coal (IBC-102). A 48{times}100 mesh size fraction of IBC-102 coal was physically cleaned to reduce its ash content from 5.5 to 3.6%. The clean coal was pyrolyzed in a fluidized-bed reactor at 500, 700 and 900{degrees}C. The surface area and oxygen content of the char was varied either by oxidation in 10% O{sub 2} or by nitric acid treatment. Steam activation or chemical activation using potassium hydroxide was employed to enhance surface area development. Nitrogen BET surface areas of the chars ranged from 1 to 800 M{sup 2}/g.

  14. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  15. Correlation studies on surface particle detection methods

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald V.; White, James C.

    1988-01-01

    The accurate determination of dust levels on optical surfaces is necessary to assess sensor system performance. A comparison study was made on several particle measurement methods including those based on direct imaging and light scattering. The effectiveness of removing the particles from the surface prior to determining particle size distributions was also assessed. These studies revealed that some methods, especially those requiring particle removal before analysis, are subject to large systematic errors affecting particle size distributions. Thus, an understanding of the particle measurement methods employed is necessary before any surface cleanliness or obstruction value assignments are accepted as true representations of an optical surface contamination condition.

  16. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  17. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    PubMed

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  18. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  19. Particle therapy

    SciTech Connect

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  20. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.