Science.gov

Sample records for accurately focusing solar

  1. FOCUSing on Innovative Solar Technologies

    SciTech Connect

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2016-03-02

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  2. FOCUSing on Innovative Solar Technologies

    ScienceCinema

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2016-07-12

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  3. Accurate shape from focus based on focus adjustment in optical microscopy.

    PubMed

    Shim, Seong-O; Malik, Aamir Saeed; Choi, Tae-Sun

    2009-05-01

    Optical microscopy allows a magnified view of the sample while decreasing the depth of focus. Although the acquired images from limited depth of field have both blurred and focused regions, they can provide depth information. The technique to estimate the depth and 3D shape of an object from the images of the same sample obtained at different focus settings is called shape from focus (SFF). In SFF, the measure of focus--sharpness--is the crucial part for final 3D shape estimation. The conventional methods compute sharpness by applying focus measure operator on each 2D image frame of the image sequence. However, such methods do not reflect the accurate focus levels in an image because the focus levels for curved objects require information from neighboring pixels in the adjacent frames too. To address this issue, we propose a new method based on focus adjustment which takes the values of the neighboring pixels from the adjacent image frames that have approximately the same initial depth as of the center pixel and then it re-adjusts the center value accordingly. Experiments were conducted on synthetic and microscopic objects, and the results show that the proposed technique generates better shape and takes less computation time in comparison with previous SFF methods based on focused image surface (FIS) and dynamic programming.

  4. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  5. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  6. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  7. Line-focus concentrating solar collectors

    SciTech Connect

    Leonard, J. A.; Dugan, V. L.

    1980-01-01

    An overview of the line-focus concentrating solar collector technology and applications is presented. Included are a description of the collectors, some of the key features of the engineering approach, instantaneous and all-day performance and operating data, temperature capabilities and limitations for selected collectors, projected future capabilities for peak and annual performance. Projected system capital costs and annualized life cycle costs for thermal energy produced are discussed. Several existing application projects which employ line concentrating collectors are reviewed, and finally, plans for future DOE-funded line concentrating collector projects are described.

  8. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  9. Accurate fundamental parameters for 23 bright solar-type stars

    NASA Astrophysics Data System (ADS)

    Bruntt, H.; Bedding, T. R.; Quirion, P.-O.; Lo Curto, G.; Carrier, F.; Smalley, B.; Dall, T. H.; Arentoft, T.; Bazot, M.; Butler, R. P.

    2010-07-01

    We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III-V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (~ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of -40 +/- 20K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H] = -1.7 to +0.4, and there is clear evidence for α-element enhancement in the metal-poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v sin i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g and [Fe/H] with absolute accuracies of 80K, 0.08 and 0.07dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry

  10. Fast and accurate auto-focusing algorithm based on the combination of depth from focus and improved depth from defocus.

    PubMed

    Zhang, Xuedian; Liu, Zhaoqing; Jiang, Minshan; Chang, Min

    2014-12-15

    An auto-focus method for digital imaging systems is proposed that combines depth from focus (DFF) and improved depth from defocus (DFD). The traditional DFD method is improved to become more rapid, which achieves a fast initial focus. The defocus distance is first calculated by the improved DFD method. The result is then used as a search step in the searching stage of the DFF method. A dynamic focusing scheme is designed for the control software, which is able to eliminate environmental disturbances and other noises so that a fast and accurate focus can be achieved. An experiment is designed to verify the proposed focusing method and the results show that the method's efficiency is at least 3-5 times higher than that of the traditional DFF method.

  11. The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Mrotzek, N.; Lemke, U.; Hinrichs, J.; Reinsch, K.

    2016-03-01

    We present a new solar flux atlas with the aim of understanding wavelength precision and accuracy in solar benchmark data. The atlas covers the wavelength range 405-2300 nm and was observed at the Institut für Astrophysik, Göttingen (IAG), with a Fourier transform spectrograph (FTS). In contrast to other FTS atlases, the entire visible wavelength range was observed simultaneously using only one spectrograph setting. We compare the wavelength solution of the new atlas to the Kitt Peak solar flux atlases and to the HARPS frequency-comb calibrated solar atlas. Comparison reveals systematics in the two Kitt Peak FTS atlases resulting from their wavelength scale construction, and shows consistency between the IAG and the HARPS atlas. We conclude that the IAG atlas is precise and accurate on the order of ± 10 m s-1 in the wavelength range 405-1065 nm, while the Kitt Peak atlases show deviations as large as several ten to 100 m s-1. We determine absolute convective blueshift across the spectrum from the IAG atlas and report slight differences relative to results from the Kitt Peak atlas that we attribute to the differences between wavelength scales. We conclude that benchmark solar data with accurate wavelength solution are crucial to better understand the effect of convection on stellar radial velocity measurements, which is one of the main limitations of Doppler spectroscopy at m s -1 precision. Data (FITS files of the spectra) and Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A65

  12. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1982-01-01

    A test was conducted to determine the solar reflections from the Orbiter radiator panels. A one-tenth scale model of the forward and mid-forward radiator panels in the deployed position was utilized in the test. Test data was obtained to define the reflected one-sun envelope for the embossed silver/Teflon radiator coating. The effects of the double contour on the forward radiator panels were included in the test. Solar concentrations of 2 suns were measured and the one-sun envelope was found to extend approximately 86 inches above the radiator panel. A limited amount of test data was also obtained for the radiator panels with the smooth silver/Teflon coating to support the planned EVA on the Orbiter STS-5 flight. Reflected solar flux concentrations as high as 8 suns were observed with the smooth coating and the one-sun envelope was determined to extend 195 inches above the panel. It is recommended that additional testing be conducted to define the reflected solar environment beyond the one-sun boundary.

  13. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  14. Thermal performance trade-offs for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1978-01-01

    Solar thermal conversion performance is assessed in this paper for representative point focusing distributed systems. Trade-off comparisons are made in terms of concentrator quality, solar receiver operating temperature, and power conversion efficiency. Normalized system performance is presented on a unit concentrator area basis for integrated annual electric energy production.

  15. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  16. Use of ceramics in point-focus solar receivers

    NASA Technical Reports Server (NTRS)

    Smoak, R. H.; Kudirka, A. A.

    1981-01-01

    One of the research and development efforts in the Solar Thermal Energy Systems Project at the Jet Propulsion Laboratory has been focused on application of ceramic components for advanced point-focus solar receivers. The impetus for this effort is a need for high efficiency, low cost solar receivers which operate in a temperature regime where use of metal components is impractical. The current status of the work on evaluation of ceramic components at JPL and elsewhere is outlined and areas where lack of knowledge is currently slowing application of ceramics are discussed. Future developments of ceramic processing technology and reliability assurance methodology should open up applications for the point-focus solar concentrator system in fuels and chemicals production, in thermochemical energy transport and storage, in detoxification of hazardous materials and in high temperature process heat as well as for electric power generation.

  17. HELIOS modelling of point-focusing solar concentrators

    NASA Astrophysics Data System (ADS)

    Strachan, J. W.; Mulholland, G. P.

    The modifications to the optical code HELIOS which are required in order to model point-focusing concentrators is presented. HELIOS simulates the optical behavior of reflecting heliostats and was written to model central receiver facilities, specifically that of the Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico. This paper discusses the necessary changes to the HELIOS code and to its input files such that it can successfully model point-focusing concentrators while retaining its computational power. A point-focusing concentrator located at the Solar Thermal Test Facility is presented as a sample case.

  18. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  19. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  20. Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Park, Byung-Kwan; Kim, Sung-Su; Chung, Dae-Su; Lee, Seong-Deok; Kim, Chang-Yeong

    2008-02-01

    This paper describes the new method for fast auto focusing in image capturing devices. This is achieved by using two defocused images. At two prefixed lens positions, two defocused images are taken and defocused blur levels in each image are estimated using Discrete Cosine Transform (DCT). These DCT values can be classified into distance from the image capturing device to main object, so we can make distance vs. defocused blur level classifier. With this classifier, relation between two defocused blur levels can give the device the best focused lens step. In the case of ordinary auto focusing like Depth from Focus (DFF), it needs several defocused images and compares high frequency components in each image. Also known as hill-climbing method, the process requires about half number of images in all focus lens steps for focusing in general. Since this new method requires only two defocused images, it can save lots of time for focusing or reduce shutter lag time. Compared to existing Depth from Defocus (DFD) which uses two defocused images, this new algorithm is simple and accurate as DFF method. Because of this simplicity and accuracy, this method can also be applied to fast 3D depth map construction.

  1. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tajima, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  2. Low-cost point-focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    Nelson, E. V.; Derbidge, T. C.; Erskine, D.; Maraschin, R. A.; Niemeyer, W. A.; Matsushita, M. J.; Overly, P. T.

    1979-01-01

    The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way.

  3. Focus Groups for Solar System Investigations with the JWST

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Milam, Stefanie N.; Stansberry, John; Hammel, Heidi B.; Sonneborn, George; Lunine, Jonathan; Rivkin, Andrew; Woodward, Charles; Norwood, Jim; Villanueva, Geronimo; Thomas, Cristina; Santos-Sanz, Pablo; Tiscareno, Matthew; Kestay, Laszlo; Nixon, Conor; Parker, Alex

    2014-11-01

    The unprecedented sensitivity and angular resolution of the James Webb Space Telescope (JWST) will make it NASA’s premier space-based facility for infrared astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art instruments that include imaging, spectroscopy, and coronagraphy. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail. A new white paper (Norwood et al., 2014) provides a general overview of JWST observatory and instrument capabilities for Solar System science, and updates and expands upon an earlier study by Lunine et al. (2010). In order to fully realize the potential of JWST for Solar System observations, we have recently organized 10 focus groups to explore various science use cases in more detail on topics including: Asteroids, Comets, Giant Planets, Mars, Near Earth Objects, Occultations, Rings, Satellites, Titan, and Trans-Neptunian Objects. The findings from these groups will help guide the project as it develops and implements planning tools, observing templates, the data pipeline and archives so that they enable a broad range of Solar System Science investigations. The purpose of this presentation is to raise awareness of the JWST Solar System planning, and to invite participation of DPS members with our Focus Groups and other pre-launch activities.References:Lunine, J., Hammel, H., Schaller, E., Sonneborn, G., Orton, G., Rieke, G., and Rieke, M. 2010, JWST Planetary Observations within the Solar System, http://www.stsci.edu/jwst/doc-archive/white-papers.Norwood, J., Hammel, H., Milam, S.,Stansberry, J., Lunine, J., Chanover, N., Hines, D., Sonneborn, G., Tiscareno, M., Brown, M. and Ferruit, P., 2014, ArXiv e-prints, 1403.6845.

  4. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region.

    PubMed

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K; Yang, Ping

    2016-10-10

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTM-SOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1  cm-1 resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10-3  mW/cm2/sr/cm-1 and the relative error is typically less than 0.2%.

  5. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  6. Ray-tracing software comparison for linear focusing solar collectors

    NASA Astrophysics Data System (ADS)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  7. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the two sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  8. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  9. Transmittance-optimized, point-focus Fresnel lens solar concentrator

    SciTech Connect

    Oneill, M.J.; Goldberg, V.R.; Muzzy, D.B.

    1982-07-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  10. Transmittance-optimized, point-focus Fresnel lens solar concentrator

    SciTech Connect

    Oneill, M.J.

    1984-03-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  11. Low cost point focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design concepts and plans for mass-production facilities and equipment, field installation, and maintenance were developed and used for cost analysis of a pneumatically stabilized plastic film point focus solar concentrator which has potential application in conjunction with Brayton cycle engines or supply of thermal energy. A sub-scale reflector was fabricated and optically tested by laser ray tracing to determine focal deviations of the surface slope and best focal plane. These test data were then used for comparisons with theoretical concentrator performance modeling and predictions of full-scale design performance. Results of the economic study indicate the concentrator design will have low cost when mass-produced and has cost/performance parameters that fall within current Jet Propulsion Laboratory goals.

  12. Differential Effects of Focused and Unfocused Written Correction on the Accurate Use of Grammatical Forms by Adult ESL Learners

    ERIC Educational Resources Information Center

    Sheen, Younghee; Wright, David; Moldawa, Anna

    2009-01-01

    Building on Sheen's (2007) study of the effects of written corrective feedback (CF) on the acquisition of English articles, this article investigated whether direct focused CF, direct unfocused CF and writing practice alone produced differential effects on the accurate use of grammatical forms by adult ESL learners. Using six intact adult ESL…

  13. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    NASA Astrophysics Data System (ADS)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  14. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  15. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  16. Development and preliminary validation of the focused analgesia selection test to identify accurate pain reporters

    PubMed Central

    Treister, Roi; Eaton, Thomas A; Trudeau, Jeremiah J; Elder, Harrison; Katz, Nathaniel P

    2017-01-01

    Clinical trials of analgesics have been plagued with poor assay sensitivity due, in part, to variability in subjects’ pain reporting. Herein, we develop and evaluate the focused analgesia selection test (FAST), a method to measure patients’ pain reporting skills. Subjects with osteoarthritis of the hip, knee, and/or ankle with pain intensity of ≥3/10 on a 0–10 numerical rating scale were enrolled. Subjects underwent the FAST procedure, which consists of recording subjects’ pain reports in response to repeated administration of thermal noxious stimuli of various intensities applied on the arm with the Medoc® Thermal Sensory Analyzer II. Subjects also rated non-noxious stimuli consisting of visual contrast rating. After performing an exercise task, subjects also rated clinical pain and were asked to report whether their pain had increased, decreased, or stayed the same. Overall, 88 subjects were enrolled, and 83 were included in the analyses. FAST’s outcomes including the R2, intraclass correlation coefficient (ICC), and coefficient of variation (CoV) indicated that subjects’ pain reporting skills were widely distributed. Higher FAST ICC significantly predicted greater changes in clinical pain following exercise (p=0.017), whereas the visual contrast test did not predict postexercise pain. FAST is the first method that measures subjects’ pain reporting skills. Using FAST to enrich clinical trials with “good” pain reporters (with high FAST ICC) could increase assay sensitivity. Further evaluation of FAST is ongoing. PMID:28243138

  17. Do modelled or satellite-based estimates of surface solar irradiance accurately describe its temporal variability?

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Boilley, Alexandre; Wald, Lucien

    2017-02-01

    This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly, the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground measurements variability.

  18. Organic solar cells: an overview focusing on active layer morphology.

    PubMed

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  19. Solar receiver performance of point focusing collector system

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Wen, L. C.

    1978-01-01

    The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.

  20. New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating

    NASA Astrophysics Data System (ADS)

    Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar

    2016-05-01

    Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.

  1. Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics

    NASA Astrophysics Data System (ADS)

    Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.

    2014-12-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.

  2. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  3. Accurate expressions for solar cell fill factors including series and shunt resistances

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2016-02-01

    Together with open-circuit voltage and short-circuit current, fill factor is a key solar cell parameter. In their classic paper on limiting efficiency, Shockley and Queisser first investigated this factor's analytical properties showing, for ideal cells, it could be expressed implicitly in terms of the maximum power point voltage. Subsequently, fill factors usually have been calculated iteratively from such implicit expressions or from analytical approximations. In the absence of detrimental series and shunt resistances, analytical fill factor expressions have recently been published in terms of the Lambert W function available in most mathematical computing software. Using a recently identified perturbative relationship, exact expressions in terms of this function are derived in technically interesting cases when both series and shunt resistances are present but have limited impact, allowing a better understanding of their effect individually and in combination. Approximate expressions for arbitrary shunt and series resistances are then deduced, which are significantly more accurate than any previously published. A method based on the insights developed is also reported for deducing one-diode fits to experimental data.

  4. An Accurate Method to Compute the Parasitic Electromagnetic Radiations of Real Solar Panels

    NASA Astrophysics Data System (ADS)

    Andreiu, G.; Panh, J.; Reineix, A.; Pelissou, P.; Girard, C.; Delannoy, P.; Romeuf, X.; Schmitt, D.

    2012-05-01

    The methodology [1] able to compute the parasitic electromagnetic (EM) radiations of a solar panel is highly improved in this paper to model real solar panels. Thus, honeycomb composite panels, triple junction solar cells and serie or shunt regulation system can now be taken into account. After a brief summary of the methodology, the improvements are detailed. Finally, some encouraging frequency and time-domain results of magnetic field emitted by a real solar panel are presented.

  5. A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.

    1979-01-01

    A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.

  6. FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, Lindsay; Buitrago-Casas, Camilo; Ishikawa, Shin-Nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Turin, Paul; Shourt, Van; Foster, Natalie; Krucker, Sam

    2016-03-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the second time on 2014 December 11. To enable direct Hard X-Ray (HXR) imaging spectroscopy, FOXSI makes use of grazing-incidence replicated focusing optics combined with fine-pitch solid-state detectors. FOXSI’s first flight provided the first HXR focused images of the Sun. For FOXSI’s second flight several updates were made to the instrument including updating the optics and detectors as well as adding a new Solar Aspect and Alignment System (SAAS). This paper provides an overview of these updates as well as a discussion of their measured performance.

  7. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    SciTech Connect

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert; Christe, Steven; Ishikawa, Shin-nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Tanaka, Takaaki; White, Stephen

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  8. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  9. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  10. Accurate Navigation of Deep Space Probes using Multifrequency Links: the Cassini Breakthrough during Solar Conjunction Experiments

    NASA Astrophysics Data System (ADS)

    Tortora, P.; Iess, L.; Ekelund, J. E.

    2002-01-01

    (1) transponders, used for both range and range-rate estimation. These devices are characterized by a frequency stability (measured by the Allan deviation) whose typical value never falls below the limit of 10-13, which broadly reflects in a range rate accuracy of about 15.10-4 cm/s. Moreover, for missions in the ecliptic plane, a critical phase is represented by the solar conjunctions which, depending on the spacecraft trajectory, can last up to two weeks. In such conditions the radio data are inherently corrupted by solar plasma noise, which causes a dramatic decay of the obtainable navigation accuracy. As a matter of fact, in the orbit determination process, radio data collected when the line of sight falls within 40 solar radii are usually discarded, leading to long time spans during which navigation cannot rely on actual data. and 2001 solar conjunctions were removed for navigation purposes. While this strategy is widely acceptable and proven during the cruise flight, it is not recommended during critical mission phases, when frequent ground-commanded maneuvers are executed. maneuver, scheduled on July 1st 2004, a few days before a solar conjunction. A significant improvement of the navigation accuracy would be achieved using, for the Orbit Determination process, all radio data collected up to the SOI. science experiments (RSE). The on-board configuration is based on a X/X transponder, which generates a reference signal to the Ka-Band Exciter (KEX) for the X/Ka link; furthermore a coherent frequency translator (KaT) is used for the Ka/Ka link. With this configuration, the sky frequencies in the three bands (X/X, X/Ka, Ka/Ka) can be coherently combined to remove the effects of the solar plasma, the major noise source in the Doppler observable. plasma calibration scheme, has shown an improvement of a factor of 8 over the noise of the bare Ka/Ka observable and a factor of 100 over X/X data. At an impact parameter of about 25 solar radii, the Allan deviation is as

  11. Performance prediction evaluation of ceramic materials in point-focusing solar receivers

    NASA Technical Reports Server (NTRS)

    Ewing, J.; Zwissler, J.

    1979-01-01

    A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.

  12. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  13. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect

    Harrison, T.D.

    1980-11-01

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  14. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  15. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  16. Optimization of a point-focusing, distributed receiver solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1979-01-01

    This paper presents an approach to optimization of a solar concept which employs solar-to-electric power conversion at the focus of parabolic dish concentrators. The optimization procedure is presented through a series of trade studies, which include the results of optical/thermal analyses and individual subsystem trades. Alternate closed-cycle and open-cycle Brayton engines and organic Rankine engines are considered to show the influence of the optimization process, and various storage techniques are evaluated, including batteries, flywheels, and hybrid-engine operation.

  17. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles.

  18. Optical characterization of solar furnace system using fixed geometry nonimaging focusing heliostat and secondary parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Lim, Chuan-Yang; Keh, Wee-Liang; Fan, Jian-Hau; Rahman, Faidz Abdul

    2011-10-01

    A novel solar furnace system has been proposed to be consisted of a Nonimaging Focusing Heliostat and a smaller parabolic concentrator. In this configuration, the primary heliostat consists of 11×11 array of concave mirrors with a total reflective area of 121 m2 while the secondary parabolic concentrator has a focal length of 30 cm. To simplify the design and reduce the cost, fixed geometry of the primary heliostat is adopted to omit the requirement of continuous astigmatic correction throughout a year. The overall performance of the novel solar furnace configuration can be optimized if the heliostat's spinning-axis is fixed in the orientation dependent on the latitude angle so that the annual variation of incidence angle is the least, which ranges from 33° to 57°. Case study of the novel solar furnace system has been performed with the use of ray-tracing method to simulate solar flux distribution profile for two different target distances, i.e. 50 m and 100 m. The simulated results have revealed that the maximum solar concentration ratio ranges from 20,530 suns to 26,074 suns for the target distance of 50 m, and ranges from 40,366 suns to 43,297 suns for the target distance of 100 m.

  19. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  20. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  1. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    NASA Astrophysics Data System (ADS)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  2. A transmittance-optimized, point-focus Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Goldberg, V. R.; Muzzy, D. B.

    1982-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  3. A Transmittance-optimized, Point-focus Fresnel Lens Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.

    1984-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  4. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    PubMed

    Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  5. Progress in accurate measurements of sub-surface flows near the solar limb using ring-diagram analysis

    NASA Astrophysics Data System (ADS)

    Baldner, Charles; Bogart, Richard S.

    2016-05-01

    The use of helioseismology to study the properties of the Sun has yielded very high precision measurements of solar flows throughout much of the interior. It has been apparent for many years, however, that the accuracy of many of these measurements is suspect due to significant systematic effects in helioseismic techniques. The most well-known effect in flow measurements is sometimes referred to as the `center-to-limb' effect, in which flow measurements depend strongly on the distance of the measurement from the center of the observed solar disk. Attempts have already been made to explain the origin of this error (e.g. Balder & Schou 2012) and to correct it (e.g. Zhao et al. 2011). Significant work remains, however.In this work, we report on continued efforts to precisely characterize the effect of position on the observed disk on flow measurements in the HMI ring diagram pipeline, and from other HMI data. Our efforts are focused on 1) quantifying the non-radial systematic effect in flow measurements; 2) understanding the effect of the underlying model used in the mode parameter estimations; and 3) characterizing the difference between helioseismic measurements made with different observed quantities.

  6. Efficiency degradation due to tracking errors for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1978-01-01

    An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.

  7. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  8. Optical focusing and alignment of the Multi-Spectral Solar Telescope Array II payload

    NASA Astrophysics Data System (ADS)

    Gore, David B.; Hadaway, James B.; Hoover, Richard B.; Walker, Arthur B.; Kankelborg, Charles C.

    1995-06-01

    The Multi-Spectral Solar Telescope Array (MSSTA) is a sounding rocket borne observatory designed to image the sun at many spectral lines in soft x-ray, EUV, and FUV wavelengths. Of the nineteen telescopes flown on November 3, 1994 the two Cassegrain telescopes and three of the six Ritchey-Cretien telescopes were focussed at NASA/Marshall Space Flight Center (MSFC) with a Zygo double-pass interferometer to determine the best positions of back focus. The remaining three Ritchey-Cretien and eleven Herschellian telescopes were focussed in situ at White Sands Missile Range by magnifying the telescopic image through a Gaertner traveling microscope and recording the position of best focus. From the data obtained at visible wavelengths, it is not unreasonable to expect that many of our telescopes did attain the sub-arc second resolution for which they were designed.

  9. Solar thermal power systems point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.

  10. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  11. Development of a system for accurate forecasting of solar activity. Final report, 15 Oct 87-14 Oct 90

    SciTech Connect

    Sofia, S.

    1991-07-11

    This is a continuing effort which has empirical, theoretical and experimental components related to the physics of solar activity. The empirical forecasting scheme, developed under this grant, has been very successful for solar cycle 22. Important elements of a highly sophisticated theoretical scheme to model the solar activity cycle have been produced and tested. The Solar Disk Sextant experiment is progressing well. In addition to the Principal Investigator, this work involves five students and two research associates.

  12. Feasibility, Safety, and Efficacy of Accurate Uterine Fibroid Ablation Using Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound With Shot Sonication.

    PubMed

    Xu, Yonghua; Fu, Zhongxiang; Yang, Lixia; Huang, Zili; Chen, Wen-Zhi; Wang, Zhibiao

    2015-12-01

    The aim of this study was to investigate the feasibility, safety, and efficacy of uterine fibroid treatment using magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (US) with shot sonication for accurate ablation. Forty-three patients with 51 symptomatic uterine fibroids were treated with MRI-guided high-intensity focused US with shot sonication, which was a small acoustic focus of higher intensity with a shorter time (2 seconds) of US exposure and a shorter cooling time (2-3 seconds). The treatment efficacy and adverse events were analyzed, and the changes in the severity of symptoms and the reduction in fibroid volume were assessed 3 and 6 months after the procedure. All patients were successfully treated in a single session, without major complications, and the mean nonperfused volume ratio ± SD was 84.3% ± 15.7% (range, 33.8%-100%).Complete ablation was achieved in 13 T2-hypointense fibroids from 10 patients, and partial ablation was achieved in 38 fibroids from 33 patients. The overall mean treatment time was 135.0 ± 50.9 minutes (2.2 ± 0.8 hours). The transformed symptom severity scores and mean fibroid volumes decreased significantly after treatment (P < .05). In conclusion, MRI-guided high-intensity focused US with shot sonication is a feasible, safe, and effective technique for ablation of uterine fibroids and complete ablation of T2-hypointense fibroids.

  13. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    SciTech Connect

    He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn

    2012-03-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  14. Development of a system for accurate forecasting of solar activity. Annual report, 15 October 1991-14 October 1992

    SciTech Connect

    Sofia, S.

    1992-01-01

    Work on solar activity forecasting has concentrated on the search for correlations which would allow the forecast of a given cycle with an anticipation larger than 4 to 5 years. The work on solar dynamo modeling involved a formulation of a realistic model of magnetic diffusion. This work is essentially complete and is capable of handling reliably the small scale interaction between convection and magnetic fields. Significant progress has occurred in the Solar Disk Sextant work with the completion of the wedge fabricated by optical contact. A successful balloon flight has yielded 20 gigabytes of data for which reduction and analysis methods are being developed. This research is of interest to scientists in fields of solar energy, communications, and ionospheric/magnetospheric studies.

  15. Focusing on the future: Solar thermal energy systems emerge as competitive technologies with major economic potential

    NASA Astrophysics Data System (ADS)

    1989-03-01

    Hundreds of thousands of U.S. citizens are now receiving a portion of their daily demand for electricity from large-scale solar thermal electric generating stations-power plants that use concentrated solar energy to drive electric power generators. Just as with coal, fuel oil, natural gas, and nuclear energy, concentrated solar energy can create working temperatures of around 600C and much higher. Also, solar power plants contribute almost nothing to the atmospheric greenhouse effect and pose few, if any, of the other environmental problems associated with conventional energy sources. As a result of research and development within the national Solar Thermal Technology Program of the U.S. Department of Energy (DOE), solar thermal energy is on the threshold of competing economically with conventional power plants and is now viable for international markets. Its potential for spurring American economic growth and exports is significant.

  16. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  17. Steady-state heat transfer in transversely heated porous media with application to focused solar energy collectors

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1976-01-01

    A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.

  18. Development of mass-producible line-focus tracking concentrating solar collectors. Category 2: Control systems

    NASA Astrophysics Data System (ADS)

    Hickman, T. E.

    1984-08-01

    The system design criteria and concept of a mass producible modular electronic control system for solar industrial process heating installations are discussed. The control system consists of: the master controller; the weather tower, including a solar tracking angle reference; and overtemperature switch, group control box, tracker/controller, and drive motor for each group of single axis tracking parabolic trough solar collectors. System automatic operation is outlined for unattended installations. The production approach and cost estimates, both based on a production rate of 5 million ft(2) of collector aperature per year, are discussed here. The potential for further development of the system is also presented.

  19. Design approaches for solar industrial process-heat systems: Nontracking and line-focus collector technologies

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.; Dougherty, D. A.; Gee, R. C.; Masterson, P. M.; May, E. K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer generated graphs are supplied that allow the user to select a collector type. Energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start up details, economics, and safety and environmental issues are explained.

  20. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  1. Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Javad Fahimi, Mohammad; Fathi, Davood; Ansari-Rad, Mehdi

    2015-09-01

    Electron transfer rate from quantum dot (QD) to metal oxide (MO) in quantum dot sensitized solar cells (QDSSCs) has an important role in the efficiency. In this work, we analyse the electron transfer rate from CdSe, CdS and CdTe QDs to TiO2, ZnO and SnO2 MOs by extending the related equations with considering various effects, based on the Marcus theory. In this regard, the effects of QD diameter, QD-MO spacing, the crystalline defects, temperature, and the reorganizational energy, on the electron transfer rate are investigated. The results show that, the maximum electron transfer rate is achieved for CdTe QD with the mentioned three MOs. Moreover, in order to direct the designer to reach the appropriate QDs-MOs combinations for obtaining the maximum electron transfer rate, the average electron transfer rate for various combinations is calculated. For the verification of simulation method, a part of work has been compared with the previous experimental and theoretical results, which indicates the correctness of our simulation algorithm.

  2. Focusing of 3C144 Source Radiation by the Solar Corona

    NASA Astrophysics Data System (ADS)

    Galanin, V. V.; Derevjagin, V. G.; Kravetz, R. O.

    The research of solar corona by the compact cosmic source radiation was made on URAN-4 radio telescope. In the period from June 6 to June 20 2012 the flow of Crab nebula was measured on the 20 MHz and 25 MHz frequencies. During the eclipse we observe the great increase of 3C144 flow, which is compare with the flow of 3C461 source. Data and results of measurement analysis is presented.

  3. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect

    Not Available

    1980-03-15

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  4. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  5. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  6. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  7. The Alsep Data Recovery Focus Group of NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Lewis, L. R.; Nakamura, Y.; Williams, D. R.; Taylor, P. T.; Hills, H. K.; Kiefer, W. S.; Neal, C. R.; Schmidt, G. K.

    2014-12-01

    Astronauts on Apollo 12, 14, 15, 16, and 17 deployed instruments on the Moon for 14 geophysical experiments (passive & active seismic, heat flow, magnetics, etc.) from 1969 to 1972. These instruments were called Apollo Lunar Surface Experiments Packages (ALSEPs). ALSEPs kept transmitting data to the Earth until September 1977. When the observation program ended in 1977, a large portion of these data were not delivered to the National Space Science Data Center for permanent archive. In 2010, for the purpose of searching, recovering, preserving, and analyzing the data that were not previously archived, NASA's then Lunar Science Institute formed the ALSEP Data Recovery Focus Group. The group consists of current lunar researchers and those involved in the ALSEP design and data analysis in the 1960s and 1970s. Among the data not previously archived were the 5000+ 7-track open-reel tapes that recorded raw data from all the ALSEP instruments from April 1973 to February 1976 ('ARCSAV tapes'). These tapes went missing in the decades after Apollo. One of the major achievements of the group so far is that we have found 450 ARCSAV tapes from April to June 1975 and that we are extracting data from them. There are 3 other major achievements by the group. First, we have established a web portal at the Lunar and Planetary Institute, where ~700 ALSEP-related documents, totaling ~40,000 pages, have been digitally scanned and cataloged. Researchers can search and download these documents at www.lpi.usra.edu/ lunar/ALSEP/. Second, we have been retrieving notes and reports left behind by the now deceased/retired ALSEP investigators at their home institutions. Third, we have been re-analyzing the ALSEP data using the information from the recently recovered metadata (instrument calibration data, operation logs, etc.). Efforts are ongoing to get these data permanently archived in the Planetary Data System (PDS).

  8. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  9. Global MHD modeling of an ICME focused on the physics involved in an ICME interacting with a solar wind

    NASA Astrophysics Data System (ADS)

    An, Jun-Mo; Magara, Tetsuya; Inoue, Satoshi; Hayashi, Keiji; Tanaka, Takashi

    2015-04-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to investigate the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event occurred on 29 September 2013. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain (50rs < r < 300rs). On the basis of a comparison between the properties of a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  10. Mission to the Solar Gravity Lens Focus: Natural High-Ground for Imaging Earth-Like Exoplanets

    NASA Astrophysics Data System (ADS)

    Alkalai, L. A.; Arora, N. A.; Turyshev, S. T.; Shao, M. S.; Friedman, L. F.; Solar Gravity Lens Team

    2017-02-01

    We propose an astrophysics probe to the Solar Gravity Lens (SGL) to effectively build an astronomical telescope capable of direct megapixel high-resolution imaging and spectroscopy of a potentially habitable exoplanet.

  11. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  12. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    SciTech Connect

    James, H.G.; Benson, R.F.; Fainberg, J.; Stone, R.G. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-06-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz). 21 refs.

  13. Fast and accurate methods for the performance testing of highly-efficient c-Si photovoltaic modules using a 10 ms single-pulse solar simulator and customized voltage profiles

    NASA Astrophysics Data System (ADS)

    Virtuani, A.; Rigamonti, G.; Friesen, G.; Chianese, D.; Beljean, P.

    2012-11-01

    Performance testing of highly efficient, highly capacitive c-Si modules with pulsed solar simulators requires particular care. These devices in fact usually require a steady-state solar simulator or pulse durations longer than 100-200 ms in order to avoid measurement artifacts. The aim of this work was to validate an alternative method for the testing of highly capacitive c-Si modules using a 10 ms single pulse solar simulator. Our approach attempts to reconstruct a quasi-steady-state I-V (current-voltage) curve of a highly capacitive device during one single 10 ms flash by applying customized voltage profiles--in place of a conventional V ramp—to the terminals of the device under test. The most promising results were obtained by using V profiles which we name ‘dragon-back’ (DB) profiles. When compared to the reference I-V measurement (obtained by using a multi-flash approach with approximately 20 flashes), the DB V profile method provides excellent results with differences in the estimation of Pmax (as well as of Isc, Voc and FF) below ±0.5%. For the testing of highly capacitive devices the method is accurate, fast (two flashes—possibly one—required), cost-effective and has proven its validity with several technologies making it particularly interesting for in-line testing.

  14. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  15. Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Bolsée, D.; Damé, L.; Hauchecorne, A.; Pereira, N.; Irbah, A.; Bekki, S.; Cessateur, G.; Foujols, T.; Thiéblemont, R.

    2016-12-01

    Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth's atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth's atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.

  16. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.

    PubMed

    Kuang, Ping; Eyderman, Sergey; Hsieh, Mei-Li; Post, Anthony; John, Sajeev; Lin, Shawn-Yu

    2016-06-28

    In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

  17. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  18. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 1: Technical Studies for Solar Point-focusing, Distributed Collector System, with Energy Conversion at the Collector, Category C

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.

  19. The Point-Focusing Thermal and Electric Applications Project - A progress report. [small solar power systems applications

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    The paper discusses the Point-Focusing Thermal and Electric Applications Project which encompasses three primary activities: (1) applications analysis and development, in which potential markets for small power systems (less than 10 MWe) are identified and characterized in order to provide requirements for design and information for activities relating to market development; (2) systems engineering and development, for analyses that will define the most appropriate small power system designs based on specific user requirements; and (3) experiment implementation and test, which deals with the design and placement of engineering experiments in various applications environments in order to test the readiness of the selected technology in an operational setting. Progress to date and/or key results are discussed throughout the text.

  20. Multi-family update to the passive solar construction handbook

    NASA Astrophysics Data System (ADS)

    Howard, B. D.; Callahan, K. D.

    1983-11-01

    Builders and developers will accept passive solar construction and designs for integration with their existing practice if accurate and detailed plans of actual, proven passive solar subsystems and assemblies are made available to them. A Passive Solar Construction Handbook was developed. It focuses primarily upon single family homes. The multifamily update of the Handbook, is described and examples of the valuable builder information are shown. It represents a new breakthrough in DOE sponsored projects, performing a Technology Transfer on a most useful level.

  1. Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues

    SciTech Connect

    Murphy, L.M.; May, E.K.

    1982-04-01

    The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

  2. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    SciTech Connect

    Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  3. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    NASA Astrophysics Data System (ADS)

    Corazza, Michael; Simonsen, Søren B.; Gnaegi, Helmut; Thydén, Karl T. S.; Krebs, Frederik C.; Gevorgyan, Suren A.

    2016-12-01

    The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate (PET) substrate. Focused ion beam (FIB) and ultramicrotomy were used to prepare the cross sections. The differences between the samples prepared by ultramicrotomy and FIB are addressed, focusing on the advantages and disadvantages of each technique. The sample prepared by ultramicrotomy yielded good resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared by ultramicrotomy are further discussed, which reveal particular effects of the ISOS-L-3 aging test (85 °C, 50% R.H., 0.7 Sun) onto the sample, especially pronounced in the silver layer.

  4. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  5. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  6. Energy supply for buildings with focus on solar power in the urban context - an interactive WebGIS implementation for citizens

    NASA Astrophysics Data System (ADS)

    Castellazzi, Bernhard; Biberacher, Markus

    2016-04-01

    Many European cities nowadays offer their citizens Web-GIS applications to access data about solar potentials for specific buildings. However, the actual benefit of such solar systems can only be investigated, if their generation is not considered singularly, but in combination with information about temporal appearance of energy demand (heat, electricity), type of primary heating system, hourly internal consumption of photovoltaic power, feed-in power and other important financial and ecological aspects. Hence, the presented application addresses citizens, who are interested in the integration of solar power in buildings and would like to have an extended view on related impacts. Based on user inputs on building parameters and energy use, as well as high spatial and temporal resolved solar data for individual roof areas, financial and ecological effects of solar thermal installations and PV are estimated. Also interactions between heat and power generation are considered in the implemented approach. The tool was developed within the Central Europe project „Cities on Power" and is being realized for the cities Torino, Warsaw, Dresden, Klagenfurt and Ravenna.

  7. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  8. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  9. 'Focus on Marshall' features ‘Hardware in a Loop,’ Solar Wind Test Facility and ExplorNet

    NASA Video Gallery

    You've heard them all, Facebook, Twitter, blogs, but now there's a new one - ExplorNet. On the January episode of "Focus on Marshall," the Marshall Space Flight Center's video program, viewers will...

  10. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  11. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  12. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  13. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  14. Can we predict solar radiation at seasonal time-scale over Europe? A renewable energy perspective.

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea

    2015-04-01

    Surface solar radiation can be an important variable for the activities related to renewable energies (photovoltaic) and agriculture. Having accurate forecast may be of potential use for planning and operational tasks. This study examines the predictability of seasonal surface solar radiation comparing ECMWF System4 Seasonal operational forecasts with reanalyses (ERA-INTERIM, MERRA) and other datasets (NASA/GEWEX SRB, WFDEI). This work is focused on the period 1984-2007 and it tries to answer the following questions: 1) How similar are the chosen datasets looking at average and interannual variability? 2) What is the skill of seasonal forecasts in predicting solar radiation? 3) Is it useful for solar power operations and planning the seasonal prediction of solar radiation? It is important to assess the capability of climate datasets in describing surface solar radiation but at the same time it is critical to understand the needs of solar power industry in order to find the right problems to tackle.

  15. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume II. Text

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and a commercial assessment of a 100-MWe high-temperature line-focus central power system are presented. Parametric analyses and conceptual design of the heliostat subsystem, receiver subsystem, heat transport subsystem, energy storage subsystem, electrical power generating subsystem, and master control subsystem are included. A market analysis and development plan are given. (WHK)

  16. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  17. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  18. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  19. Grazing Incidence Cross-Sectioning of Thin-Film Solar Cells via Cryogenic Focused Ion Beam: A Case Study on CIGSe

    SciTech Connect

    Sardashti, Kasra; Haight, Richard; Anderson, Ryan; Contreras, Miguel; Fruhberger, Bernd; Kummel, Andrew C.

    2016-06-22

    Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the back interface of CIGS.

  20. Grazing Incidence Cross-Sectioning of Thin-Film Solar Cells via Cryogenic Focused Ion Beam: A Case Study on CIGSe.

    PubMed

    Sardashti, Kasra; Haight, Richard; Anderson, Ryan; Contreras, Miguel; Fruhberger, Bernd; Kummel, Andrew C

    2016-06-22

    Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the back interface of CIGS.

  1. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  2. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  3. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  4. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  5. Solar cooker

    SciTech Connect

    Long, J. B.; Ware, R. R.

    1985-12-31

    A solar cooking device made of a flat array of concentric mirrors tilted to focus at a small area, the array being movable mounted on a stand to be movable around a ball joint and with a carrier for a cooking vessel held by a double crank to be at the focal area of the mirrors.

  6. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  7. Solar variability datalogger

    DOE PAGES

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understandingmore » of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.« less

  8. Solar variability datalogger

    SciTech Connect

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.

  9. Fifty year canon of solar eclipses: 1986 - 2035

    NASA Technical Reports Server (NTRS)

    Espenak, Fred

    1987-01-01

    A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.

  10. Solar Wind Fractionation — Isotopic and Elemental — and Implications for Solar Compositions and Future Genesis Analyses

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Reisenfeld, D. B.; Heber, V. S.; Burnett, D. S.

    2010-03-01

    Fractionation between solar wind and the solar photosphere is substantial, both for elements and isotopes. GENESIS measurements are key to understanding these fractionations, which will in turn provide more accurate solar compositions.

  11. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  12. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  13. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  14. Solar collectors

    SciTech Connect

    Uroshevich, M.

    1981-09-22

    The disclosure illustrates a solar collector of the focusing type comprising a trough like element with an interior reflective surface that faces a main reflector of the collector. A tubular receiver providing a passage for heat transfer fluid is positioned in the trough like element generally along the focal line of the main reflector. A flat glass plate covers the trough along a perimeter seal so that subatmospheric conditions may be maintained within the trough like element to minimize convection heat losses.

  15. A rapid and accurate solar tracker (notice of removal)

    NASA Astrophysics Data System (ADS)

    Xiao, Baoping; Xu, Lijun

    2008-12-01

    This paper (713043) was removed from the SPIE Digital Library on 13 April 2010 due to discovery of plagiarism. As stated in the SPIE Guidelines for Professional Conduct and Publishing Ethics, SPIE defines plagiarism as the reuse of someone else's prior ideas, processes, results, or words without explicit attribution of the original author and source, or falsely representing someone else's work as one's own. SPIE considers plagiarism in any form, at any level, to be unacceptable and a serious breach of professional conduct. It is SPIE policy to remove such papers and to take appropriate corrective or disciplinary action against the offending author(s).

  16. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  17. Focus vernier for optical lithography

    NASA Astrophysics Data System (ADS)

    Arnold, William H.; Barouch, Eytan; Hollerbach, Uwe; Orszag, Steven A.

    1993-08-01

    As the depth of focus of optical steppers grows smaller, it becomes more important to determine the position of best focus accurately and quickly. This paper describes the use of phase-shifted mask technology to form a focus vernier: a phase pattern on the stepper reticle which, when imaged in resist, can give both the magnitude and the direction of the focus error. In this, the focus vernier structure is analogous to 3overlay verniers. Thus the determination of focus error can be treated as an alignment problem in the z-axis. This technique is an improvement on previous schemes for the determination of best focus from resist images as it can indicate both the magnitude of the error and its direction in a single exposure.

  18. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  19. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  20. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  1. Site-specific solar resource measurements for industrial solar applications

    SciTech Connect

    Marion, W

    1994-06-01

    The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

  2. An adjustable solar concentrator

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector. System is low cost and accomodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

  3. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  4. Tension solar mirror

    SciTech Connect

    Russo, W.P.

    1986-09-02

    A solar collector is described comprising a central tower having a solar receiver thereon; tension towers positioned concentrically about the central tower;a rigid inner ring disposed about the central tower and sized to permit vertical movement relative to the central tower; cables extending between the inner ring and the tops of each of the tension towers; and a reflectively-coated sheet of flexible material attached to the upper surface of the cables; whereby the action of gravity on the cables and the sheet form a concave reflector for focusing solar energy onto the solar receiver.

  5. Parabolic solar systems

    NASA Astrophysics Data System (ADS)

    Parsons, W. L., IV; Goetchius, W.

    The further development of parabolic solar collectors to increase their efficiency and simplify their operation was the prime objective of this research project. Three primary objectives were pursued. The first of these was to investigate the simplest and most efficient techniques to build and mass-produce parabolic solar collectors. The second objective was to further develop and simplify absorber tubes used to collect and transfer the solar energy. Absorber tubes represented a significant area of this research project. The third objective was to develop accurate, low cost, and durable tracking systems for solar collectors. Solar tracking systems are covered including several schematic representations of various systems and designs. The testing systems and associated mechanisms for the designs discussed in this report are described.

  6. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  7. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  8. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  9. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  10. Spectral solar radiation: new data

    SciTech Connect

    Hulstrom, R

    1983-06-01

    Several areas of solar research require an accurate knowledge (data) of the spectral content of solar radiation at the earth's surface for various atmospheric conditions, times during the day (air masses), geographic locations, and for the various seasons (monthly). Areas of solar research include photovoltaics, biomass, materials studies, and solar simulation. As one of its major research thrusts, the Renewable Resource Assessment and Instrumentation Branch of the Solar Energy Research Institute, has been developing improved analytical models, instrumentation, and data sets to meet the various needs for such by the previously mentioned areas of solar energy conversion research. A brief summary of selected results of such research is presented. References are given for detailed descriptions of the various individual areas of effort/research and new spectral solar radiation data sets.

  11. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  12. After SNO and before KamLAND: present and future of Solar and Reactor Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Aliani, P.; Antonelli, V.; Ferrari, R.; Picariello, M.; Torrente-Lujan, E.

    2003-02-01

    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a review of some recent analysis of all available neutrino oscillation evidence in Solar experiments including the recent SNO CC and NC data. We present in detail the power of the reactor experiment KamLAND for discriminating existing solutions to the SNP and giving accurate information on neutrino masses and mixing angles.

  13. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  14. Satellite-based surface solar radiation data provided by CM SAF - Solar energy applications

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Müller, Richard W.; Posselt, Rebekka; Stöckli, Reto

    2013-04-01

    The planning of solar power plants requires accurate estimates of the solar energy available at the surface. Satellite observations provide useful information on the cloud coverage, which is one of the main factors modulating the solar surface radiation. This information can be used to estimate the solar surface radiation from satellite. Observations from geostationary satellites allow the retrieval of the surface solar radiation with high temporal (up to hourly) and spatial (approx. 5 km) resolution. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. CM SAF has already released one data set based on geostationary Meteosat satellite covering 1983 to 2005 (doi: 10.5676/EUM_SAF_CM/RAD_MVIRI/V001) and one global data set based on measurements of the polar-orbiting AVHRR instruments covering 1982 to 2009 (doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V001). Here, we present details and applications of the CM SAF surface radiation data generated from the observations of the geostationary Meteosat satellites. The climate data set is available at high spatial (0.03 x 0.03 deg) and temporal (hourly, daily, monthly) resolutions. Besides global radiation, also the direct beam component is provided, which is for instance required for the estimation of the energy generated by solar thermal plants. Based on comparisons with surface observations the accuracy of CM SAF surface solar radiation data is better than 10 W/m2 on a monthly basis and 25 W/m2 on a daily basis. The data sets are well documented (incl. validation using surface observations) and available in netcdf-format at no cost without restrictions at www.cmsaf.eu. Solar energy applications of the data include the Photovoltaic Geographical

  15. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  16. Solar bowl research results (February 1983-May). Results on solar bowl technology

    SciTech Connect

    Not Available

    1984-01-01

    Research on the Fixed Mirror Distributed Focus solar thermal technology, or solar bowl technology, needed for a solar-steam electric power plant is presented. Wind loads, dust erosion, fluid flow, solar optical power concentration, and mirror panel testing are all discussed separately. The research was performed at Texas Tech University. (BCS)

  17. Implementing Solar Technologies at Airports

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  18. New results on standard solar models

    NASA Astrophysics Data System (ADS)

    Serenelli, Aldo M.

    2010-07-01

    We describe the current status of solar modeling and focus on the problems originating with the introduction of solar abundance determinations with low CNO abundance values. We use models computed with solar abundance compilations obtained during the last decade, including the newest published abundances by Asplund and collaborators. The results presented here focus on both helioseismic properties and models as well as neutrino flux predictions. We also discuss changes in radiative opacities to restore agreement between helioseismology, solar models, and solar abundances and show the effect of such modifications on solar neutrino fluxes.

  19. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  20. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  1. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  2. Solar education project workshop

    SciTech Connect

    Smith, J.B.

    1980-10-31

    A summary of proceedings of the Solar Education Project Workshop is presented. The workshop had as its focus the dissemination of curriculum materials developed by the Solar Energy Project of the New York State Department of Education under the sponsorship of the US Department of Energy. It includes, in addition to presentations by speakers and workshop leaders, specific comments from participants regarding materials available and energy-related activities underway in their respective states and suggested strategies from them for ongoing dissemination efforts.

  3. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  4. The fajada butte solar marker: a reevaluation.

    PubMed

    Zeilik, M

    1985-06-14

    Evaluation of the Fajada Butte solar marker in Chaco Canyon, New Mexico, on the basis of its ethnographic context and usefulness for confirmatory and anticipatory solar observations indicates that the site does not function as an accurate solar calendar (accurate in the context of the historic Puebloan culture). The site most likely served as a sun shrine rather than as a calendrical observing station. The interpretation of the site as marking the northern declinations of the lunar 18.6-year cycle is not supported by the ethnographic evidence nor can the site be used to anticipate accurately the year of the standstill.

  5. Modelling solar irradiance from HRV images of Meteosat Second Generation

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Zarzalejo, Luis; Polo, Jesús; Marchante, Ruth; Martín, Luis

    2010-05-01

    Knowledge of solar radiation at the earth's surface is a need in designing any solar energy application. In particular both photovoltaic and solar thermal systems required high accurate data of solar radiation components. Nowadays the use of satellite images as input to models for deriving solar irradiance time series is accepted as a reliable methodology with good accuracy. In this sense, there are several models aimed at this objective. Among them it can be pointed out the Heliosat-2 method, based upon the first generation of Meteosat satellites, which has been broadly used. Taken this approach as reference a modified model was proposed including additional independent variables to the cloud index, such as the moments of the cloud index distribution and the air mass. This model was successfully assessed with about 30 ground data sites in Spain showing a good response. However, since 2006 the Meteosat Second Generation (MSG) is observing the earth-atmosphere system centred in zero longitude. This new satellite generation has improved technical characteristics compared to the former one, particularly those focused on radiometric, spectral, spatial and time resolutions. This work is aimed at describing the work to accommodate the former model based on Heliosat-2 to operate with the MSG images and characteristics. A comparison with the old model will be made in the overlapping period, 2006, and an assessment with available ground data will also be performed as well.

  6. Focus: alien volcanos

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Lopes, Rosaly

    2007-03-01

    Part 1: Volcanoes on Earth - blowing their top; Part 2: Volcanoes of the inner Solar System - dead or alive: the Moon, Mercury, Mars, Venus; Part 3: Volcanoes of the outer Solar System - fire and ice: Io, Europa, Ganymede and Miranda, Titan, Triton, Enceladus.

  7. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    NASA Astrophysics Data System (ADS)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  8. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  9. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  10. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  11. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean; Schatten, Kenneth

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears

  12. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  13. Daniel K. Inouye Solar Telescope optical alignment plan

    NASA Astrophysics Data System (ADS)

    Sekulic, Predrag; Liang, Chen; Gonzales, Kerry; Hubbard, Robert P.; Craig, Simon C.

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a 4-meter solar telescope under construction at Haleakala, Hawaii. The challenge of the DKIST optical alignment is the off-axis Gregorian configuration based on an Altitude-Azimuth mount, the independently-rotating Coudé platform and the large number of relay mirrors. This paper describes the optical alignment plan of the complete telescope, including the primary 4.24-m diameter off-axis secondary mirror, the secondary 620 mm diameter off-axis mirror, the transfer optics and the Coudé optics feeding the wavefront correction system and the science instruments. A number of accurate metrology instruments will be used to align the telescope and to reach the performances, including a laser tracker for initial positioning, a theodolite for accurate tilt alignment, a Coordinate Measurement Machine (CMM) arm for local alignment in the Coudé laboratory, and a Shack-Hartmann wavefront sensor to characterize the aberrations by measuring selected target stars. The wavefront will be characterized at the primary focus, the Gregorian focus, the intermediate focus and at the telescope focal plane. The laser tracker will serve also to measure the mirrors positions as function of Altitude angle due to the Telescope Mount Assembly (TMA) structure deflection. This paper describes also the method that will be used to compute the compensating mirrors shift and tilt needed to correct the residual aberrations and position of the focal plane.

  14. Global competition and technology transfer by the Federal Laboratories: An assessment of technology transfer mechanisms of selected national laboratories with a special focus on solar/renewable energy technologies: Executive summary

    SciTech Connect

    Engler, R.E. Jr.; Vargas, P.G.

    1987-02-20

    The report is presented in five chapters. It begins with an overview of the general problem and an introduction to the special case of renewable energy. Then, in Chapter Two, a broad canvas is presented for considering technology transfer as technology development to solve priority social-technical problems faced by our society; and important historical features in America's past are presented along with speculation about their relevance to the present and future. Chapter Three describes the four selected national laboratories and their current efforts at enhancing technology transfer. Chapter Four pulls together key findings from the lab descriptions and other sources and presents them as continuing issues and guiding principles. Finally, in Chapter five, recommendations are made to SERI, the Solar Energy Research Institute, for both the short range and long range. Long-range recommendations foresee a changed, more supportive climate and budget for solar/renewable energy and speculate about a far-reaching role for those technologies in a national effort at societal revitalization, redevelopment and renewal.

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  19. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  20. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III; Mayfield, E. B.

    1973-01-01

    The real-time solar monitoring information supplied to support SPARCS-equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and results of the synoptic study of solar active regions at 3.3-mm wavelength are presented. Forecasted flares in the 24-hour forecasts were 81% accurate, and those in the 28-day forecasts were 97% accurate. Synoptic radio maps at 3.3-mm wavelength are presented for twenty-three solar rotations in 1967 and 1968, as well as synoptic flare charts for the same period.

  1. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  2. Noninvasive hemoglobin monitoring: how accurate is enough?

    PubMed

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  3. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of…

  4. Wind and Solar Data Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements

    EIA Publications

    2016-01-01

    In an effort to improve EIA's approach to providing accurate, comprehensive data, and useful projections for policy analysis, EIA has conducted a review of its historical data and projections of capacity, generation, and cost projections for wind and solar technologies. While EIA's internal processes and engagement with stakeholders are both continuing, this paper shares some early findings of EIA's current review of our wind and solar data and projections, focusing in part on some of the issues that have been publicly raised by EIA's critics.

  5. Lateral translation micro-tracking of planar micro-optic solar concentrator

    NASA Astrophysics Data System (ADS)

    Hallas, Justin M.; Karp, Jason H.; Tremblay, Eric J.; Ford, Joseph E.

    2010-08-01

    High-concentration photo-voltaic systems focus incident sunlight by hundreds of times by combining focusing lenses with accurate, dual-axis solar tracking. Conventional systems mount large optical arrays on expensive tracking pedestals to maintain normal incidence throughout the day. A recently proposed micro-optic solar concentrator utilizes a twodimensional lens array focusing into a planar slab waveguide. Localized mirrors fabricated on the waveguide surface reflect focused sunlight into guided modes which propagate towards an edge-mounted photovoltaic cell. This geometry enables a new method of solar tracking by laterally translating the waveguide with respect to the lens array to capture off-axis illumination. Using short focal length lenses, translations on the order of millimeters can efficiently collect 70° full-angle incident fields. This allows for either one or two-axis tracking systems where the small physical motion is contained within the physical footprint of a fixed solar panel. Here, we experimentally demonstrate lateral micro tracking for off-axis light collection using table-mounted components. We also present a novel tracking frame based on de-centered cams and describe a lens configuration optimized for off-axis coupling.

  6. A Golden Age for Solar Physics.

    ERIC Educational Resources Information Center

    Walker, Arthur B. C., Jr.

    1982-01-01

    Discusses major themes of solar physics research and major discoveries of the last decade, focusing on solar cycle, stellar coronae and winds, magnetic explosions, and 100-AU-radius heliosphere. Includes conclusions/recommendations of the Solar Physics Working Group of the Astronomy Survey Committee, concerning observational/theoretical programs…

  7. EXPLORING MARS WITH SOLAR-POWERED ROVERS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.

  8. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  9. Solar cycle 24 from the standpoint of solar paleoastrophysics

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M. G.

    2016-03-01

    The predictions of the maximum yearly mean sunspot number in the current cycle 24 made by means of the astrophysical approach (by analyzing the instrumental data on solar activity and using various dynamo models) and the paleoastrophysical approach (by analyzing the paleoreconstructions of solar activity spanning the interval from 8555 BC to 1605 AD) are compared. The paleoastrophysical predictions are shown to be considerably more accurate. The amplitude of the next cycle 25 is predicted. It is shown that from the standpoint of solar paleoastrophysics, cycle 25 will most likely be of medium power, R max(25) = 85.0 ± 30.5.

  10. Solar electron source and thermionic solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Parham; Vahdani Moghaddam, Mehran; Nojeh, Alireza

    2012-12-01

    Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed "Heat Trap" effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  11. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  12. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  13. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companies' qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team's home.

  14. Solar technology in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A series of papers dealing with the status of solar research and development in the Federal Republic of Germany are presented at a conference in Greece with the object of promoting international cooperation in solar energy utilization. The reports focus on solar collector designs, solar systems, heat pumps, solar homes, solar cooling and refrigeration, desalination and electric power generation. Numerous examples of systems produced by German manufacturers are illustrated and described, and performance data are presented.

  15. Very Fast and Accurate Azimuth Disambiguation of Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Anfinogentov, S. A.

    2014-05-01

    We present a method for fast and accurate azimuth disambiguation of vector magnetogram data regardless of the location of the analyzed region on the solar disk. The direction of the transverse field is determined with the principle of minimum deviation of the field from the reference (potential) field. The new disambiguation (NDA) code is examined on the well-known models of Metcalf et al. ( Solar Phys. 237, 267, 2006) and Leka et al. ( Solar Phys. 260, 83, 2009), and on an artificial model based on the observed magnetic field of AR 10930 (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We compare Hinode/SOT-SP vector magnetograms of AR 10930 disambiguated with three codes: the NDA code, the nonpotential magnetic-field calculation (NPFC: Georgoulis, Astrophys. J. Lett. 629, L69, 2005), and the spherical minimum-energy method (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We then illustrate the performance of NDA on SDO/HMI full-disk magnetic-field observations. We show that our new algorithm is more than four times faster than the fastest algorithm that provides the disambiguation with a satisfactory accuracy (NPFC). At the same time, its accuracy is similar to that of the minimum-energy method (a very slow algorithm). In contrast to other codes, the NDA code maintains high accuracy when the region to be analyzed is very close to the limb.

  16. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  17. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  18. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging.

    PubMed

    Rouvière, Olivier; Souchon, Rémi; Salomir, Rarès; Gelet, Albert; Chapelon, Jean-Yves; Lyonnet, Denis

    2007-09-01

    Transrectal HIFU ablation has become a reasonable option for the treatment of localized prostate cancer in non-surgical patients, with 5-year disease-free survival similar to that of radiation therapy. It is also a promising salvage therapy of local recurrence after radiation therapy. These favourable results are partly due to recent improvements in prostate cancer imaging. However, further improvements are needed in patient selection, pre-operative localization of the tumor foci, assessment of the volume treated and early detection of recurrence. A better knowledge of the factors influencing the HIFU-induced tissue destruction and a better pre-operative assessment of them by imaging techniques should improve treatment outcome. Whereas prostate HIFU ablation is currently performed under transrectal ultrasound guidance, MR guidance with real-time operative monitoring of temperature will be available in the near future. If this technique will give better targeting and more uniform tissue destruction, its cost-effectiveness will have to be carefully evaluated. Finally, a recently reported synergistic effect between HIFU ablation and chemotherapy opens possibilities for treatment in high-risk or clinically advanced tumors.

  19. JPL solar power experiments

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1976-01-01

    Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.

  20. Solar Cycle Predictions (Invited Review)

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    2012-11-01

    Solar cycle predictions are needed to plan long-term space missions, just as weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on low-Earth orbit spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as the reduced propellant load is consumed more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5 - 20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations of how those predictions could be made more accurate in the future are discussed.

  1. Thermal Transport of the Solar Captured Dark Matter and its Implication

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsun; Chen, Chian-Shu; Lin, Guey-Lin

    We study the thermal transport occurring in the system of solar captured dark matter (DM) and explore its impact on the DM indirect search signal. We particularly focus on the scenario of self-interacting DM (SIDM). The flows of energies in and out of the system are caused by solar captures via DM-nucleon and DM-DM scatterings, the energy dissipation via DM annihilation, and the heat exchange between DM and solar nuclei. We examine the DM temperature evolution and demonstrate that the DM temperature can be higher than the core temperature of the Sun if the DM-nucleon cross section is sufficiently small such that the energy flow due to DM self-interaction becomes relatively important. We argue that the correct DM temperature should be used for accurately predicting the DM annihilation rate, which is relevant to the DM indirect detection.

  2. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  3. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  4. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  5. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  6. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  7. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  8. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  9. Line-focus concentrating collector program

    NASA Technical Reports Server (NTRS)

    Dugan, V. L.

    1980-01-01

    The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.

  10. Reconstructing the open-field magnetic geometry of solar corona using coronagraph images

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Davila, Joseph M.; Jones, Shaela; Burkepile, Joan

    2015-04-01

    The upcoming Solar Probe Plus and Solar Orbiter missions will provide an new insight into the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Physical interpretation of these observations will be dependent on the accurate reconstruction of the large-scale coronal magnetic field. We argue that such reconstruction can be performed using photospheric extrapolation codes constrained by white-light coronagraph images. The field extrapolation component of this project is featured in a related presentation by S. Jones et al. Here, we focus on our image-processing algorithms conducting an automated segmentation of coronal loop structures. In contrast to the previously proposed segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, our technique focuses on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. Coronagraph images are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction followed by an adaptive angular differentiation. An adjustable threshold is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to identify valid features against a noisy background. The extracted coronal features are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms. Two versions of the method optimized for processing ground-based (Mauna Loa Solar Observatory) and satellite-based (STEREO Cor1 and Cor2) coronagraph images are being developed.

  11. Solar concentrator development in the US

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Mancini, T. R.; Houser, R. M.; Crossman, J. W.; Schissel, P.; Carasso, M.; Jorgensen, G.; Scheve, M.

    Sandia National Laboratories leads the U.S. Department of Energy's solar concentrator development program in a joint effort with the Solar Energy Research Institute. The goal of DOE's program is to develop, build and test solar concentrators that are low in cost, have high performance, and long lifetimes. Efforts are currently focused on three areas: low-cost heliostats, point-focus parabolic dishes, and durable reflective films. The status and future plans of DOE's program in each area are reviewed.

  12. Solar concentrator development in the US

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Mancini, T. R.; Houser, R. M.; Grossman, J. W.; Schissel, P.; Carasso, M.; Jorgensen, G.; Scheve, M.

    1991-03-01

    Sandia National Laboratories leads the US Department of Energy's solar concentrator development program in a joint effort with the Solar Energy Research Institute. The goal of DOE's program is to develop, build, and test solar concentrations that are low cost, have high performance, and long lifetimes. Efforts are currently focused on three areas: low-cost heliostats, point-focus parabolic dishes, and durable reflective films. The status and future plans of DOE's program in each area are reviewed.

  13. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  14. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  15. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  16. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  17. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  18. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    SciTech Connect

    Behne, Patrick Alan

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  19. A new modeling method of solar energetic proton events for ISO specification

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Goka, Tateo

    2008-10-01

    Solar energetic protons degrade performance and reliability of spacecraft systems due to single-event effects, total dose effects and displacement damage in electronics components including solar cells. On designing a solar cell panel, a total fluence of solar energetic protons (SEPs) which cause solar cell damage is needed to estimate power loss of the solar cells over mission life. Nowadays a solar panel area of spacecraft is increasing as spacecraft mission life becomes longer (15-18 years). Thus an accurate SEP model is strongly required for the cost-minimum design from the aerospace industry. The SEP model, JPL-91 proposed by Feynman et al., is currently used widely for solar cell designing. However, it is known that the JPL-91 model predicts higher fluences of protons than values actually experienced in space, especially after 7 years on orbit. In addition, the model is based on several assumptions, and also needs Monte-Carlo simulations for calculating fluences. In this study, we propose a new method for modeling SEPs especially focused on solar cell degradation. The newly-proposed method is empirical, which constructs a model based directly upon proton flux measurement data taken by instruments onboard spacecraft. This method has neither assumptions nor dependence on SEP event selection, both of which are needed in JPL-91. The model fluences derived from this method show lower fluences in longer missions compared to JPL-91. This method has been proposed to ISO (International Organization for Standardization) and has been discussed for a new standard SEP model.

  20. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Focus Curriculum Manual; A Focus Dissemination Project.

    ERIC Educational Resources Information Center

    Human Resource Associates, Inc., Hastings, Minn.

    This training manual is for use in preparing staff members to use the Focus Model, which is a "school within a school" for disaffected high school students. The material is designed to be used as a resource aid following participation in an in-service workshop. Information is presented to help implement a contracting system to establish…

  2. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  3. A rhetorical investigation of energy-related environmental issues and a proposed modeling of variables influencing the employment of domestic solar water heaters with a focus on mobilizing information

    NASA Astrophysics Data System (ADS)

    Garner, Lilla Gayle

    how the variables and information identified in the rhetorical investigation might be actualized in the construction of messages related to a particular consumer energy behavior, the proposed modeling of variables is used as a framework for a heuristic experimental study. This experimental study is designed to test the influence of one particular variable found at the beliefs level---action strategies and skills, or mobilizing information---on consumers' attitudes and intentions to behave toward a specific energy-related topic, the employment of domestic solar water heaters.

  4. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  5. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  6. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  7. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  8. Line focus systems.

    SciTech Connect

    Moss, Timothy A.

    2010-05-01

    Improving the thermal performance of a trough plant will lower the LCOE: (1) Improve mirror alignment using the TOPCAT system - Current - increase optical intercept of existing trough solar power plants, Future - allows larger apertures with same receiver size in new trough solar power plants, and Increased concentration ratios/collection efficiencies & economies of scale; and (2) Improve tracking using a closed loop tracking system - Open loop tracking currently used own experience and from industry show need for a improved method. Performance testing of a Trough module and/or receiver on the rotating platform: (1) Installed costs of a trough plant are high. A significant portion of this is the material and assembly cost of the trough module. These costs need to be reduced without sacrificing performance; and (2) New receiver coatings with lower heat loss and higher absorbtivity. TOPCAT system is an optical evaluation tool for parabolic trough solar collectors. Aspects of the TOPCAT system are: (1) Practical, rapid, and cost effective; (2) Inherently aligns mirrors to the receiver of an entire solar collector array (SCA); (3) Can be used for existing installations -no equivalent tool exits; (4) Can be used during production; (5) Currently can be used on LS-2 or LS-3 configurations, but can be easily modified for any configuration; and (6)Generally, one time use.

  9. FEMP Focus - Summer 2005

    SciTech Connect

    2005-09-15

    Features information about discrepancy between guaranteed Savings in ESPC Projects and Utility Bills, Super ESPC provides energy savings to FDA Office/Lab Complex, VA Medical Center Uses Super ESPC for Solar, Coast Guard Air Station Cape Cod Demonstrates Successful Fuel Cell, FEMP Conducts E-Learning Energy Training, and more for federal agencies.

  10. The Solar-B Mission

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila, Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon; Harvey, John; Hathaway, David; Hudson, Hugh; Moore, Ronald; Lites, Bruce; Rust, David; Strong, Keith; Title, Alan

    1997-01-01

    Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs.

  11. Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…

  12. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  13. AXAF SIM focus mechanism study

    NASA Astrophysics Data System (ADS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-02-01

    is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwanted rotations and changing the focus position vs. motor step and pot readout relationships). focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.

  14. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  15. Solar Cycle Prediction.

    PubMed

    Petrovay, Kristóf

    A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of

  16. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  17. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  18. Comparing solar energy alternatives

    NASA Astrophysics Data System (ADS)

    White, J. R.

    1984-03-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  19. Towards stable silicon nanoarray hybrid solar cells

    NASA Astrophysics Data System (ADS)

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  20. Towards stable silicon nanoarray hybrid solar cells.

    PubMed

    He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H

    2014-01-16

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  1. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    SciTech Connect

    Su Yang; Veronig, Astrid; Temmer, Manuela; Wang Tongjiang; Gan Weiqun

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  2. The solar stereo mission

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    The principal scientific objective of the Solar-Terrestrial Relations Observatory (STEREO) is to understand the origin and consequences of coronal mass ejections (CMEs). CMEs are the most energetic eruptions on the Sun. They are responsible for essentially all of the largest solar energetic particle events and are the primary cause of major geomagnetic storms. They may be a critical element in the solar dynamo because they remove the dynamo-generated magnetic flux from the Sun. Two spacecraft at 1 AU from the Sun, one drifting ahead of Earth and one behind, will image CMEs. They will also map the distribution of magnetic fields and plasmas in the heliosphere and accomplish a variety of science goals described in the 1997 report of the NASA Science Definition Team for the STEREO Mission. Current plans call for the two STEREO launches in early 2003. Simultaneous image pairs will be obtained by the STEREO telescopes at gradually increasing spacecraft separations in the course of the mission. Additionally, in-situ measurements will provide accurate information about the state of the ambient solar wind and energetic particle populations ahead of and behind CMEs. These measurements will allow definitive tests of CME and interplanetary shock models. The mission will include a "beacon mode" to warn of either coronal or interplanetary conditions indicative of impending disturbances at Earth.

  3. Solar Position Algorithm for Solar Radiation Applications (Revised)

    SciTech Connect

    Reda, I.; Andreas, A.

    2008-01-01

    This report is a step-by-step procedure for implementing an algorithm to calculate the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of ?0.0003/. It is written in a step-by-step format to simplify otherwise complicated steps, with a focus on the sun instead of the planets and stars in general. The algorithm is written in such a way to accommodate solar radiation applications.

  4. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  5. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  6. SOLAR METALLICITY DERIVED FROM IN SITU SOLAR WIND COMPOSITION

    SciTech Connect

    Von Steiger, R.; Zurbuchen, T. H. E-mail: thomasz@umich.edu

    2016-01-01

    We use recently released solar wind compositional data to determine the metallicity of the Sun—the fraction per unit mass that is composed of elements heavier than He. We focus on a present-day solar sample available to us, which is the least fractionated solar wind from coronal holes near the poles of the Sun. Using these data, we derive a metallicity of Z = 0.0196 ± 0.0014, which is significantly larger than recent published values based on photospheric spectroscopy, but consistent with results from helioseismology.

  7. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  8. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  9. Solar Forecasting Challenges and Opportunities for Enabling High Penetration of Solar Energy

    NASA Astrophysics Data System (ADS)

    Mishra, S.

    2015-12-01

    In 2011, DOE launched the SunShot Initiative to reduce the total cost of solar energy systems by about 75% to make them cost competitive with other forms of energy (without subsidies) by 2020. This translates to a total cost of installed solar energy at 1/Watt or 0.06/kWh, incentivizing high penetration of solar on the utility grid. In the past four years, the SunShot Initiative has catalyzed revolutionary advancements in solar technologies, stimulating significant growth and accelerating deployment of solar energy systems. However, as solar deployment increases, integrating solar energy into the utility grid poses difficult challenges due to the variability in solar resource and the impact of clouds and aerosols on surface irradiance. Accurate forecasting of solar resource and its variability at high temporal and spatial resolution at least a day ahead is crucial to large scale integration of solar energy into the utility grid. However, this is limited by current errors in forecasting that are as high as 25% for clear sky forecasts of Global Horizontal Irradiance (GHI), and as large as 40-80% for cloudy conditions. Forecasting errors are even higher for the direct normal irradiance (DNI). For solar energy to be seamlessly integrated into the utility grid under the scenarios of high penetration of solar, significant improvements in surface solar irradiance modeling and observations of both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) are essential to accurately predict power outputs from photovoltaic (PV) and concentrating solar power (CSP) systems. Furthermore, forecasting improvements have to be closely tied to utility needs and operation timelines. Details about the ongoing research efforts supported through the SunShot initiative and the challenges and needs for solar forecasting improvements in regards to the SunShot Initiative will be presented at the conference.

  10. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  11. FOCUS: Sustainable Mathematics Successes

    ERIC Educational Resources Information Center

    Mireles, Selina V.; Acee, Taylor W.; Gerber, Lindsey N.

    2014-01-01

    The FOCUS (Fundamentals of Conceptual Understanding and Success) Co-Requisite Model Intervention (FOCUS Intervention) for College Algebra was developed as part of the Developmental Education Demonstration Projects (DEDP) in Texas. The program was designed to use multiple services, courses, and best practices to support student completion of a…

  12. Focus, 2000-2001.

    ERIC Educational Resources Information Center

    Focus, 2001

    2001-01-01

    These three issues of 2000-2001 "Focus" present a collection of papers focusing on issues related to poverty. The first issue discusses child support enforcement policy and low-income families, highlighting such issues as fragile families and child wellbeing; low-income families and the child support enforcement system; child support…

  13. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... a solar eclipse where an observer on Earth can watch the Moon's shadow obscure more than 90% the Sun's disk, the Multiangle Imaging ... total solar eclipse of November 23, 2003. The path of the Moon's umbral shadow began in the Indian Ocean in the far Southern Hemisphere, ...

  14. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image On June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an ... in which 99.6 percent of the solar disk was shadowed by the Moon, was situated in the central Pacific Ocean. Since there are no populated ...

  15. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  16. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  17. Thermal transport of the solar captured dark matter and its impact on the indirect dark matter search

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Shu; Lin, Guey-Lin; Lin, Yen-Hsun

    2016-12-01

    We study the thermal transport occurring in the system of solar captured dark matter (DM) and explore its impact on the DM indirect search signal. We particularly focus on the scenario of self-interacting DM (SIDM). The flows of energies in and out of the system are caused by solar captures via DM-nucleon and DM-DM scatterings, the energy dissipation via DM annihilation, and the heat exchange between DM and solar nuclei. We examine the DM temperature evolution and demonstrate that the DM temperature can be higher than the core temperature of the Sun if the DM-nucleon cross section is sufficiently small such that the energy flow due to DM self-interaction becomes relatively important. We argue that the correct DM temperature should be used for accurately predicting the DM annihilation rate, which is relevant to the DM indirect detection.

  18. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    The number of sunspots and other characteristics have been widely used to reconstruct the solar activity beyond the last three decades of accurate satellite measurements. It has also been possible to reconstruct the long-term solar behavior by measuring the abundance on Earth of cosmogenic nuclides such as carbon 14 and beryllium 10. These isotopes are formed by the interaction of galactic cosmic rays with atmospheric molecules. Accelerator mass spectrometry is used to measure the abundance of these isotopes in natural archives such as polar ice (for 10Be), tree rings and corals (for 14C). Over the last millennium, the solar activity has been dominated by alternating active and quiet periods, such as the Maunder Minimum, which occurred between 1645 and 1715 A.D. The climate forcing of this solar variability is the subject of intense research, both because the exact scaling in terms of irradiance is still a matter of debate and because other solar variations may have played a role in amplifying the climatic response. Indeed, the past few decades of accurate solar measurements do not include conditions equivalent to an extended solar minimum. A further difficulty of the analysis lies in the presence of other climate forcings during the last millennium, which are superimposed on the solar variations. Finally, the inherent precision of paleotemperature proxies are close to the signal amplitude retrieved from various paleoclimate archives covering the last millennium. Recent model-data comparisons for the last millennium have led to the conclusion that the solar forcing during this period was minor in comparison to volcanic eruptions and greenhouse gas concentrations (e.g. Schurer et al. 2013 J. Clim., 2014 Nat. Geo.). In order to separate the different forcings, it is useful to focus on a temperature change in phase with a well-documented solar minimum so as to maximize the response to this astronomical forcing. This is the approach followed by Wagner et al. (2005 Clim

  19. Accurate documentation, correct coding, and compliance: it's your best defense!

    PubMed

    Coles, T S; Babb, E F

    1999-07-01

    This article focuses on the need for physicians to maintain an awareness of regulatory policy and the law impacting the federal government's medical insurance programs, and to internalize and apply this knowledge in their practices. Basic information concerning selected fraud and abuse statutes and the civil monetary penalties and sanctions for noncompliance is discussed. The application of accurate documentation and correct coding principles, as well as the rationale for implementating an effective compliance plan in order to prevent fraud and abuse and/or minimize disciplinary action from government regulatory agencies, are emphasized.

  20. Mortality monitoring design for utility-scale solar power facilities

    USGS Publications Warehouse

    Huso, Manuela; Dietsch, Thomas; Nicolai, Chris

    2016-05-27

    IntroductionSolar power represents an important and rapidly expanding component of the renewable energy portfolio of the United States (Lovich and Ennen, 2011; Hernandez and others, 2014). Understanding the impacts of renewable energy development on wildlife is a priority for the U.S. Fish and Wildlife Service (FWS) in compliance with Department of Interior Order No. 3285 (U.S. Department of the Interior, 2009) to “develop best management practices for renewable energy and transmission projects on the public lands to ensure the most environmentally responsible development and delivery of renewable energy.” Recent studies examining effects of renewable energy development on mortality of migratory birds have primarily focused on wind energy (California Energy Commission and California Department of Fish and Game, 2007), and in 2012 the FWS published guidance for addressing wildlife conservation concerns at all stages of land-based wind energy development (U.S. Fish and Wildlife Service, 2012). As yet, no similar guidelines exist for solar development, and no published studies have directly addressed the methodology needed to accurately estimate mortality of birds and bats at solar facilities. In the absence of such guidelines, ad hoc methodologies applied to solar energy projects may lead to estimates of wildlife mortality rates that are insufficiently accurate and precise to meaningfully inform conversations regarding unintended consequences of this energy source and management decisions to mitigate impacts. Although significant advances in monitoring protocols for wind facilities have been made in recent years, there remains a need to provide consistent guidance and study design to quantify mortality of bats, and resident and migrating birds at solar power facilities (Walston and others, 2015).In this document, we suggest methods for mortality monitoring at solar facilities that are based on current methods used at wind power facilities but adapted for the

  1. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  2. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  3. 2008 Solar Technologies Market Report

    SciTech Connect

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  4. Future solar system missions

    NASA Technical Reports Server (NTRS)

    Briggs, Geoffrey A.

    1990-01-01

    NASA's planetary exploration program is discussed, with emphasis on strategy, namely, exploration of all three main classes of solar system bodies (the terrestrial planets, the outer giants and their moons, and the primitive small bodies). Planning of an extensive search for other planetary systems is focused on the application of various approaches to ultra-high precision astrometry and the possible use of a space-based coronagraphic telescope. Program strategy and lunar and Mars outpost precursor missions are illustrated.

  5. Solar thermal technology

    NASA Astrophysics Data System (ADS)

    1986-08-01

    This annual evaluation report provides the accomplishments and progress of government-funded activities initiated, renewed, or completed during Fiscal Year 1985 (October 1, 1984 through September 30, 1985). It highlights the program tasks conducted by participating national laboratories and by contracting industrial academic, or other research institutions. The focus of the STT Program is research and development leading to the commercial readiness of four primary solar thermal concepts: (1) central receiver; (2) parabolic dish; (3) parabolic trough; and (4) hemispherical bowl.

  6. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  7. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  8. Solar Radar Astronomy with LOFAR

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.

    2003-04-01

    A new approach to the study of the Sun's corona and its dynamical processes is possible with radar investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic radar echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the radar echo technique. Of particular interest for such solar radar investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar radar frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar radar echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar radar cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving

  9. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  10. On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-01-10

    We analyze bidirectional reflectance factors (BRF) of the solar diffuser (SD) and vignetting function (VF) of the SD screen (SDS) for on-board calibration of the visible infrared imaging radiometer suite (VIIRS). Specific focus is placed on the products of the BRF and VF, which are the main inputs for calibration of the SD and its accompanying solar diffuser stability monitor (SDSM), which tracks SD degradation. A set of 14 spacecraft yaw maneuvers for the Suomi National Polar-Orbiting Partnership satellite, which houses the VIIRS instrument, was carefully planned and carried out over many orbits to provide the necessary information on the dependence of VIIRS instrument response on solar angles. Along with the prelaunch measurements for the SDS VF and SD BRF, the absolute form of the BRF-VF product is determined for each of the reflective solar bands (RSB) and the SDSM detectors. Consequently, the absolute form of the SDS VF also is obtained from the RSB and SDSM detectors using the yaw maneuver data. The results show that the BRF-VF product for an RSB is independent of the detector, gain status, and half-angle mirror side. The derived VFs from the RSB and the SDSM detectors also show reasonable agreement with each other, as well as with the prelaunch VF measurements, and further demonstrate only geometrical dependence, which, in this work, is characterized by solar angles. The derived calibration coefficients, called the F-factors, from the application of the derived functions in this study show a significantly improved pattern. A small band-dependent residual seasonal fluctuation on the level of ∼0.2%-0.4% remains in the F-factors for each RSB and is further improved by a corrective function with linear dependence on the solar azimuth angle in the nominal attitude instrument coordinate system to the VF. For satellite ocean color remote sensing, on-orbit instrument calibration and characterization are particularly important for producing accurate and consistent

  11. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  12. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  13. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  14. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  15. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes the Hawthorn Court Community Center at Iowa State University, Ames, and the HUB-Robeson Center at Pennsylvania State University. Focuses on the food service offered in these new student-life buildings. Includes photographs. (EV)

  16. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  17. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  18. Inertial focusing in microfluidics.

    PubMed

    Martel, Joseph M; Toner, Mehmet

    2014-07-11

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future.

  19. Final focus nomenclature

    SciTech Connect

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  20. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  1. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  2. High harmonics focusing undulator

    SciTech Connect

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S.

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  3. New NLC Final Focus

    SciTech Connect

    Raimondi, P.

    2004-10-11

    A novel design of the Final Focus has recently been proposed [1] and has been adopted now for the Next Linear Collider [2]. This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. In this paper, the new final focus system is briefly discussed stressing one particular characteristic of the new design--its multi TeV energy reach.

  4. Project Solar Cooker SK 12

    SciTech Connect

    Jobst, G.

    1992-12-31

    A solar cooking unit designed for use in developing countries is described. The unit with its 1.4 meter solar collector is capable of bringing 3 liters of water to a boil in half an hour or less. Positioning the cooker for accurate tracking of the sun is achieved using the shadow of a pin on a small plate. Safety concerns are also addressed in the design. The unit can be used to meet the needs of as many of 20 people. Manufacture by local workers is possible and is the best guarantee of successful technology transfer.

  5. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  6. Solar pruritus.

    PubMed

    Bech-Thomsen, N; Thomsen, K

    1995-11-01

    A case of solar pruritus is reported. Severe pruritus of the back, shoulders and upper lateral aspects of the arms, without any eruption, developed in a 28-year-old outdoor worker during 4 to 6 weeks of intensive solar exposure. The pruritus was intense and described as a burning sensation deep in the skin. Only a few excoriations and slight xerosis were found. Solar pruritus or brachioradial pruritus is a condition primarily seen in Caucasian people living in the tropics or subtropics. Previously the disease has only been reported once outside these areas.

  7. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  8. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  9. The DOE Solar Thermal Electric Program

    SciTech Connect

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  10. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  11. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  12. Solar fuels

    NASA Astrophysics Data System (ADS)

    Viitanen, M.

    1990-12-01

    The aim of this paper is to give a review concerning the storage of solar energy by converting it to chemical energy. This is based on several articles published during the last fifteen years. The methods to convert solar energy to chemical energy, e.g., to produce hydrogen, can be divided into three different methods. The most common one is probably the usage of solar cells; thus the solar energy is first converted into electrical energy and further the water is split electrochemically to produce hydrogen. It could be also done in a photoelectrochemical cell, or simply photochemically. A photobiological system can also be considered as a photochemical system, although it is discussed separately from the photochemical systems. These three last mentioned methods will be discussed in this paper.

  13. Solar Nexus.

    ERIC Educational Resources Information Center

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  14. Solar chulha

    NASA Astrophysics Data System (ADS)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  15. A Synthesis of Solar Cycle Prediction Techniques

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.; Reichmann, Edwin J.

    1999-01-01

    A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month-by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides a more accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This combined precursor method gives a smoothed sunspot number maximum of 154 plus or minus 21 at the 95% level of confidence for the next cycle maximum. A mathematical function dependent on the time of cycle initiation and the cycle amplitude is used to describe the level of solar activity month by month for the next cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a smoothed sunspot maximum of 146 plus or minus 20 at the 95% level of confidence for the next cycle maximum.

  16. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    NASA Astrophysics Data System (ADS)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  17. Deep-Focusing Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jensen, J. M.; Kosovichev, A. G.; Birch, A. C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Much progress has been made by measuring the travel times of solar acoustic waves from a central surface location to points at equal arc distance away. Depth information is obtained from the range of arc distances examined, with the larger distances revealing the deeper layers. This method we will call surface-focusing, as the common point, or focus, is at the surface. To obtain a clearer picture of the subsurface region, it would, no doubt, be better to focus on points below the surface. Our first attempt to do this used the ray theory to pick surface location pairs that would focus on a particular subsurface point. This is not the ideal procedure, as Born approximation kernels suggest that this focus should have zero sensitivity to sound speed inhomogeneities. However, the sensitivity is concentrated below the surface in a much better way than the old surface-focusing method, and so we expect the deep-focusing method to be more sensitive. A large sunspot group was studied by both methods. Inversions based on both methods will be compared.

  18. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  19. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  20. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  1. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  2. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  3. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  4. NICMOS focus monitor

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This proposal is used to determine and monitor the optimal focus and tilt settings for all three NICMOS cameras. It is derived from SM2/NIC 7041, but is structurally quite a bit different. This proposal is built to run NIC1/2 focus sweeps on a weekly basis, and NIC3 focus sweeps twice a week during SMOV {following the "interim" runs of the 7150}. 7043 will run for as long as it is deemed necessary to keep track of the camera focii and to monitor the dewar anomaly. After the discussion on 20/3/96, this proposal is written to run 4 complete 1-week iterations starting 3 days after the last run of the 7150 {NICMOS COARSE OPTICAL ALIGNMENT, PART 2}.

  5. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  6. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  7. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  8. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  9. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  10. SWCX Emission from the Helium Focusing Cone - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Kuntz, K. D.; Collier, M. R.

    2008-01-01

    Preliminary results from an XMM-Newton campaign to study solar wind charge exchange (SWCX) emission from the heliospheric focusing cone of interstellar helium are presented. The detections of enhanced O VII and O VIII emission from the cone are at the 2(sigma) and 4(sigma) levels. The solar wind charge exchange (SWCX) emission in the heliosphere not associated with distinct objects (e.g., comets and planets including exospheric material in and near Earth s magnetosheath) is proportional to the flux of the solar wind and the space density of neutral material. The neutral material originates in the interstellar medium (ISM) and passes through the solar system due to the relative motion of the Sun and the ISM. The flow of the neutral material through the solar system is strongly perturbed by the Sun both by gravity and by radiation pressure. Because of the relative radiative scattering cross sections and the effect of solar gravitation the density of interstellar hydrogen near the Sun is reduced while interstellar helium is gravitationally focused. This creates a helium focusing cone downstream of the Sun [e.g., 1, and references therein].

  11. Solar Variability and Climate Change

    NASA Astrophysics Data System (ADS)

    Pap, J. M.

    2004-12-01

    One of the most exciting and important challenges in science today is to understand climate variability and to make reliable predictions. The Earth's climate is a complex system driven by external and internal forces. Climate can vary over a large range of time scales as a consequence of natural variability or anthropogenic influence, or both. Observations of steadily increasing concentrations of greenhouse gases --primarily man-made-- in the Earth's atmosphere have led to an expectation of global warming during the coming decades. However, the greenhouse effect competes with other climate forcing mechanisms, such as solar variability, cosmic ray flux changes, desertification, deforestation, and changes in natural and man-made atmospheric aerosols. Indeed, the climate is always changing, and has forever been so, including periods before the industrial era began. Since the dominant driving force of the climate system is the Sun, the accurate knowledge of the solar radiation received by Earth at various wavelengths and from energetic particles with varying intensities, as well as a better knowledge of the solar-terrestrial interactions and their temporal and spatial variability are crucial to quantify the solar influence on climate and to distinguish between natural and anthropogenic influences. In this paper we give an overview on the recent results of solar irradiance measurements over the last three decades and the possible effects of solar variability on climate.

  12. [Focused musculoskeletal sonography].

    PubMed

    Horn, Rudolf

    2015-09-16

    Even in emergent situations, focused musculoskeletal sonography must not be overlooked. It has a place in traumatology no less valuable than its place in internal medicine. It can be used to identify traumatic joint effusions, occult fractures and fissures, joint inflammation, muscle and tendon rupture; it can differentiate soft tissue swelling, locate a foreign body, or identify the location of fractures. Focused ultrasound should be performed by the attending physician directly at the patient’s bedside, in order to answer these specific questions.

  13. Electrolysis and isoelectric focusing

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Lui, Roger; Yu, Xun

    1994-01-01

    This paper consists of two parts. In the first part, the authors prove the existence of steady-state solutions for a three-species electrolyte. The species are subject to both dissociation-association reactions inside the electrolyte and electrochemical reactions at the boundary electrodes. This is a common occurrence in electrolysis. In the second part, the authors investigate how to use this model to describe isoelectric focusing, which is a common technique used to separate large protein molecules. In particular, the isoelectric focusing point for a particular type of protein molecule is calculated using formal perturbation analysis.

  14. Distant Comets in the Early Solar System

    DTIC Science & Technology

    2000-05-23

    the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us infor- mation about the...Small Satellites This is the focus of the thesis work of G. Bauer. It is thought that the origin of the Centaurs is the L(Igeworth- Kuiper Belt , the

  15. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  16. TJ Solar Cell

    SciTech Connect

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  17. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  18. Offset truss hex solar concentrator

    NASA Technical Reports Server (NTRS)

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)

    1991-01-01

    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  19. Concentrated Solar Thermoelectric Power

    SciTech Connect

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  20. Focus on Bilingual Education.

    ERIC Educational Resources Information Center

    Mayo, Donald S., Ed.

    1982-01-01

    This collection of essays focuses on issues in bilingual education. First, Elizabeth Flynn examines different kinds of bilingual programs; efforts made towards cultural pluralism in a number of countries; national benefits to be derived from bilingualism; the needs of American ethnic groups, new immigrants, and foreign students; and the pros and…

  1. Focus on First Graders.

    ERIC Educational Resources Information Center

    Schwartz, Shari S.

    The result of a collaboration between the El Paso, Texas, school district and community agencies, the Focus on First Graders program provides early intervention and prevention using a comprehensive approach to providing a variety of services at the school to at-risk first graders from low income families. Teachers and parents were surveyed to…

  2. ENC Focus Review.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    The mission of the Eisenhower National Clearinghouse (ENC) is to identify effective curriculum resources, create high-quality professional development materials, and disseminate useful information and products to improve K-12 mathematics and science teaching and learning. This issue of "ENC Focus" contains articles related to mathematics teaching…

  3. Homework. Focus On

    ERIC Educational Resources Information Center

    Rahal, Michelle Layer

    2010-01-01

    Homework has been an integral part of the educational system for over 100 years. What likely began as simple memorization tasks has evolved into complex projects and sparked an increasingly heated debate over the purpose and value of homework assignments. This "Focus On" examines the purpose of homework, how to create homework that has value,…

  4. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  5. Focus on Grandparents.

    ERIC Educational Resources Information Center

    Murphy, Linda; Della Corte, Suzanne

    1990-01-01

    Following the birth of a handicapped child, both parent and grandparent experience similar feelings of consternation, shock, and grief. The grandparents' reaction is double, however, as they suffer not only for the newborn but for their own child's pain as well. This article focuses on dealing with grief and its stages, including numbness, denial,…

  6. Focus on Phase Electives.

    ERIC Educational Resources Information Center

    Jones, Victor H., Ed.

    1976-01-01

    In this thematic issue, articles focus on the use of phase electives in the English classroom. Discussions include "Death in the Classroom,""Soapbox Operas in the English Classroom,""Language and History in Phase-Elective Programs,""Phase Electives and the Problem of Composition," and "Phase Electives and College Preparation.""Phase Electives Are…

  7. Focus on Distance Education.

    ERIC Educational Resources Information Center

    Grenzky, Janet; Maitland, Christine

    2001-01-01

    As a followup to a survey of distance education faculty, the National Education Association conducted two 3-hour focus groups with 12 higher education faculty members in June 2000. The purpose of the groups was to gain more understanding of the complexity of feelings and opinions expressed in a telephone survey conducted in March 2000. The…

  8. Focusing on the Invisible

    ERIC Educational Resources Information Center

    Haley, Tim R.

    2008-01-01

    This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…

  9. Focus: International Economics.

    ERIC Educational Resources Information Center

    Lynch, Gerald J.; Watts, Michael W.; Wentworth, Donald R.

    The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly…

  10. Young Children. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational, cognitive, and brain research with implications for early childhood educators, including those who work with limited-English-proficient, minority, and economically disadvantaged children. "Coming to Grips with Reading Instruction at the Early Grades" (Christie L. Goodman)…

  11. Focus on Godard.

    ERIC Educational Resources Information Center

    Brown, Royal S., Ed.

    This Film Focus series presents selected information about the respected and controversial French filmmaker Jean-Luc Godard and his films. Information is documented through reports of interviews, reviews, essays, and commentaries. Included are filmographies of Godard's films, beginning in 1954 and continuing through 1972. Also, there is a selected…

  12. A FOCUS On Students.

    ERIC Educational Resources Information Center

    Fletcher, Susan

    1998-01-01

    William McKinley Middle School in Cedar Rapids, Iowa, has a parent volunteer program called FOCUS that targets average students who are not doing well academically. Program goals are to improve students' organizational skills, help them complete homework assignments, and reteach and preview lessons to increase understanding, so that students will…

  13. Focusing laser scanner

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1979-01-01

    Economical laser scanner assembled from commercially available components, modulates and scans focused laser beam over area up to 5.1 by 5.1 cm. Scanner gives resolution comparable to that of conventional television. Device is highly applicable to area of analog and digital storage and retrieval.

  14. Focus on Refugees. Transcript.

    ERIC Educational Resources Information Center

    Brandel, Sarah; And Others

    This is the transcript of the "Focus on Refugees," proqram conducted by the Overseas Development Council. Remarks from the following participants are included: (1) Sarah Brandel, Associate Fellow at the Overseas Development Council; (2) Gary Perkins, Chief of Mission of the Washington Office of the United Nations High Commissioner for Refugees…

  15. Youth Leadership. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on motivating young people to learn by providing leadership opportunities in school. "Coca-Cola Valued Youth Program: Assessing Progress" (Josie Danini Supik) examines the program's success. This program, which trains high-risk middle and high school students as tutors of younger children, has dramatically…

  16. Policy Update. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the drastic revision of the Texas education code undertaken during the 1995 state legislative session. "Education Policy Reform: Key Points for Districts" (Albert Cortez, Mikki Symonds) outlines critical issues in the legislation that have an impact on educational quality: charter schools exempt from state…

  17. Equity. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on equity in children's literature, public funding for private schools, women in educational fields, female dropouts, and the relationship between school violence and family and community violence. "Violence in Our Schools" (Bradley Scott) explores reasons for school violence (media violence, isolation from…

  18. Focusing educational initiatives

    NASA Technical Reports Server (NTRS)

    Parks, George K.

    1990-01-01

    The United States will soon be facing a critical shortage of aerospace scientists and engineers. To address this problem, Space Grant Colleges can assist in focusing interest in existing educational initiatives and in creating new educational opportunities, particularly for women and underrepresented minorities.

  19. Education Policy. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational policy in the Texas legislature in relation to student retention, Internet access, and sexual harassment. "1999 Texas Legislative Session--End of an Era?" (Albert Cortez, Maria Robledo Montecel) examines educational equity issues facing legislators: school funding,…

  20. School Reform. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue addresses school reform, focusing on accountability, attrition, public-supported private education, equitable education, and schoolwide reform. "School-Student Performance and Accountability" (Jose A. Cardenas) discusses what constitutes good performance in school; the shifting emphasis among the input, output, and…

  1. Bilingual Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on instructional practices, evaluation, and the state of bilingual education. "Effective Implementation of Bilingual Programs: Reflections from the Field" (Abelardo Villarreal, Adela Solis) describes the key characteristics of successful bilingual programs: vision and goals; program leadership; linkage to central…

  2. Instructional Technology. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes five articles that focus on implementing instructional technology in ways that benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Cruising the Web with English Language Learners" (Laura Chris Green) presents three scenarios using the World…

  3. Theme: Focus on Teaching.

    ERIC Educational Resources Information Center

    Connors, James J.; And Others

    1996-01-01

    Includes "The More Things Change..." (Connors); "Students--Bored of Education?" (Earle); "Yesterday, Today and Tomorrow" (Wesch et al.); "Attitude and the Value of Environment" (Foster); "Fins, Feathers and Fur" (Crank); "Greenhouse as a Focus for Agriscience" (Hurst); and "Agricultural and Environmental Education at Milton Hershey School"…

  4. Immigrant Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1996

    1996-01-01

    This newsletter includes five articles on immigrant education that focus on successful school programs and educational policy issues. In "Immigrant Education from the Administrators' Perspective" (Pam McCollum, Juanita Garcia), three principals of south Texas secondary schools with successful immigrant programs discuss their views on the…

  5. Lifelong Learning. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the need for adult literacy programs, as well as recent innovations in literacy education. "Adult Literacy and Leadership: Current Innovations" (Aurelio M. Montemayor) describes an adult literacy outreach program in Texas, and discusses the importance of family literacy for parents' involvement in their…

  6. [Focus: Family Communication].

    ERIC Educational Resources Information Center

    Barnes, Richard E., Ed.

    1977-01-01

    This issue of the "Journal of the Wisconsin Communication Association" focuses on family communication and contains the following articles: "Marital Typologies: An Alternative Approach to the Study of Communication in Enduring Relations" by Mary Anne Fitzpatrick, "Intimate Communication and the Family" by Marilyn D. LaCourt, and "A Study in…

  7. Neocortical focus: experimental view.

    PubMed

    Timofeev, Igor; Chauvette, Sylvain; Soltani, Sara

    2014-01-01

    All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.

  8. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 1996

    1996-01-01

    In an interview, the incoming president of the Association of Schools and Colleges of Optometry (ASCO), Thomas L. Lewis, discusses his goals for the association, the challenges facing optometric education in the next decade, cooperation between ASCO and other professional organizations in optometry, his mentors in the profession, his focus as a…

  9. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 2000

    2000-01-01

    An interview with the new president of the Association of Schools and Colleges of Optometry, John Schoessler, considers issues the president wishes to focus on during his presidency, changes in optometry students over the years, people who influenced his educational ideas, and research currently being conducted at Ohio State University College of…

  10. Improving Air Quality with Solar Energy

    DOE R&D Accomplishments Database

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  11. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are

  12. Limiting efficiency calculation of silicon single-nanowire solar cells with considering Auger recombination

    SciTech Connect

    Zhai, Xiongfei; Wu, Shaolong; Shang, Aixue; Li, Xiaofeng

    2015-02-09

    Single-nanowire solar cells (SNSCs) have attracted considerable attention due to their unique light-harvesting capability mediated by the optical antenna effect and the high photoconversion efficiency due to the orthogonalization of the carrier collection to the photon incidence. We present a detailed prediction of the light-conversion efficiency of Si SNSCs based on finite-element simulation and thermodynamic balance analysis, with especially focusing on the comparison between SNSCs and film systems. Carrier losses due to radiative and Auger recombinations are introduced in the analysis of the limiting efficiency, which show that the Auger recombination plays a key role in accurately predicting the efficiency of Si SNSCs, otherwise, the device performance would be strongly overestimated. The study paves a more realistic way to evaluate the nanostructured solar cells based on indirect-band photoactive materials.

  13. Solar Resource Characterization; Session: Modeling and Analysis (Presentation)

    SciTech Connect

    Renne, D.

    2008-04-01

    This project supports the Solar America Initiative by: (1) meeting increasing demands for expertise in and products on solar radiation data and models--production and distribution of reliable, accurate domestic and international solar resource data, benchmarking and cross-comparison of solar irradiance models; and coordination with the international community (IEA/SHC Task 36, WMO); (2) reducing data uncertainties and increasing temporal and spatial data resolutions; (3) developing and testing short term solar resource forecasts; (4) evaluating methods for producing long term data sets from short term observations; and (5) conducting measurement activities at selected sites.

  14. Modeling the Effects of Solar Cell Attitude Distribution on Optical Cross Section for Solar Panel Simulations

    NASA Astrophysics Data System (ADS)

    Feirstine, K.; Bush, K.; Crosher, C.; Klein, M.; Bowers, D.; Wellems, D.; Duggin, M.; Vaughn, L.

    2012-09-01

    The Air Force Research Laboratory (AFRL) Time-domain Analysis Simulation for Advanced Tracking (TASAT) was used to explore the variation of Optical Cross Section (OCS) with glint angle for a solar panel with different solar cell attitude distribution statistics. Simulations were conducted using a 3D model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of "solar cell" material is not appropriate for OCS glint studies. However, modeling each individual solar cell on the panel, the tips and tilts of which come from a distribution of specified statistics (distribution type, mean, and standard deviation), accurately captures the solar panel OCS with glint angle. The objective of the simulations was to vary the glint measurement angle about the maximum glint position of the solar panel and observe the variations in OCS with angle for a bi-static illumination condition. OCS was calculated relative to the simulated scattering of a Spectralon material in the glint orientation. Results show the importance of solar cell attitude distribution statistics in modeling the OCS observed for a solar panel.

  15. Elementary Students' Mental Models of the Solar System

    ERIC Educational Resources Information Center

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  16. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    SciTech Connect

    Not Available

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  17. USE OF HEMISPHERIC IMAGERY FOR ESTIMATING STREAM SOLAR EXPOSURE

    EPA Science Inventory

    Solar exposure profoundly affects stream processes and species composition. Despite this, prominent stream monitoring protocols focus on canopy closure (obstruction of the sky as a whole) rather than on measures of solar exposure or shading. We identify a candidate set of solar...

  18. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    ERIC Educational Resources Information Center

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  19. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  20. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  2. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  3. Solar Thermal Propulsion for Microsatellite Manoeuvring

    DTIC Science & Technology

    2004-09-01

    of 14-cm and 56-cm diameter solar concentrating mirrors has clearly validated initial optical ray trace modelling and suggests that there is...concentrating mirror’s focus, permitting multiple mirror inputs to heat a single receiver and allowing the receiver to be placed anywhere on the host...The STE is conceptually simple, relying on a mirror or lens assembly to collect and concentrate incident solar radiation. This energy is focused, by

  4. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  5. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  6. Solar ponds

    NASA Astrophysics Data System (ADS)

    Tabor, H.

    1981-01-01

    The history and current status of salt-gradient non-convecting solar ponds are presented. These ponds are large-area collectors, capable of providing low-cost thermal, mechanical, or electrical energy using low-temperature turbo-generators. The basic theory of salt-gradient solar ponds is sketched; the effects of wind, leakage, and fouling and their constraints on location selection for solar ponds are discussed. The methods of building and filling the ponds, as well as extracting heat from them are explained in detail. Practical operating temperatures of 90 C can be obtained with collection efficiencies between 15% and 25%, demonstrating the practical use of the ponds for heating and cooling purposes, power production, and desalination. A condensed account of solar pond experience in several countries is given. This includes the 150 kW solar pond power station (SPPS) operating in Israel since December, 1979 and a 5000 kW unit currently under development. A study of the economics involved in using the ponds is presented: despite a low conversion efficiency, the SPPS is shown to have applications in many countries.

  7. Multi-tower line focus Fresnel array project

    SciTech Connect

    Mills, D.R.; Morrison, G.; Pye, J.; Le Lievre, P.

    2006-02-15

    As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.

  8. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  9. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  10. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  11. Quantum focusing conjecture

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, Aron C.

    2016-03-01

    We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface σ that need not lie on a horizon, we define a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to σ , the rate of change of Sgen per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N . This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.

  12. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  13. Focused Bessel beams

    SciTech Connect

    Adamson, P V

    2000-04-30

    The diffraction broadening of a focused beam with a Bessel amplitude distribution is examined. Calculations are reported not only of the traditional differential characteristics (radial distributions of the electric-energy densities and of the axial total electromagnetic energy flux in the beam), but also of integral quantities characterising the degree of transverse localisation of the radiation in a tube of specified radius within the beam. It is shown that in a large-aperture Bessel beam only a very small fraction of the total beam power is concentrated in its central core and that a focal point is also observed on intense focusing of the Bessel beam. This spot is not in the geometric-optical focal plane but is displaced from the latter by a certain distance. (laser applications and other topics in quantum electronics)

  14. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  15. The National Large Solar Telescope (NLST) of India

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    The Indian National Large Solar Telescope (NLST) will be a state-of-the-art 2-m class telescope for carrying out high-resolution studies in the solar atmosphere. Recent numerical simulations suggest that crucial physical processes like vortex flow, dissipation of magnetic fields and the generation of MHD waves can occur efficiently over length scales of tens of kilometers. Current telescopes are unable to resolve solar feature to this level at visible wavelengths. NLST will not only achieve good spatial resolution, but will also have a high photon throughput in order to carry out spectropolarimetric observations to accurately measure vector magnetic fields in the solar atmosphere with a good signal to noise ratio. The main science goals of NLST include: a) Magnetic field generation and the solar cycle; b) Dynamics of magnetized regions; c) Helioseismology; d) Long term variability; e) Energetic phenomena and Activity; and f) Night time astronomy. The optical design of the telescope is optimized for high optical throughput and uses a minimum number of optical elements. A high order adaptive optics system is integrated as part of the design that works with a modest Fried's parameter of 7-cm to give diffraction limited performance. The telescope will be equipped with a suite of post-focus instruments including a high resolution spectrograph and a polarimeter. NLST will also be used for carrying out stellar observations during the night. The mechanical design of the telescope, building, and the innovative dome takes advantage of the natural air flush which will help to keep the open telescope in temperature equilibrium. Critical to the successful implementation of NLST is the selection of a site with optimum atmospheric properties, such as the number of sunshine hours and good "seeing" over long periods. A site characterization programme carried over several years has established the existence of suitable sites in the Ladakh region. After its completion, currently

  16. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    calibrating the size of the Solar System. The first accurate distance to another star was determined trigonometrically by Friedrich Wilhelm Bessel in 1838. Traditional trigonometric methods of measuring celestial distances require extremely accurate measurement of an object's position in the sky. By measuring the apparent shift in an object's position, called parallax, caused by the Earth's journey around the Sun, the distance to the object can be calculated. Until recent years, such measurements were limited by the atmosphere's degrading effect on optical observations. Recently, the Hipparcos satellite has measured stellar distances accurate to within 10 percent out to about 300 light-years. Beyond the range of parallax measurements, astronomers were forced to use indirect methods of estimating distances. Many of these methods make presumptions about the intrinsic brightness of objects, then estimate the distance by measuring how much fainter they appear on Earth. The faintness is presumed to be caused by the distance, according to the inverse-square law (doubling of the distance reduces brightness by a factor of four). Thus, stars of a particular spectral class are all presumed to be of the same intrinsic brightness. Such techniques have been used to estimate distances of stars out to about 25,000 light-years, still not far enough to estimate distance beyond our own Milky Way Galaxy. Early in the 20th Century, Henrietta Leavitt, of Harvard College Observatory, discovered that variable-brightness stars known as Cepheid variables showed a useful property -- the longer their pulsation periods, the brighter they are intrinsically. Once the absolute distance to a few Cepheids was determined, these stars were used to measure distances beyond the Milky Way. In the 1920s, Edwin Hubble used Cepheid-variable distance determinations to show that, contrary to then-prevalent opinion, many "nebulae" were, in fact, other galaxies far distant from our own. Distances determined using

  17. Focused on Robert E

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the microscopic imager on the Mars Exploration Rover Opportunity, shows a geological feature dubbed 'Robert E.' Light from the top is illuminating the feature, which is located within the rock outcrop at Meridiani Planum, Mars. Several images, each showing a different part of 'Robert E' in good focus, were merged to produce this view. The area in this image, taken on Sol 15 of the Opportunity mission, is 2.2 centimeters (0.8 inches) across.

  18. Dense Plasma Focus Modeling

    SciTech Connect

    Li, Hui; Li, Shengtai; Jungman, Gerard; Hayes-Sterbenz, Anna Catherine

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  19. The Solar Telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  20. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  1. Asking questions with focus

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Xu, Yi

    2004-05-01

    This study investigates how different interrogative meanings interact with focus in determining the overall F0 profile of a question. We recorded eight native speakers of Mandarin producing statements, yes-no questions with and without a question particle, wh questions, incredulous questions, and confirmation questions. In each sentence, either the initial, medial, final, or no word was focused. The tonal components of the sentences are all high, all rising, all low, or all falling. F0 contours were extracted by measuring every complete vocal period in the initial, medial, and final disyllabic words in each sentence. Preliminary results show that in both statements and questions, the pitch range of the focused words is expanded and that of the postfocus words suppressed (compressed and lowered). However, postfocus pitch-range suppression seems less extensive in questions than in statements, and in some question types than in others. Finally, an extra F0 rise is often observed in the final syllable of a question unless the syllable is the question particle which has the neutral tone. This is indicative of a high or rising boundary tone associated with the interrogative meaning, which seems to be superimposed on the tone of the sentence-final syllable. [Work supported by NIDCD DC03902.

  2. Focus on Malaysia.

    PubMed

    Forman, L T

    1979-01-01

    Prospects for a stable, prospering economy in Malaysia appear threatened by an uneven distribution of wealth among non-Malay, particularly Chinese, residents. Native Malays, Bumiputra, have benefitted from the government's 20 year New Economic Policy, a system of subsidies to correct economic imbalances among the races. Malay corporate ownership has increased from 2.4% in 1970 to 28% in 1979. However, equity must increase by 26% annually to meet NEP targets. Without the GNP expanding 7-8% yearly, the government will be tempted to acquire assets at low prices. 70% of the total Malay ownership was held by public enterprises holding equity in trust. An elite group of Bumiputra will own a fair number of shares reserved by 1970. 1/5 of the population of Kuala Lumpur are squatters. Among these groups, communal tension is high. The Chinese businessmen are most resistant to native management. Since they control private domestic investment, they have political power. The Industrial Coordination Act (ICA), which gives power to civil servants through a licensing system, protects the system. The Asian Foundation supports management training, business development, and university demonstration projects in legal aid, solar energy, and community psychiatry. Malaysian competence in English enables widespread distribution of the Books for Asia program.

  3. The design of aerial camera focusing mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  4. Changes of solar extreme ultraviolet spectrum in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-07-01

    Following the extreme solar minimum during 2008-2009, solar activity keeps low in solar cycle 24 (SC24) and is making SC24 the weakest one of recent cycles. In this paper, using observations from Earth-orbiting satellites, we compare the solar extreme ultraviolet (EUV) irradiance between SC23 and SC24 and investigate the solar cycle change of linear dependence of EUV on the P ((F10.7 + F10.7A)/2) and Mg II core-to-wing ratio indices. The Bremen composite Mg II index is strongly correlated with P over the two solar cycles, while this is not the case for the Laboratory for Atmospheric and Space Physics (LASP) composite Mg II index, so we focus on the different dependence of EUV on the P and LASP Mg II indices. As a result we find that three coronal emissions (Fe XV at 28.4 nm and 41.7 nm and Fe XVI at 33.5 nm) brighten in SC24 relative to P; i.e., the magnitude of irradiance is higher than in SC23 at the same level of P. But relative to the LASP Mg II index, these emissions show no appreciable solar cycle differences. By contrast, the H I Lyman α at 121.6 nm dims in SC24 relative to the LASP Mg II but shows identical dependence on P in the two solar cycles. This result seems to contradict a well-accepted fact that chromospheric and transition region emissions are better represented by the Mg II index and coronal lines by F10.7. For the different solar cycle variability of EUV in SC24, whether it is caused by source changes on the Sun is still unclear, but we suggest that it needs to be considered in proxy modeling of the EUV irradiance and aeronomic studies.

  5. Ultralight inflatable fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1998-01-01

    Since 1986, ENTECH and NASA Lewis have been developing refractive solar concentrators for space applications. These Fresnel lens concentrators can be configured as either point-focus dome lenses or line-focus cylindrical lenses. Small point-focus or line-focus lenses can be used to concentrate sunlight onto solar cells in space photovoltaic (PV) arrays. Large point-focus lenses can be used for high solar flux applications. In March 1997, a NASA Phase I SBIR program was initiated to develop ultralight inflatable lenses of both the line-focus and point-focus types. Special program emphasis is being placed on large point-focus lenses for various high-concentration applications, including solar dynamic (SD) power, alkali metal thermal energy conversion (AMTEC), thermophotovoltaics (TPV), and solar thermal propulsion (STP). Key outputs of the Phase I program include conceptual designs, optical performance predictions, micrometeoroid puncture analyses, manufacturing process identification, and functional prototype hardware. This paper summarizes the key results of the Phase I program, leading to the conclusion that inflatable dome lenses will provide excellent high-concentration optical performance, unequaled shape error tolerance, extremely low mass/aperture area ratio, proven manufacturability with space qualified materials, and small make-up gas requirements to maintain inflation on-orbit.

  6. Solar models, neutrino experiments, and helioseismology

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Ulrich, Roger K.

    1988-01-01

    The event rates and their recognized uncertainties are calculated for 11 solar neutrino experiments using accurate solar models. These models are also used to evaluate the frequency spectrum of the p and g oscillations modes of the sun. It is shown that the discrepancy between the predicted and observed event rates in the Cl-37 and Kamiokande II experiments cannot be explained by a 'likely' fluctuation in input parameters with the best estimates and uncertainties given in the present study. It is suggested that, whatever the correct solution to the solar neutrino problem, it is unlikely to be a 'trival' error.

  7. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  8. Nanostructured organic and hybrid solar cells.

    PubMed

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices.

  9. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    Alexandrou, A. N.; Durgin, W. W.; Cohn, R. F.; Olinger, D. J.; Cody, Charlotte K.; Chan, Agnes; Cheung, Kwok-Hung; Conley, Kristin; Crivelli, Paul M.; Javorski, Christian T.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy.

  10. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  11. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  12. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  13. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  14. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  15. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  16. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  17. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  18. Solar absorption in thick and multilayered glazings

    SciTech Connect

    Powles, Rebecca; Curcija, Dragan; Kohler, Christian

    2002-02-01

    Thick and multilayered glazings generally have a nonuniform distribution of absorbed solar radiation which is not taken into account by current methods for calculating the center of glass solar gain and thermal performance of glazing systems. This paper presents a more accurate method for calculating the distribution of absorbed solar radiation inside thick and multilayered glazings and demonstrates that this can result in a small but significant difference in steady-state temperature profile and Solar Heat Gain Coefficient for some types of glazing systems when compared to the results of current methods. This indicates that a more detailed approach to calculating the distribution of absorbed solar radiation inside glazings and resulting thermal performance may be justified for certain applications.

  19. Advanced solar concentrator: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary design of a point-focusing solar concentrator, consisting of a steerable space frame structure supporting a paraboloidal mirror glass reflector, is described. A mass production, operation, and maintenance cost assessment is presented. A conceptual evaluation of a modified concentrator design is included. The detailed design of one of the lightweight, structurally efficient reflective elements comprising the paraboloidal reflective surface is given.

  20. Utility Solar Generation Valuation Methods

    SciTech Connect

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  1. Evaluation of solar cells for potential space satellite power applications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  2. GaAs/Ge solar panels for the SAMPEX program

    NASA Technical Reports Server (NTRS)

    Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John

    1992-01-01

    GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.

  3. Solar panel

    SciTech Connect

    Bayles, B.R.

    1981-09-29

    A solar panel includes a base within which are mounted transversely extending conduits. A heat collector plate in the base is in heat conductive relationship with the conduits for the heating of a fluid medium. The base additionally supports a transparent cover outwardly spaced from the heat collector plate to provide a protective insulative air space over the plate. A manifold communicates one series of panels with those of an adjacent series. A modified base dispenses with a collector plate and is formed so as to define integral lengthwise extending passageways for the solar heated medium. Inserted nipples interconnect the passageways of adjacent panels.

  4. Solar trap

    SciTech Connect

    Lew, H.S.

    1988-02-09

    A solar trap for collecting solar energy at a concentrated level is described comprising: (a) a compound light funnel including a pair of light reflecting substantially planar members arranged into a trough having a substantially V-shaped cross section; (b) a two dimensional Fresnel lens cover covering the opening of the compound light funnel, the opening being the open diverging end of the substantially V-shaped cross section of the compound light funnel; (c) at least one conduit for carrying a heat transfer fluid disposed substantially adjacent and substantially parallel to the apex line of the compound light funnel.

  5. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  6. The Measurements of the Solar Diameter at the Kepler's Times

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Fraschetti, Federico

    2002-12-01

    We examine five measurements of the solar disk diameter made with a pinhole instrument by Tycho in 1591 and Kepler in 1600-1602 [1]. Those are the first accurate measurements of the solar disk diameter available in literature, even if Ptolemy and Copernicus already did such measurements [2].

  7. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  8. Solar Advisor Model; Session: Modeling and Analysis (Presentation)

    SciTech Connect

    Blair, N.

    2008-04-01

    This project supports the Solar America Initiative by: (1) providing a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, PV, solar heat systems, CSP, residential, commercial and utility markets; (2) developing and validating performance models to enable accurate calculation of levelized cost of energy (LCOE); (3) providing a consistent modeling platform for all TPP's; and (4) supporting implementation and usage of cost models.

  9. Solar Energy Education. Reader, Part IV. Sun schooling

    SciTech Connect

    Not Available

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  10. Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.

  11. Focus on 'Rue Legendre'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of PIA04196 Focus on 'Rue Legendre'

    Spirit used its microscopic imager to take this mosaic of the rock 'Haussmann' on martian day, or sol, 563 (August 3, 2005). The specific target is nicknamed 'Rue Legendre.' The rounded nature of the pebbles indicates that they were eroded on the surface before being embedded into the Haussmann rock. The size of the larger of the two pebbles is approximately 3 centimeters (1.2 inches). The rock probably formed from impact ejecta, consistent with other rocks Spirit discovered during its climb to the summit of 'Husband Hill.'

  12. Dielectrophoretic columnar focusing device

    DOEpatents

    James, Conrad D.; Galambos, Paul C.; Derzon, Mark S.

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  13. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  14. Focused crossed Andreev reflection

    NASA Astrophysics Data System (ADS)

    Haugen, H.; Brataas, A.; Waintal, X.; Bauer, G. E. W.

    2011-03-01

    We consider non-local transport mediated by Andreev reflection in a two-dimensional electron gas (2DEG) connected to one superconducting and two normal metal terminals. A robust scheme is presented for observing crossed Andreev reflection (CAR) between the normal metal terminals based on electron focusing by weak perpendicular magnetic fields. At slightly elevated temperatures the CAR signature can be easily distinguished from a background of quantum interference fluctuations. The CAR-induced entanglement between electrons can be switched on and off over large distances by the magnetic field.

  15. Focusing of particles scattered by a surface

    NASA Astrophysics Data System (ADS)

    Babenko, P. Yu.; Zinov'ev, A. N.; Shergin, A. P.

    2015-06-01

    It has been shown by computer simulation that the coefficient of reflection of argon atoms scattered by crystalline aluminum and germanium targets at glancing angles of less than 4° is close to unity and the beam of scattered particles exhibits focusing (the angular distributions of particles are strongly compressed). Whereas beam focusing with respect to the azimuth is well known and has already been studied, sharp focusing in the surface-normal direction at small glancing angles has not been studied so far. This effect is confirmed by the experimental results. It is associated with multiple scattering of incident particles by the atomic chain. The simulation results allowed finding quite accurately the amplitude of thermal vibrations of surface atoms ((0.123 ± 0.007) Å for aluminum), which agrees well with the experiment.

  16. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  17. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  18. Accurate superimposition of perimetry data onto fundus photographs.

    PubMed

    Bek, T; Lund-Andersen, H

    1990-02-01

    A technique for accurate superimposition of computerized perimetry data onto the corresponding retinal locations seen on fundus photographs was developed. The technique was designed to take into account: 1) that the photographic field of view of the fundus camera varies with ametropia-dependent camera focusing 2) possible distortion by the fundus camera, and 3) that corrective lenses employed during perimetry magnify or minify the visual field. The technique allowed an overlay of perimetry data of the central 60 degrees of the visual field onto fundus photographs with an accuracy of 0.5 degree. The correlation of localized retinal morphology to localized retinal function was therefore limited by the spatial resolution of the computerized perimetry, which was 2.5 degrees in the Dicon AP-2500 perimeter employed for this study. The theoretical assumptions of the technique were confirmed by comparing visual field records to fundus photographs from patients with morphologically well-defined non-functioning lesions in the retina.

  19. Accurate determination of membrane dynamics with line-scan FCS.

    PubMed

    Ries, Jonas; Chiantia, Salvatore; Schwille, Petra

    2009-03-04

    Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.

  20. Optical characterization of nonimaging focusing heliostat

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong

    2011-10-01

    A novel nonimaging focusing heliostat consisted of many small movable element mirrors that can be dynamically maneuvered in a line-tilting manner has been proposed for the astigmatic correction in a wide range of incident angle from 0° to 70°. In this article, a comprehensive optical characterization of the new heliostat with total reflective area of 25 m2 and slant range of 25 m using ray-tracing method has been carried to analyze the performance including solar concentration ratio, ratio of aberrated-to-ideal image area, intercept efficiency and spillage loss. The optical characterization of the heliostat in the application of solar power tower system has embraced the cases of 1×1, 9×9, 11×11, 13×13, 15×15, 17×17 and 19×19 arrays of concave mirrors provided that the total reflective area remains the same. The simulated result has shown that the maximum solar concentration ratio at a high incident angle of 65° can be improved from 1.76 suns (single mirror) to 104.99 suns (9×9 mirrors), to 155.93 suns (11×11 mirrors), to 210.44 suns (13×13 mirrors), to 246.21 suns (15×15 mirrors), to 259.80 suns (17×17 mirrors) and to 264.73 suns (19×19 mirrors).

  1. Isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.; Egen, N. B.; Mosher, R. A.; Twitty, G. E.

    1982-01-01

    The potential of space electrophoresis is conditioned by the fact that all electrophoretic techniques require the suppression of gravity-caused convection. Isoelectric focusing (IEF) is a powerful variant of electrophoresis, in which amphoteric substances are separated in a pH gradient according to their isoelectric points. A new apparatus for large scale IEF, utilizing a recycling principle, has been developed. In the ground-based prototype, laminar flow is provided by a series of parallel filter elements. The operation of the apparatus is monitored by an automated array of pH and ultraviolet absorption sensors under control of a desk-top computer. The apparatus has proven to be useful for the purification of a variety of enzymes, snake venom proteins, peptide hormones, and other biologicals, including interferon produced by genetic engineering techniques. In planning for a possible space apparatus, a crucial question regarding electroosmosis needs to be addressed To solve this problem, simple focusing test modules are planned for inclusion in an early Shuttle flight.

  2. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  3. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  4. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  5. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  6. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  7. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  8. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  9. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  10. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  11. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  12. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  13. Workplan and Annex: Solar Resource Knowledge Management

    SciTech Connect

    Renne, D.

    2005-01-01

    ''Solar Resource Knowledge Management'' will be a new task under the International Energy Agency's Solar Heating and Cooling Programme. The task development has involved researchers from Germany, France, Switzerland, Spain, Portugal, Italy, Canada, the U.S. that have been engaged in the use of satellite imagery to develop solar resource maps and datasets around the world. The task will address three major areas: (1) ''Benchmarking'' of satellite-based solar resource methods so that resource information derived from approaches developed in one country or based on a specific satellite can be quantitatively intercompared with methods from other countries using different satellites, as well as with ground data; (2) Data archiving and dissemination procedures, especially focusing on access to the data by end users; and (3) basic R&D for improving the reliability and usability of the data, and for examining new types of products important to the solar industry, such as solar resource forecasts.

  14. Siting Solar Photovoltaics at Airports: Preprint

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  15. Understanding the photostability of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav H.

    Global climate change and increasing energy demands have led to a greater focus on cheaper photovoltaic energy solutions. Perovskite solar cells and organic solar cells have emerged as promising technologies for alternative cheaper photovoltaics. Perovskite solar cells have shown unprecedentedly rapid improvement in power conversion efficiency, from 3% in 2009 to more than 21% today. High absorption coefficient, long diffusion lengths, low exciton binding energy, low defect density and easy of fabrication has made perovskites near ideal material for economical and efficient photovoltaics. However, stability of perovskite and organic solar cells, especially photostability is still not well understood. In this work, we study the photostability of organic solar cells and of perovskite solar cells. (Abstract shortened by ProQuest.).

  16. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  17. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  18. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Accurate Parameters for the Most Massive Stars in the Local Universe: the Brightest Eclipsing Binaries in M33

    NASA Astrophysics Data System (ADS)

    Prieto, José L.; Bonanos, Alceste; Stanek, Krzysztof

    2007-08-01

    Eclipsing binaries are the only systems that provide accurate fundamental parameters of distant stars. Currently, only a handful of accurate measurements of stars with masses between 40-80 Msun have been made. We propose to make accurate measurements of the masses, radii and luminosities of the most massive eclipsing binaries in M33. The results of this study will provide much needed constraints on theories that model the formation and evolution of massive stars and binary systems. Furthermore, it will provide vital statistics on the occurrence of massive binary twins, like the 80+80 solar masses WR 20a system and the 30+30 solar masses detached eclipsing binary in M33.

  20. Gravitational focusing of imperfect dark matter

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Ramazanov, Sabir

    2017-01-01

    Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of nonrelativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of imperfect dark matter passing near the Sun. This entails strong amplification of imperfect dark matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of cold dark matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the post-Newtonian parameter βPPN, we deduce a stringent constraint on the unique constant of the model.

  1. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  2. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  3. Large Solar-Rejection Filter

    NASA Technical Reports Server (NTRS)

    Roberts, William; Sheikh, David; Patrick, Brian

    2007-01-01

    NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming. A scenically accurate description of matter interpreted as a substance made up of corpuscular constituents was established during the course of the 19th century. In this description, atoms--the building blocks of the matter--form molecules. The properties of the molecules were described by chemistry or thermodynamics depending on what characteristics of the matter were investigated. In both theories, the molecules can dissociate to atoms when the kinetic energies of the atoms exceed the strength of the chemical bonds. The number of atoms is always preserved in a closed system. This is not true, however, when the matter takes up much higher energies at relativistic scales. New particles can be produced at the expense of the kinetic energy. The number of particles is no longer preserved. There are other conserved quantities, however, these quantities, the charge, baryon number, lepton number, are associated with particles that are considered elementary today. The properties and behavior of these elementary particles is the subject of Particle Physics or High Energy Physics. Practice Page: A crewmember touching a positively charged surface was thought to be galvanically isolated from the vehicle ground

  4. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  5. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  6. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  7. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  8. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  9. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach.

  10. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  11. Focus on granular segregation

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Schröter, Matthias

    2013-03-01

    Ordinary fluids mix themselves through thermal motions, or can be even more efficiently mixed by stirring. In contrast, granular materials such as sand often unmix when they are stirred, shaken or sheared. This granular segregation is both a practical means to separate materials in industry, and a persistent challenge to uniformly mixing them. While segregation phenomena are ubiquitous, a large number of different mechanisms have been identified and the underlying physics remains the subject of much inquiry. Particle size, shape, density and even surface roughness can play significant roles. The aim of this focus issue is to provide a snapshot of the current state of the science, covering a wide range of packing densities and driving mechanisms, from thermal-like dilute systems to dense flows.

  12. Focus awards 2002.

    PubMed

    Davis, Naomi

    2003-03-22

    The dental team at Zetland House Clinic are a particularly innovative group. As a result of their parent hospital being the first to complete a whole organization clinical governance programme run by the NHS Modernization Agency, they were consequently the first dental team to do so. Now the clinic is a better place to work where the staff are proud of their clinic and the work that they do. The changes that resulted through their experiences of the program have benefited the patients and staff alike, and was such a success story that they have been taken as an example for the Modernisation Agency website to illustrate good practice in clinical governance. These changes and the way they approached their involvement in the program also earned the Zetland House team a place on the finalist list of the 2002 Focus Awards.

  13. Focusing on customer service.

    PubMed

    1996-01-01

    This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a

  14. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  15. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  16. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  17. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  18. Dual-focus fluorescence correlation spectroscopy.

    PubMed

    Pieper, Christoph; Weiß, Kerstin; Gregor, Ingo; Enderlein, Jörg

    2013-01-01

    This chapter introduces into the technique of dual-focus fluorescence correlation spectroscopy or 2fFCS. In 2fFCS, the fluorescence signals generated in two laterally shifted but overlapping focal regions are auto- and crosscorrelated. The resulting correlation curves are then used to determine diffusion coefficients of fluorescent molecules or particles in solutions or membranes. Moreover, the technique can also be used for noninvasively measuring flow-velocity profiles in three dimensions. Because the distance between the focal regions is precisely known and not changed by most optical aberrations, this provides an accurate and immutable external length scale for determining diffusivities and velocities, making 2fFCS the method of choice for accurately measuring absolute values of these quantities at pico- to nanomolar concentration.

  19. Solar collectors. I - Fundamentals and collectors of the past and present

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    The paper is a state-of-the-art review aiming to familiarize those who are new in the solar energy field with past accomplishment in solar energy utilization. Consideration is given to the design features and performance definition of solar collectors. The characteristics of planar collectors, line focusing collectors, and point focusing collectors (including the central receiver concept) are briefly discussed.

  20. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  1. The GREGOR Solar Telescope

    NASA Astrophysics Data System (ADS)

    Denker, C.; Lagg, A.; Puschmann, K. G.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, T.; Collados Vera, M.; Hofmann, A.; Kneer, F.

    2012-12-01

    The 1.5-meter GREGOR solar telescope is a new facility for high-resolution observations of the Sun. The telescope is located at the Spanish Observatorio del Teide on Tenerife. The telescope incorporates advanced designs for a foldable-tent dome, an open steel-truss telescope structure, and active and passive means to minimize telescope and mirror seeing. Solar fine structure can be observed with a dedicated suite of instruments: a broad-band imaging system, the "GREGOR Fabry-Perot Interferometer", and the "Grating Infrared Spectrograph". All post-focus instruments benefit from a high-order (multi-conjugate) adaptive optics system, which enables observations close to the diffraction limit of the telescope. The inclusion of a spectrograph for stellar activity studies and the search for solar twins expands the scientific usage of the GREGOR to the nighttime domain. We report on the successful commissioning of the telescope until the end of 2011 and the first steps towards science verification in 2012.

  2. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  3. Solar wind photoplate study

    NASA Technical Reports Server (NTRS)

    Scott, B. W.; Voorhies, H. G.

    1972-01-01

    An ion sensitive emulsion detection system has been considered for use in a cycloidal focusing mass spectrometer to measure the various atomic species which comprise the solar plasma. The responses of Ilford Q2 and Kodak SC7 emulsions were measured with N(+) ions at 6 keV to 10 keV, He(++) ions at 750 eV to 2500 eV, and H(+) ions at 550 eV to 1400 eV. These ions have the approximate range of velocities (about 300-500 km/sec) encountered in the solar wind. The work was carried out on a specially prepared magnetic sector mass analyzer. Characteristic response curves were generated, each one utilizing approximately 50 data points at three or more current densities. In addition to the ion response, measurements of the response of these emulsions to a photon flux simulating the visible portion of the solar spectrum were made. The results obtained will be presented in detail and interpreted in relation to other data available for these emulsions.

  4. Explore engineering with solar energy

    SciTech Connect

    Davidson, J.H.

    1995-11-01

    An outreach program was initiated at the University of Minnesota by faculty and student members of the Society of Women Engineers in the spring of 1994 to interest students in 3rd through 9th grade, particularly girls, in careers in engineering. Interaction with elementary and junior high students focuses on hands-on experiences with portable solar devices. This paper reports progress of the program including descriptions of the solar devices, their use in visits to local schools, day visits to the University, and week-long summer camps, and continuing education programs for elementary and secondary school teachers.

  5. Solar generation of the fullerenes

    SciTech Connect

    Chibante, L.P.F.; Thess, A.; Alford, J.M.; Diener, M.D.; Smalley, R.E. )

    1993-08-26

    Fullerenes have been produced efficiently by direct vaporization of carbon in focused sunlight. Large-scale solar furnace implementations of this simple process may be uniquely capable of producing fullerenes and doped fullerenes in large amounts while avoiding the yield-limiting problems encountered with carbon arcs or plasmas. Evidence is presented that the worst of these problems is photochemical destruction of the fullerenes in the light from the arc. Solar furnaces can mitigate this problem both by avoiding the intense ultraviolet radiation associated with arcs and by preventing clustering of the carbon vapor until it passes into a relatively dark cluster formation and annealing zone. 21 refs., 4 figs.

  6. Solar Coronal Structure Study

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  7. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  8. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  9. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  10. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  11. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  12. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  13. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  14. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  15. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  16. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  17. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  18. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  19. Reconstructing the Solar VUV Irradiance Over the Past 60 Years

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Actual observations of the solar spectral irradiance are extremely limited on climate time scales; therefore, various empirical models use solar proxies to reconstruct the actual output of the Sun over long time scales. The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a I-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric. A brief overview of the proxies used in the FISM model will be given, and also discussed is how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM estimates and its accuracies. Also presented will be a discussion of other solar irradiance proxies and measurements, and their associated uncertainties, used for solar spectral reconstructions.

  20. St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor

    NASA Astrophysics Data System (ADS)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the

  1. Focusing on flu

    PubMed Central

    Short, Mary B; Middleman, Amy B

    2014-01-01

    Introduction: To describe adolescents' perspectives regarding the use of school-located immunization programs (SLIP) for influenza vaccination. More importantly, adolescents were asked what factors would make them more or less likely to use a SLIP offering influenza vaccine. Results: Participants were generally found to be knowledgeable about influenza and to have positive attitudes toward receiving the vaccine via SLIP. Students were more willing to participate in a SLIP if it were low cost or free, less time-consuming than going to a doctor, and if they felt they could trust vaccinators. Overall, high school and middle school students ranked the benefits of SLIP similarly to each other. Methods: Focus groups using nominal group method were conducted with middle and high school students in a large, urban school district. Responses were recorded by each school, and then, responses were ranked across all participating schools for each question. Conclusions: A wide range of issues are important to middle and high school students when considering participation in SLIPs including convenience, public health benefits, trust in the program, program safety, and sanitary issues. Further research will be needed regarding the generalizability of these findings to larger populations of students. PMID:24018398

  2. White Light Focusing Mirror

    NASA Astrophysics Data System (ADS)

    Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Sullivan, Michael; Chance, Mark; Abel, Don; Toomey, John; Hulbert, Steven

    2007-01-01

    The NSLS X28C white-light beamline is being outfitted with a focusing mirror in order to increase, as well as control, the x-ray intensity at the sample position. The new mirror is a 50 mm × 100 mm × 1100 mm single crystal silicon cylindrical 43.1mm radius substrate bendable to a toroid from infinite to 1200 m radius. The unique feature of this mirror system is the dual use of Indalloy 51 as both a mechanism for heat transfer and a buoyant support to negate the effects of gravity. The benefit of the liquid metal support is the ability to correct for minor slope errors that take the form of a parabola. A bobber mechanism is employed to displace the fluid under the mirror +/- 1.5 mm. This allows RMS slope error correction on the order of 2 urad. The unique mounting of the mirror ensures the contributions to slope error from errant mechanical stresses due to machining tolerances are virtually non-existent. After correction, the surface figure error (measured minus ideal) is <= 0.5 urad rms.

  3. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  4. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  5. Solar Interior

    NASA Astrophysics Data System (ADS)

    Zahn, J.; Murdin, P.

    2000-11-01

    The interior of the Sun is hidden from our sight, because it is opaque to electromagnetic waves: the radiation we receive from it on Earth is emitted in the outermost layers. Our knowledge of the solar interior is based solely on theoretical models which are built with some assumptions about the physical conditions and processes that are likely to prevail there, and on helioseismology, a very pow...

  6. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  7. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  8. Solar chameleons

    SciTech Connect

    Brax, Philippe

    2010-08-15

    We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  9. Method for out-of-focus camera calibration.

    PubMed

    Bell, Tyler; Xu, Jing; Zhang, Song

    2016-03-20

    State-of-the-art camera calibration methods assume that the camera is at least nearly in focus and thus fail if the camera is substantially defocused. This paper presents a method which enables the accurate calibration of an out-of-focus camera. Specifically, the proposed method uses a digital display (e.g., liquid crystal display monitor) to generate fringe patterns that encode feature points into the carrier phase; these feature points can be accurately recovered, even if the fringe patterns are substantially blurred (i.e., the camera is substantially defocused). Experiments demonstrated that the proposed method can accurately calibrate a camera regardless of the amount of defocusing: the focal length difference is approximately 0.2% when the camera is focused compared to when the camera is substantially defocused.

  10. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  11. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  12. Solar physics at APL.

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1999-12-01

    Solar reserach at APL aims to understand the fundamental physics that govern solar activity. The tools are telescopes, models, and interplanetary sampling of solar ejecta. The work is relevant to APL's mission because solar energetic protons disable satellites and endanger astronauts. Solar activity also causes geomagnetic storms, which can lead to communications disruptions, electric power network problems, satellite orbit shifts and, sometimes, satellite failure. Predicting storm conditions requires understanding solar magnetism and its fluctuations. APL scientists have made major contributions to solar activity research and have taken the lead in developing a variety of new solar research tools. They are now starting work on the Solar Terrestrial Relations Observatory, a major space mission.

  13. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  14. Vertical hydrodynamic focusing in glass microchannels.

    PubMed

    Lin, Tony A; Hosoi, A E; Ehrlich, Daniel J

    2009-01-08

    Vertical hydrodynamic focusing in microfluidic devices is investigated through simulation and through direct experimental verification using a confocal microscope and a novel form of stroboscopic imaging. Optimization for microfluidic cytometry of biological cells is examined. By combining multiple crossing junctions, it is possible to confine cells to a single analytic layer of interest. Subtractive flows are investigated as a means to move the analysis layer vertically in the channel and to correct the flatness of this layer. The simulation software (ADINA and Coventor) is shown to accurately capture the complex dependencies of the layer interfaces, which vary strongly with channel geometry and relative flow rates.

  15. Accurate free and forced rotational motions of rigid Venus

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.; Aljbaae, S.

    2010-06-01

    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  16. Application of solar max ACRIM data to analyze solar-driven climatic variability on Earth

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1986-01-01

    Langley, in the late nineteenth century, attempted to measure solar irradiance over an extended period of time in order to detect changes. The problem with this and other early attempts was that ground based measurements are not sufficiently accurate to measure solar irradiance fluctuations, which are on the order of 0.1%. It was not until the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the NASA Solar Maximum Mission (SMM) was launched in 1980 that continuous data with precision 0.1% was available.

  17. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  18. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated.

  19. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  20. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).