Science.gov

Sample records for accurately map land

  1. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  2. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  3. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  4. Land use map, Finney County, Kansas

    NASA Technical Reports Server (NTRS)

    Morain, S. A. (Principal Investigator); Williams, D. L.; Coiner, J. C.

    1973-01-01

    The author has identified the following significant results. Methods for the mapping of land use in agricultural regions are developed and applied to preparation of a land use map of Finney County, Kanas. Six land use categories were identified from an MSS-5 image. These categories are: (1) large field irrigation; (2) small field irrigation; (3) dryland cultivation; (4) rangeland; (5) cultural features; and (6) riverine land. The map is composed of basically homogeneous regions with definable mixtures of the six categories. Each region is bounded by an ocularly evident change in land use.

  5. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  6. Videometric terminal guidance method and system for UAV accurate landing

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lei, Zhihui; Yu, Qifeng; Zhang, Hongliang; Shang, Yang; Du, Jing; Gui, Yang; Guo, Pengyu

    2012-06-01

    We present a videometric method and system to implement terminal guidance for Unmanned Aerial Vehicle(UAV) accurate landing. In the videometric system, two calibrated cameras attached to the ground are used, and a calibration method in which at least 5 control points are applied is developed to calibrate the inner and exterior parameters of the cameras. Cameras with 850nm spectral filter are used to recognize a 850nm LED target fixed on the UAV which can highlight itself in images with complicated background. NNLOG (normalized negative laplacian of gaussian) operator is developed for automatic target detection and tracking. Finally, 3-D position of the UAV with high accuracy can be calculated and transfered to control system to direct UAV accurate landing. The videometric system can work in the rate of 50Hz. Many real flight and static accuracy experiments demonstrate the correctness and veracity of the method proposed in this paper, and they also indicate the reliability and robustness of the system proposed in this paper. The static accuracy experiment results show that the deviation is less-than 10cm when target is far from the cameras and lessthan 2cm in 100m region. The real flight experiment results show that the deviation from DGPS is less-than 20cm. The system implement in this paper won the first prize in the AVIC Cup-International UAV Innovation Grand Prix, and it is the only one that achieved UAV accurate landing without GPS or DGPS.

  7. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  8. Maps and Meaning: Reading the Map of the Holy Land

    ERIC Educational Resources Information Center

    Collins-Kreiner, Noga

    2005-01-01

    The research methods of hermeneutics and semiotics were used to analyse maps of the Holy Land. The main conclusion of this study is how those methods could help us to read and understand maps. Other issues of concern are which religious elements actually appear and their form of representation in the range of maps. Narratives identified on the…

  9. Land cover mapping from remote sensing data

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Saleh, N. M.; Wong, C. J.; AlSultan, Sultan

    2006-04-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper examines the use of remote sensing data for land cover mapping over Saudi Arabia. Three supervised classification techniques Maximum Likelihood, ML, Minimum Distance-to-Mean, MDM, and Parallelepiped, P were applied to the imageries to extract the thematic information from the acquired scene by using PCI Geomatica software. Training sites were selected within each scene. This study shows that the ML classifier was the best classifier and produced superior results and achieved a high degree of accuracy. The preliminary analysis gave promising results of land cover mapping over Saudi Arabia by using Landsat TM imageries.

  10. The Interpretation of Urban Land Use Maps

    ERIC Educational Resources Information Center

    Robinson, Roger J.

    1973-01-01

    Three steps in urban land use analysis, fieldwork mapping, processing of data, and classification and delimitation of zones in an urban area, are described. An appendix presents a classification of buildings by function. (KM)

  11. Towards a global land subsidence map

    NASA Astrophysics Data System (ADS)

    Erkens, Gilles; Sutanudjaja, Edwin

    2015-04-01

    Human activities have intensified large and growing global groundwater depletion problems. Groundwater depletion under cities in delta regions or river valleys is in many cases leading to significant land subsidence, causing damage to infrastructure and increases in the risk of flooding. Yet, a global land subsidence map is not available. Such map is crucial to raise global awareness of land subsidence. Land subsidence is costly (probably in the order of billions of dollars annually). One of the most prominent causes for land subsidence is excessive groundwater extraction for domestic, agricultural and industrial use. For instance, the Vietnamese Mekong Delta sinks on average 1.6 cm/yr, attributed to groundwater extraction. Crucially, in many coastal mega-cities, land subsidence is accelerated by ongoing urbanization. In Jakarta land subsidence is up to 20 cm/yr. With ongoing economic development and related increased demands for water, the expectation is that land subsidence rates and areas affected will accelerate and expand in the near future. A global land subsidence map would not only locate current land subsidence hotspots but also help to identify future sinking areas under different socio-economic development scenarios. A global hydrological model, PCR-GLOBWB, serves as the starting point. The hydrological model includes a global simulation of spatio-temporal groundwater head dynamics under abstractions for the period 1960-2100. The hydrological model is coupled to a land subsidence module, iMOD-SUB-CR, which is an extension of the MOD-FLOW SUB-WT module developed by the USGS. The required subsurface information is unavailable at this time, but will be approached by using different scenarios of subsurface build-up. The outcomes will be compared to measured or modeled land level lowering in well-known damaging case study areas, such as Jakarta and the Vietnamese Mekong Delta, as well as in well-known recovering areas, such as Venice and Tokyo, which have

  12. Next generation of global land cover characterization, mapping, and monitoring

    NASA Astrophysics Data System (ADS)

    Giri, C.; Pengra, B.; Long, J.; Loveland, T. R.

    2013-12-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m-1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (˜30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  13. 25 CFR 150.9 - Land status maps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Land status maps. 150.9 Section 150.9 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LAND RECORDS AND TITLE DOCUMENTS § 150.9 Land status maps. The Land Titles and Records Offices shall prepare and maintain maps of all reservations...

  14. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  15. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  16. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †.

    PubMed

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird's-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  17. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †.

    PubMed

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-08-18

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird's-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS.

  18. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  19. Mapping land cover from satellite images: A basic, low cost approach

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  20. Land use, forest density, soil mapping, erosion, drainage, salinity limitations

    NASA Technical Reports Server (NTRS)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.

  1. Enhancing the performance of regional land cover mapping

    NASA Astrophysics Data System (ADS)

    Wu, Weicheng; Zucca, Claudio; Karam, Fadi; Liu, Guangping

    2016-10-01

    Different pixel-based, object-based and subpixel-based methods such as time-series analysis, decision-tree, and different supervised approaches have been proposed to conduct land use/cover classification. However, despite their proven advantages in small dataset tests, their performance is variable and less satisfactory while dealing with large datasets, particularly, for regional-scale mapping with high resolution data due to the complexity and diversity in landscapes and land cover patterns, and the unacceptably long processing time. The objective of this paper is to demonstrate the comparatively highest performance of an operational approach based on integration of multisource information ensuring high mapping accuracy in large areas with acceptable processing time. The information used includes phenologically contrasted multiseasonal and multispectral bands, vegetation index, land surface temperature, and topographic features. The performance of different conventional and machine learning classifiers namely Malahanobis Distance (MD), Maximum Likelihood (ML), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Random Forests (RFs) was compared using the same datasets in the same IDL (Interactive Data Language) environment. An Eastern Mediterranean area with complex landscape and steep climate gradients was selected to test and develop the operational approach. The results showed that SVMs and RFs classifiers produced most accurate mapping at local-scale (up to 96.85% in Overall Accuracy), but were very time-consuming in whole-scene classification (more than five days per scene) whereas ML fulfilled the task rapidly (about 10 min per scene) with satisfying accuracy (94.2-96.4%). Thus, the approach composed of integration of seasonally contrasted multisource data and sampling at subclass level followed by a ML classification is a suitable candidate to become an operational and effective regional land cover mapping method.

  2. On the accurate construction of consensus genetic maps.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2008-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The problem is to build a consensus map, which includes and is consistent with all (or, the vast majority of) the markers in the individual maps. When markers in the input maps have ordering conflicts, the resulting consensus map will contain cycles. We formulate the problem of resolving cycles in a combinatorial optimization framework, which in turn is expressed as an integer linear program. A faster approximation algorithm is proposed, and an additional speed-up heuristic is developed. According to an extensive set of experimental results, our tool is consistently better than JOINMAP, both in terms of accuracy and running time. PMID:19642288

  3. Land use survey and mapping and water resources investigation in Korea

    NASA Technical Reports Server (NTRS)

    Choi, J. H.; Kim, W. I.; Son, D. S. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Land use imagery is applicable to land use classification for small scale land use mapping less than 1:250,000. Land use mapping by satellite is more efficient and more cost-effective than land use mapping from conventional medium altitude aerial photographs. Six categories of level 1 land use classification are recognizable from MSS imagery. A hydrogeomorphological study of the Han River basin indicates that band 7 is useful for recognizing the soil and the weathering part of bed rock. The morphological change of the main river is accurately recognized and the drainage system in the area observed is easily classified because of the more or less simple rock type. Although the direct hydrological characteristics are not obtained from the MSS imagery, the indirect information such as the permeability of the soil and the vegetation cover, is helpful in interpreting the hydrological aspects.

  4. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  5. Land Cover Mapping Using SENTINEL-1 SAR Data

    NASA Astrophysics Data System (ADS)

    Abdikan, S.; Sanli, F. B.; Ustuner, M.; Calò, F.

    2016-06-01

    In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.

  6. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505

  7. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.

  8. Geologic Mapping of the Mars Science Laboratory Landing Ellipse

    NASA Astrophysics Data System (ADS)

    Calef, F. J.; Dietrich, W. E.; Edgar, L.; Farmer, J.; Fraeman, A.; Grotzinger, J.; Palucis, M. C.; Parker, T.; Rice, M.; Rowland, S.; Stack, K. M.; Sumner, D.; Williams, J.

    2016-06-01

    The MSL project "crowd sourced" a geologic mapping effort of the nominal landing ellipse in preparation for tactical and strategic mission operations. This map was used as a strategic guide for identifying science locales during the nominal mission.

  9. Radar for small-scale land-use mapping

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1975-01-01

    Small-scale (1:250,000 and smaller) land-use maps are a major concern not only to geographers but also to national and regional planners. Unfortunately, such maps are usually out of date by the time they are printed. An interpretation key consisting of five physical and cultural characteristics of the environment evident on radar imagery is used to create land-use regions. Regions and borders interpreted from radar are compared with those found on two existing land-use maps created by traditional methods. Radar imagery can be used to create a small-scale land-use map with regions comparable to those found on existing land-use maps. However, the radar regions depict something more than land use and should be termed rural landscape regions.

  10. Time-Series analysis of MODIS NDVI data along with ancillary data for Land use/Land cover mapping of Uttarakhand

    NASA Astrophysics Data System (ADS)

    Patakamuri, S. K.; Agrawal, S.; Krishnaveni, M.

    2014-12-01

    Land use and land cover plays an important role in biogeochemical cycles, global climate and seasonal changes. Mapping land use and land cover at various spatial and temporal scales is thus required. Reliable and up to date land use/land cover data is of prime importance for Uttarakhand, which houses twelve national parks and wildlife sanctuaries and also has a vast potential in tourism sector. The research is aimed at mapping the land use/land cover for Uttarakhand state of India using Moderate Resolution Imaging Spectroradiometer (MODIS) data for the year 2010. The study also incorporated smoothening of time-series plots using filtering techniques, which helped in identifying phenological characteristics of various land cover types. Multi temporal Normalized Difference Vegetation Index (NDVI) data for the year 2010 was used for mapping the Land use/land cover at 250m coarse resolution. A total of 23 images covering a single year were layer stacked and 150 clusters were generated using unsupervised classification (ISODATA) on the yearly composite. To identify different types of land cover classes, the temporal pattern (or) phenological information observed from the MODIS (MOD13Q1) NDVI, elevation data from Shuttle Radar Topography Mission (SRTM), MODIS water mask (MOD44W), Nighttime Lights Time Series data from Defense Meteorological Satellite Program (DMSP) and Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) data were used. Final map product is generated by adopting hybrid classification approach, which resulted in detailed and accurate land use and land cover map.

  11. Building a hybrid land cover map with crowdsourcing and geographically weighted regression

    NASA Astrophysics Data System (ADS)

    See, Linda; Schepaschenko, Dmitry; Lesiv, Myroslava; McCallum, Ian; Fritz, Steffen; Comber, Alexis; Perger, Christoph; Schill, Christian; Zhao, Yuanyuan; Maus, Victor; Siraj, Muhammad Athar; Albrecht, Franziska; Cipriani, Anna; Vakolyuk, Mar'yana; Garcia, Alfredo; Rabia, Ahmed H.; Singha, Kuleswar; Marcarini, Abel Alan; Kattenborn, Teja; Hazarika, Rubul; Schepaschenko, Maria; van der Velde, Marijn; Kraxner, Florian; Obersteiner, Michael

    2015-05-01

    Land cover is of fundamental importance to many environmental applications and serves as critical baseline information for many large scale models e.g. in developing future scenarios of land use and climate change. Although there is an ongoing movement towards the development of higher resolution global land cover maps, medium resolution land cover products (e.g. GLC2000 and MODIS) are still very useful for modelling and assessment purposes. However, the current land cover products are not accurate enough for many applications so we need to develop approaches that can take existing land covers maps and produce a better overall product in a hybrid approach. This paper uses geographically weighted regression (GWR) and crowdsourced validation data from Geo-Wiki to create two hybrid global land cover maps that use medium resolution land cover products as an input. Two different methods were used: (a) the GWR was used to determine the best land cover product at each location; (b) the GWR was only used to determine the best land cover at those locations where all three land cover maps disagree, using the agreement of the land cover maps to determine land cover at the other cells. The results show that the hybrid land cover map developed using the first method resulted in a lower overall disagreement than the individual global land cover maps. The hybrid map produced by the second method was also better when compared to the GLC2000 and GlobCover but worse or similar in performance to the MODIS land cover product depending upon the metrics considered. The reason for this may be due to the use of the GLC2000 in the development of GlobCover, which may have resulted in areas where both maps agree with one another but not with MODIS, and where MODIS may in fact better represent land cover in those situations. These results serve to demonstrate that spatial analysis methods can be used to improve medium resolution global land cover information with existing products.

  12. Topographic Map of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topographic map of the landing site, to a distance of 60 meters from the lander in the LSC coordinate system. The lander is shown schematically in the center; 2.5 meter radius circle (black) centered on the camera was not mapped. Gentle relief [root mean square (rms) elevation variation 0.5 m; rms a directional slope 4O] and organization of topography into northwest and northeast-trending ridges about 20 meters apart are apparent. Roughly 30% of the illustrated area is hidden from the camera behind these ridges. Contours (0.2 m interval) and color coding of elevations were generated from a digital terrain model, which was interpolated by kriging from approximately 700 measured points. Angular and parallax point coordinates were measured manually on a large (5 m length) anaglyphic uncontrolled mosaic and used to calculate Cartesian (LSC) coordinates. Errors in azimuth on the order of 10 are therefore likely; elevation errors were minimized by referencing elevations to the local horizon. The uncertainty in range measurements increases quadratically with range. Given a measurement error of 1/2 pixel, the expected precision in range is 0.3 meter at 10 meter range, and 10 meters at 60 meter range. Repeated measurements were made, compared, and edited for consistency to improve the range precision. Systematic errors undoubtedly remain and will be corrected in future maps compiled digitally from geometrically controlled images. Cartographic processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  13. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  14. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, Jamal; Vaz, Eric

    2015-03-01

    Until recently, land surveys and digital interpretation of remotely sensed imagery have been used to generate land use inventories. These techniques however, are often cumbersome and costly, allocating large amounts of technical and temporal costs. The technological advances of web 2.0 have brought a wide array of technological achievements, stimulating the participatory role in collaborative and crowd sourced mapping products. This has been fostered by GPS-enabled devices, and accessible tools that enable visual interpretation of high resolution satellite images/air photos provided in collaborative mapping projects. Such technologies offer an integrative approach to geography by means of promoting public participation and allowing accurate assessment and classification of land use as well as geographical features. OpenStreetMap (OSM) has supported the evolution of such techniques, contributing to the existence of a large inventory of spatial land use information. This paper explores the introduction of this novel participatory phenomenon for land use classification in Europe's metropolitan regions. We adopt a positivistic approach to assess comparatively the accuracy of these contributions of OSM for land use classifications in seven large European metropolitan regions. Thematic accuracy and degree of completeness of OSM data was compared to available Global Monitoring for Environment and Security Urban Atlas (GMESUA) datasets for the chosen metropolises. We further extend our findings of land use within a novel framework for geography, justifying that volunteered geographic information (VGI) sources are of great benefit for land use mapping depending on location and degree of VGI dynamism and offer a great alternative to traditional mapping techniques for metropolitan regions throughout Europe. Evaluation of several land use types at the local level suggests that a number of OSM classes (such as anthropogenic land use, agricultural and some natural environment

  15. Land use and land cover mapping: City of Palm Bay, Florida

    NASA Technical Reports Server (NTRS)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  16. Regional Land Use Mapping: the Phoenix Pilot Project

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Place, J. L.

    1971-01-01

    The Phoenix Pilot Program has been designed to make effective use of past experience in making land use maps and collecting land use information. Conclusions reached from the project are: (1) Land use maps and accompanying statistical information of reasonable accuracy and quality can be compiled at a scale of 1:250,000 from orbital imagery. (2) Orbital imagery used in conjunction with other sources of information when available can significantly enhance the collection and analysis of land use information. (3) Orbital imagery combined with modern computer technology will help resolve the problem of obtaining land use data quickly and on a regular basis, which will greatly enhance the usefulness of such data in regional planning, land management, and other applied programs. (4) Agreement on a framework or scheme of land use classification for use with orbital imagery will be necessary for effective use of land use data.

  17. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  18. ERTS-1: Automated land-use mapping in lake watersheds

    NASA Technical Reports Server (NTRS)

    Chase, P. E. (Principal Investigator); Rogers, R. H.; Reed, L. E.; Smith, V. E.

    1974-01-01

    The author has identified the following significant results. ERTS-1 computer compatible tapes were used as a basis to generate land use maps in lake watersheds in southeastern Michigan. These maps, generated on a repetitive basis, provide information essential to governmental agencies concerned with planning and control of lake eutrophication. The ERTS mapping products included geometrically current land use map overlays at 1:250,000 and 1:48,000 scale and area measurement printouts. The printouts provide, within the watershed boundaries and by land use category, a quantitative measure of the amount of land, in square kilometers and acres. This quantitative measure of land use in watersheds is essential to the development and application of deterministic models, which compute nutrient flows into lakes and establish lake eutrophication rates.

  19. Can Self-Organizing Maps Accurately Predict Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Klose, C. D.

    2012-03-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Δz = zphot - zspec) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods.

  20. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  1. Surface-material maps of Viking landing sites on Mars

    NASA Astrophysics Data System (ADS)

    Moore, H. J.; Keller, J. M.

    1991-06-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  2. Challenges and opportunities in mapping land use intensity globally☆

    PubMed Central

    Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H; Reenberg, Anette

    2013-01-01

    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research. PMID:24143157

  3. Combining satellite data with ancillary data to produce a refined land-use/land-cover map

    USGS Publications Warehouse

    Stewart, J.S.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the Western Lake Michigan Drainages Study Unit, a current map of land use and land cover is needed to gain a better understanding of how land use and land cover may influence water quality. Satellite data from the Landsat Thematic Mapper provides a means to map and measure the type and amount of various land-cover types across the Study Unit and can be easily updated as changes occur in the landscape or in water quality. Translating these land cover categories to land use, however, requires the use of other thematic maps or ancillary data layers, such as wetland inventories, population data, or road networks. This report describes a process of (1) using satellite imagery to produce a land-cover map for the Fox/Wolf River basin, a portion of the Western Lake Michigan Drainages NAWQA Study Unit and (2) improving the satellite-derived land-cover map by using other thematic maps. The multiple data layers are processed in a geographic information system (GIS), and the combination provides more information than individual sources alone.

  4. 37. Topographical Map of Land of Atwater Kent Manufacturing Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Topographical Map of Land of Atwater Kent Manufacturing Co., 38th Ward, Philadelphia (before 1928) - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  5. Mapping land degradation and desertification using remote sensing data

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Kumar, Munish; Lal, Bhajan; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Land degradation is the result of both natural and biotic forces operating on the earth. Natural calamities, over exploitation of land resources, unwise land use and the consequences of high inputs agriculture on soil and water resource are of great concern both at national and international level. It aggravated food insecurity in the world especially in the developing countries that calls for combating land degradation and desertification with scientific means. Development of degraded lands in India is one of the options to enhance food production and to restore the fragile ecosystem. The scientific information and spatial distribution of various kinds of degraded lands is thus essential for formulation of strategic plan to arrest the menace of land degradation. Remote sensing provides an opportunity for rapid inventorying of degraded lands to generate realistic database by virtue of multi-spectral and multi-temporal capabilities in the country. The satellite data provides subtle manifestations of degradation of land due to water and wind erosion, water-logging, salinity and alkalinity, shifting cultivation, etc., that facilitate mapping. All India Soil and Land Use Survey (AISLUS) has undertaken the task of land degradation mapping using remotely sensed data and developed a methodology accordingly. The mapping has been conceptualized as a four-tier approach comprising kind of degradation, severity of degradation, degradation under major landform and major land use. Visual mode of interpretation technique based on image characteristics followed by ground verification has been employed for mapping of degraded lands. Image interpretation key has been formulated based on the spectral signatures of various causative factors of different kinds of degraded lands. The mapping legend has been made systematic and connotative. The extent and spatial distribution of different kinds of degraded lands with degree of severity under major landform and major land use in a

  6. Survey methods for assessing land cover map accuracy

    USGS Publications Warehouse

    Nusser, S.M.; Klaas, E.E.

    2003-01-01

    The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of GAP land cover maps. We focused not only on appropriate sample designs and estimation approaches, but on aspects of the data collection process, such as gaining cooperation of land owners and using pixel clusters as an observation unit. The approach was tested in a pilot study to assess the accuracy of Iowa GAP land cover maps. A stratified two-stage cluster sampling design addressed sample size requirements for land covers and the need for geographic spread while minimizing operational effort. Recruitment methods used for private land owners yielded high response rates, minimizing a source of nonresponse error. Collecting data for a 9-pixel cluster centered on the sampled pixel was simple to implement, and provided better information on rarer vegetation classes as well as substantial gains in precision relative to observing data at a single-pixel.

  7. Collecting Sketch Maps to Understand Property Land Use and Land Cover in Large Surveys

    PubMed Central

    D’ANTONA, ÁLVARO DE OLIVEIRA; CAK, ANTHONY D.; VANWEY, LEAH K.

    2009-01-01

    This article describes a method to collect data on the spatial organization of land use within a rural property as part of a large-scale project examining the linkages between household demographic change and land use and land cover change in the Brazilian Amazon. Previous studies used several different spatial approaches, including maps and satellite images, to improve the information collected in standard survey questionnaires. However, few used sketch maps to obtain information from the point of view of the survey respondent about the spatial organization of land use and infrastructure. We developed a method of creating sketch maps with respondents to describe their properties. These maps then provided a spatially referenced database of the social and land use organization of the properties from the perspective of the respondent. Systematic rules allowed sketches to be used in subsequent spatial analyses in combination with satellite images and Global Positioning System reference points PMID:19789719

  8. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  9. The role of change data in a land use and land cover map updating program

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1981-01-01

    An assessment of current land use and a process for identifying and measuring change are needed to evaluate trends and problems associated with the use of our Nation's land resources. The U. S. Geological Survey is designing a program to maintain the currency of its land use and land cover maps and digital data base and to provide data on changes in our Nation's land use and land cover. Ways to produce and use change data in a map updating program are being evaluated. A dual role for change data is suggested. For users whose applications require specific polygon data on land use change, showing the locations of all individual category changes and detailed statistical data on these changes can be provided as byproducts of the map-revision process. Such products can be produced quickly and inexpensively either by conventional mapmaking methods or as specialized output from a computerized geographic information system. Secondly, spatial data on land use change are used directly for updating existing maps and statistical data. By incorporating only selected change data, maps and digital data can be updated in an efficient and timely manner without the need for complete and costly detailed remapping and redigitization of polygon data.

  10. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  11. Validation of current land cover maps utilizing astronaut acquired photography

    NASA Astrophysics Data System (ADS)

    Gebelein, Jennifer; Estes, John E.

    2000-01-01

    This investigation focuses on the potential use of astronaut acquired photography for the validation of current, land cover maps. More specifically, this study is directed at assessing the potential for the use of astronaut acquired photography to document and validate land cover change. Space Shuttle, astronaut acquired photography is employed to test the potential utility of data that may be acquired by astronauts employing the Window Observational Rack Facility (WORF) on International Space Station (ISS). The majority of astronaut acquired photography has been obtained under conditions similar to ISS operations in terms of both spectral as well as spatial resolution. Validation of land cover maps utilizing this type of imagery is being accomplished through a process of comparison among three different land cover classification legends created from the Eros Data Center (EDC) Land Characteristics Database. Our study area is a subregional scale portion of an Advanced Very High Resolution Radiometer (AVHRR) based global Land Characteristics Database. The goal of this research is to attempt to establish: 1. which legend derived for this area provides the highest overall accuracy for the land cover classes present: 2. which legend is best validated using astronaut acquired photography; and 3. which classes of these legends best lend themselves to validation with astronaut acquired photography. Preliminary results indicate that astronaut acquired photography can be employed to validate land cover maps and that results achieved using this imagery corresponds well to those achieved utilizing Landsat data. .

  12. Mapping of agricultural land use from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Wilson, A. D.; Max, G. A.; Peterson, G. W.

    1973-01-01

    A study area was selected in Lancaster and Lebanon Counties, two of the major agricultural counties in Pennsylvania. This area was delineated on positive transparencies on MSS data collected on October 11, 1972 (1080-15185). Channel seven was used to delineate general land forms, drainage patterns, water and urban areas. Channel five was used to delineate highway networks. These identifiable features were useful aids for locating areas on the computer output. Computer generated maps were used to delineate broad land use categories, such as forest land, agricultural land, urban areas and water. These digital maps have a scale of approximately 1:24,000 thereby allowing direct comparison with U.S.G.S. 7.5 minute quadrangle sheets. Aircraft data were used as a form of ground truth useful for the delineation of land use patterns.

  13. Using ground-based geophysics to rapidly and accurately map sub-surface acidity

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Triantafilis, John; Johnston, Scott; Nhan, Terence; Page, Donald; Wege, Richard; Hirst, Phillip; Slavich, Peter

    2013-04-01

    sulfuric and sulfidic layers (oxidised and reduced ASS), acidic shallow groundwater, and features of the infilled palaeovalley (Triantafilis et al. 2012). Accurate soil maps with high spatial resolution are required to develop appropriate management strategies for ASS and other soil types associated with low-lying coastal floodplains. The classes identified in this study form sensible soil management zones across the study area related to defined geomorphic units. EM data can then be used to build below-ground 3D models to inform practical targeted management strategies on coastal floodplains to improve land and water quality outcomes. References Triantafilis J, Wong V, Santos FAM, Page D, Wege R (2012) Modeling the electrical conductivity of hydrogeological strata using joint-inversion of loop-loop electromagnetic data. Geophysics 77(4): WB99-WB107

  14. Eulusmap: An international land resources map utilizing satellite imagery

    NASA Technical Reports Server (NTRS)

    Paludan, T.; Csati, E.

    1978-01-01

    In 1972, the International Geographical Union's Commission on World Land Use Survey adopted a project for a land-use map of Europe. Such a map, under the name Eulusmap was started earlier under sponsorship of several government offices in Hungary. Although there was great response from a number of contributors in many countries, it became evident by mid-1974 that the map would contain gaps and some inaccuracies unless additional data sources were utilized. By then, the satellite Landsat-1 had obtained imagery of most of Europe. Using theme extraction techniques, the map was completed in draft form and portions of it displayed at the 23d International Geographical Congress in Moscow during July 1976. Printing of the completed map was accomplished in May 1978.

  15. Analysis of RapidEye imagery for agricultural land mapping

    NASA Astrophysics Data System (ADS)

    Sang, Huiyong; Zhang, Jixian; Zhai, Liang; Xie, Wenhan; Sun, Xiaoxia

    2015-12-01

    With the improvement of remote sensing technology, the spatial, structural and texture information of land covers are present clearly in high resolution imagery, which enhances the ability of crop mapping. Since the satellite RapidEye was launched in 2009, high resolution multispectral imagery together with wide red edge band has been utilized in vegetation monitoring. Broad red edge band related vegetation indices improved land use classification and vegetation studies. RapidEye high resolution imagery was used in this study to evaluate the potential of red edge band in agricultural land cover/use mapping using an objected-oriented classification approach. A new object-oriented decision tree classifier was introduced in this study to map agricultural lands in the study area. Besides the five bands of RapidEye image, the vegetation indexes derived from spectral bands and the structural and texture features are utilized as inputs for agricultural land cover/use mapping in the study. The optimization of input features for classification by reducing redundant information improves the mapping precision about 18% for AdaTree. WL decision tree, and 5% for SVM, the accuracy is over 90% for both classifiers.

  16. A spatial-temporal contextual Markovian kernel method for multi-temporal land cover mapping

    NASA Astrophysics Data System (ADS)

    Wehmann, Adam; Liu, Desheng

    2015-09-01

    Due to a lack of spatial-temporal consistency, the current generation of multi-temporal land cover products is subject to significant error propagation in change detection results. To address the evolving needs of land change science, the next generation of land cover products must be derived from new classification methods that are designed specifically for multi-temporal land cover mapping. In this paper, a next generation classifier is proposed that fully exploits contextual information by combining results born from the machine learning paradigm in remote sensing with domain knowledge from multi-temporal land cover mapping. This classifier, the Spatial-Temporal Markovian Support Vector Classifier, exhibits an entirely new level of accuracy of change detection when evaluated for the classification of seven Landsat images from an Appalachian Ohio study area. It exceeds previous leading techniques employing machine learning kernel methods and Markov Random Field models of image context on all accuracy metrics for the creation of a spatial-temporally consistent land cover product. It owes its performance to the greatly improved decision-making about contextual information afforded by the extension and integration of these previous techniques. With such a classifier, substantially more accurate and spatial-temporally consistent multi-temporal land cover products are possible that are suitable for the detailed study of land cover change.

  17. Cost, accuracy, and consistency comparisons of land use maps made from high-altitutde aircraft photography and ERTS imagery

    USGS Publications Warehouse

    Fitzpatrick, Katherine A.

    1975-01-01

    Accuracy analyses for the land use maps of the Central Atlantic Regional Ecological Test Site were performed for a 1-percent sample of the area. Researchers compared Level II land use maps produced at three scales, 1:24,000, 1:100,000, and 1:250,000 from high-altitude photography, with each other and with point data obtained in the field. They employed the same procedures to determine the accuracy of the Level I land use maps produced at 1:250,000 from high-altitude photography and color composite ERTS imagery. The accuracy of the Level II maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000, and 73.0 percent at 1:250,000. The accuracy of the Level I 1:250,000 maps produced from high-altitude aircraft photography was 76.5 percent and for those produced from ERTS imagery was 69.5 percent The cost of Level II land use mapping at 1:24,000 was found to be high ($11.93 per km2 ). The cost of mapping at 1:100,000 ($1.75) was about 2 times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent. Level I land use maps, when mapped from highaltitude photography, were about 4 times as expensive as the maps produced from ERTS imagery, although the accuracy is 7.0 percent greater. The Level I land use category that is least accurately mapped from ERTS imagery is urban and built-up land in the non-urban areas; in the urbanized areas, built-up land is more reliably mapped.

  18. Exploiting Volunteered Geographic Information to Ease Land Use Mapping of AN Urban Landscape

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.

    2013-05-01

    Remote sensing techniques have eased land use/cover mapping substantially by observing the earth remotely through diminishing field surveying and in-site data collection. However, field measurement is still required to identify training sites for defining the existing land use classes, which requires visiting the study area. This paper is intended to utilize volunteered geographic information (VGI) contributions to the OpenStreetMap (OSM) project as an alternative data source instead of gathering training sites through insite visits and to evaluate how accurate land use patterns can be mapped. High resolution imagery of RapidEye with 5 meter spatial resolution is selected to derive land use patterns of Koblenz, Germany through a maximum likelihood classification technique. The achieved land use map is compared with the Global Monitoring for Environment and Security Urban Atlas (GMESUA) and a Kappa Index of 89% is achieved. The outcomes prove that VGI can be integrated within remote sensing processes to facilitate the process of earth observation and monitoring.

  19. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer and fall seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with color density slicing portions of 9 x 9 MSS band 7 transparency showing the central urban core of phoenix enabled dense commercial and industrial areas to be separated from less dense urbanized land uses; however, loss of resolution produced results of limited usefulness. The best results in agricultural areas near Sun City were obtained using MSS band 5 imagery. Discrimination of different land uses in both urban and agricultural areas which were color density sliced was not possible to the degree of accuracy necessary to make mapping feasible. Examination of MSS transparencies and color composites allowed updating of a map of land use change in the Phoenix Quadrangle.

  20. Land User and Land Cover Maps of Europe: a Webgis Platform

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.

    2016-06-01

    This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.

  1. Present and potential land use mapping in Mexico

    NASA Technical Reports Server (NTRS)

    Garduno, H.; Lagos, R. G.; Simo, F. G.

    1975-01-01

    The Mexican Water Plan (MWP) conducted studies of present and potential land use in Mexico using LANDSAT-1 satellite imagery. Present land use studies were carried out all over the country (197 million hectares); nine soil uses were mapped according to the first classification level recommended by the U.S. Geological Survey. Also 6.3 million hectares of land with advanced erosion were detected. Work was executed at a rate of 8 million hectares per month; reliability was 90% and the cost of only 0.1 cents/hectare. The potential land use study was performed in 45 million hectares at a rate of 4 million hectares per month and at a cost of 0.33 cents/hectare. Soil units according to FAO classification were delineated scale 1:1 million; interpretative maps were also prepared dealing with potential agricultural productivity carrying capacity for cattle, water, erosion risk, and slope ranges.

  2. Snow mapping and land use studies in Switzerland

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A system was developed for operational snow and land use mapping, based on a supervised classification method using various classification algorithms and representation of the results in maplike form on color film with a photomation system. Land use mapping, under European conditions, was achieved with a stepwise linear discriminant analysis by using additional ratio variables. On fall images, signatures of built-up areas were often not separable from wetlands. Two different methods were tested to correlate the size of settlements and the population with an accuracy for the densely populated Swiss Plateau between +2 or -12%.

  3. Global Land Survey Impervious Mapping Project Web Site

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  4. A review and evaluation of alternatives for updating U.S. Geological Survey land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1980-01-01

    Since 1974, the U.S. Geological Survey has been engaged in a nationwide program of baseline mapping of land use and land cover and associated data at a scale of 1:250,000. As l:100,000-scale bases have become available, they have been used for mapping certain areas and for special applications. These two scales are appropriate for mapping land use and land cover data on a nationwide basis within a practical time frame, and with an acceptable degree of standardization, accuracy, and level of detail. An essential requisite to better use of the land is current information on land use and land cover conditions and on the rates and trends of changes with time. Thus, plans are underway to update these maps and data. The major considerations in planning a nationwide program for updating U.S. Geological Survey land use and land cover maps are as follows: (1) How often should maps be updated? (2) What remotely sensed source materials should be used for detecting and compiling changes in land use and land cover? (3) What base maps should be used for presenting data on land use and land cover changes? (4) What maps or portions of a map should be updated? (5) What methods should be used for identifying and mapping changes? (6) What procedures should be followed for updating maps and what formats should be used? These factors must be considered in developing a map update program that portrays an appropriate level of information, relates to and builds upon the existing U.S. Geological Survey land use and land cover digital and statistical data base, is timely, cost-effective and standardized, and meets the varying needs of land use and land cover data users.

  5. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.

    PubMed

    Edwards, Timothy L; Cox, Christophe; Weetjens, Bart; Tewelde, Tesfazghi; Poling, Alan

    2015-09-01

    Pouched rats were employed as mine-detection animals in a quality-control application where they searched for mines in areas previously processed by a mechanical tiller. The rats located 58 mines and fragments in this 28,050-m(2) area with a false indication rate of 0.4 responses per 100 m(2) . Humans with metal detectors found no mines that were not located by the rats. These findings indicate that pouched rats can accurately detect land mines in disturbed soil and suggest that they can play multiple roles in humanitarian demining. PMID:25962550

  6. Giant African pouched rats (Cricetomys gambianus) that work on tilled soil accurately detect land mines.

    PubMed

    Edwards, Timothy L; Cox, Christophe; Weetjens, Bart; Tewelde, Tesfazghi; Poling, Alan

    2015-09-01

    Pouched rats were employed as mine-detection animals in a quality-control application where they searched for mines in areas previously processed by a mechanical tiller. The rats located 58 mines and fragments in this 28,050-m(2) area with a false indication rate of 0.4 responses per 100 m(2) . Humans with metal detectors found no mines that were not located by the rats. These findings indicate that pouched rats can accurately detect land mines in disturbed soil and suggest that they can play multiple roles in humanitarian demining.

  7. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians.

    PubMed

    Bernal, Jorge; Sánchez, F Javier; Fernández-Esparrach, Gloria; Gil, Debora; Rodríguez, Cristina; Vilariño, Fernando

    2015-07-01

    We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WM-DOVA (Window Median Depth of Valleys Accumulation) energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice. PMID:25863519

  8. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians.

    PubMed

    Bernal, Jorge; Sánchez, F Javier; Fernández-Esparrach, Gloria; Gil, Debora; Rodríguez, Cristina; Vilariño, Fernando

    2015-07-01

    We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WM-DOVA (Window Median Depth of Valleys Accumulation) energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.

  9. Land cover characterization and mapping of continental southeast Asia using multi-resolution satellite sensor data

    USGS Publications Warehouse

    Giri, Chandra; Defourny, P.; Shrestha, Surendra

    2003-01-01

    Land use/land cover change, particularly that of tropical deforestation and forest degradation, has been occurring at an unprecedented rate and scale in Southeast Asia. The rapid rate of economic development, demographics and poverty are believed to be the underlying forces responsible for the change. Accurate and up-to-date information to support the above statement is, however, not available. The available data, if any, are outdated and are not comparable for various technical reasons. Time series analysis of land cover change and the identification of the driving forces responsible for these changes are needed for the sustainable management of natural resources and also for projecting future land cover trajectories. We analysed the multi-temporal and multi-seasonal NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite data of 1985/86 and 1992 to (1) prepare historical land cover maps and (2) to identify areas undergoing major land cover transformations (called ‘hot spots’). The identified ‘hot spot’ areas were investigated in detail using high-resolution satellite sensor data such as Landsat and SPOT supplemented by intensive field surveys. Shifting cultivation, intensification of agricultural activities and change of cropping patterns, and conversion of forest to agricultural land were found to be the principal reasons for land use/land cover change in the Oudomxay province of Lao PDR, the Mekong Delta of Vietnam and the Loei province of Thailand, respectively. Moreover, typical land use/land cover change patterns of the ‘hot spot’ areas were also examined. In addition, we developed an operational methodology for land use/land cover change analysis at the national level with the help of national remote sensing institutions.

  10. MAPPING SPATIAL ACCURACY AND ESTIMATING LANDSCAPE INDICATORS FROM THEMATIC LAND COVER MAPS USING FUZZY SET THEORY

    EPA Science Inventory

    This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...

  11. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  12. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  13. ASSESSING ACCURACY OF NET CHANGE DERIVED FROM LAND COVER MAPS

    EPA Science Inventory

    Net change derived from land-cover maps provides important descriptive information for environmental monitoring and is often used as an input or explanatory variable in environmental models. The sampling design and analysis for assessing net change accuracy differ from traditio...

  14. Agricultural land use mapping. [Pennsylvania, Montana, and Texas

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1973-01-01

    The author has identified the following significant results. Agricultural areas were selected or analysis in southeastern Pennsylvania, north central Montana, and southern Texas. These three sites represent a broad range of soils, soil parent materials, climate, modes of agricultural operation, crops, and field sizes. In each of these three sites, ERTS-1 digital data were processed to determine the feasibility of automatically mapping agricultural land use. In Pennsylvania, forest land, cultivated land, and water were separable within a 25,000 acre area. Four classes of water were also classified and identified, using ground truth. A less complex land use pattern was analyzed in Hill County, Montana. A land use map was prepared shown alternating patterns of summer fallow and stubble fields. The location of farmsteads could be inferred, along with that of a railroad line. A river and a creek flowing into the river were discernible. Six categories of water, related to sediment content and depth, were defined in the reservoir held by the Fresno dam. These classifications were completed on a 150 square mile area. Analysis of the data from Texas is in its formative stages. A test site has been selected and a brightness map has been produced.

  15. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  16. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes

    PubMed Central

    Srivastava, Avi; Sarkar, Hirak; Gupta, Nitish; Patro, Rob

    2016-01-01

    Motivation: The alignment of sequencing reads to a transcriptome is a common and important step in many RNA-seq analysis tasks. When aligning RNA-seq reads directly to a transcriptome (as is common in the de novo setting or when a trusted reference annotation is available), care must be taken to report the potentially large number of multi-mapping locations per read. This can pose a substantial computational burden for existing aligners, and can considerably slow downstream analysis. Results: We introduce a novel concept, quasi-mapping, and an efficient algorithm implementing this approach for mapping sequencing reads to a transcriptome. By attempting only to report the potential loci of origin of a sequencing read, and not the base-to-base alignment by which it derives from the reference, RapMap—our tool implementing quasi-mapping—is capable of mapping sequencing reads to a target transcriptome substantially faster than existing alignment tools. The algorithm we use to implement quasi-mapping uses several efficient data structures and takes advantage of the special structure of shared sequence prevalent in transcriptomes to rapidly provide highly-accurate mapping information. We demonstrate how quasi-mapping can be successfully applied to the problems of transcript-level quantification from RNA-seq reads and the clustering of contigs from de novo assembled transcriptomes into biologically meaningful groups. Availability and implementation: RapMap is implemented in C ++11 and is available as open-source software, under GPL v3, at https://github.com/COMBINE-lab/RapMap. Contact: rob.patro@cs.stonybrook.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307617

  17. Assessment of Classification Accuracies of SENTINEL-2 and LANDSAT-8 Data for Land Cover / Use Mapping

    NASA Astrophysics Data System (ADS)

    Hale Topaloğlu, Raziye; Sertel, Elif; Musaoğlu, Nebiye

    2016-06-01

    This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport- industrial units and barren land- mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/ use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.

  18. Wakeful rest promotes the integration of spatial memories into accurate cognitive maps.

    PubMed

    Craig, Michael; Dewar, Michaela; Harris, Mathew A; Della Sala, Sergio; Wolbers, Thomas

    2016-02-01

    Flexible spatial navigation, e.g. the ability to take novel shortcuts, is contingent upon accurate mental representations of environments-cognitive maps. These cognitive maps critically depend on hippocampal place cells. In rodents, place cells replay recently travelled routes, especially during periods of behavioural inactivity (sleep/wakeful rest). This neural replay is hypothesised to promote not only the consolidation of specific experiences, but also their wider integration, e.g. into accurate cognitive maps. In humans, rest promotes the consolidation of specific experiences, but the effect of rest on the wider integration of memories remained unknown. In the present study, we examined the hypothesis that cognitive map formation is supported by rest-related integration of new spatial memories. We predicted that if wakeful rest supports cognitive map formation, then rest should enhance knowledge of overarching spatial relations that were never experienced directly during recent navigation. Forty young participants learned a route through a virtual environment before either resting wakefully or engaging in an unrelated perceptual task for 10 min. Participants in the wakeful rest condition performed more accurately in a delayed cognitive map test, requiring the pointing to landmarks from a range of locations. Importantly, the benefit of rest could not be explained by active rehearsal, but can be attributed to the promotion of consolidation-related activity. These findings (i) resonate with the demonstration of hippocampal replay in rodents, and (ii) provide the first evidence that wakeful rest can improve the integration of new spatial memories in humans, a function that has, hitherto, been associated with sleep.

  19. Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph

    PubMed Central

    Wu, Yonghui; Bhat, Prasanna R.; Close, Timothy J.; Lonardi, Stefano

    2008-01-01

    Genetic linkage maps are cornerstones of a wide spectrum of biotechnology applications, including map-assisted breeding, association genetics, and map-assisted gene cloning. During the past several years, the adoption of high-throughput genotyping technologies has been paralleled by a substantial increase in the density and diversity of genetic markers. New genetic mapping algorithms are needed in order to efficiently process these large datasets and accurately construct high-density genetic maps. In this paper, we introduce a novel algorithm to order markers on a genetic linkage map. Our method is based on a simple yet fundamental mathematical property that we prove under rather general assumptions. The validity of this property allows one to determine efficiently the correct order of markers by computing the minimum spanning tree of an associated graph. Our empirical studies obtained on genotyping data for three mapping populations of barley (Hordeum vulgare), as well as extensive simulations on synthetic data, show that our algorithm consistently outperforms the best available methods in the literature, particularly when the input data are noisy or incomplete. The software implementing our algorithm is available in the public domain as a web tool under the name MSTmap. PMID:18846212

  20. Land cover mapping of Greater Mesoamerica using MODIS data

    USGS Publications Warehouse

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  1. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparison of 9 x 9 MSS band images and color composites made from bands 4, 5, and 6 showing vegetated areas near Phoenix during the summer, fall, and winter seasons aided in definitely establishing that certain land areas were being used as agricultural land and not as rangeland. Agricultural land, which appeared to be fallow, idle, or not irrigated, often became more readily identifiable as agricultural land when comparing different images of identical land areas which have been affected by seasonal vegetation changes. Experimentation with the Bausch and Lomb Zoom Transferscope using MSS images of identical areas in the same spectral band from different time periods, with a quick flip method of alternately viewing the frame areas, enabled rapid detection of a major land use change from agricultural to urban use on the northwest fringe of the metropolitan Phoenix area. The best results in this case were obtained when comparing MSS band 5 images. Examination of MSS transparencies and color composites allowed further updating of a map of land use change in the Phoenix Quadrangle.

  2. Optimizing landfill site selection by using land classification maps.

    PubMed

    Eskandari, M; Homaee, M; Mahmoodi, S; Pazira, E; Van Genuchten, M Th

    2015-05-01

    Municipal solid waste disposal is a major environmental concern throughout the world. Proper landfill siting involves many environmental, economic, technical, and sociocultural challenges. In this study, a new quantitative method for landfill siting that reduces the number of evaluation criteria, simplifies siting procedures, and enhances the utility of available land evaluation maps was proposed. The method is demonstrated by selecting a suitable landfill site near the city of Marvdasht in Iran. The approach involves two separate stages. First, necessary criteria for preliminary landfill siting using four constraints and eight factors were obtained from a land classification map initially prepared for irrigation purposes. Thereafter, the criteria were standardized using a rating approach and then weighted to obtain a suitability map for landfill siting, with ratings in a 0-1 domain and divided into five suitability classes. Results were almost identical to those obtained with a more traditional environmental landfill siting approach. Because of far fewer evaluation criteria, the proposed weighting method was much easier to implement while producing a more convincing database for landfill siting. The classification map also considered land productivity. In the second stage, the six best alternative sites were evaluated for final landfill siting using four additional criteria. Sensitivity analyses were furthermore conducted to assess the stability of the obtained ranking. Results indicate that the method provides a precise siting procedure that should convince all pertinent stakeholders.

  3. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Changes in the land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. Seasonal changes were studied on successive ERTS-1 images, particularly large scale color composite transparencies for August, October, February, and May, and this seasonal variation aided delineation of land use boundaries. Types of equipment used to aid interpretation included color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine. A Zoom Transfer Scope was used for scale and photogrammetric adjustments. Types of changes detected have been: (1) cropland or rangeland developed as new residential areas; (2) rangeland converted to new cropland or to new reservoirs; and (3) possibly new activity by the mining industries. A map of land use previously compiled from air photos was updated in this manner. ERTS-1 images complemented air photos: the photos gave detail on a one-shot basis; the ERTS-1 images provided currency and revealed seasonal variation in vegetation which aided interpretation of land use.

  4. Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Gebelein, Jennifer

    1999-01-01

    This report is produced in accordance with the requirements outlined in the NASA Research Grant NAG9-1032 titled "Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery". This grant funds the Remote Sensing Research Unit of the University of California, Santa Barbara. This document summarizes the research progress and accomplishments to date and describes current on-going research activities. Even though this grant has technically expired, in a contractual sense, work continues on this project. Therefore, this summary will include all work done through and 5 May 1999. The principal goal of this effort is to test the accuracy of a sub-regional portion of an AVHRR-based land cover product. Land cover mapped to three different classification systems, in the southwestern United States, have been subjected to two specific accuracy assessments. One assessment utilizing astronaut acquired photography, and a second assessment employing Landsat Thematic Mapper imagery, augmented in some cases, high aerial photography. Validation of these three land cover products has proceeded using a stratified sampling methodology. We believe this research will provide an important initial test of the potential use of imagery acquired from Shuttle and ultimately the International Space Station (ISS) for the operational validation of the Moderate Resolution Imaging Spectrometer (MODIS) land cover products.

  5. Image Analysis for Facility Siting: a Comparison of Lowand High-altitude Image Interpretability for Land Use/land Cover Mapping

    NASA Technical Reports Server (NTRS)

    Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.

  6. Land cover change mapping using MODIS time series to improve emissions inventories

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  7. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads

    PubMed Central

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-01-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith–Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets. PMID:22379138

  8. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  9. Detailed forest formation mapping in the land cover map series for the Caribbean islands

    NASA Astrophysics Data System (ADS)

    Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.

    2006-12-01

    Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail

  10. Mapping urban land cover from space: Some observations for future progress

    NASA Technical Reports Server (NTRS)

    Gaydos, L.

    1982-01-01

    The multilevel classification system adopted by the USGS for operational mapping of land use and land cover at levels 1 and 2 is discussed and the successes and failures of mapping land cover from LANDSAT digital data are reviewed. Techniques used for image interpretation and their relationships to sensor parameters are examined. The requirements for mapping levels 2 and 3 classes are considered.

  11. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS-1 experiment, changes in land use were detected using only the ERTS-1 images. The I2S color additive viewer was used as the principal image enhancement tool, operated in a multispectral mode. Hard copy color composite images of the best multiband combinations from ERTS-1 were made by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. More recently, a Bausch and Lomb zoom transferscope has been used for the same purpose. Improved interpretation of land use change resulted, and a map of changes within the Phoenix Quadrangle was compiled. The first level of a proposed standard land use classification system was sucessfully used. ERTS-1 underflight photography was used to check the accuracy of the ERTS-1 image interpretation. It was found that the total areas of change detected in the photos were comparable with the total areas of change detected in the ERTS-1 images.

  12. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS experiment, changes in land use were detected, first with the ERTS-simulation photographs, then with the ERTS-1 images when they became available. In each case, the I2S color additive viewer was used as the primary image enhancement tool, operated in a multispectral mode. A search was made for a method of creating hard copy color composite images of the best combinations of multiband composites from ERTS-1, mostly by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. Improved interpretation of land use change resulted, and a map of changes in the Phoenix Quadrangle was compiled using magnified ERTS-1 images alone. The first level of a standard land use classification system was successfully used. Between the ERTS-1 images for August and November, some differences were detected that could be caused by seasonal characteristics of vegetation or by change in use.

  13. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In comparing the land use changes from the overlay as detected from ERTS-1 and the high altitude change overlay, total areas of change were of the same magnitude. The greatest variations were a result of differences in dates and areas of coverage between ERTS-1 images and aerial photographs. Separation of citrus from other agricultural land has been moderately successful in the ERTS-1 1:100,000 scale Level 2 land use mapping around Phoenix, although accuracy estimates are not yet available. No feeding operations have been detected from ERTS-1 so far. Preliminary indications are that commercial and services, industrial, and institutional land are not separable from each other using present image interpretation techniques. Urban open areas such as parks and golf courses are readily detectable, particularly when local maps are consulted even though out-of-date. Strip and clustered settlements may be detected depending upon their size and contrast with the surrounding area on the ERTS-1 image.

  14. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  15. Visual Mapping of Sedimentary Facies Can Yield Accurate And Geomorphically Meaningful Results at Morphological Unit to River Segment Scales

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Wyrick, J. R.; Jackson, J. R.

    2014-12-01

    Long practiced in fisheries, visual substrate mapping of coarse-bedded rivers is eschewed by geomorphologists for inaccuracy and limited sizing data. Geomorphologists perform time-consuming measurements of surficial grains, with the few locations precluding spatially explicit mapping and analysis of sediment facies. Remote sensing works for bare land, but not vegetated or subaqueous sediments. As visual systems apply the log2 Wentworth scale made for sieving, they suffer from human inability to readily discern those classes. We hypothesized that size classes centered on the PDF of the anticipated sediment size distribution would enable field crews to accurately (i) identify presence/absence of each class in a facies patch and (ii) estimate the relative amount of each class to within 10%. We first tested 6 people using 14 measured samples with different mixtures. Next, we carried out facies mapping for ~ 37 km of the lower Yuba River in California. Finally, we tested the resulting data to see if it produced statistically significant hydraulic-sedimentary-geomorphic results. Presence/absence performance error was 0-4% for four people, 13% for one person, and 33% for one person. The last person was excluded from further effort. For the abundance estimation performance error was 1% for one person, 7-12% for three people, and 33% for one person. This last person was further trained and re-tested. We found that the samples easiest to visually quantify were unimodal and bimodal, while those most difficult had nearly equal amounts of each size. This confirms psychological studies showing that humans have a more difficult time quantifying abundances of subgroups when confronted with well-mixed groups. In the Yuba, mean grain size decreased downstream, as is typical for an alluvial river. When averaged by reach, mean grain size and bed slope were correlated with an r2 of 0.95. At the morphological unit (MU) scale, eight in-channel bed MU types had an r2 of 0.90 between mean

  16. Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Mialhe, François; Gunnell, Yanni; Ignacio, J. Andres F.; Delbart, Nicolas; Ogania, Jenifer L.; Henry, Sabine

    2015-04-01

    This paper combines participatory activities (PA) with remote sensing analysis into an integrated methodology to describe and explain land-cover changes. A remote watershed on Mindanao (Philippines) is used to showcase the approach, which hypothesizes that the accuracy of expert knowledge gained from remote sensing techniques can be further enhanced by inputs from vernacular knowledge when attempting to understand complex land mosaics and past land-use changes. Six participatory sessions based on focus-group discussions were conducted. These were enhanced by community-based land-use mapping, resulting in a final total of 21 participatory land-use maps (PLUMs) co-produced by a sample of stakeholders with different sociocultural and ecological perspectives. In parallel, seven satellite images (Landsat MSS, Landsat TM, Landsat ETM+, and SPOT4) were classified following standard techniques and provided snapshots for the years 1976, 1996, and 2010. Local knowledge and collective memory contributed to define and qualify relevant land-use classes. This also provided information about what had caused the land-use changes in the past. Results show that combining PA with remote-sensing analysis provides a unique understanding of land-cover change because the two methods complement and validate one another. Substantive qualitative information regarding the chronology of land-cover change was obtained in a short amount of time across an area poorly covered by scientific literature. The remote sensing techniques contributed to test and to quantify verbal reports of land-use and land-cover change by stakeholders. We conclude that the method is particularly relevant to data-poor areas or conflict zones where rapid reconnaissance work is the only available option. It provides a preliminary but accurate baseline for capturing land changes and for reporting their causes and consequences. A discussion of the main challenges encountered (i.e. how to combine different systems of

  17. Generating Accurate Urban Area Maps from Nighttime Satellite (DMSP/OLS) Data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc; Lawrence, William; Elvidge, Christopher

    2000-01-01

    There has been an increasing interest by the international research community to use the nighttime acquired "city-lights" data sets collected by the US Defense Meteorological Satellite Program's Operational Linescan system to study issues relative to urbanization. Many researchers are interested in using these data to estimate human demographic parameters over large areas and then characterize the interactions between urban development , natural ecosystems, and other aspects of the human enterprise. Many of these attempts rely on an ability to accurately identify urbanized area. However, beyond the simple determination of the loci of human activity, using these data to generate accurate estimates of urbanized area can be problematic. Sensor blooming and registration error can cause large overestimates of urban land based on a simple measure of lit area from the raw data. We discuss these issues, show results of an attempt to do a historical urban growth model in Egypt, and then describe a few basic processing techniques that use geo-spatial analysis to threshold the DMSP data to accurately estimate urbanized areas. Algorithm results are shown for the United States and an application to use the data to estimate the impact of urban sprawl on sustainable agriculture in the US and China is described.

  18. THE USE OF NTM DATA FOR THE ACCURACY ASSESSMENT OF LANDSAT DERIVED LAND USE/LAND COVER MAPS

    EPA Science Inventory

    National Technical Means (NTM) data were utilized to validate the accuracy of a series of LANDSAT derived Land Use / Land Cover (LU/LC) maps for the time frames mid- I 970s, early- I 990s and mid- I 990s. The area-of-interest for these maps is a 2000 square mile portion of the De...

  19. Agricultural land-use mapping using very high resolution satellite images in Canary Islands

    NASA Astrophysics Data System (ADS)

    Labrador Garcia, Mauricio; Arbelo, Manuel; Evora Brondo, Juan Antonio; Hernandez-Leal, Pedro A.; Alonso-Benito, Alfonso

    Crop maps are a basic tool for rural planning and a way to asses the impact of politics and infrastructures in the rural environment. Thus, they must be accurate and updated. Because of the small size of the land fields in Canary Islands, until now the crop maps have been made by means of an intense and expensive field work. The tiny crop terraces do not allow the use of traditional medium-size resolution satellite images. The launch of several satellites with sub-meter spatial resolutions in the last years provides an opportunity to update land use maps in these fragmented areas. SATELMAC is a project financed by the PCT-MAC 2007-2013 (FEDER funds). One of the main objectives of this project is to develop a methodology that allows the use of very high resolution satellite images to automate as much as possible the updating of agricultural land use maps. The study was carried out in 3 different areas of the two main islands of the Canarian Archipelago, Tenerife and Gran Canaria. The total area is about 550 km2 , which includes both urban and rural areas. Multitemporal images from Geo-Eye 1 were acquired during a whole agricultural season to extract information about annual and perennial crops. The work includes a detailed geographic correction of the images and dealing with many adverse factors like cloud shadows, variability of atmospheric conditions and the heterogeneity of the land uses within the study area. Different classification methods, including traditional pixel-based methods and object-oriented approach, were compared in order to obtain the best accuracy. An intensive field work was carried out to obtain the ground truth, which is the base for the classification procedures and the validation of the results. The final results will be integrated into a cadastral vector layer.

  20. Floodplain land cover mapping using Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Kerber, A. G.; Gervin, J. C.; Lu, Y.-C.; Marcell, R.; Edwardo, H. A.

    1986-01-01

    The accuracy of land-cover classifications based on Landsat-4 TM and MSS images (obtained in August 1982) and airborne TMS images (obtained in September 1981) of the New Martinsville, West Virginia area is evaluated by comparison with ground-truth data. TM, TMS, and MSS are found to have overall mapping accuracies 80.1, 78.5, and 75.6 percent; agriculture/grass accuracies 62.0, 29.7, and 46.6 percent; and developed-area accuracies 67.2, 77.8, and 59.4 percent, respectively.

  1. Selawik National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    The U.S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  2. Tetlin National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner data (MSS) and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail, obtained from the analysis of Landsat data, is adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  3. Integrating Recent Land Cover Mapping Efforts to Update the National Gap Analysis Program's Species Habitat Map

    NASA Astrophysics Data System (ADS)

    McKerrow, A. J.; Davidson, A.; Earnhardt, T. S.; Benson, A. L.

    2014-11-01

    Over the past decade, great progress has been made to develop national extent land cover mapping products to address natural resource issues. One of the core products of the GAP Program is range-wide species distribution models for nearly 2000 terrestrial vertebrate species in the U.S. We rely on deductive modeling of habitat affinities using these products to create models of habitat availability. That approach requires that we have a thematically rich and ecologically meaningful map legend to support the modeling effort. In this work, we tested the integration of the Multi-Resolution Landscape Characterization Consortium's National Land Cover Database 2011 and LANDFIRE's Disturbance Products to update the 2001 National GAP Vegetation Dataset to reflect 2011 conditions. The revised product can then be used to update the species models. We tested the update approach in three geographic areas (Northeast, Southeast, and Interior Northwest). We used the NLCD product to identify areas where the cover type mapped in 2011 was different from what was in the 2001 land cover map. We used Google Earth and ArcGIS base maps as reference imagery in order to label areas identified as "changed" to the appropriate class from our map legend. Areas mapped as urban or water in the 2011 NLCD map that were mapped differently in the 2001 GAP map were accepted without further validation and recoded to the corresponding GAP class. We used LANDFIRE's Disturbance products to identify changes that are the result of recent disturbance and to inform the reassignment of areas to their updated thematic label. We ran species habitat models for three species including Lewis's Woodpecker (Melanerpes lewis) and the White-tailed Jack Rabbit (Lepus townsendii) and Brown Headed nuthatch (Sitta pusilla). For each of three vertebrate species we found important differences in the amount and location of suitable habitat between the 2001 and 2011 habitat maps. Specifically, Brown headed nuthatch habitat in

  4. Cartographic Mapping of Mars Landing Sites: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Duxbury, Thomas C.

    2007-01-01

    Initial mapping of Mars began with the early Mariner 4, 6 and 7 flybys in the 1960's. Mariner 9 obtained the first global coverage of Mars in 1971. Viking Orbiters 1 and 2 added new and higher resolution global coverage. The US Geological Survey produced the first digital global cartographic map products in black and white and in color, the mosaicked digital image models (MDIMs). In 1989, the Phobos 88 mission added imaging as well as multispectral mapping of Mars in the equatorial region. The Mars Global Surveyor (MGS) added to the black and white and color global coverage. The most important development for Mars cartography occurred on MGS with its global coverage of Mars using the Mars Observer Laser Altimeter (MOL A) producing precision ground control in latitude, longitude and radius. The next version of the MDIM was produced at 230 m spatial resolution using MOLA precision cartographic control. The Mars Odyssey mission THEMIS instrument has completed its global infrared mapping of Mars at 100 m spatial resolution. The Mars Express mission is completing its global coverage of Mars in stereo at 100 m spatial resolution or better. MGS, Odyssey and Mars Express continue to provide limited surface coverage at the 1 to 20 m resolution. Currently the new Mars Reconnaissance Orbiter is producing images at the 10's of cm level. All of these datasets provide a rich and historic perspective of Mars covering nearly five decades and allow global cartographic map products to be produced in visual and infrared at the 100 m level with specialized cartographic maps being produced for landing sites at the meter or sub-meter spatial resolution level. This work was produced at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration, NAS 7-7120.5d, within the NASA Mars Data Analysis Program and the MGS, Odyssey, Mars Express and MRO Participating Scientist Programs.

  5. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  6. Efficient and accurate estimation of relative order tensors from λ- maps

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Rishi; Miao, Xijiang; Shealy, Paul; Valafar, Homayoun

    2009-06-01

    The rapid increase in the availability of RDC data from multiple alignment media in recent years has necessitated the development of more sophisticated analyses that extract the RDC data's full information content. This article presents an analysis of the distribution of RDCs from two media (2D-RDC data), using the information obtained from a λ-map. This article also introduces an efficient algorithm, which leverages these findings to extract the order tensors for each alignment medium using unassigned RDC data in the absence of any structural information. The results of applying this 2D-RDC analysis method to synthetic and experimental data are reported in this article. The relative order tensor estimates obtained from the 2D-RDC analysis are compared to order tensors obtained from the program REDCAT after using assignment and structural information. The final comparisons indicate that the relative order tensors estimated from the unassigned 2D-RDC method very closely match the results from methods that require assignment and structural information. The presented method is successful even in cases with small datasets. The results of analyzing experimental RDC data for the protein 1P7E are presented to demonstrate the potential of the presented work in accurately estimating the principal order parameters from RDC data that incompletely sample the RDC space. In addition to the new algorithm, a discussion of the uniqueness of the solutions is presented; no more than two clusters of distinct solutions have been shown to satisfy each λ-map.

  7. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan

  8. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  9. Arterial Input Function Placement for Accurate CT Perfusion Map Construction in Acute Stroke

    PubMed Central

    Ferreira, Rafael M.; Lev, Michael H.; Goldmakher, Gregory V.; Kamalian, Shahmir; Schaefer, Pamela W.; Furie, Karen L.; Gonzalez, R. Gilberto; Sanelli, Pina C.

    2013-01-01

    OBJECTIVE The objective of our study was to evaluate the effect of varying arterial input function (AIF) placement on the qualitative and quantitative CT perfusion parameters. MATERIALS AND METHODS Retrospective analysis of CT perfusion data was performed on 14 acute stroke patients with a proximal middle cerebral artery (MCA) clot. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were constructed using a systematic method by varying only the AIF placement in four positions relative to the MCA clot including proximal and distal to the clot in the ipsilateral and contralateral hemispheres. Two postprocessing software programs were used to evaluate the effect of AIF placement on perfusion parameters using a delay-insensitive deconvolution method compared with a standard deconvolution method. RESULTS One hundred sixty-eight CT perfusion maps were constructed for each software package. Both software programs generated a mean CBF at the infarct core of < 12 mL/100 g/min and a mean CBV of < 2 mL/100 g for AIF placement proximal to the clot in the ipsilateral hemisphere and proximal and distal to the clot in the contralateral hemisphere. For AIF placement distal to the clot in the ipsilateral hemisphere, the mean CBF significantly increased to 17.3 mL/100 g/min with delay-insensitive software and to 19.4 mL/100 g/min with standard software (p < 0.05). The mean MTT was significantly decreased for this AIF position. Furthermore, this AIF position yielded qualitatively different parametric maps, being most pronounced with MTT and CBF. Overall, CBV was least affected by AIF location. CONCLUSION For postprocessing of accurate quantitative CT perfusion maps, laterality of the AIF location is less important than avoiding AIF placement distal to the clot as detected on CT angiography. This pitfall is less severe with deconvolution-based software programs using a delay-insensitive technique than with those using a standard deconvolution

  10. Land use mapping and modelling for the Phoenix quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Experimentation with 70mm squares cut from ERTS-1 9.5 inch MSS positive transparencies in an I2S color additive viewer, a Richardson film production viewer at 10X magnification, and in a microfiche viewer at 12X and 18X magnification has indicated that band 5 photography provides the most useful interpretable data. In the I2S viewer high intensities of blue and red light in bands 4 and 6 respectively enhance faint vegetation patterns not easily detectable. Slides produced from 35mm color transparencies made by photographing the I2S viewing screen are suitable visual aids for use during presentation. Interpretation of MSS transparencies allowed compilation of a map of land use change in the Phoenix quadrangle.

  11. Land use mapping in Erie County, Pennsylvania: A pilot study

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); May, G. A.

    1974-01-01

    The author has identified the following significant results. A pilot study was conducted to determine the feasibility of mapping land use in the Great Lakes Basin area utilizing ERTS-1 data. Small streams were clearly defined by the presence of trees along their length in predominantly agricultural country. Field patterns were easily differentiated from forested areas; dairy and beef farms were differentiated from other farmlands, but no attempt was made to identify crops. Large railroad lines and major highway systems were identified. The city of Erie and several smaller towns were identified, as well as residential areas between these towns, and docks along the shoreline in Erie. Marshes, forests, and beaches within Presque Isle State Park were correctly identified, using the DCLUS program. Bay water was differentiated from lake water, with a small amount of misclassification.

  12. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; Wolfe, Robert E.; Tilton, James C.

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  13. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  14. The USGS role in mapping the nation's submerged lands

    USGS Publications Warehouse

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  15. [Land use and land cover charnge (LUCC) and landscape service: Evaluation, mapping and modeling].

    PubMed

    Song, Zhang-jian; Cao, Yu; Tan, Yong-zhong; Chen, Xiao-dong; Chen, Xian-peng

    2015-05-01

    Studies on ecosystem service from landscape scale aspect have received increasing attention from researchers all over the world. Compared with ecosystem scale, it should be more suitable to explore the influence of human activities on land use and land cover change (LUCC), and to interpret the mechanisms and processes of sustainable landscape dynamics on landscape scale. Based on comprehensive and systematic analysis of researches on landscape service, this paper firstly discussed basic concepts and classification of landscape service. Then, methods of evaluation, mapping and modeling of landscape service were analyzed and concluded. Finally, future trends for the research on landscape service were proposed. It was put forward that, exploring further connotation and classification system of landscape service, improving methods and quantitative indicators for evaluation, mapping and modelling of landscape service, carrying out long-term integrated researches on landscape pattern-process-service-scale relationships and enhancing the applications of theories and methods on landscape economics and landscape ecology are very important fields of the research on landscape service in future.

  16. Towards the development of a global land chlorophyll content map

    NASA Astrophysics Data System (ADS)

    Dash, Jadunandan; Vuolo, Francesco; Frampton, Will; Curran, Paul; Lajas, Dulce; Kwiatkowska, Ewa

    Canopy chlorophyll content, a product of leaf area index (LAI) and leaf chlorophyll content, is an important variable controlling key vegetation processes such as photosynthesis and gas exchanges. Over the last decade there has been a lot of interest among the scientific community to estimate the biophysical variables such as LAI at global scale to understand the functioning of land vegetation at regional to global scales. These are mainly possible by availability of data from Moderate spatial resolution remote sensing sensors such as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's Medium Resolution Imaging spectrometer (MERIS). At present LAI maps are operationally produced from these sensors, however, till date there was no such map exist for canopy chlorophyll content. This is mainly due to the complexity associated with measuring canopy chlorophyll content at spatially heterogeneous landscapes and limited availability of spectral resolution which can measure the `red edge' position in order to estimate canopy chlorophyll content. However, the development of MERIS Terrestrial chlorophyll Index (MTCI) which exploits the red edge band in the MERIS spectral resolution provided proxy information on canopy chlorophyll content with low values for areas with no vegetation and a maximum value when vegetation is verdant with highest chlorophyll amount. A number of field validation studies suggested a strong linear relationship between the MTCI and canopy chlorophyll content, but the number of sites used so far are not representative of all major vegetation types and therefore are inadequate to convert MTCI values to canopy chlorophyll content. Therefore, the objective of this study is to develop empirical relationships between canopy chlorophyll content and MTCI for major vegetation types to provide a global scale estimate of canopy chlorophyll content. A methodology for the parameterization and validation of retrieval algorithms, based on EN

  17. Evaluation of land use mapping from ERTS in the shore zone of CARETS

    NASA Technical Reports Server (NTRS)

    Dolan, R.; Vincent, L.

    1973-01-01

    Imagery of the Atlantic shoreline zone of the Central Atlantic Regional Ecological Test Site (CARETS) was evaluated for classifying land use and land cover, employing the USGS Geographic Application Program's land use classification system. ERTS data can provide a basis for land cover and land use mapping within the shoreline zone, however because of the dynamic nature of this environment, two additional terms are considered: vulnerability of classes to storms and progressive erosion, and sensitivity of the classes to man's activities.

  18. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  19. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery.

    PubMed

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009

  20. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery.

    PubMed

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications.

  1. Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware coastal zone

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Digital analysis of ERTS-1 imagery was used in an attempt to map and inventory the significant ecological communities of Delaware's coastal zone. Eight vegetation and land use discrimination classes were selected: (1) Phragmites communis (giant reed grass); (2) Spartina alterniflora (salt marsh cord grass); (3) Spartina patens (salt marsh hay); (4) shallow water and exposed mud; (5) deep water (greater than 2 m); (6) forest; (7) agriculture; and (8) exposed sand and concrete. Canonical analysis showed the following classification accuracies: Spartina alterniflora, exposed sand, concrete, and forested land - 94% to 100%; shallow water - mud and deep water - 88% and 93% respectively; Phragmites communis 83%; Spartina patens - 52%. Classification accuracy for agriculture was very poor (51%). Limitations of time and available class-memory space resulted in limiting the analysis of agriculture to very gross identification of a class which actually consists of many varied signature classes. Abundant ground truth was available in the form of vegetation maps compiled from color and color infrared photographs. It is believed that with further refinement of training set selection, sufficiently accurate results can be obtained for all categories.

  2. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery

    PubMed Central

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009

  3. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  4. Topographic Maps: Rediscovering an Accessible Data Source for Land Cover Change Research

    ERIC Educational Resources Information Center

    McChesney, Ron; McSweeney, Kendra

    2005-01-01

    Given some limitations of satellite imagery for the study of land cover change, we draw attention here to a robust and often overlooked data source for use in student research: USGS topographic maps. Topographic maps offer an inexpensive, rapid, and accessible means for students to analyze land cover change over large areas. We demonstrate our…

  5. Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.

    2016-06-01

    High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.

  6. Land use and land cover digital data from 1:250,000- and 1:100,000- scale maps

    USGS Publications Warehouse

    ,

    1990-01-01

    The Earth Science Information Centers (ESIC) distribute digital cartographic/geographic data files produced by the U.S. Geological Survey (USGS) as part of the National Mapping Program. The data files are grouped into four basic types. The first type, called a Digital Line Graph (DLG), is line map information in digital form. These data files include information on planimetric base categories, such as transportation, hydrography, and boundaries. The second type, called a Digital Elevation Model (DEM), consists of a sampled array of elevations for ground positions that are usually at regularly spaced intervals. The third type, Land Use and Land Cover digital data, provide information on nine major classes of land use such as urban, agricultural, or forest as well as associated map data such as political units and Federal land ownership. The fourth type, the Geographic Names Information System, provides primary information for known places, features, and areas in the United States identified by a proper name.

  7. Mapping land use changes in the carboniferous region of Santa Catarina, report 2

    NASA Technical Reports Server (NTRS)

    Valeriano, D. D. (Principal Investigator); Bitencourtpereira, M. D.

    1983-01-01

    The techniques applied to MSS-LANDSAT data in the land-use mapping of Criciuma region (Santa Catarina state, Brazil) are presented along with the results of a classification accuracy estimate tested on the resulting map. The MSS-LANDSAT data digital processing involves noise suppression, features selection and a hybrid classifier. The accuracy test is made through comparisons with aerial photographs of sampled points. The utilization of digital processing to map the classes agricultural lands, forest lands and urban areas is recommended, while the coal refuse areas should be mapped visually.

  8. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  9. A fully automatic tool to perform accurate flood mapping by merging remote sensing imagery and ancillary data

    NASA Astrophysics Data System (ADS)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco; Pasquariello, Guido

    2016-04-01

    Flooding is one of the most frequent and expansive natural hazard. High-resolution flood mapping is an essential step in the monitoring and prevention of inundation hazard, both to gain insight into the processes involved in the generation of flooding events, and from the practical point of view of the precise assessment of inundated areas. Remote sensing data are recognized to be useful in this respect, thanks to the high resolution and regular revisit schedules of state-of-the-art satellites, moreover offering a synoptic overview of the extent of flooding. In particular, Synthetic Aperture Radar (SAR) data present several favorable characteristics for flood mapping, such as their relative insensitivity to the meteorological conditions during acquisitions, as well as the possibility of acquiring independently of solar illumination, thanks to the active nature of the radar sensors [1]. However, flood scenarios are typical examples of complex situations in which different factors have to be considered to provide accurate and robust interpretation of the situation on the ground: the presence of many land cover types, each one with a particular signature in presence of flood, requires modelling the behavior of different objects in the scene in order to associate them to flood or no flood conditions [2]. Generally, the fusion of multi-temporal, multi-sensor, multi-resolution and/or multi-platform Earth observation image data, together with other ancillary information, seems to have a key role in the pursuit of a consistent interpretation of complex scenes. In the case of flooding, distance from the river, terrain elevation, hydrologic information or some combination thereof can add useful information to remote sensing data. Suitable methods, able to manage and merge different kind of data, are so particularly needed. In this work, a fully automatic tool, based on Bayesian Networks (BNs) [3] and able to perform data fusion, is presented. It supplies flood maps

  10. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  11. How Accurate is Land/Ocean Moisture Transport Variability in Reanalyses?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Bosilovich, M. G.

    2014-01-01

    Quantifying the global hydrological cycle and its variability across various time scales remains a challenge to the climate community. Direct measurements of evaporation (E), evapotranspiration (ET), and precipitation (P) are not feasible on a global scale, nor is the transport of water vapor over the global oceans and sparsely populated land areas. Expanding satellite data streams have enabled development of various water (and energy) flux products, complementing reanalyses and facilitating observationally constrained modeling. But the evolution of the global observing system has produced additional complications--improvements in satellite sensor resolution and accuracy have resulted in "epochs" of observational quasi-uniformity that can adversely affect reanalysis trends. In this work we focus on vertically integrated moisture flux convergence (VMFC) variations within the period 1979 - present integrated over global land. We show that VMFC in recent reanalyses (e.g. ERA-I, NASA MERRA, NOAA CFSR and JRA55) suffers from observing system changes, though differently in each product. Land Surface Models (LSMs) forced with observations-based precipitation, radiation and near-surface meteorology share closely the interannual P-ET variations of the reanalyses associated with ENSO events. (VMFC over land and P-ET estimates are equivalent quantities since atmospheric storage changes are small on these scales.) But the long-term LSM trend over the period since 1979 is approximately one-fourth that of the reanalyses. Additional reduced observation reanalyses assimilating only surface pressure and /or specifying seasurface temperature also have a much smaller trend in P-ET like the LSMs. We explore the regional manifestation of the reanalysis P-ET / VMFC problems, particularly over land. Both principal component analysis and a simple time series changepoint analysis highlight problems associated with data poor regions such as Equatorial Africa and, for one reanalysis, the

  12. A methodology to generate a synergetic land-cover map by fusion of different land-cover products

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, A.; García-Haro, F. J.; San-Miguel-Ayanz, J.

    2012-10-01

    The main goal of this study is to develop a general framework for building a hybrid land-cover map by the synergistic combination of a number of land-cover classifications with different legends and spatial resolutions. The proposed approach assesses class-specific accuracies of datasets and establishes affinity between thematic legends using a common land-cover language such as the UN Land-Cover Classification System (LCCS). The approach is illustrated over a large region in Europe using four land-cover datasets (CORINE, GLC2000, MODIS and GlobCover), but it can be applied to any set of existing products. The multi-classification map is expected to improve the performance of individual classifications by reconciling their best characteristics while avoiding their main weaknesses. The intermap comparison reveals improved agreement of the hybrid map with all other land-cover products and therefore indicates the successful exploration of synergies between the different products. The approach offers also estimates for the classification confidence associated with the pixel label and flexibility to shift the balance between commission and omission errors, which are critical in order to obtain a desired reliable map.

  13. Narrative Mappings of the Land as Space and Place in Willa Cather's "O Pioneers!"

    ERIC Educational Resources Information Center

    Ramirez, Karen E.

    2010-01-01

    At the conclusion of Willa Cather's 1913 novel "O Pioneers!", Alexandra Bergson muses about landownership, and more broadly about the human-land relationship, by reflecting on the transience of the county plat map, one of the most popular forms of mapping rural America in the late nineteenth and early twentieth centuries. These maps were not only…

  14. The potential of Landsat-3 RBV images for thematic mapping. [geomorphological, geological and land cover applications

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1980-01-01

    The potential of Return Beam Vidicon (RBV) imagery from Landsat-3 is discussed for thematic mapping. The advantages of the imagery arising from its high spatial resolution are described as well as the restrictions stemming from its limited spectral characteristics. The principal application areas discussed are geomorphological and geological mapping and land cover mapping.

  15. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  16. Synergistic application of geometric and radiometric features of LiDAR data for urban land cover mapping.

    PubMed

    Qin, Yuchu; Li, Shihua; Vu, Tuong-Thuy; Niu, Zheng; Ban, Yifang

    2015-06-01

    Urban land cover map is essential for urban planning, environmental studies and management. This paper aims to demonstrate the potential of geometric and radiometric features derived from LiDAR waveform and point cloud data in urban land cover mapping with both parametric and non-parametric classification algorithms. Small footprint LiDAR waveform data acquired by RIEGL LMS-Q560 in Zhangye city, China is used in this study. A LiDAR processing chain is applied to perform waveform decomposition, range determination and radiometric characterization. With the synergic utilization of geometric and radiometric features derived from LiDAR data, urban land cover classification is then conducted using the Maximum Likelihood Classification (MLC), Support Vector Machines (SVM) and random forest algorithms. The results suggest that the random forest classifier achieved the most accurate result with overall classification accuracy of 91.82% and the kappa coefficient of 0.88. The overall accuracies of MLC and SVM are 84.02, and 88.48, respectively. The study suggest that the synergic utilization of geometric and radiometric features derived from LiDAR data can be efficiently used for urban land cover mapping, the non-parametric random forest classifier is a promising approach for the various features with different physical meanings.

  17. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  18. REVIEW: Accuracies of Global Land Cover Maps Checked against Fluxnet Sites

    NASA Astrophysics Data System (ADS)

    Gong, Peng

    2008-01-01

    Global land cover data products are key sources of information in understanding the complex interactions between human activities and global change. They play a critical role in improving performances of ecosystem, hydrological and atmospheric models. Three freely available global land cover products developed in the United States are popularly used by the scientific community. These include two global maps developed separately by the United States Geological Survey (USGS) and the University of Maryland (UMD) with NOAA Advanced Very High Resolution Radiometer (AVHRR) data, and one developed by Boston University with the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) data. They are compared with known land cover types at 250 available Fluxnet sites around the world. The overall accuracies are 37%, 36% and 42%, respectively for the USGS, UMD and Boston global land cover maps. Some future global land cover mapping strategies are suggested.

  19. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    USGS Publications Warehouse

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim: Our aim was to produce a uniform 'regional' land-cover map of South and Southeast Asia based on 'sub-regional' mapping results generated in the context of the Global Land Cover 2000 project. Location: The 'region' of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east. Methods: The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998-2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories 'forest' and 'cropland'. Results: The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of 'forest' and 'cropland'; regional area estimates for these classes correspond reasonably well to existing regional statistics. Main conclusions: The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub-tropical Asia, and it delivers

  20. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Giri, Chandra

    2015-05-01

    Land cover is an important variable for many studies involving the Earth surface, such as climate, food security, hydrology, soil erosion, atmospheric quality, conservation biology, and plant functioning. Land cover not only changes with human caused land use changes, but also changes with nature. Therefore, the state of land cover is highly dynamic. In winter snow shields underneath various other land cover types in higher latitudes. Floods may persist for a long period in a year over low land areas in the tropical and subtropical regions. Forest maybe burnt or clear cut in a few days and changes to bare land. Within several months, the coverage of crops may vary from bare land to nearly 100% crops and then back to bare land following harvest. The highly dynamic nature of land cover creates a challenge in mapping and monitoring which remains to be adequately addressed. As economic globalization continues to intensify, there is an increasing trend of land cover/land use change, environmental pollution, land degradation, biodiversity loss at the global scale, timely and reliable information on global land cover and its changes is urgently needed to mitigate the negative impact of global environment change.

  1. Producing Alaska interim land cover maps from Landsat digital and ancillary data

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, Eileen Flanagan; Shasby, Mark; Loveland, Thomas R.; Benjamin, Susan

    1987-01-01

    In 1985, the U.S. Geological Survey initiated a research program to produce 1:250,000-scale land cover maps of Alaska using digital Landsat multispectral scanner data and ancillary data and to evaluate the potential of establishing a statewide land cover mapping program using this approach. The geometrically corrected and resampled Landsat pixel data are registered to a Universal Transverse Mercator (UTM) projection, along with arc-second digital elevation model data used as an aid in the final computer classification. Areas summaries of the land cover classes are extracted by merging the Landsat digital classification files with the U.S. Bureau of Land Management's Public Land Survey digital file. Registration of the digital land cover data is verified and control points are identified so that a laser plotter can products screened film separate for printing the classification data at map scale directly from the digital file. The final land cover classification is retained both as a color map at 1:250,000 scale registered to the U.S. Geological Survey base map, with area summaries by township and range on the reverse, and as a digital file where it may be used as a category in a geographic information system.

  2. ERTS-1 imagery interpretation techniques in the Tennessee Valley. [land use and soil mapping

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The feasibility of delineating major soil associations and land uses through computerized analyses is discussed. Useful and potential applications in detecting landscape change and land use mapping are described. Recommendations for improving the data processing effort in a multidisciplinary program are presented.

  3. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  4. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  5. ERTS-1 applications to Minnesota land use mapping

    NASA Technical Reports Server (NTRS)

    Brown, D.; Gamble, J.; Prestin, S.; Trippler, D.; Meyer, M. P.; Ulliman, J. J.; Eller, R. G.

    1973-01-01

    Land use class definitions that can be operationally employed with ERTS-1 imagery are being developed with the cooperation of personnel from several state, regional, and federal agencies with land management responsibilities within the state and the University of Minnesota. Investigations of urban, extractive, forest, and wetlands areas indicate that it is feasible to subdivide each of these classes into several sub-classes with the use of ERTS-1 images from one or more time periods.

  6. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  7. Orbital-science investigation: Part K: geologic sketch map of the candidate Proclus Apollo landing site

    USGS Publications Warehouse

    Lucchitta, Baerbel Koesters

    1972-01-01

    A panoramic camera frame (fig. 25-69) was used as the base for a geologic sketch map (fig. 25-70) of an area near Proclus Crater. The map was prepared to investigate the usefulness of the Apollo 15 panoramic camera photography in large-scale geologic mapping and to assess the geologic value of this area as a potential Apollo landing site. The area is being considered as a landing site because of the availability of smooth plains terrain and because of the scientific value of investigating plains materials, dark halo craters, and ancient rocks that may be present in the Proclus ray material.

  8. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  9. Mapping ecosystem services for land use planning, the case of Central Kalimantan.

    PubMed

    Sumarga, Elham; Hein, Lars

    2014-07-01

    Indonesia is subject to rapid land use change. One of the main causes for the conversion of land is the rapid expansion of the oil palm sector. Land use change involves a progressive loss of forest cover, with major impacts on biodiversity and global CO2 emissions. Ecosystem services have been proposed as a concept that would facilitate the identification of sustainable land management options, however, the scale of land conversion and its spatial diversity pose particular challenges in Indonesia. The objective of this paper is to analyze how ecosystem services can be mapped at the provincial scale, focusing on Central Kalimantan, and to examine how ecosystem services maps can be used for a land use planning. Central Kalimantan is subject to rapid deforestation including the loss of peatland forests and the provincial still lacks a comprehensive land use plan. We examine how seven key ecosystem services can be mapped and modeled at the provincial scale, using a variety of models, and how large scale ecosystem services maps can support the identification of options for sustainable expansion of palm oil production.

  10. Mapping ecosystem services for land use planning, the case of Central Kalimantan.

    PubMed

    Sumarga, Elham; Hein, Lars

    2014-07-01

    Indonesia is subject to rapid land use change. One of the main causes for the conversion of land is the rapid expansion of the oil palm sector. Land use change involves a progressive loss of forest cover, with major impacts on biodiversity and global CO2 emissions. Ecosystem services have been proposed as a concept that would facilitate the identification of sustainable land management options, however, the scale of land conversion and its spatial diversity pose particular challenges in Indonesia. The objective of this paper is to analyze how ecosystem services can be mapped at the provincial scale, focusing on Central Kalimantan, and to examine how ecosystem services maps can be used for a land use planning. Central Kalimantan is subject to rapid deforestation including the loss of peatland forests and the provincial still lacks a comprehensive land use plan. We examine how seven key ecosystem services can be mapped and modeled at the provincial scale, using a variety of models, and how large scale ecosystem services maps can support the identification of options for sustainable expansion of palm oil production. PMID:24794194

  11. Application of LANDSAT and Skylab data for land use mapping in Italy. [emphasizing the Alps Mountains

    NASA Technical Reports Server (NTRS)

    Bodechtel, J.; Nithack, J.; Dibernardo, G.; Hiller, K.; Jaskolla, F.; Smolka, A.

    1975-01-01

    Utilizing LANDSAT and Skylab multispectral imagery of 1972 and 1973, a land use map of the mountainous regions of Italy was evaluated at a scale of 1:250,000. Seven level I categories were identified by conventional methods of photointerpretation. Images of multispectral scanner (MSS) bands 5 and 7, or equivalents were mainly used. Areas of less than 200 by 200 m were classified and standard procedures were established for interpretation of multispectral satellite imagery. Land use maps were produced for central and southern Europe indicating that the existing land use maps could be updated and optimized. The complexity of European land use patterns, the intensive morphology of young mountain ranges, and time-cost calculations are the reasons that the applied conventional techniques are superior to automatic evaluation.

  12. Mapping of land cover in Northern California with simulated HyspIRI images

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2014-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (i.e., full range) of the spectrum have shown improved capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a full-range hyperspectral and thermal satellite being considered for development by NASA (hyspiri.jpl.nasa.gov). A hyperspectral satellite, such as HyspIRI, will provide detailed spectral and temporal information at global scales that could greatly improve our ability to map land cover with greater class detail and spatial and temporal accuracy than possible with conventional multispectral satellites. The broad goal of our research is to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping across a range of environmental and anthropogenic gradients in California. In this study, we mapped FAO Land Cover Classification System (LCCS) classes over 30,000 km2 in Northern California using multi-temporal HyspIRI imagery simulated from the AVIRIS airborne sensor. The Random Forests classification was applied to predictor variables derived from the multi-temporal hyperspectral data and accuracies were compared to that from Landsat 8 OLI. Results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different forest life-form types, such as mixed conifer and broadleaf forests and open- and closed-canopy forests.

  13. Development of New Accurate, High Resolution DEMs and Merged Topographic-Bathymetric Grids for Inundation Mapping in Seward Alaska

    NASA Astrophysics Data System (ADS)

    Marriott, D.; Suleimani, E.; Hansen, R.

    2004-05-01

    The Geophysical Institute of the University of Alaska Fairbanks and the Alaska Division of Geological and Geophysical Surveys continue to participate in the National Tsunami Hazard Mitigation Program by evaluating and mapping potential inundation of selected coastal communities in Alaska. Seward, the next Alaskan community to be mapped, has excellent bathymetric data but very poor topographic data available. Since one of the most significant sources of errors in tsunami inundation mapping is inaccuracy of topographic and bathymetric data, the Alaska Tsunami Modeling Team cooperated with the local USGS glaciology office to perform photogrammetry in the Seward area to produce a new DEM. Using ten air photos and the APEX photogrammetry and analysis software, along with several precisely located GPS points, we developed a new georeferenced and highly accurate DEM with a 5-meter grid spacing. A variety of techniques were used to remove the effects of buildings and trees to yield a bald earth model. Finally, we resampled the new DEM to match the finest resolution model grid, and combined it with all other data, using the most recent and accurate data in each region. The new dataset has contours that deviate by more than 100 meters in some places from the contours in the previous dataset, showing significant improvement in accuracy for the purpose of tsunami modeling.

  14. Mapping cultivable land from satellite imagery with clustering algorithms

    NASA Astrophysics Data System (ADS)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  15. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  16. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer Models.

    PubMed

    O'Connor, James P B; Boult, Jessica K R; Jamin, Yann; Babur, Muhammad; Finegan, Katherine G; Williams, Kaye J; Little, Ross A; Jackson, Alan; Parker, Geoff J M; Reynolds, Andrew R; Waterton, John C; Robinson, Simon P

    2016-02-15

    There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.

  17. Watershed-scale land-use mapping with satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite remote sensing data has many advantages compared with other data sources, such as field methods and aerial photography, for land cover classification. In particular,it is useful in evaluating temporal and spatial effects. In addition, remote sensing can offer a cost-effective means of prov...

  18. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  19. Identification, definition and mapping of terrestrial ecosystems in interior Alaska. [vegetation, land use, glaciology

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The vegetation map in preparation at the time of the last report was refined and labeled. This map is presented as an indication of the spatial and classificatory detail possible from interpretations of enlarged ERTS-1 color photographs. Using this map, areas covered by the several vegetation types characterized by white spruce were determined by planimetry. A 1:63,360 scale land use map of the Juneau area was drawn. This map incorporates the land use classification system now under development by the U.S. Geological Survey. The ERTS-1 images used in making the Juneau map were used to determine changes in surface area of the terminal zones of advancing and receding glaciers, the Taku, Norris, and Mendenhall. A new 1:63,360 scale land use map of the Bonanza Creek Experimental Forest and vicinity was drawn. Several excellent new sciences of test areas were received from NASA in color-infrared transparency format. These are being used for making photographic prints for analysis and mapping according to procedures outlined in this report.

  20. Mapping of land use changes in Poland using Earth observation data

    NASA Astrophysics Data System (ADS)

    Ciolkosz, A.

    2012-06-01

    Mapping of land use for the needs of reconstruction of the country was one of the main tasks of the Head Office of the Land Surveying set up after the Second World War. Up to present day such map has not been made despite of many attempts and the high demand for this type of map primarily by the spatial economy. The main reason was the lack of raw materials and high cost of f eld works. The situation changed with the launch of Landsat satellite. Images taken by this satellite were used for the preparation of land use map covering the entire country. They were also used to compilation the land cover databases developed within the three CORINE Land Cover (CLC) projects in 1990, 2000 and 2006. Comparison of these databases allowed an analysis of land use changes occurred within 16 years. These changes were relatively small, far below expectations. CLC database was also compared with a map of land use developed on the basis of topographic maps from the 1930's. The comparison showed changes that have occurred on the surface representing almost 10% of the total area of the country. They reveal both some effects of hostilities, the current expansion of the country, as well as the effects of natural disasters which hit Poland in recent years. Images taken by Landsat have also been applied to study the damage of forests in the Sudety Mountains. Several degrees of damage to spruce stands have been distinguished on the basis of satellite images. They were also used to study the development of brown coal mine and its impact on dropping the groundwater level in the vicinity of mine as well as to determine the development of Warsaw built-up areas in the last 80 years.

  1. Fast and accurate read mapping with approximate seeds and multiple backtracking

    PubMed Central

    Siragusa, Enrico; Weese, David; Reinert, Knut

    2013-01-01

    We present Masai, a read mapper representing the state-of-the-art in terms of speed and accuracy. Our tool is an order of magnitude faster than RazerS 3 and mrFAST, 2–4 times faster and more accurate than Bowtie 2 and BWA. The novelties of our read mapper are filtration with approximate seeds and a method for multiple backtracking. Approximate seeds, compared with exact seeds, increase filtration specificity while preserving sensitivity. Multiple backtracking amortizes the cost of searching a large set of seeds by taking advantage of the repetitiveness of next-generation sequencing data. Combined together, these two methods significantly speed up approximate search on genomic data sets. Masai is implemented in C++ using the SeqAn library. The source code is distributed under the BSD license and binaries for Linux, Mac OS X and Windows can be freely downloaded from http://www.seqan.de/projects/masai. PMID:23358824

  2. Accurate multi-source forest species mapping using the multiple spectral-spatial classification approach

    NASA Astrophysics Data System (ADS)

    Stavrakoudis, Dimitris; Gitas, Ioannis; Karydas, Christos; Kolokoussis, Polychronis; Karathanassi, Vassilia

    2015-10-01

    This paper proposes an efficient methodology for combining multiple remotely sensed imagery, in order to increase the classification accuracy in complex forest species mapping tasks. The proposed scheme follows a decision fusion approach, whereby each image is first classified separately by means of a pixel-wise Fuzzy-Output Support Vector Machine (FO-SVM) classifier. Subsequently, the multiple results are fused according to the so-called multiple spectral- spatial classifier using the minimum spanning forest (MSSC-MSF) approach, which constitutes an effective post-regularization procedure for enhancing the result of a single pixel-based classification. For this purpose, the original MSSC-MSF has been extended in order to handle multiple classifications. In particular, the fuzzy outputs of the pixel-based classifiers are stacked and used to grow the MSF, whereas the markers are also determined considering both classifications. The proposed methodology has been tested on a challenging forest species mapping task in northern Greece, considering a multispectral (GeoEye) and a hyper-spectral (CASI) image. The pixel-wise classifications resulted in overall accuracies (OA) of 68.71% for the GeoEye and 77.95% for the CASI images, respectively. Both of them are characterized by high levels of speckle noise. Applying the proposed multi-source MSSC-MSF fusion, the OA climbs to 90.86%, which is attributed both to the ability of MSSC-MSF to tackle the salt-and-pepper effect, as well as the fact that the fusion approach exploits the relative advantages of both information sources.

  3. Assessing the potential of Landsat images to detect and map agricultural land abandonment in Kyzyl-Orda (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Fliemann, Elisabeth; Löw, Fabian; Conrad, Christopher

    2014-05-01

    Land degradation and agricultural land abandonment in the irrigated areas of Central Asia became widespread, in particular after the collapse of the former Soviet Union. It has strong socio-economic and ecological consequences, but unfortunately data and methods to map and monitor abandoned agriculture accurately over many regions in CA, e.g. Kyzyl-Orda in Kazakhstan, are still lacking. Remote sensing (RS) can potentially fill this gap, yet RS detection of agricultural land abandonment, most often characterized by shrub encroachment, is difficult and requires the availability of multiple images during the growing season. Also, sufficient reference data must be available for accurate classifier algorithm training. Hence the major aims of this study were to elaborate the effect of the number of Landsat-5 TM images on the accuracy of classification of land abandonment, and further how the choice of classifier algorithm (Random Forest and Support Vector Machine) and amount of training data affect the accuracy of the results. Multi-seasonal time series of Landsat-5 TM images were classified in pre-abandonment-time (1988) and post-abandonment-times (2000, 2009, 2010, 2011). Five images per year were used as classification input. Generally both algorithms performed equally well, and classification accuracies ranged from 84% to 91%. Classifications with fewer than five image dates resulted in a substantial decreases of overall classification accuracies (from 91% to 66%). Next to the number of images the seasons captured also had an impact. In general, the best image combination contained at least one image in late summer, plus another image in spring. In general, the choice of images (number and season) had a much stronger impact on the results than the choice of the classifier algorithm. The five multi-annual classifications resulted in a temporal sequence of five land uses for each agricultural field, which allowed to back-trace land use change between 1988 and 2011

  4. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    NASA Technical Reports Server (NTRS)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  5. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-04-01

    Detailed data on land use and land cover constitutes important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly, however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in an agricultural mosaic catchment Haean, South Korea. We recorded the land cover types with additional information on agricultural practice and make this data available at the public repository Pangaea (doi:10.1594/PANGAEA.823677). In this paper we introduce the data, its collection and the post-processing protocol. During the studied period, a large portion of dry fields was converted to perennial crops. A comparison between our dataset and MODIS Land Cover Type (MCD12Q1) suggested that the MODIS product was restricted in this area since it does not distinguish irrigated fields from general croplands. In addition, linear landscape elements such as water bodies were not detected in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.

  6. Airborne Multispectral LIDAR Data for Land-Cover Classification and Land/water Mapping Using Different Spectral Indexes

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. E.

    2016-06-01

    Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and landwater mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes (NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared (MIR): 1550 nm by the world's first airborne multispectral LiDAR sensor "Optech Titan". The Jenks natural breaks optimization method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of returns from different wavelengths, thus the overall accuracy is improved to 96.98%.

  7. Arctic National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1986-01-01

    Section 1002 of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA, 1980) requires the Secretary of Interior to conduct a continuing study of fish, wildlife, and habitats on the coastal plain of the Arctic National Wildlife Refuge (ANWR). Included in this study is a determination of the extent, location, and carrying capacity of fish and wildlife habitats.

  8. MAPPING SPATIAL ACCURACY AND ESTIMATING LANDSCAPE INDICATORS FROM THEMATIC LAND COVER MAPS USING FUZZY SET THEORY

    EPA Science Inventory

    The accuracy of thematic map products is not spatially homogenous, but instead variable across most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic map accuracy would provide valuable user information for assessing appropriate applic...

  9. Development and Applications of a Comprehensive Land Use Classification and Map for the US

    PubMed Central

    Theobald, David M.

    2014-01-01

    Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

  10. Development and applications of a comprehensive land use classification and map for the US.

    PubMed

    Theobald, David M

    2014-01-01

    Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets--predominantly based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

  11. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    NASA Astrophysics Data System (ADS)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  12. Analyses of selected Maps of Czech Lands from the Period 1518 - 1720

    NASA Astrophysics Data System (ADS)

    Bayer, T. B.; Potůčková, M. P.; Čábelka, M. Č.

    2009-04-01

    Preliminary results of research on old maps of Czech Lands deposited at the Map Collection of Charles University (CU) in Prague are presented. The extensive cartographic collection belongs among the most important collections in the Czech Republic. Maps of Czech Lands, i.e. Bohemia, Moravia and Silesia, created by individuals in the period of 1518 - 1720 are part of our history and represent important cultural heritage of immense value. They give evidence about the period in which they originated. The goal of the research is to document the development of cartography during the period 1518 (Claudianus's map) to 1720 (Müller's map). More than 50 originals or facsimiles of different maps were found in the Map Collection of CU during inventory phase of the work. This paper concentrates on a description of most interesting maps discovered from the point of view of their content, map symbols and cartometric characteristics. The research is conducted within the project "Cartometric and semiotic analysis and visualization of the old Czech Lands maps in the period 1518 - 1720". The analysis of map content can provide us with answers to other relevant questions related to analysis and assessment of maps. Similarly to modern maps, old maps also include some map elements which were becoming more and more precise with the development of cartography and geodesy. The map research then centered on the analysis of the map content and on cartometric analysis using modern computation methods. The obtained results of the research will be described and compared with information presented in historical and cartographic studies of the last decades. Cartometric analyses of the map are important. They verify cartographic parameters of the map. The following cartometric analysis will be carried out: positional accuracy of the map, calculation of the map scale, calculation of the rotation of the map. The methodology of cartometric analysis used in this article is based on comparing a

  13. Sensor Integration in a Low Cost Land Mobile Mapping System

    PubMed Central

    Madeira, Sergio; Gonçalves, José A.; Bastos, Luísa

    2012-01-01

    Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved. PMID:22736985

  14. Mapping Deforestation and Land Use in Amazon Rainforest Using SAR-C Imagery

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Soares, Joao Vianei; Alves, Diogenes Salas

    1996-01-01

    Land use changes and deforestation in tropical rainforests are among the major factors affecting the overall function of the global environment. To routinely assess the spatial extend and temporal dynamics of these changes has become an important challenge in several scientific disciplines such as climate and environmental studies. In this paper, the feasibility of using polarimetric spaceborne SAR data in mapping land cover types in the Amazon is studied.

  15. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  16. Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware Bay area

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Vegetation map overlays at a scale of 1:24,000 compiled by multispectral analysis from NASA aircraft imagery for all of Delaware's wetlands are being used as ground truth for ERTS-1 mapping and by state agencies for wetlands management. Six major vegetation species were discriminated and mapped, including percentages of minor species. Analogue enhancements of wetlands vegetation and dredge-fill operations have been produced using General Electric's GEMS data processing and ERTS-1 false color composites. Digital, thematic land use, and vegetation mapping of entire Delaware Bay area is in progress using Bendix Corporation's Earth Resources Data System and ERTS-1 digital tapes. Statistical evaluation of target-group selection reliability has been completed. Three papers have been published on ERTS-1 coastal vegetation and land use. Local and state officials are participating in the ERTS-1 program as co-investigators.

  17. Guidance augmentation for reducing uncertainty in vision-based hazard mapping during lunar landing

    NASA Astrophysics Data System (ADS)

    Crane, E. S.; Rock, S. M.

    A new guidance augmentation scheme, which generates information-seeking trajectory adjustments, is shown to produce improvements in hazard mapping during autonomous lunar landing. This approach utilizes previously developed techniques for detecting hazard objects from images and an Extended Kalman Filter recursive estimation framework in order to create an occupancy grid representation of the hazards in the landing area. The guidance augmentation is driven by a model-predictive scheme which uses predictions of map entropy and fuel usage in order to generate information-seeking acceleration commands which are combined with the targeting capability of Modified Apollo Guidance. An overview of the algorithmic steps required to adjust the trajectory and predict mapping performance and fuel costs are presented. Hazard maps generated using the online information-seeking trajectory adjustments show significant improvement over un-adjusted trajectories where the hazard image data collected is only incidental.

  18. Web Mapping for Promoting Interaction and Collaboration in Community Land Planning

    NASA Astrophysics Data System (ADS)

    Veenendaal, B.; Dhliwayo, M.

    2013-10-01

    There is an inherent advantage of geographic information Systems (GIS) and mapping in facilitating dialogue between experts and non-experts during land use plan development. Combining visual mapping information and effective user interaction can result in considerable benefits for developing countries like Botswana. Although the adoption of information and communication technologies has lagged behind that for developed countries, initiatives by the Botswana government in providing suitable information infrastructures, including internet and web based communications, are enabling multiple users to interact and collaborate in community land planning. A web mapping application was developed for the Maun Development Plan (MDP) in the Okavango Delta region in Botswana. It was designed according to requirements of land planners and managers and implemented using ArcGIS Viewer for Flex. Land planners and managers from two organisations in Maun involved in the development of the MDP were asked to evaluate the web mapping tools. This paper describes the results of implementation and some preliminary results of the web mapping evaluation.

  19. Research on Integrated Mapping——A Case Study of Integrated Land Use with Swamp Mapping

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yan, F.; Chang, L.

    2015-12-01

    Unified real estate registration system shows the attention, determination and effort to of CPC Central Committee and State Council on real estate registration in China. However, under current situation, China's real estate registration work made less progress. One of the reasons is that it's hard to express the property right of real estate on one map under the multi-sector management system. Under current multi-sector management system in China, different departments usually just survey and mapping the land type under its jurisdiction. For example, wetland investigation only mapping all kinds of wetland resources but not mapping other resource types. As a result, it cause he problem of coincidence or leak in integration of different results from different departments. As resources of the earth's surface, the total area of forest, grassland, wetland and so on should be equal to the total area of the earth's surface area. However, under the current system, the area of all kinds of resources is not equal to the sum of the earth's surface. Therefore, it is of great importance to express all the resources on one map. On one hand, this is conducive to find out the real area and distribution of resources and avoid the problem of coincidence or leak in integration; On the other hand, it is helpful to study the dynamic change of different resources. Therefore, we first proposed the "integrated mapping" as a solution, and take integrated land use with swamp mapping in Northeast China as an example to investigate the feasibility and difficulty. Study showed that: integrated land use with swamp mapping can be achieved through combining land use survey standards with swamps survey standards and "second mapping" program. Based on the experience of integrated land use with swamp mapping, we point out its reference function on integrated mapping and unified real estate registration system. We concluded that: (1) Comprehending and integrating different survey standard of

  20. Vegetation database for land-cover mapping, Clark and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Charlet, David A.; Damar, Nancy A.; Leary, Patrick J.

    2014-01-01

    Floristic and other vegetation data were collected at 3,175 sample sites to support land-cover mapping projects in Clark and Lincoln Counties, Nevada, from 2007 to 2013. Data were collected at sample sites that were selected to fulfill mapping priorities by one of two different plot sampling approaches. Samples were described at the stand level and classified into the National Vegetation Classification hierarchy at the alliance level and above. The vegetation database is presented in geospatial and tabular formats.

  1. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  2. Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis

    2016-08-01

    Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band

  3. Development of a Land Use Mapping and Monitoring Protocol for the High Plains Region: A Multitemporal Remote Sensing Application

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Nellis, M. Duane

    1996-01-01

    The purpose of this project was to develop a practical protocol that employs multitemporal remotely sensed imagery, integrated with environmental parameters to model and monitor agricultural and natural resources in the High Plains Region of the United States. The value of this project would be extended throughout the region via workshops targeted at carefully selected audiences and designed to transfer remote sensing technology and the methods and applications developed. Implementation of such a protocol using remotely sensed satellite imagery is critical for addressing many issues of regional importance, including: (1) Prediction of rural land use/land cover (LULC) categories within a region; (2) Use of rural LULC maps for successive years to monitor change; (3) Crop types derived from LULC maps as important inputs to water consumption models; (4) Early prediction of crop yields; (5) Multi-date maps of crop types to monitor patterns related to crop change; (6) Knowledge of crop types to monitor condition and improve prediction of crop yield; (7) More precise models of crop types and conditions to improve agricultural economic forecasts; (8;) Prediction of biomass for estimating vegetation production, soil protection from erosion forces, nonpoint source pollution, wildlife habitat quality and other related factors; (9) Crop type and condition information to more accurately predict production of biogeochemicals such as CO2, CH4, and other greenhouse gases that are inputs to global climate models; (10) Provide information regarding limiting factors (i.e., economic constraints of pumping, fertilizing, etc.) used in conjunction with other factors, such as changes in climate for predicting changes in rural LULC; (11) Accurate prediction of rural LULC used to assess the effectiveness of government programs such as the U.S. Soil Conservation Service (SCS) Conservation Reserve Program; and (12) Prediction of water demand based on rural LULC that can be related to rates of

  4. Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use

    NASA Astrophysics Data System (ADS)

    Cerreta, M.; De Toro, P.

    2012-11-01

    Recent developments in land consumption assessment identify the need to implement integrated evaluation approaches, with particular attention to the development of multidimensional tools for guiding and managing sustainable land use. Land use policy decisions are implemented mostly through spatial planning and its related zoning. This involves trade-offs between many sectorial interests and conflicting challenges seeking win-win solutions. In order to identify a decision-making process for land use allocation, this paper proposes a methodological approach for developing a Dynamic Spatial Decision Support System (DSDSS), denominated Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with the Analytic Hierarchy Process (AHP). Through empirical investigation in an operative case study, an integrated evaluation approach implemented in a DSDSS helps produce "urbanization suitability maps" in which spatial analysis combined with multi-criteria evaluation methods proved to be useful for both facing the main issues relating to land consumption as well as minimizing environmental impacts of spatial planning.

  5. An Exploration of Hyperion Hyperspectral Imagery Combined with Different Supervised Classification Approaches Towards Obtaining More Accurate Land Use/Cover Cartography

    NASA Astrophysics Data System (ADS)

    Igityan, Nune

    2014-05-01

    Land use and land cover (LULC) constitutes a key variable of the Earth's system that has in general shown a close correlation with human activities and the physical environment. Describing the pattern and the spatial distribution of LULC is traditionally based on remote sensing data analysis and, evidently, one of the most commonly techniques applied has been image classification. The main objective of the present study has been to evaluate the combined use of Hyperion hyperspectral imagery with a range of supervised classification algorithms widely available today for discriminating LULC classes in a typical Mediterranean setting. Accuracy assessment of the derived thematic maps was based on the analysis of the classification confusion matrix statistics computed for each classification map, using for consistency the same set of validation points. Those were selected on the basis of photo-interpretation of high resolution aerial imagery and of panchromatic imagery available for the studied region at the time of the Hyperion overpass. Results indicated close classification accuracy between the different classifiers with the SVMs outperforming the other classification approaches. The higher classification accuracy by SVMs was attributed principally to the ability of this classifier to identify an optimal separating hyperplane for classes' separation which allows a low generalisation error, thus producing the best possible classes' separation. Although all classifiers produced close results, SVMs generally appeared most useful in describing the spatial distribution and the cover density of each land cover category. All in all, this study demonstrated that, provided that a Hyperion hyperspectral imagery can be made available at regular time intervals over a given region, when combined with SVMs classifiers, can potentially enable a wider approach in land use/cover mapping. This can be of particular importance, especially for regions like in the Mediterranean basin

  6. Combining land use data acquired from Landsat with soil map data

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Brandner, T. M.

    1981-01-01

    A method currently used to derive agrophysical units (APUs), i.e., geographical areas having definable/comparable agronomic and physical parameters which reflect a range in agricultural use and management, is discussed with reference to results obtained for South Dakota and an area in China. The method consists of combining agricultural land use data acquired from Landsat with soil map data. The resulting map units are soil associations characterized by cropland use intensity, and they can be used to identify major cropland areas and to develop a rating reflecting the relative potential of the soils in the delineated area for crop production, as well as to update small-scale soil maps.

  7. Biodiversity Pressure Maps to evaluate the impact of land use and land cover change on Endangered Ecological Communities

    NASA Astrophysics Data System (ADS)

    Chisholm, L. A.; Gill, N.

    2014-12-01

    The dynamics of biodiversity are associated with human activities such as land use and land cover change (LULCC). An integrated spatial approach to identify the effects of LULCC is helpful to determine the impact or pressure of human activities on biodiversity. The concept of creating 'biodiversity pressure maps' includes the use of spatial technologies (remote sensing, GIS) over time on areas of sensitivity, for example, areas classified as endangered ecological communities (EEC). The use of a cross-tabulation matrix often forms the basis of creating pressure maps, yet spatial datasets appropriate as input are not always available. The focus of this study was to investigate and evaluate spatial datasets and cross-tabulation techniques useful for producing biodiversity pressure maps. A method will be presented in the form of a case study for an area in the Shoalhaven Local Government Area on the south coast of NSW, Australia. This area is a focus of investigation of the spatial distribution of invasive plants and landholder management practices.

  8. APPLICATION OF A "VITURAL FIELD REFERENCE DATABASE" TO ASSESS LAND-COVER MAP ACCURACIES

    EPA Science Inventory

    An accuracy assessment was performed for the Neuse River Basin, NC land-cover/use
    (LCLU) mapping results using a "Virtual Field Reference Database (VFRDB)". The VFRDB was developed using field measurement and digital imagery (camera) data collected at 1,409 sites over a perio...

  9. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    PubMed

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. PMID:22658682

  10. Mapping Land Cover Types in Amazon Basin Using 1km JERS-1 Mosaic

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan S.; Nelson, Bruce; Podest, Erika; Holt, John

    2000-01-01

    In this paper, the 100 meter JERS-1 Amazon mosaic image was used in a new classifier to generate a I km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages: 1) a supervised maximum a posteriori Bayesian approach to classify the mean backscatter image into 5 general land cover categories of forest, savannah, inundated, white sand, and anthropogenic vegetation classes, and 2) a texture measure decision rule approach to further discriminate subcategory classes based on taxonomic information and biomass levels. Fourteen classes were successfully separated at 1 km scale. The results were verified by examining the accuracy of the approach by comparison with the IBGE and the AVHRR 1 km resolution land cover maps.

  11. Cadastre (forest maps) and spatial land uses planning, strategic tool for sustainable development

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.

    2014-08-01

    The rise in the living standards of the Greeks created, especially since 1970, along with other needs and the need for second or holiday home since 1990 after finding the first house on the outskirts of large urban centers. Trying to find land for the creation of new resorts or new type of permanent residences (maisonettes with or without garden, depending on the financial position of each) had the painful consequence of wasteful and uncontrolled use of land, without a program, without the fundamental rules of land planning and the final creation was usually unsightly buildings. The costs were to pay as usually the forest rural lands. The national spatial planning of land use requires that we know the existing land uses in this country, and based on that we can design and decide their land uses on the future in a rational way. On final practical level, this planning leads to mark the boundaries of specific areas of land that are permitted and may change uses. For this reason, one of the most valuable "tools" of that final marking the boundaries is also the forest maps. The paper aims the investigation to determine the modern views on the issues of Cadastre and Land Management with an ulterior view to placing the bases for creating a building plan of an immediate completion of forest maps. Sustainable development as a term denoting a policy of continued economic and social development that does not involve the destruction of the environment and natural resources, but rather guarantees their rational viability.

  12. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  13. Interim program for land cover mapping in Alaska utilizing Landsat digital data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David; Gaydos, Leonard; Fitzpatrick-Lins, Katherine; Lauer, Donald; Ambrosia, Vincent; Benjamin, Susan

    1985-01-01

    The enactment of the Alaska National Interest Lands Conservation Act (ANILCA) in 1980 imposed mandates on all major land management agencies in Alaska to prepare comprehensive resource and management plans to assess wildlife habitat, oil and gas exploration and development, wild and scenic river, land disposals, timber production, and archaeological and cultural resources, To meet these objective, the U. S. Geological Survey (USGS) has embarked on a plan to classify land cover for the entire State of Alaska using Landsat digital data. the USGS, in cooperation with other agencies, has completely Landsat-derived land use and land cover classification of 115 million acres for the State of Alaska. With this work as a substantial foundation, the USGS has prepared a comprehensive plan for classifying the remaining areas of Alaska. The development of this program will lead to a complete interim land use and land cover classification system for Alaska and provide for the dissemination of map products, statistics, and acreage summaries for all areas of Alaska at 1:250,000 scale. It also allows for the dissemination of Landsat digital data for those areas.

  14. Modeling and mapping regional land use/land cover change in South Central Texas

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Messen, D.

    2014-12-01

    Houston-Galveston Area Council (H-GAC) conducted a land use/land cover (LULC) change detection study to generate information about the LULC changes in a 15-county area of South Central Texas. Such information is essential in regional planning, natural resource management, monitoring and modeling of environmental characteristics. The objectives of this study are (1) Identification of regional spatial patterns of each LULC conversion, (2) Estimation of the area coverage of each LULC conversion, and (3) Estimation of the net gain and losses of each LULC classes. To achieve these objectives, ArcGIS Spatial analysis functions and data management tools were employed in python environment. Change detection was estimated from 1992 to 2011 using datasets from NLCD (National Land Cover Database) 1992, NLCD 2001 and NOAA C-CAP (National Oceanic and Atmospheric Administration, Coastal Change Analysis Program) 2011. Through visual analysis and comparisons with aerial imagery, we established that NLCD 1992 and 2001 datasets contained more classification inaccuracies than the NOAA 2011 dataset. The misclassified cells in the 1992 and 2001 NLCD datasets were corrected to be consistent with the 2011 C-CAP dataset. The NLCD 2001 dataset was first corrected using a logical evaluation with 2011 classes in each pixel. Then the NLCD 1992 dataset was corrected using the correct 2001 dataset. After correcting 1992 dataset, a cell by cell comparison was conducted with the NOAA 2011 dataset, and individual changes were recorded.

  15. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    PubMed

    Kosakovsky Pond, Sergei L; Posada, David; Stawiski, Eric; Chappey, Colombe; Poon, Art F Y; Hughes, Gareth; Fearnhill, Esther; Gravenor, Mike B; Leigh Brown, Andrew J; Frost, Simon D W

    2009-11-01

    Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol) sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5%) fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate

  16. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  17. Mapping the invasive species, Chinese tallow, with EO1 satellite Hyperion hyperspectral image data and relating tallow occurrences to a classified Landsat Thematic Mapper land cover map

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.; Nelson, G.; Ehrlich, R.

    2005-01-01

    Our objective was to provide a realistic and accurate representation of the spatial distribution of Chinese tallow (Triadica sebifera) in the Earth Observing 1 (EO1) Hyperion hyperspectral image coverage by using methods designed and tested in previous studies. We transformed, corrected, and normalized Hyperion reflectance image data into composition images with a subpixel extraction model. Composition images were related to green vegetation, senescent foliage and senescing cypress-tupelo forest, senescing Chinese tallow with red leaves ('red tallow'), and a composition image that only corresponded slightly to yellowing vegetation. These statistical and visual comparisons confirmed a successful portrayal of landscape features at the time of the Hyperion image collection. These landscape features were amalgamated in the Landsat Thematic Mapper (TM) pixel, thereby preventing the detection of Chinese tallow occurrences in the Landsat TM classification. With the occurrence in percentage of red tallow (as a surrogate for Chinese tallow) per pixel mapped, we were able to link dominant land covers generated with Landsat TM image data to Chinese tallow occurrences as a first step toward determining the sensitivity and susceptibility of various land covers to tallow establishment. Results suggested that the highest occurrences and widest distribution of red tallow were (1) apparent in disturbed or more open canopy woody wetland deciduous forests (including cypress-tupelo forests), upland woody land evergreen forests (dominantly pines and seedling plantations), and upland woody land deciduous and mixed forests; (2) scattered throughout the fallow fields or located along fence rows separating active and non-active cultivated and grazing fields, (3) found along levees lining the ubiquitous canals within the marsh and on the cheniers near the coastline; and (4) present within the coastal marsh located on the numerous topographic highs. ?? 2005 US Government.

  18. Mapping Land Use/Land Cover in the Ambos Nogales Study Area

    USGS Publications Warehouse

    Norman, Laura M.; Wallace, Cynthia S.A.

    2008-01-01

    The Ambos Nogales watershed, which surrounds the twin cities of Nogales, Arizona, United States and Nogales, Sonora, Mexico, has a history of problems related to flooding. This paper describes the process of creating a high-resolution, binational land-cover dataset to be used in modeling the Ambos Nogales watershed. The Automated Geospatial Watershed Assessment tool will be used to model the Ambos Nogales watershed to identify focal points for planning efforts and to anticipate ramifications of implementing detention reservoirs at certain watershed planes.

  19. Development of Ground Reference GIS for Assessing Land Cover Maps of Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce

    2001-01-01

    GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.

  20. Land cover mapping based on random forest classification of multitemporal spectral and thermal images.

    PubMed

    Eisavi, Vahid; Homayouni, Saeid; Yazdi, Ahmad Maleknezhad; Alimohammadi, Abbas

    2015-05-01

    Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8's spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82%, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation. PMID:25910718

  1. Land cover mapping based on random forest classification of multitemporal spectral and thermal images.

    PubMed

    Eisavi, Vahid; Homayouni, Saeid; Yazdi, Ahmad Maleknezhad; Alimohammadi, Abbas

    2015-05-01

    Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8's spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82%, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.

  2. Urban and regional land use analysis: CARETS and Census Cities experiment package. [mapping land use climatology from MSS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The arrival of the so-called energy crisis makes the portion of this experiment dealing with land use climatology of more immediate significance than before, since in addition to helping to understand the processes of climatic change associated with urbanization, the knowledge obtained may be useful in assigning an energy balance impact factor to proposed changes in land use in and around cities. Thermal maps derived from S-192 data are to be used as a measure of the energy being radiated into space from the mosaic of different surfaces in and around the city. While presenting excellent spatial sampling potential for a metropolitan area tests site, the Skylab data permit a very poor temporal sampling opportunity, owing to the large number of factors beyond the investigator's control that determine when data will be taken over a given test site. The strategy is to augment the thermal maps derived from S-192 with a modeling technique which enables the simulation of a number of components of the surface energy balance, calculated at regular time intervals throughout the day or year. Preliminary tests on the performance of the model are still underway, using airborne MSS data from NASA aircraft flights. Results look extremely promising.

  3. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2009-09-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  4. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2010-11-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  5. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands

  6. Mapping and measuring land-cover characteristics of New River Basin, Tennessee, using Landsat digital tapes

    USGS Publications Warehouse

    Hollyday, E.F.; Sauer, S.P.

    1976-01-01

    Land-cover information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and is also needed to transfer study results to other sites affected by coal mining. This study demonstrates that digital processing of Landsat tapes can produce maps and tables of the areal extent of selected land-cover categories. The relative area of each category within the basin is agriculture, 5 percent; evergreens, 7 percent; bare earth, 6 percent; three categories of hardwoods, 81 percent; and water, rock, and uncategorized areas, each less than 1 percent. (Woodard-USGS)

  7. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  8. Synergy of airborne LiDAR and Worldview-2 satellite imagery for land cover and habitat mapping: A BIO_SOS-EODHaM case study for the Netherlands

    NASA Astrophysics Data System (ADS)

    Mücher, C. A.; Roupioz, L.; Kramer, H.; Bogers, M. M. B.; Jongman, R. H. G.; Lucas, R. M.; Kosmidou, V. E.; Petrou, Z.; Manakos, I.; Padoa-Schioppa, E.; Adamo, M.; Blonda, P.

    2015-05-01

    A major challenge is to develop a biodiversity observation system that is cost effective and applicable in any geographic region. Measuring and reliable reporting of trends and changes in biodiversity requires amongst others detailed and accurate land cover and habitat maps in a standard and comparable way. The objective of this paper is to assess the EODHaM (EO Data for Habitat Mapping) classification results for a Dutch case study. The EODHaM system was developed within the BIO_SOS (The BIOdiversity multi-SOurce monitoring System: from Space TO Species) project and contains the decision rules for each land cover and habitat class based on spectral and height information. One of the main findings is that canopy height models, as derived from LiDAR, in combination with very high resolution satellite imagery provides a powerful input for the EODHaM system for the purpose of generic land cover and habitat mapping for any location across the globe. The assessment of the EODHaM classification results based on field data showed an overall accuracy of 74% for the land cover classes as described according to the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) taxonomy at level 3, while the overall accuracy was lower (69.0%) for the habitat map based on the General Habitat Category (GHC) system for habitat surveillance and monitoring. A GHC habitat class is determined for each mapping unit on the basis of the composition of the individual life forms and height measurements. The classification showed very good results for forest phanerophytes (FPH) when individual life forms were analyzed in terms of their percentage coverage estimates per mapping unit from the LCCS classification and validated with field surveys. Analysis for shrubby chamaephytes (SCH) showed less accurate results, but might also be due to less accurate field estimates of percentage coverage. Overall, the EODHaM classification results encouraged us to derive the heights of

  9. Per pixel uncertainty modelling and its spatial representation on land cover maps obtained by hybrid classification.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Cornford, Dan; Ninyerola, Miquel

    2013-04-01

    The usage of remote sensing imagery combined with statistical classifiers to obtain categorical cartography is now common practice. As in many other areas of geographic information quality assessment, knowing the accuracy of these maps is crucial, and the spatialization of quality information is becoming ever more important for a large range of applications. Whereas some classifiers (e.g., maximum likelihood, linear discriminant analysis, naive Bayes, etc) permit the estimation and spatial representation of the uncertainty through a pixel level probabilistic estimator (and, from that, to compute a global accuracy estimator for the whole map), for other methods such a direct estimator does not exist. Regardless of the classification method applied, ground truth data is almost always available (to train the classifier and/or to compute the global accuracy and, usually, a confusion matrix). Our research is devoted to the development of a protocol to spatialize the error on a general framework based on the classifier parameters, and some ground truth reference data. In the methodological experiment presented here we provide an insight into uncertainty modelling for a hybrid classifier that combines unsupervised and supervised stages (implemented in the MiraMon GIS). In this work we describe what we believe is the first attempt to characterise pixel level uncertainty in a two stage classification process. We describe the model setup, show the preliminary results and identify future work that will be undertaken. The study area is a Landsat full frame located at the North-eastern region of the Iberian Peninsula. The six non-thermal bands + NDVI of a multi-temporal set of six geometrically and radiometrically corrected Landsat-5 images (between 2005 and 2007) were submitted to a hybrid classification process, together with some ancillary data (climate, slopes, etc). Training areas were extracted from the Land Cover Map of Catalonia (MCSC), a 0.5 m resolution map created by

  10. Subpixel land cover change mapping with multitemporal remote-sensed images at different resolution

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Yi, Wang; Niu, Ruiqing; Wei, Lifei

    2015-01-01

    Due to the lack of support for a high-resolution image in a short time, land cover change detection is always applied on the multitemporal remote-sensed images with different resolutions. The coarse-resolution image contains a large number of mixed pixels, which can seriously limit the utility of the change detection. Soft classification (SC) can be applied to improve this situation through deriving the abundances and generating the fractional change map, but it cannot provide the spatial distribution of the subpixels. Subpixel mapping (SPM) is a potential solution to resolve this problem, and is designed to use the proportions to obtain a sharpened thematic map at a subpixel scale. Based on this thought, the subpixel scale land cover change mapping result can be realized by integrating these two key techniques. However, in practice, there is a serious limitation to the detail and accuracy of the result, because when the scale factor between the different resolution images is large, the subpixel configuration is complex and the data volumes will be amplified. Moreover, with the high proportion of the changed area in the whole image, the change detection process at the subpixel level gets more difficult. The SPM technique is generally performed based only on the abundances of each and the spatial dependence assumption, so it cannot satisfy the demand. In order to overcome this shortcoming, several new reasonable subpixel scale change detection rules are defined in this paper, which dictate the land cover change map must be constructed according to the existing high-resolution image. The output from SC and prior information of the subpixel feature arrangement is applied into a modified cellular automata (CA) model, which can be regarded as a more reasonable tool to monitor the subpixel changes to resolve the big-data problem. Two experiments are performed and the results prove that the proposed method can effectively improve the accuracy of the change detection maps

  11. The accuracy of selected land use and land cover maps at scales of 1:250,000 and 1:100,000

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine

    1980-01-01

    Land use and land cover maps produced by the U.S. Geological Survey are found to meet or exceed the established standard of accuracy. When analyzed using a point sampling technique and binomial probability theory, several maps, illustrative of those produced for different parts of the country, were found to meet or exceed accuracies of 85 percent. Those maps tested were Tampa, Fla., Portland, Me., Charleston, W. Va., and Greeley, Colo., published at a scale of 1:250,000, and Atlanta, Ga., and Seattle and Tacoma, Wash., published at a scale of 1:100,000. For each map, the values were determined by calculating the ratio of the total number of points correctly interpreted to the total number of points sampled. Six of the seven maps tested have accuracies of 85 percent or better at the 95-percent lower confidence limit. When the sample data for predominant categories (those sampled with a significant number of points) were grouped together for all maps, accuracies of those predominant categories met the 85-percent accuracy criterion, with one exception. One category, Residential, had less than 85-percent accuracy at the 95-percent lower confidence limit. Nearly all residential land sampled was mapped correctly, but some areas of other land uses were mapped incorrectly as Residential.

  12. Land use maps of the Tanana and Purcell Mountain areas, Alaska, based on Earth Resources Technology Satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS imagery in photographic format was used to make land use maps of two areas of special interest to native corporations under terms of the Alaska Native Claims Settlement Act. Land selections are to be made in these areas, and the maps should facilitate decisions because of their comprehensive presentation of resource distribution information. The ERTS images enabled mapping broadly-defined land use classes in large areas in a comparatively short time. Some aerial photography was used to identify colors and shades of gray on the various images. The 14 mapped land use categories are identified according to the classification system under development by the U.S. Geological Survey. These maps exemplify a series of about a dozen diverse Alaskan areas. The principal resource depicted is vegetation, and clearly shown are vegetation units of special importance, including stands possibly containing trees of commercial grade and stands constituting wildlife habitat.

  13. Comparison of multi-temporal NOAA-AVHRR and SPOT-XS satellite data for mapping land-cover dynamics in the West African Sahel

    NASA Technical Reports Server (NTRS)

    Marsh, S. E.; Walsh, J. L.; Lee, C. T.; Beck, L. R.; Hutchinson, C. F.

    1992-01-01

    Multi-resolution and multi-temporal remote sensing data (SPOT-XS and AVHRR) were evaluated for mapping local land-cover dynamics in the Sahel of West Africa. The aim of this research was to evaluate the agricultural information that could be derived from both high and low spatial resolution data in areas where there is very often limited ground information. A combination of raster-based image processing and vector-based geographical information system mapping was found to be effective for understanding both spatial and spectral land-cover dynamics. The SPOT data proved useful for mapping local land-cover classes in a dominantly recessive agricultural region. The AVHRR-LAC data could be used to map the dynamics of riparian vegetation, but not the changes associated with recession agriculture. In areas where there was a complex mixture of recession and irrigated agriculture, as well as riparian vegetation, the AVHRR data did not provide an accurate temporal assessment of vegetation dynamics.

  14. Land cover map of Great Britain. An automated classification of Landsat Thematic Mapper data

    SciTech Connect

    Fuller, R.M.; Groom, G.B.; Jones, A.R.

    1994-05-01

    The Land Cover Map of Great Britain was produced using supervised maximum-likelihood classifications of Landsat Thematic Mapper data. By combining summer and winter data, classification accuracies were substantially improved over single-data analyses. The map, bosed on a 25-m grid, records 25 cover types, consisting of sea and inland water, beaches and bare ground, developed and arable land, and 18 types of semi-natural vegetation. General cover is recorded at a field-by-field scale, while key landscape features, with strong spectral signatures, show patterns down to a minimum mappable unit of 0.125 ha. Comparisons with independent ground reference data showed correspondences which varied between 67 percent and 89 percent depending on the level of detail at which comparisons were made.

  15. Combining accuracy assessment of land-cover maps with environmental monitoring programs

    USGS Publications Warehouse

    Stehman, S.V.; Czaplewski, R.L.; Nusser, S.M.; Yang, L.; Zhu, Z.

    2000-01-01

    A scientifically valid accuracy assessment of a large-area, land-cover map is expensive. Environmental monitoring programs offer a potential source of data to partially defray the cost of accuracy assessment while still maintaining the statistical validity. In this article, three general strategies for combining accuracy assessment and environmental monitoring protocols are described. These strategies range from a fully integrated accuracy assessment and environmental monitoring protocol, to one in which the protocols operate nearly independently. For all three strategies, features critical to using monitoring data for accuracy assessment include compatibility of the land-cover classification schemes, precisely co-registered sample data, and spatial and temporal compatibility of the map and reference data. Two monitoring programs, the National Resources Inventory (NRI) and the Forest Inventory and Monitoring (FIM), are used to illustrate important features for implementing a combined protocol.

  16. Analysis and classification of hyperspectral data for mapping land degradation: An application in southern Spain

    NASA Astrophysics Data System (ADS)

    Shrestha, D. P.; Margate, D. E.; Meer, F. van der; Anh, H. V.

    2005-08-01

    Desertification is a severe stage of land degradation, manifested by "desert-like" conditions in dryland areas. Climatic conditions together with geomorphologic processes help to mould desert-like soil surface features in arid zones. The identification of these soil features serves as a useful input for understanding the desertification process and land degradation as a whole. In the present study, imaging spectrometer data were used to detect and map desert-like surface features. Absorption feature parameters in the spectral region between 0.4 and 2.5 μm wavelengths were analysed and correlated with soil properties, such as soil colour, soil salinity, gypsum content, etc. Soil groupings were made based on their similarities and their spectral reflectance curves were studied. Distinct differences in the reflectance curves throughout the spectrum were exhibited between groups. Although the samples belonging to the same group shared common properties, the curves still showed differences within the same group. Characteristic reflectance curves of soil surface features were derived from spectral measurements both in the field and in the laboratory, and mean reflectance values derived from image pixels representing known features. Linear unmixing and spectral angle matching techniques were applied to assess their suitability in mapping surface features for land degradation studies. The study showed that linear unmixing provided more realistic results for mapping "desert-like" surface features than the spectral angle matching technique.

  17. Digital mining claim density map for federal lands in Idaho: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Idaho as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  18. Digital mining claim density map for federal lands in Oregon: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Oregon as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  19. Digital mining claim density map for federal lands in Nevada: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Nevada as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  20. High precision landing site mapping and rover localization for Chang'e-3 mission

    NASA Astrophysics Data System (ADS)

    Liu, ZhaoQin; Di, KaiChang; Peng, Man; Wan, WenHui; Liu, Bin; Li, LiChun; Yu, TianYi; Wang, BaoFeng; Zhou, JianLiang; Chen, HongMin

    2015-01-01

    This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang'e-3 mission. High-precision topographic products of the landing site with extremely high resolutions (up to 0.05 m) were generated from descent images and registered to CE-2 DOM. Local DEM and DOM with 0.02 m resolution were produced routinely at each waypoint along the rover traverse. The lander location was determined to be (19.51256°W, 44.11884°N, -2615.451 m) using a method of DOM matching. In order to reduce error accumulation caused by wheel slippage and IMU drift in dead reckoning, cross-site visual localization and DOM matching localization methods were developed to localize the rover at waypoints; the overall traveled distance from the lander is 114.8 m from cross-site visual localization and 111.2 m from DOM matching localization. The latter is of highest accuracy and has been verified using a LRO NAC image where the rover trajeactory is directly identifiable. During CE-3 mission operations, landing site mapping and rover localization products including DEMs and DOMs, traverse maps, vertical traverse profiles were generated timely to support teleoperation tasks such as obstacle avoidance and rover path planning.

  1. SU-D-18C-05: Variable Bolus Arterial Spin Labeling MRI for Accurate Cerebral Blood Flow and Arterial Transit Time Mapping

    SciTech Connect

    Johnston, M; Jung, Y

    2014-06-01

    Purpose: Arterial spin labeling (ASL) is an MRI perfusion imaging method from which quantitative cerebral blood flow (CBF) maps can be calculated. Acquisition with variable post-labeling delays (PLD) and variable TRs allows for arterial transit time (ATT) mapping and leads to more accurate CBF quantification with a scan time saving of 48%. In addition, T1 and M0 maps can be obtained without a separate scan. In order to accurately estimate ATT and T1 of brain tissue from the ASL data, variable labeling durations were invented, entitled variable-bolus ASL. Methods: All images were collected on a healthy subject with a 3T Siemens Skyra scanner. Variable-bolus Psuedo-continuous ASL (PCASL) images were collected with 7 TI times ranging 100-4300ms in increments of 700ms with TR ranging 1000-5200ms. All boluses were 1600ms when the TI allowed, otherwise the bolus duration was 100ms shorter than the TI. All TI times were interleaved to reduce sensitivity to motion. Voxel-wise T1 and M0 maps were estimated using a linear least squares fitting routine from the average singal from each TI time. Then pairwise subtraction of each label/control pair and averaging for each TI time was performed. CBF and ATT maps were created using the standard model by Buxton et al. with a nonlinear fitting routine using the T1 tissue map. Results: CBF maps insensitive to ATT were produced along with ATT maps. Both maps show patterns and averages consistent with literature. The T1 map also shows typical T1 contrast. Conclusion: It has been demonstrated that variablebolus ASL produces CBF maps free from the errors due to ATT and tissue T1 variations and provides M0, T1, and ATT maps which have potential utility. This is accomplished with a single scan in a feasible scan time (under 6 minutes) with low sensivity to motion.

  2. Mapping Secondary Forest Succession on Abandoned Agricultural Land in the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, Ch.; Psomas, A.

    2016-06-01

    Land abandonment and secondary forest succession have played a significant role in land cover changes and forest cover increase in mountain areas in Europe over the past several decades. Land abandonment can be easily observed in the field over small areas, but it is difficult to map over the large areas, e.g., with remote sensing, due to its subtle and spatially dispersed character. Our previous paper presented how the LiDAR (Light Detection and Ranging) and topographic data were used to detect secondary forest succession on abandoned land in one commune located in the Polish Carpathians by means of object-based image analysis (OBIA) and GIS (Kolecka et al., 2015). This paper proposes how the method can be applied to efficiently map secondary forest succession over the entire Polish Carpathians, incorporating spatial sampling strategy supported by various ancillary data. Here we discuss the methods of spatial sampling, its limitations and results in the context of future secondary forest succession modelling.

  3. Object-based approach to national land cover mapping using HJ satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Xiaosong; Yuan, Quanzhi; Liu, Yu

    2014-01-01

    To meet the carbon storage estimate in ecosystems for a national carbon strategy, we introduce a consistent database of China land cover. The Chinese Huan Jing (HJ) satellite is proven efficient in the cloud-free acquisition of seasonal image series in a monsoon region and in vegetation identification for mesoscale land cover mapping. Thirty-eight classes of level II land cover are generated based on the Land Cover Classification System of the United Nations Food and Agriculture Organization that follows a standard and quantitative definition. Twenty-four layers of derivative spectral, environmental, and spatial features compose the classification database. Object-based approach characterizing additional nonspectral features is conducted through mapping, and multiscale segmentations are applied on object boundary match to target real-world conditions. This method sufficiently employs spatial information, in addition to spectral characteristics, to improve classification accuracy. The algorithm of hierarchical classification is employed to follow step-by-step procedures that effectively control classification quality. This algorithm divides the dual structures of universal and local trees. Consistent universal trees suitable to most regions are performed first, followed by local trees that depend on specific features of nine climate stratifications. The independent validation indicates the overall accuracy reaches 86%.

  4. Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: Application to the Yzeron catchment (Lyon, France)

    NASA Astrophysics Data System (ADS)

    Jacqueminet, C.; Kermadi, S.; Michel, K.; Béal, D.; Gagnage, M.; Branger, F.; Jankowfsky, S.; Braud, I.

    2013-04-01

    SummaryThe rapid progression of urbanization in periurban areas affects the hydrological cycle of periurban rivers. To quantify these changes, distributed hydrological modelling tools able to simulate the hydrology of periurban catchments are being developed. Land cover information is one of the data sources used to define the model mesh and parameters. The land cover in periurban catchments is characterized by a very large heterogeneity, where the vegetated and the artificial surfaces are finely overlapping. The study is conducted in the Yzeron catchment (150 km2), close to the city of Lyon, France. We explore the potential of very high-resolution (VHR) optical images (0.50-2.50 m) for retrieving information useful for those distributed hydrological models at two scales. For detailed object-oriented models, applicable to catchments of a few km2, where hydrological units are based on the cadastral units, manual digitizing based on the 0.5 m resolution image, was found to be the most accurate to provide the required information. For larger catchments of about 100 km2, three semi-automated mapping procedures (pixel based and object-oriented classifications), applied to aerial images (BD-Ortho®IGN), and two satellite images (Quickbird and Spot 5) were compared. We showed that each image/processing provided some interesting and accurate information about some of the land cover classes. We proposed to combine them into a synthesis map, taking profit of the strength of each image/processing in identifying the land cover classes and their physical properties. This synthesis map was shown to be more accurate than each map separately. We illustrate the interest of the derived maps in terms of distributed hydrological modelling. The maps were used to propose a classification of the Yzeron sub-catchments in terms of dominant vegetation cover and imperviousness. We showed that according to the image processing and images characteristics, the calculated imperviousness rates

  5. Concepts of integrated satellite surveys. [thematic mapping of land use in Ethiopia, Sudan, and Morocco

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1974-01-01

    The United Nations initially contracted with NASA to carry out investigations in three countries; but now as the result of rapidly increasing interest, ERTS imagery has been/is being used in 7 additional projects related to agriculture, forestry, land-use, soils, landforms and hydrology. Initially the ERTS frames were simply used to provide a synoptic view of a large area of a developing country as a basis to regional surveys. From this, interest has extended to using reconstituted false color imagery and latterly, in co-operation with Purdue University, the use of computer generated false color mosaics and computer generated large scale maps. As many developing countries are inadequately mapped and frequently rely on outdated maps, the ERTS imagery is considered to provide a very wide spectrum of valuable data. Thematic maps can be readily prepared at a scale of 1:250,000 using standard NASA imagery. These provide coverage of areas not previously mapped and provide supplementary information and enable existing maps to be up-dated. There is also increasing evidence that ERTS imagery is useful for temporal studies and for providing a new dimension in integrated surveys.

  6. Mapping Florida Scrub Jay habitat for purposes of land-use management

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Provancha, Mark J.; Smith, Rebecca B.

    1991-01-01

    Geographical information system (GIS) applications were used to map areas of primary and secondary Florida Scrub Jay habitat on Kennedy Space Center (KSC) using vegetation and soils maps. Data from field studies were used for accuracy assessment and evaluating the importance of mapping classes. Primary habitat accounts for 15 percent of the potential habitat and contained 57 percent of the Florida Scrub Jay population on KSC. Proximity analysis identified potential population centers, which were 44 percent of the potential habitat and contained 86 percent of the population. This study is an example of how remote sensing and GIS applications can provide information for land-use planning, habitat management, and the evaluation of cumulative impacts.

  7. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.

    2010-01-01

    -based land-use classifications. Aerial photography is typically selected for smaller landscapes (watershed-basin scale), for greater definition of the land-use categories, and for increased spatial resolution. Disadvantages of using photography include time-consuming digitization, high costs for imagery collection, and lack of seasonal data. Recently, the availability of high-resolution satellite imagery has generated a new category of LULC data product. These new datasets have similar strengths to the aerial-photo-based LULC in that they possess the potential for refined definition of land-use categories and increased spatial resolution but also have the benefit of satellite-based classifications, such as repeatability for change analysis. LULC classification based on high-resolution satellite imagery is still in the early stages of development but merits greater attention because environmental-monitoring and landscape-modeling programs rely heavily on LULC data. This publication summarizes land-use and land-cover mapping activities for Alabama and Mississippi coastal areas within the U.S. Geological Survey (USGS) Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project boundaries. Existing LULC datasets will be described, as well as imagery data sources and ancillary data that may provide ground-truth or satellite training data for a forthcoming land-cover classification. Finally, potential areas for a high-resolution land-cover classification in the Alabama-Mississippi region will be identified.

  8. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  9. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2009-09-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  10. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2010-11-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  11. Maps showing water-level declines, land subsidence, and earth fissures in south-central Arizona

    USGS Publications Warehouse

    Laney, R.L.; Raymond, R.H.; Winikka, C.C.

    1978-01-01

    From 1915 to 1975, more than 109 million acre-feet of ground water was withdrawn from about 4,500 square miles in Pinal and Maricopa Counties in south-central Arizona. The volume of water withdrawn greatly exceeds the volume of natural recharge, and water levels have been declining since 1923. As a result of the water-level declines, the land surface has subsided, the alluvial deposits have been subjected to stress, and earth fissures have developed. Land subsidence and earth fissures have damaged public and private properties. Subsidence and fissures will continue to occur as long as ground water is being mined and water levels continue to decline. As urban development expands, land subsidence and earth fissures will have an increasing socioeconomic impact. Information on maps includes change in water levels, measurements of land subsidence, and location of earth fissures. A section showing land subsidence between Casa Grande and the Picacho Peak Interchange also is included. Scale 1:250,000. (Woodard-USGS)

  12. Global land cover mapping at 30 m resolution: A POK-based operational approach

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Chen, Jin; Liao, Anping; Cao, Xin; Chen, Lijun; Chen, Xuehong; He, Chaoying; Han, Gang; Peng, Shu; Lu, Miao; Zhang, Weiwei; Tong, Xiaohua; Mills, Jon

    2015-05-01

    Global Land Cover (GLC) information is fundamental for environmental change studies, land resource management, sustainable development, and many other societal benefits. Although GLC data exists at spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option for the next generation of GLC products. Since most significant human impacts on the land system can be captured at this scale, a number of researchers are focusing on such products. This paper reports the operational approach used in such a project, which aims to deliver reliable data products. Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To derive a GLC map from such a large volume of data necessitates the development of effective, efficient, economic and operational approaches. Automated approaches usually provide higher efficiency and thus more economic solutions, yet existing automated classification has been deemed ineffective because of the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a result, an approach based on the integration of pixel- and object-based methods with knowledge (POK-based) has been developed. To handle the classification process of 10 land cover types, a split-and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then results are merged together. For the identification of each class, a robust integration of pixel-and object-based classification was developed. To improve the quality of the classification results, a knowledge-based interactive verification procedure was developed with the support of web service technology. The performance of the POK-based approach was tested using eight selected areas with differing landscapes from five different continents. An overall classification accuracy of over 80% was achieved. This indicates that the developed POK-based approach is effective and feasible

  13. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  14. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. This research program has developed a viable methodology for producing small scale rural land use maps in semi-arid developing countries using imagery obtained from orbital multispectral scanners.

  15. Mapping forest composition from the Canadian National Forest Inventory and land cover classification maps.

    PubMed

    Yemshanov, Denys; McKenney, Daniel W; Pedlar, John H

    2012-08-01

    Canada's National Forest Inventory (CanFI) provides coarse-grained, aggregated information on a large number of forest attributes. Though reasonably well suited for summary reporting on national forest resources, the coarse spatial nature of this data limits its usefulness in modeling applications that require information on forest composition at finer spatial resolutions. An alternative source of information is the land cover classification produced by the Canadian Forest Service as part of its Earth Observation for Sustainable Development of Forests (EOSD) initiative. This product, which is derived from Landsat satellite imagery, provides relatively high resolution coverage, but only very general information on forest composition (such as conifer, mixedwood, and deciduous). Here we link the CanFI and EOSD products using a spatial randomization technique to distribute the forest composition information in CanFI to the forest cover classes in EOSD. The resultant geospatial coverages provide randomized predictions of forest composition, which incorporate the fine-scale spatial detail of the EOSD product and agree in general terms with the species composition summaries from the original CanFI estimates. We describe the approach and provide illustrative results for selected major commercial tree species in Canada.

  16. Mapping land cover gradients through analysis of hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.; Hamad, Amina; Venus, V.; Lymberakis, Petros

    2013-08-01

    The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but typically fail to express such differences as gradients. Present interpretation techniques still make insufficient use of freely available spatial-temporal Earth Observation (EO) data that allow detection of existing land cover gradients. This study explores the use of hyper-temporal NDVI imagery to detect and delineate land cover gradients analyzing the temporal behavior of NDVI values. MODIS-Terra MVC-images (250 m, 16-day) of Crete, Greece, from February 2000 to July 2009 are used. The analysis approach uses an ISODATA unsupervised classification in combination with a Hierarchical Clustering Analysis (HCA). Clustering of class-specific temporal NDVI profiles through HCA resulted in the identification of gradients in landcover vegetation growth patterns. The detected gradients were arranged in a relational diagram, and mapped. Three groups of NDVI-classes were evaluated by correlating their class-specific annual average NDVI values with the field data (tree, shrub, grass, bare soil, stone, litter fraction covers). Multiple regression analysis showed that within each NDVI group, the fraction cover data were linearly related with the NDVI data, while NDVI groups were significantly different with respect to tree cover (adj. R2 = 0.96), shrub cover (adj. R2 = 0.83), grass cover (adj. R2 = 0.71), bare soil (adj. R2 = 0.88), stone cover (adj. R2 = 0.83) and litter cover (adj. R2 = 0.69) fractions. Similarly, the mean Sorenson dissimilarity values were found high and significant at confidence interval of 95% in all pairs of three NDVI groups. The study demonstrates that hyper-temporal NDVI imagery can successfully detect and map land cover gradients. The results may improve land

  17. Delivering the Copernicus land monitoring service, production of the CORINE Land Cover Map in the UK. A forward looking perspective to the Sentinel-2 mission.

    NASA Astrophysics Data System (ADS)

    Cole, Beth; Balzter, Heiko; Smith, Geoff; Morton, Dan; King, Sophie

    2014-05-01

    The Copernicus land monitoring service became operational in 2012 as the GIO Land (initial operations of the land monitoring service) initiative and builds upon work under FP7 geoland2 project. The Centre for Landscape and Climate Research (CLCR), part of the UK National Reference Centre (NRC) for land cover, is responsible for the production of the UK contribution to the Pan-European component of GIO Land. The CORINE Land Cover (CLC) map is now the most up to date national land cover product for the UK. The national plan for future production of CLC data will incorporate the increased capability of the Copernicus space component, utilising data from the Sentinel missions. Monitoring land cover and change will be assisted by the increased performance and the reduced revisit time interval of the Sentinel-2 satellites. Repeat coverages are essential to remove the effects of vegetation phenology and identify land cover changes. Also, UK data acquisitions opportunities are limited by cloud cover, as has been seen in the GIO-Land monitoring program, therefore more frequent imagining increases the likelihood of suitable data being available. The vegetation classes are the most difficult aspects of the nomenclature in the UK, in particular discrimination between the arable, pasture and the natural grasslands. The spectral capabilities of Sentinel-2 allow the automatic correction of atmospheric effects so that reflectance features in the images can be more easily linked to land cover features on the surface. It is also envisaged that the increased spectral resolution, with 5 bands around the red edge, will benefit the discrimination of difficult vegetation features. Finally the improve calibration of Sentinel-2 will allow the production of biophysical variables which are import for condition assessment and landscape modelling. The methodological shift in land cover mapping in the UK is described here, also incorporating a look forward to overcoming challenges in the

  18. Assessing Changes in Impervious Area Using Land Use Maps of Different Resolution in the Croton NY City Water Supply Watershed

    NASA Astrophysics Data System (ADS)

    Somerlot, C.; Duncan, J.; Endreny, T.

    2001-05-01

    With the advance of remote sensing, options arise for the hydrologic modeler to access both public domain and privately contracted watershed land cover maps. Land use classification processes using aerial photographs are highly variable depending on tools and training, but distinction between impervious and pervious land cover is relatively simple. Hydrologic models will estimate different runoff timing, volume, and water quality depending on the percent imperviousness of the watershed. This research will examine how percent imperviousness varies with changes in both radiometric and spatial land cover map resolution. WinHSPF was run with four distinct land cover maps derived from remote imagery: MRLC (30 m), LULC (1 km), contracted aerial photos (1 m), and processed digital (1 M) ortho quarter quads. Comparisons were made between map percent impervious cover and runoff timing and volume. A modified export coefficient model that tracks pollutant discharge through down gradient filters examined how estimated nutrient loading changed with differences in these land cover map products. Methods are suggested for updating estimates of percent impervious cover in coarser resolution maps using field data or other means.

  19. Mapping project on land use changes in the carboniferous region of Santa Catarina

    NASA Technical Reports Server (NTRS)

    Valeriano, D. D.; Pereira, M. D. B.

    1983-01-01

    The utilization of remote sensing data for monitoring land use changes by means of digital image analysis is described. The following data were utilized: LANDSAT data from September 4, 1975, April 24, 1978, and September 8, 1981; LANDSAT paper photography data; area IV color photographs; IBGE topography maps, and auxiliary data about the Brazilian state of Santa Catarina. Three kinds of analyses of digital images were carried out. The project identified and mapped major classes of land use areas including urban areas, coal deposits, agricultural areas, forests, lakes, and flood plains. Five areas directly affected by coal exploration southeast of Santa Catarina are identified and described. In addition, the classification system used for organizing data about land cover in a hierarchical arrangement is presented. The project made use of two remote sensing data sources: data of MSS spectral (Mulitspectral Scanner System)/LANDSAT on a scale of 1:100,000 with approximately 80 m resolution, and infrared color aerial photographs on a scale of 1:45,000 with approximately 5 m resolution. Therefore, the classification system included three levels, two selected to be compatible with aerial photography data and the third to conform to the resolution of MSS/LANDSAT.

  20. MAGIC-DML: Mapping/Measuring/Modeling Antarctic Geomorphology & Ice Change in Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Rogozhina, Irina; Bernales, Jorge; Newall, Jennifer; Stroeven, Arjen; Harbor, Jonathan; Glasser, Neil; Fredin, Ola; Fabel, Derek; Hättestrand, Class; Lifton, Nat

    2016-04-01

    Reconstructing and predicting the response of the Antarctic Ice Sheet to climate change is one of the major challenges facing the Earth Science community. There are critical gaps in our knowledge of past changes in ice elevation and extent in many regions of East Antarctica, including a large area of Dronning Maud Land. An international Swedish-UK-US-Norwegian-German project MAGIC-DML aims to reconstruct the timing and pattern of ice surface elevation (thus ice sheet volume) fluctuations since the mid-Pliocene warm period on the Dronning Maud Land margin of the East Antarctic Ice Sheet. A combination of remotely sensed geomorphological mapping, field investigations, surface exposure dating and numerical modelling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of Dronning Maud Land. Here we present the results from the first phase of this project, which involves high-resolution numerical simulations of the past glacial geometries and mapping of the field area using historic and recent aerial imagery together with a range of satellite acquired data.

  1. Digital mining claim density map for federal lands in Arizona: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Arizona as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  2. Digital mining claim density map for federal lands in Wyoming: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  3. Digital mining claim density map for federal lands in Washington: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  4. Digital mining claim density map for federal lands in Utah: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Utah as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  5. Digital mining claim density map for federal lands in Colorado: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  6. Digital mining claim density map for federal lands in California: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in California as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  7. Digital mining claim density map for federal lands in New Mexico: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in New Mexico as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  8. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  9. Mapping Soil Depth with Topographic and Land Cover Attributes from Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh; Lau, Va-Khin

    2016-04-01

    Soil depth is an important parameter for identification of the overused slope land in Taiwan. The retrieval of high resolution soil depth at a large scale is costly and time-consuming. The main objective of this study is to develop an approach to estimate soil depths using satellite data with the aid of field survey data in Taiwan. The data were processed using the soil-landscape regression kriging model. The predictor variables, including elevation, slope, aspect, curvature, topographic wetness, spectral indices, and land use, derived from remotely sensed data were used as model inputs for the soil depth estimation. In this study, topographic attributes were derived from an 5-m resolution digital elevation model, and the land-use map and spectral indices were obtained through interpretation of Landsat-8 data. The absolute mean and root mean-square errors were used to access the reliability of the prediction, indicating a goodness-of-fit of the estimation model. The results of soil depth estimation compared with the field survey data indicated close relationship between these two datasets. The results obtained from this study could spatially provide quantitative information of soil depths, which is an important indicator for assessing the overused slope land. The methods were thus proposed for retrieval of soil depths in Taiwan.

  10. A high-resolution land-use map; Nogales, Sonora, Mexico

    USGS Publications Warehouse

    Norman, Laura M.; Villarreal, Miguel L.; Wallace, Cynthia S.A.; Gil Anaya, Claudia Z.; Diaz Arcos, Israel; Gray, Floyd

    2010-01-01

    The cities of Nogales, Sonora, and Nogales, Arizona, are located in the Ambos Nogales Watershed, a topographically irregular bowl-shaped area with a northward gradient. Throughout history, residents in both cities have been affected by flooding. Currently, the primary method for regulating this runoff is to build a series of detention basins in Nogales, Sonora. Additionally, the municipality also is considering land-use planning to help mitigate flooding. This paper describes the production of a 10-meter resolution land-use map, derived from 2008 aerial photos of the Nogales, Sonora Watershed for modeling impacts of the detention basin construction and in support of an ?Early Warning Hazard System? for the region.

  11. Grid-based modeling for land use planning and environmental resource mapping.

    SciTech Connect

    Kuiper, J. A.

    1999-08-04

    Geographic Information System (GIS) technology is used by land managers and natural resource planners for examining resource distribution and conducting project planning, often by visually interpreting spatial data representing environmental or regulatory variables. Frequently, many variables influence the decision-making process, and modeling can improve results with even a small investment of time and effort. Presented are several grid-based GIS modeling projects, including: (1) land use optimization under environmental and regulatory constraints; (2) identification of suitable wetland mitigation sites; and (3) predictive mapping of prehistoric cultural resource sites. As different as the applications are, each follows a similar process of problem conceptualization, implementation of a practical grid-based GIS model, and evaluation of results.

  12. Digital mine claim density map for Federal lands in Montana, 1996

    USGS Publications Warehouse

    Campbell, Harry W.; Hyndman, Paul C.

    1998-01-01

    This report describes a digital map and data files generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim information for Federal lands in Montana as of March, 1997. Statewide, 159,704 claims had been recorded with the Bureau of Land Management since 1975. Of those claims, 21,055 (13%) are still actively held while 138,649 (87%) are closed and are no longer held. Montana contains 147,704 sections (usually 1 section equals 1 square mile) in the Public Land Survey System, with 8,569 sections (6%) containing claim data. Of the sections with claim data, 2,192 (26%) contain actively held claims. Only 1.5% of Montana’s sections contains actively held mining claims. The four types of mining claim are lode, placer, mill, and tunnel. A mill claim may be as much as 5 acres or 1/128th (0.78125%) of a square mile. A lode claim, about 20 acres, would cover 1/32nd (3.125%) of a square mile. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. The digital map and data files that are available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller. Campbell (1996) summarized the methodology and GIS techniques that were used to produce the mining claim density map of the Pacific Northwest. Campbell and Hyndman (1997) displayed mining claim information for the Pacific Northwest that used data acquired in 1994. Appendix A of this report lists the attribute data for the digital data files. Appendix B contains the GIS metadata.

  13. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  14. Low Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joe

    2001-01-01

    Yellowstone National Park (YNP) contains a diversity of land cover. YNP managers need site-specific land cover maps, which may be produced more effectively using high-resolution hyperspectral imagery. ISODATA clustering techniques have aided operational multispectral image classification and may benefit certain hyperspectral data applications if optimally applied. In response, a study was performed for an area in northeast YNP using 11 select bands of low-altitude AVIRIS data calibrated to ground reflectance. These data were subjected to ISODATA clustering and Maximum Likelihood Classification techniques to produce a moderately detailed land cover map. The latter has good apparent overall agreement with field surveys and aerial photo interpretation.

  15. The effect of Thematic Mapper spectral properties on land cover mapping for hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Gauthier, R. L.; Miller, J. R.; Irish, R. R.

    1986-01-01

    The accuracy of unsupervised land-cover classification from all seven Landsat TM bands and from six combinations of three or four bands is evaluated using images of the Clinton River Basin, a suburban watershed near Detroit. Data from aerial TMS photography, USGS topographic maps, and ground surveys are employed to determine the classification accuracy. The mapping accuracy of all seven bands is found to be significantly better (6 percent overall, 12 percent for residential areas, and 13 percent for commercial districts) than that with bands 2, 3, and 4; but almost the same accuracy is obtained by including at least one band from each major spectral region (visible, NIR, and mid-IR).

  16. Yukon Flats National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  17. Land cover mapping based on a frequency based contextual classifier from remote sensing data over Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.

    2010-11-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper presents a technique for land use/cover mapping using THEOS data of the Penang Island, Malaysia. The objective is to assess the capability of a THEOS image to provide useful remotely sensed images for land cover mapping. The land cover information was extracted from the visible digital spectral bands using PCI Geomatica 10.3 software package. A frequency based contextual classifier was applied to the imagery to extract the spectral information from the acquired scene. Contextual classification is employed when neighbouring pixels are taken into account. The accuracy of each classification map was assessed using the reference data set consisted of a large number of samples collected per category. The study revealed that the frequency based contextual classifier produced superior result and achieved a high degree of accuracy. The preliminary result indicates that THEOS image can be provided useful data for remote sensing to retrieve land cover information at local scale.

  18. Agricultural land cover mapping in the context of a geographically referenced digital information system. [Carroll, Macon, and Gentry Counties, Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.

    1982-01-01

    The introduction of soil map information to the land cover mapping process can improve discrimination of land cover types and reduce confusion among crop types that may be caused by soil-specific management practices and background reflectance characteristics. Multiple dates of LANDSAT MSS digital were analyzed for three study areas in northern Missouri to produce cover types for major agricultural land cover classes. Digital data bases were then developed by adding ancillary data such as digitized soil and transportation network information to the LANDSAT-derived cover type map. Procedures were developed to manipulate the data base parameters to extract information applicable to user requirements. An agricultural information system combining such data can be used to determine the productive capacity of land to grow crops, fertilizer needs, chemical weed control rates, irrigation suitability, and trafficability of soil for planting.

  19. A procedure used for a ground truth study of a land use map of North Alabama generated from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Downs, S. W., Jr.; Sharma, G. C.; Bagwell, C.

    1977-01-01

    A land use map of a five county area in North Alabama was generated from LANDSAT data using a supervised classification algorithm. There was good overall agreement between the land use designated and known conditions, but there were also obvious discrepancies. In ground checking the map, two types of errors were encountered - shift and misclassification - and a method was developed to eliminate or greatly reduce the errors. Randomly selected study areas containing 2,525 pixels were analyzed. Overall, 76.3 percent of the pixels were correctly classified. A contingency coefficient of correlation was calculated to be 0.7 which is significant at the alpha = 0.01 level. The land use maps generated by computers from LANDSAT data are useful for overall land use by regional agencies. However, care must be used when making detailed analysis of small areas. The procedure used for conducting the ground truth study together with data from representative study areas is presented.

  20. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand

    NASA Astrophysics Data System (ADS)

    Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D.

    2013-12-01

    The 2004 Indian Ocean tsunami caused damages to coastal ecosystems and thus affected the livelihoods of the coastal communities who depend on services provided by these ecosystems. The paper presents a case study on evaluating and mapping the spatial and temporal impacts of the tsunami on land use and land cover (LULC) and related ecosystem service supply in the Phang Nga province, Thailand. The method includes local stakeholder interviews, field investigations, remote-sensing techniques, and GIS. Results provide an ecosystem services matrix with capacity scores for 18 LULC classes and 17 ecosystem functions and services as well as pre-/post-tsunami and recovery maps indicating changes in the ecosystem service supply capacities in the study area. Local stakeholder interviews revealed that mangroves, casuarina forest, mixed beach forest, coral reefs, tidal inlets, as well as wetlands (peat swamp forest) have the highest capacity to supply ecosystem services, while e.g. plantations have a lower capacity. The remote-sensing based damage and recovery analysis showed a loss of the ecosystem service supply capacities in almost all LULC classes for most of the services due to the tsunami. A fast recovery of LULC and related ecosystem service supply capacities within one year could be observed for e.g. beaches, while mangroves or casuarina forest needed several years to recover. Applying multi-temporal mapping the spatial variations of recovery could be visualised. While some patches of coastal forest were fully recovered after 3 yr, other patches were still affected and thus had a reduced capacity to supply ecosystem services. The ecosystem services maps can be used to quantify ecological values and their spatial distribution in the framework of a tsunami risk assessment. Beyond that they are considered to be a useful tool for spatial analysis in coastal risk management in Phang Nga.

  1. Using IKONOS and Aerial Videography to Validate Landsat Land Cover Maps of Central African Tropical Rain Forests

    NASA Astrophysics Data System (ADS)

    Lin, T.; Laporte, N. T.

    2003-12-01

    Compared to the traditional validation methods, aerial videography is a relatively inexpensive and time-efficient approach to collect "field" data for validating satellite-derived land cover map over large areas. In particular, this approach is valuable in remote and inaccessible locations. In the Sangha Tri-National Park region of Central Africa, where road access is limited to industrial logging sites, we are using IKONOS imagery and aerial videography to assess the accuracy of Landsat-derived land cover maps. As part of a NASA Land Cover Land Use Change project (INFORMS) and in collaboration with the Wildlife Conservation Society in the Republic of Congo, over 1500km of aerial video transects were collected in the Spring of 2001. The use of MediaMapper software combined with a VMS 200 video mapping system enabled the collection of aerial transects to be registered with geographic locations from a Geographic Positioning System. Video frame were extracted, visually interpreted, and compared to land cover types mapped by Landsat. We addressed the limitations of accuracy assessment using aerial-base data and its potential for improving vegetation mapping in tropical rain forests. The results of the videography and IKONOS image analysis demonstrate the utility of very high resolution imagery for map validation and forest resource assessment.

  2. Integrating soil map delineations properties and land use into soil carbon density assessment at regional scale (Emilia Romagna, Italy)

    NASA Astrophysics Data System (ADS)

    Ungaro, F.; Calzolari, C.

    2009-04-01

    Accurate estimates of soil organic carbon (SOC) at regional scale are important to estimate the potential of soils as C reservoir. Different approaches can be used resulting in different degree of uncertainty associated to the estimates (Ungaro et al, 2005). Among the major source of uncertainty, land use, soil variability and bulk density for the reference depth are those with the greater influence on the final SOC stock estimation (Meersman, 2007). In order to reconstruct the spatial patterns of SOC at the landscape scale and to reduce the uncertainty associated to SOC stock estimates, an hybrid approach has been developed, combining the properties of the delineations of the regional 1:50.000 soil map with a geostatistical procedure (sequential Gaussian simulation). In the alluvial plain area of Emilia Romagna (10,734 km2) in Northern Italy, the available spatially explicit soil data (17,652 horizons from 3,302 profiles,), from 237 soil typological units, have been referred to 13 soil functional groups, divided in 42 subgroups. Based on the main geomorphic and pedogenetic processes, the soil functional groups and subgroups are defined in terms of top-soil textural classes (texture family), drainage class, slope, presence of organic materials (O horizons), flooding occurrence, origin of the parent material and presence of limestone. In order to take into account the influence of land use, the observations within each functional group have been further divided according to the different agricultural districts of the plain, characterized by different dominant land uses. The SOC density (Mg ha-1) of the 100 cm reference depth has been calculated as a weighed sum of the values calculated for each horizon., using a set of locally calibrated pedotransfer functions (Ungaro, 2007) whose inputs beside organic C are the sand, silt, and clay textural fractions The average values of each soil functional (sub)group of each district were used to assign a SOC density (Mg ha-1

  3. Mapping of government land encroachment in Cameron Highlands using multiple remote sensing datasets

    NASA Astrophysics Data System (ADS)

    Zin, M. H. M.; Ahmad, B.

    2014-02-01

    The cold and refreshing highland weather is one of the factors that give impact to socio-economic growth in Cameron Highlands. This unique weather of the highland surrounded by tropical rain forest can only be found in a few places in Malaysia. It makes this place a famous tourism attraction and also provides a very suitable temperature for agriculture activities. Thus it makes agriculture such as tea plantation, vegetable, fruits and flowers one of the biggest economic activities in Cameron Highlands. However unauthorized agriculture activities are rampant. The government land, mostly forest area have been encroached by farmers, in many cases indiscriminately cutting down trees and hill slopes. This study is meant to detect and assess this encroachment using multiple remote sensing datasets. The datasets were used together with cadastral parcel data where survey lines describe property boundary, pieces of land are subdivided into lots of government and private. The general maximum likelihood classification method was used on remote sensing image to classify the land-cover in the study area. Ground truth data from field observation were used to assess the accuracy of the classification. Cadastral parcel data was overlaid on the classification map in order to detect the encroachment area. The result of this study shows that there is a land cover change of 93.535 ha in the government land of the study area between years 2001 to 2010, nevertheless almost no encroachment took place in the studied forest reserve area. The result of this study will be useful for the authority in monitoring and managing the forest.

  4. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    NASA Technical Reports Server (NTRS)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  5. Mapping land surface energy budget from the AVIRIS and MASTER data

    NASA Astrophysics Data System (ADS)

    Liang, S.; Wang, D.

    2015-12-01

    Mapping land surface energy budget from the AVIRIS and MASTER dataDongdong Wang, Shunlin Liang, Tao He, Qinqing ShiDepartment of Geographical SciencesUniversity of Maryland, College Park, MD 20742The synergy of the AVIRIS and MASTER data with high spatial and spectral resolutions provides us an unprecedented data resource to study the spatial variability of the land-atmosphere exchange of water, carbon and energy at the ecosystem scale. Supported by the NASA HyspIRI program, we have worked on developing algorithms to estimate quantities of surface energy and radiation budget from AVIRIS and MASTER data collected by the HyspIRI preparatory airborne campaign. We will here present results of algorithm development and data analysis, including 1) retrieving broadband surface albedo from AVIRIS, 2) estimating surface shortwave net radiation from hyperspectral data, 3) combing VSWIR and TIR data to estimate all-wave net radiation, and 4) mapping evapotranspiration from MASTER and ancillary data. Validation against field measurements and other satellite data suggests that surface albedo, shortwave net radiation, all-wave net radiation and ET can be estimated with improved resolution and accuracy from the AVIRIS and MASTER data.

  6. Geoinformatics for the Mapping of Nexus Between Poverty and Land Degradation in Drylands of Thar Desert

    NASA Astrophysics Data System (ADS)

    Gaur, Mahesh

    2012-07-01

    contributes to the relatively low Human Development Index (HDI) indicators. Besides the extreme deprivations in the normal course of life, the poor become particularly vulnerable at the time of recurrent drought induced crisis. (MPOWER, 2010) The present study demonstrates application of earth observations for the mapping of nexus between poverty and land degradation. The empirical study carried out by the investigator in the Pali district highlights that such technological inputs could be applied in support of the poor and marginal farming community in the different parts of State and the country at cadastral level.

  7. GEMAS: Geochemical Mapping of the agricultural and grasing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; Birke, Manfred; Demetriades, Alecos; Filzmoser, Peter; O'Connor, Patrick

    2014-05-01

    Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 41 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes and magnetic susceptibility. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling. The two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soil) and for some additional elements only in the mobile metal ion (MMI®) extraction. For several trace elements, deficiency issues are a larger threat to plant, animal, and finally human health at the European scale than toxicity. Taking the famous step back to see the

  8. Covariance of biophysical data with digital topographic and land use maps over the FIFE site

    NASA Astrophysics Data System (ADS)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-11-01

    Sampling design is critical in locating ground sampling stations for large-scale climatological field experiments. In the stratified sampling design adopted for the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), the study region was stratified into 14 different terrain units based on land use/land cover and topographic variables that were hypothesized to have a strong influence on surface biophysical properties. Digital terrain maps were produced to facilitate ground data integration and extrapolation. This paper describes the biophysical stratification of the FIFE site, implementation of the stratification using geographic information system (GIS) techniques, and validation of the stratification with respect to field measurements of biomass, soil moisture, Bowen ratio (β), and the greenness vegetation index (GVI) derived from thematic mapper satellite data. Maps of burning and topographic position were significantly associated with variation in biomass, GVI, and β. The effects of burning and topography were stronger for the Konza Prairie Long-Term Ecological Research (KPLTER) site than for the rest of the FIFE site, where cattle grazing was a major confounding effect. The stratified design did not appreciably change the estimated site-wide means for surface climate parameters but accounted for between 25 and 45% of the sample variance depending on the variable. The design was weakened by undersampling of several strata, by high within-station variance in soil and vegetation data, and by failure to account for diverse land management practices on private lands surrounding KPLTER. We recommend that future large-scale climatological studies include the development of a digital terrain data base well in advance of field campaigns and that multitemporal imagery be used to obtain preliminary estimates of spatial and temporal variance in surface biophysical properties. We also recommend that sampling for the most

  9. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    NASA Astrophysics Data System (ADS)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  10. Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe - A case study

    SciTech Connect

    Treitz, P.M.; Howarth, P.J.; Gong, Peng )

    1992-04-01

    SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracy of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.

  11. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  12. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    NASA Astrophysics Data System (ADS)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  13. Assessing the Application of a Geographic Presence-Only Model for Land Suitability Mapping

    PubMed Central

    Heumann, Benjamin W.; Walsh, Stephen J.; McDaniel, Phillip M.

    2011-01-01

    Recent advances in ecological modeling have focused on novel methods for characterizing the environment that use presence-only data and machine-learning algorithms to predict the likelihood of species occurrence. These novel methods may have great potential for land suitability applications in the developing world where detailed land cover information is often unavailable or incomplete. This paper assesses the adaptation and application of the presence-only geographic species distribution model, MaxEnt, for agricultural crop suitability mapping in a rural Thailand where lowland paddy rice and upland field crops predominant. To assess this modeling approach, three independent crop presence datasets were used including a social-demographic survey of farm households, a remote sensing classification of land use/land cover, and ground control points, used for geodetic and thematic reference that vary in their geographic distribution and sample size. Disparate environmental data were integrated to characterize environmental settings across Nang Rong District, a region of approximately 1,300 sq. km in size. Results indicate that the MaxEnt model is capable of modeling crop suitability for upland and lowland crops, including rice varieties, although model results varied between datasets due to the high sensitivity of the model to the distribution of observed crop locations in geographic and environmental space. Accuracy assessments indicate that model outcomes were influenced by the sample size and the distribution of sample points in geographic and environmental space. The need for further research into accuracy assessments of presence-only models lacking true absence data is discussed. We conclude that the Maxent model can provide good estimates of crop suitability, but many areas need to be carefully scrutinized including geographic distribution of input data and assessment methods to ensure realistic modeling results. PMID:21860606

  14. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. Part 6: A low-cost method for land use mapping using simple visual techniques of interpretation. [Spain

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. It was found that color composite transparencies and monocular magnification provided the best base for land use interpretation. New methods for determining optimum sample sizes and analyzing interpretation accuracy levels were developed. All stages of the methodology were assessed, in the operational sense, during the production of a 1:250,000 rural land use map of Murcia Province, Southeast Spain.

  15. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.

    PubMed

    Nigatu Wondrade; Dick, Øystein B; Tveite, Havard

    2014-03-01

    Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very

  16. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.

    PubMed

    Nigatu Wondrade; Dick, Øystein B; Tveite, Havard

    2014-03-01

    Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very

  17. Integration of high spatial resolution land cover maps to understand opposing trends in vegetation productivity: A case study for the Dry Chaco ecoregion of South America

    NASA Astrophysics Data System (ADS)

    Ehammer, A.; Fensholt, R.; Horion, S.; Tagesson, T.

    2013-12-01

    Time series analysis of coarse spatial resolution satellite images, especially AVHRR-NDVI data records, has been widely used to characterize long term vegetation dynamics at regional, continental and global scales. However, studies of greening and browning trends show contradictory results depending on input data sets or examined vegetation productivity metrics. Annual cycles of vegetation reflectance respond in a variety of ways to change in climate and/or human induced activities, which make the interpretation and validation of trends at global scale difficult. Integrating high spatial resolution land cover data for analysis can provide accurate evidence of change in land cover/use such as deforestation or expansion/reduction of agricultural land. To bridge scales between coarse resolution data and in-situ observations, this research aims to create multi-temporal, high resolution land cover maps. These maps should add an independent information layer to understand trends found in global earth observation records. To test the framework of this study, the Dry Chaco ecoregion, covering Northern Argentina, Eastern Bolivia and Western Paraguay, is explored as opposing trends are found for this region for the period 1982 to 2010. Not only are results based on yearly NDVI sums of the GIMMS (Global Inventory Modeling and Mapping Studies; 3g) and VIP (Vegetation Index and Phenology; version 2) datasets diverging, but also a comparison of the annual mean with the growing season small integral (both derived from GIMMS 3g) yields opposing trends. In this study we hypothesize that these differences in trends are related to land cover change and several researchers report deforestation in favor of industrial agriculture. Landsat images are used to create regional land cover maps. To overcome the problem of product availability and acquisition mismatch between years, an object-based classification approach based on multiple images per year is applied. First results are

  18. Regional adaptation of a dynamic global vegetation model using a remote sensing data derived land cover map of Russia

    NASA Astrophysics Data System (ADS)

    Khvostikov, S.; Venevsky, S.; Bartalev, S.

    2015-12-01

    The dynamic global vegetation model (DGVM) SEVER has been regionally adapted using a remote sensing data-derived land cover map in order to improve the reconstruction conformity of the distribution of vegetation functional types over Russia. The SEVER model was modified to address noticeable divergences between modelling results and the land cover map. The model modification included a light competition method elaboration and the introduction of a tundra class into the model. The rigorous optimisation of key model parameters was performed using a two-step procedure. First, an approximate global optimum was found using the efficient global optimisation (EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimum was performed using the quasi-Newton algorithm BFGS. The regionally adapted model shows a significant improvement of the vegetation distribution reconstruction over Russia with better matching with the satellite-derived land cover map, which was confirmed by both a visual comparison and a formal conformity criterion.

  19. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA

    PubMed Central

    Kladwang, Wipapat; Cordero, Pablo; Das, Rhiju

    2011-01-01

    We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs, we have carried out mutate-and-map measurements for a 35-nt hairpin, called the MedLoop RNA, embedded within an 80-nt sequence. We demonstrate the synthesis of all 105 single mutants of the MedLoop RNA sequence and present high-throughput DMS, CMCT, and SHAPE modification measurements for this library at single-nucleotide resolution. The resulting two-dimensional data reveal visually clear, punctate features corresponding to RNA base pair interactions as well as more complex features; these signals can be qualitatively rationalized by comparison to secondary structure predictions. Finally, we present an automated, sequence-blind analysis that permits the confident identification of nine of the 10 MedLoop RNA base pairs at single-nucleotide resolution, while discriminating against all 1460 false-positive base pairs. These results establish the accuracy and information content of the mutate-and-map strategy and support its feasibility for rapidly characterizing the base-pairing patterns of larger and more complex RNA systems. PMID:21239468

  20. A procedure for merging land cover/use data from Landsat, aerial photography, and map sources - Compatibility, accuracy and cost

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Tilmann, S. E.; Hill-Rowley, R.; Rogers, R. H.

    1977-01-01

    A method is developed to merge land cover/use data from Landsat, aerial photography and map sources into a grid-based geographic information system. The method basically involves computer-assisted categorization of Landsat data to provide certain user-specified land cover categories; manual interpretation of aerial photography to identify other selected land cover/use categories that cannot be obtained from Landsat data; identification of special features from aerial photography or map sources; merging of the interpreted data from all the sources into a computer compatible file under a standardized coding structure; and the production of land cover/use maps, thematic maps, and tabular data. The specific tasks accomplished in producing the merged land cover/use data file and subsequent output products are identified and discussed. It is shown that effective implementation of the merging method is critically dependent on selecting the 'best' data source for each user-specified category in terms of accuracy and time/cost tradeoffs.

  1. Compilation of functional soil maps for the support of spatial planning and land management in Hungary

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor; Fodor, Nándor; Illés, Gábor; Bakacsi, Zsófia; Szabó, József

    2015-04-01

    The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy soil data. Delineation of Areas with Excellent Productivity in the framework of the National Regional Development Plan or delimitation of Areas with Natural Constraints in Hungary according to the common European biophysical criteria are primary issues in national level spatial planning. Impact assessment of the forecasted climate change and the analysis of the possibilities of the adaptation in the agriculture and forestry can be supported by scenario based land management modelling, whose results can be also incorporated in spatial planning. All these challenges require adequate, preferably timely and spatially detailed knowledge of the soil cover. For the satisfaction of these demands the soil conditions of Hungary have been digitally mapped based on the most detailed, available recent and legacy soil data, applying proper DSM techniques. Various soil related information were mapped in three distinct approaches: (i) basic soil properties determining agri-environmental conditions (e.g.: soil type according to the Hungarian genetic classification, rootable depth, sand, silt and clay content by soil layers, pH, OM and carbonate content for the plough layer); (ii) biophysical criteria of natural handicaps (e.g.: poor drainage, unfavourable texture and stoniness, shallow rooting depth, poor chemical properties and soil moisture balance) defined by common European system and (iii) agro-meteorologically modelled yield values for different crops, meteorological

  2. Testing the use of a land cover map for habitat ranking in boreal forests.

    PubMed

    Hilli, Milla; Kuitunen, Markku T

    2005-04-01

    Habitat loss and modification is one of the major threats to biodiversity and the preservation of conservation values. We use the term ''conservation value'' to mean the benefit of nature or habitats for species. The importance of identifying and preserving conservation values has increased with the decline in biodiversity and the adoption of more stringent environmental legislation. In this study, conservation values were considered in the context of land-use planning and the rapidly increasing demand for more accurate methods of predicting and identifying these values. We used a k-nearest neighbor interpreted satellite (Landsat TM) image classified in 61 classes to assess sites with potential conservation values at the regional and landscape planning scale. Classification was made at the National Land Survey of Finland for main tree species, timber volume, land-use type, and soil on the basis of spectral reflectance in satellite image together with broad numerical reference data. We used the number and rarity of vascular plant species observed in the field as indicators for potential conservation values. We assumed that significant differences in the species richness, rarity, or composition of flora among the classes interpreted in the satellite image would also mean a difference in conservation values among these classes. We found significant differences in species richness among the original satellite image classes. Many of the classes examined could be distinguished by the number of plant species. Species composition also differed correspondingly. Rare species were most abundant in old spruce forests (>200 m3/ha), raising the position of such forests in the ranking of categories according to conservation values. The original satellite image classification was correct for 70% of the sites studied. We concluded that interpreted satellite data can serve as a useful source for evaluating habitat categories on the basis of plant species richness and rarity

  3. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  4. Concept Mapping as a Support for Mars Landing-Site Selection

    NASA Technical Reports Server (NTRS)

    Cabrol, Nathalie A.; Briggs, Geoffrey A.

    1999-01-01

    The NASA Ames' Center for Mars Exploration (CMEX) serves to coordinate Mars programmatic research at ARC in the sciences, in information technology and in aero-assist and other technologies. Most recently, CMEX has been working with the Institute for Human and Machine Cognition at the University of West Florida to develop a new kind of web browser based on the application of concept maps. These Cmaps, which are demonstrably effective in science teaching, can be used to provide a new kind of information navigation tool that can make web or CD based information more meaningful and more easily navigable. CMEX expects that its 1999 CD-ROM will have this new user interface. CMEX is also engaged with the Mars Surveyor Project Office at JPL in developing an Internet-based source of materials to support the process of selecting landing sites for the next series of Mars landers. This activity -- identifying the most promising sites from which to return samples relevant to the search for evidence of life -- is one that is expected to engage the general public as well as the science community. To make the landing site data easily accessible and meaningful to the public, CMEX is planning to use the IHMC Cmap browser as its user interface.

  5. Mapping the land cover in coastal Gabes oases using the EO-1 HYPERION hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Ben-Arfa, Jouda; Bergès, Jean Claude; Beltrando, Gérard; Rim, Katlane; Zargouni, Fouad

    2015-04-01

    Gabes region is characterized by unique maritime oases in Mediterranean basin. Unfortunately these oases are sensitive areas due to a harsh competition for land and water between different user groups (urban, industry, agriculture). An industrial complex is now located in center of this region, cultivation practices have shifted from a traditional multi-layer plant association system and moreover the Gabes city itself is expanding in the very core of oases. The oases of Gabes are transformed into city oases; they undergo multiform interactions whose amplify their environmental dynamic. A proper management of this environment should be based on a fine cartography of land use and remote sensing plays a major role in this issue. However the use of legacy natural resource remote sensing data is disappointing. The crop production strategies rely on a fine scale ground split among various uses and the ground resolution of these satellites is not adequate. Our study relies on hyperspectral images in order to cartography oases boundaries and land use. We tested the potential of Hyperion hyperspectral satellite imagery for mapping dynamics oases covered. We have the opportunity to access EO1/Hyperion data on seven different dates on 2009 and 2010. This dataset allows us to compare various hyperspectral based processing both on the basis on information pertinence and time stability. In this frame some index appear as significantly efficient: cellulose index, vegetation mask, water presence index. On another side spectral unmixing looks as more sensitive to slight ground changes. These results raise the issue of compared interest of enhancing spatial resolution versus spectral resolution. Whereas high resolution ground observation satellites are obviously more appropriate for visual recognition process, reliable information could be extracted from hyperspectral information through a fully automatic process.

  6. Accurate and precise quantification of atmospheric nitrate in streams draining land of various uses by using triple oxygen isotopes as tracers

    NASA Astrophysics Data System (ADS)

    Tsunogai, Urumu; Miyauchi, Takanori; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Obata, Yusuke; Sato, Keiichi; Ohizumi, Tsuyoshi

    2016-06-01

    Land use in a catchment area has significant impacts on nitrate eluted from the catchment, including atmospheric nitrate deposited onto the catchment area and remineralised nitrate produced within the catchment area. Although the stable isotopic compositions of nitrate eluted from a catchment can be a useful tracer to quantify the land use influences on the sources and behaviour of the nitrate, it is best to determine these for the remineralised portion of the nitrate separately from the unprocessed atmospheric nitrate to obtain a more accurate and precise quantification of the land use influences. In this study, we determined the spatial distribution and seasonal variation of stable isotopic compositions of nitrate for more than 30 streams within the same watershed, the Lake Biwa watershed in Japan, in order to use 17O excess (Δ17O) of nitrate as an additional tracer to quantify the mole fraction of atmospheric nitrate accurately and precisely. The stable isotopic compositions, including Δ17O of nitrate, in precipitation (wet deposition; n = 196) sampled at the Sado-seki monitoring station were also determined for 3 years. The deposited nitrate showed large 17O excesses similar to those already reported for midlatitudes: Δ17O values ranged from +18.6 to +32.4 ‰ with a 3-year average of +26.3 ‰. However, nitrate in each inflow stream showed small annual average Δ17O values ranging from +0.5 to +3.1 ‰, which corresponds to mole fractions of unprocessed atmospheric nitrate to total nitrate from (1.8 ± 0.3) to (11.8 ± 1.8) % respectively, with an average for all inflow streams of (5.1 ± 0.5) %. Although the annual average Δ17O values tended to be smaller in accordance with the increase in annual average stream nitrate concentration from 12.7 to 106.2 µmol L-1, the absolute concentrations of unprocessed atmospheric nitrate were almost stable at (2.3 ± 1.1) µmol L-1 irrespective of the changes in population density and land use in each catchment area

  7. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    NASA Astrophysics Data System (ADS)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  8. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The area of snow cover on land was determined from ERTS-1 imagery. Snow cover in specific drainage basins was measured with the Stanford Research Institute console by electronically superimposing basin outlines on imagery, with video density slicing to measure areas. Snow covered area and snowline altitudes were also determined by enlarging ERTS-1 imagery 1:250,000 and using a transparent map overlay. Under very favorable conditions, snowline altitude was determined to an accuracy of about 60 m. Ability to map snow cover or to determine snowline altitude depends primarily on cloud cover and vegetation and secondarily on slope, terrain roughness, sun angle, radiometric fidelity, and amount of spectral information available. Glacier accumulation area ratios were determined from ERTS-1 imagery. Also, subtle flow structures, undetected on aerial photographs, were visible. Surging glaciers were identified, and the changes resulting from the surge of a large glacier were measured as were changes in tidal glacier termini.

  9. A method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset

    USGS Publications Warehouse

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.

    2006-01-01

    Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, specific crop type information is needed as fertilizer application rates vary widely by crop type. Corn requires the highest application of nitrogen fertilizer of crops grown in the Midwest US. We developed a method to refine the US Geological Survey National Land Cover Dataset (NLCD) (including map and original Landsat images) to distinguish corn from other crops. Overall average agreement between the resulting corn and other row crops class and ground reference data was 0.79 kappa coefficient with individual Landsat images ranging from 0.46 to 0.93 kappa. The highest accuracies occurred in Regions where corn was the single dominant crop (greater than 80.0%) and the crop vegetation conditions at the time of image acquisition were optimum for separation of corn from all other crops. Factors that resulted in lower accuracies included the accuracy of the NLCD map, accuracy of corn areal estimates, crop mixture, crop condition at the time of Landsat overpass, and Landsat scene anomalies. ?? 2006 Elsevier B.V. All rights reserved.

  10. Agro-climatic and land suitability mapping for switchgrass grown as a bioenergy crop in North Dakota

    NASA Astrophysics Data System (ADS)

    Thapa, Navin

    Switchgrass (Panicum virgatum L), a native warm-season perennial grass, grows in Central and North American tall-grass prairie. The plant is immense biomass producer and can reach heights up to three meters or more in wet areas. Its high lignocellulosic content makes switchgrass an appropriate candidate for bio-ethanol production. Annual crops, used for bioenergy production such as corn, soybeans, often results in loss of soil organic matter and release of soil carbon, whereas perennial crops like switchgrass can help build soil organic matter and store more soil carbon due to the large amount of underground biomass they produce. North Dakota has been identified as a potential area for perennial switchgrass biomass production for bioenergy purpose. Switchgrass is a C4 grass that has the potential as feedstock for a cellulosic based biofuels industry in the Northern Great Plains. The objective of the present study is to conduct a GIS and Remote Sensing-based land suitability evaluation for switchgrass production in North Dakota. The process involved spatial analysis of several physiographical data including climate, soil and land use. Land suitability for switchgrass was determined as a function of agro-climatic factors governing switchgrass establishment, potential biomass yield, and long term land use practice in North Dakota. The outputs of the analysis were agro-climatic establishment risk map, switchgrass yield potential map and temporal land use variation map in North Dakota. A switchgrass suitability map was the final outcome of the analysis which was a weighted composite overlay of the analyzed factors governing switchgrass production. The suitability map showed relative land suitability for switchgrass production in North Dakota without competing with local agriculture or negatively impacting permanent grassland. The study will be helpful for users or decision makers in planning switchgrass biomass feedstock production and policy development governing

  11. Low-Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2001-01-01

    Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US

  12. Meter-scale Urban Land Cover Mapping for EPA EnviroAtlas Using Machine Learning and OBIA Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.; Riegel, J.; Rudder, C.; Endres, K.

    2013-12-01

    US EPA EnviroAtlas is an online collection of tools and resources that provides geospatial data, maps, research, and analysis on the relationships between nature, people, health, and the economy (http://www.epa.gov/research/enviroatlas/index.htm). Using EnviroAtlas, you can see and explore information related to the benefits (e.g., ecosystem services) that humans receive from nature, including clean air, clean and plentiful water, natural hazard mitigation, biodiversity conservation, food, fuel, and materials, recreational opportunities, and cultural and aesthetic value. EPA developed several urban land cover maps at very high spatial resolution (one-meter pixel size) for a portion of EnviroAtlas devoted to urban studies. This urban mapping effort supported analysis of relations among land cover, human health and demographics at the US Census Block Group level. Supervised classification of 2010 USDA NAIP (National Agricultural Imagery Program) digital aerial photos produced eight-class land cover maps for several cities, including Durham, NC, Portland, ME, Tampa, FL, New Bedford, MA, Pittsburgh, PA, Portland, OR, and Milwaukee, WI. Semi-automated feature extraction methods were used to classify the NAIP imagery: genetic algorithms/machine learning, random forest, and object-based image analysis (OBIA). In this presentation we describe the image processing and fuzzy accuracy assessment methods used, and report on some sustainability and ecosystem service metrics computed using this land cover as input (e.g., carbon sequestration from USFS iTREE model; health and demographics in relation to road buffer forest width). We also discuss the land cover classification schema (a modified Anderson Level 1 after the National Land Cover Data (NLCD)), and offer some observations on lessons learned. Meter-scale urban land cover in Portland, OR overlaid on NAIP aerial photo. Streets, buildings and individual trees are identifiable.

  13. Accurate relative-phase and time-delay maps all over the emission cone of hyperentangled photon source

    NASA Astrophysics Data System (ADS)

    Hegazy, Salem F.; El-Azab, Jala; Badr, Yehia A.; Obayya, Salah S. A.

    2016-04-01

    High flux of hyperentangled photons entails collecting the two-photon emission over relatively wide extent in frequency and transverse space within which the photon pairs are simultaneously entangled in multiple degrees of freedom. In this paper, we present a numerical approach to determining the spatial-spectral relative-phase and time-delay maps of hyperentangled photons all over the spontaneous parametric down conversion (SPDC) emission cone. We consider the hyperentangled-photons produced by superimposing noncollinear SPDC emissions of two crossed and coherentlypumped nonlinear crystals. We adopt a vectorial representation for all parameters of concern. This enables us to study special settings such as the self-compensation via oblique pump incidence. While rigorous quantum treatment of SPDC emission requires Gaussian state representation, in low-gain regime (like the case of the study), it is well approximated to the first order to superposition of vacuum and two-photon states. The relative phase and time-delay maps are then calculated between the two-photon wavepackets created along symmetrical locations of the crystals. Assuming monochromatic plane-wave pump field, the mutual signal-idler relations like energy conservation and transversemomentum conservation define well one of the two-photon with reference to its conjugate. The weaker conservation of longitudinal momentum (due to relatively thin crystals) allows two-photon emission directions coplanar with the pump beam while spreading around the perfect phase-matching direction. While prior works often adopt first-order approximation, it is shown that the relative-phase map is a very well approximated to a quadratic function in the polar angle of the two-photon emission while negligibly varying with the azimuthal angle.

  14. Improving the Apollo 12 landing site mapping with Chandrayaan M3 data

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Crawford, Ian; Bugiolacchi, Roberto; Irfan, Huma; Alexander, Louise

    2014-05-01

    The geology of the Apollo 12 landing site has been the subject of many studies, including recently by Korotev et al. (2011) and Snape et al. (2013). This research attempts to bring additional understanding from a remote sensing perspective using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan lunar orbiter. This has a higher spatial-spectral resolution sensor than the Clementine UV-Vis sensor and provides the opportunity to study the lunar surface with detailed spectral signatures. Mapping of FeO (wt%) and TiO2 (wt%) is done using the methods of Lucey et al. (2000) and Wilcox et al. (2005). A FeO & TiO2 processing module (i.feotio2) is made specifically for this research within the Free & Open Source Software GRASS GIS. Attempts will be made to estimate the lava flow thickness using the method of Bugiolacchi et al. (2006) and individual lava layers thicknesses (Weider et al., 2010). Integration of this new information will be put in perspective and integrated with previous work. Analysis from the combined higher spatial and spectral resolutions will improve the accuracy of the geological mapping at the Apollo 12 landing site. References Bugiolacchi, R., Spudis, P.D., Guest, J.E., 2006. Stratigraphy and composition of lava flows in Mare Nubium and Mare Cognitum. Meteoritics & Planetary Science. 41(2):285-304. Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Seddio, S.M., Haskin, L.A., 2011. Apollo 12 revisited. Geochimica et Cosmochimica Acta. 75(6):1540-1573. Lucey, P.G., Blewett, D.T., Jolliff, B.L., 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105(E8): 20297-20305. Snape, J.F., Alexander, L., Crawford, I.A., Joy, K.H., 2013. Basaltic Regolith Sample 12003,314: A New Member of the Apollo 12 Feldspathic Basalt Suite? Lunar and Planetary Institute Science Conference Abstracts 44:1044. Weider, S.Z., Crawford, I.A. and Joy, K.H., "Individual lava flow

  15. Mapping of the Lunokhod-1 Landing Site: A Case Study for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Oberst, J.; Konopikhin, A.; Shingareva, K.; Gusakova, E.; Kokhanov, A.; Baskakova, M.; Peters, O.; Scholten, F.; Wählisch, M.; Robinson, M.

    2012-04-01

    Introduction. Luna-17 landed on November 17, 1970 and deployed Lunokhod-1, the first remotely operated roving vehicle ever to explore a planetary surface. Within 332 days, the vehicle conquered a traverse of approx. 10 km. The rover was equipped with a navigation camera system as well as a scanner camera with which panoramic images were obtained. From separated stations, stereoscopic views were obtained. The history of the Lunokhods came back into focus recently, when the Lunar Reconnaissance Orbiter [1] obtained images from orbit at highest resolutions of 0.5-0.25 m/pixel. The Luna-17 landing platform as well as the roving vehicles at their final resting positions can clearly be identified. In addition, the rover tracks are clearly visible in most areas. From LRO stereo images, digital elevation model (DEM) of the Lunokhod-1 landing site areas have been derived [2]. These are useful to study the topographic profile and slopes of the traverse. The data are also useful to study the 3-D morphology of craters in the surroundings. Methodology. Lunokhod-1 area mapping have been done using GIS techniques. With CraterTools [3] we digitized craters in the Lunokhod-1 traverse area and created a geodatabase, which consists at this moment of about 45,000 craters including their diameters and depths, obtained from the DEM [4]. The LRO DEM also was used to measure traverse. We used automatic GIS functions for calculating various surface parameters of the Lunokhod-1 area surface including slopes, roughness, crater cumulative and spatial densities, and prepared respective thematic maps. We also measured relative depth (ratio D/H) and inner slopes of craters and classified craters by their morphological type using automatic and visual methods. Vertical profiles through several craters using the high resolution DEM have been done, and the results show good agreement with the topographic models with contours in 10cm that have been obtained from the Lunokhod-1 stereo images [5]. The

  16. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be

  17. Comparing National Differences in what People Perceive to BE There: Mapping Variations in Crowd Sourced Land Cover

    NASA Astrophysics Data System (ADS)

    Comber, A.; Mooney, P.; Purves, R. S.; Rocchini, D.; Walz, A.

    2015-08-01

    This paper describes a simple comparison of the distributions of land cover features identified from volunteered data contributed by different social groups - in this case comparing two groups of Geo-Wiki campaigns. Understanding the impacts on analyses of citizen science data contributed by different groups is critical to ensure robust scientific outputs and to fully realise the potential benefits to formal scientific research. It is well known that different people, with different backgrounds and subject to different cultural factors, hold varying landscape conceptualisations. This paper analyses volunteered geographical information on land cover to generate land cover maps. It uses a geographically weighted approach to generate land cover mappings. The mappings generated by different groups (in this case a from a specific unnamed country) are compared and the results show how the predicted land cover distributions vary, with large differences in some classes (e.g. Barren land, Shrubland, Wetland) and little difference in others (e.g. Tree cover). This suggests that for some landscape features cultural and national differences matter when it comes to using crowdsourced data in formal scientific analyses and highlights the potential problems of not considering contributor backgrounds in citizen science. This is important because such data re now routinely being used to develop global land cover data, to generate uncertainty estimates of existing global land cover products and to generate global forest inventories. These in turn are being suggested as suitable inputs to such things as global climate models. A number of critical research directions arising from these findings are discussed.

  18. Application of ERTS-1 satellite imagery for land use mapping and resource inventories in the central coastal region of California

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Thaman, R. R.; Senger, L. W.

    1974-01-01

    ERTS-1 satellite imagery has proved a valuable data source for land use as well as natural and cultural resource studies on a regional basis. ERTS-1 data also provide an excellent base for mapping resource related features and phenomena. These investigations are focused on a number of potential applications which are already showing promise of having operational utility.

  19. Urban land use mapping by machine processing of ERTS-1 multispectral data: A San Francisco Bay area example

    NASA Technical Reports Server (NTRS)

    Ellefsen, R.; Swain, P. H.; Wray, J. R.

    1973-01-01

    The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.

  20. JournalMap: Discovering location-relevant knowledge from published studies for sustainable land use, preventing degradation, and restoring landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Finding relevant knowledge and information to prevent land degradation and support restoration has historically involved researchers working from their own knowledge, querying people they know, and tediously searching topical literature reviews.To address this need we created JournalMap (http://www....

  1. Geologic Map of the Pueblo of Isleta Tribal Lands and Vicinity, Bernalillo, Torrance, and Valencia Counties, Central New Mexico

    USGS Publications Warehouse

    Maldonado, Florian; Slate, Janet L.; Love, Dave W.; Connell, Sean D.; Cole, James C.; Karlstrom, Karl E.

    2007-01-01

    This 1:50,000-scale map compiles geologic mapping of the Pueblo of Isleta tribal lands and vicinity in the central part of the Albuquerque Basin in central New Mexico. The map synthesizes new geologic mapping and summarizes the stratigraphy, structure, and geomorphology of an area of approximately 2,000 km2 that spans the late Paleogene-Neogene Rio Grande rift south of Albuquerque, N. Mex. The map is part of studies conducted between 1996 and 2001 under the U.S. Geological Survey (USGS) Middle Rio Grande Basin Study by geologists from the USGS, the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the University of New Mexico (UNM). This work was conducted in order to investigate the geologic factors that influence ground-water resources of the Middle Rio Grande Basin, and to provide new insights into the complex geologic history of the Rio Grande rift in this region.

  2. A methodology for producing small scale rural land use maps in semi-arid developing countries using orbital imagery

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. Results have shown that it is feasible to design a methodology that can provide suitable guidelines for operational production of small scale rural land use maps of semiarid developing regions from LANDSAT MSS imagery, using inexpensive and unsophisticated visual techniques. The suggested methodology provides immediate practical benefits to map makers attempting to produce land use maps in countries with limited budgets and equipment. Many preprocessing and interpretation techniques were considered, but rejected on the grounds that they were inappropriate mainly due to the high cost of imagery and/or equipment, or due to their inadequacy for use in operational projects in the developing countries. Suggested imagery and interpretation techniques, consisting of color composites and monocular magnification proved to be the simplest, fastest, and most versatile methods.

  3. Water quality and small-scale land use mapping in the South-Chinese megacity Guangzhou

    NASA Astrophysics Data System (ADS)

    Strohschoen, R.; Azzam, R.; Baier, K.

    2011-12-01

    Since China adopted its "open-door" policy in 1978/ 79, the Pearl River Delta became one of the most rapid and dynamic urbanizing areas in East Asia due to migration, industrialization and globalization processes. The study area Guangzhou grew from a small town to a megacity with some 15 million inhabitants within less than 30 years. The rapid population growth and the urban and industrial expansion led to a remarkably increasing demand for freshwater, a high water consume and a rising sewage production. While economy and house constructions developed very fast, the expansion of water infrastructures could not keep pace with the urban growth. The consequences arising out of these situations are a serious deterioration of the surface and groundwater resources but also a degradation of living conditions and a threat to human health, particularly of the urban poor. In contrast to other studies that often consider the surface water quality outside Guangzhou, our focus was put on the urban Pearl River and its tributaries as well as urban groundwater and tap water. The study was conducted to spatially investigate the present status of the water quality in view of the concurrent formal and informal anthropogenic influences. Additional land use mapping was undertaken to analyze the interrelations between different land use types and water quality and to determine local pollution hotspots which should be taken into particular consideration of future city planning. Supplementing interviews were hold to find out usage patterns of groundwater and strategies to cope with both insufficient tap water quality and water infrastructures. A total of 74 surface water samples and 16 groundwater samples of privately and publicly accessible wells were taken at the beginning of the rainy season in May 2010. Those samples were partly compared to measurements carried out from 2007-2009, where adequate. Further, 15 tap water samples were taken in 2007/ 08 to draw conclusions about possible

  4. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  5. Magnetic soil mapping and modelling for sustainable land use management in Ukraine

    NASA Astrophysics Data System (ADS)

    Menshov, Oleksandr; Kruglov, Oleksandr; Pereira, Paulo; Sukhorada, Anatoliy

    2015-04-01

    The agricultural activities need to be monitored in order to observe if they respect the sustainability principles. During the last 15 years we have been using the magnetic susceptibility measurements for the identification of soil properties and degradation risks. This method can be used to measure soil fertility. We observed a decrease of soil magnetic susceptibility values in the areas with high erosion risk. Magnetic susceptibility can be used as an indicator in identifying rates and depths of soil erosion. Compared to other conventional methods, this one, have a low cost and is time saving. This opens new possibilities to have a better cover of the studied area, collect more samples, hence, a better spatial and temporal resolution. Another field of the soil magnetic properties study is the land use change a result of the urban sprawl and technogenic pollution. The increased risk of the soil degradation is connected to soil pollution and the high concentrations of heavy metals and other dangerous chemical elements and compounds to the environment. The main sources of the anthropogenic pollution are the vehicle circulation, power plants, cement and chemical industry. The components released by these sources contain magnetic properties, which can be identified in soils. In this way we can identify the negative impacts of these activities on the ecosystems sustainability and services and promote measures to recover it. We obtained new results on an example of the urban and industry developed sites of Ukraine. The interpretation of soil magnetic parameter measurements depends on knowledge of a reference value. It is influenced by the type of soils and landscape topography. Magnetic methods are an effective method for temporal and spatial soil mapping and modeling. The results of the soils magnetic studies are valuable to sustainable land use management.

  6. Mapping soil vulnerability to floods under varying land use and climate: A new approach

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Spiess, Pascal; Beyeler, Marcel

    2016-04-01

    the hydrological connectivity between zones of various predisposition to excess surface runoff under different land uses. These promising results indicate that the approach is suited for mapping soil vulnerability to floods under varying land use and climate at any scale.

  7. A persistent scatterer method for retrieving accurate InSAR ground deformation map over vegetation-decorrelated areas

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zebker, H. A.; Knight, R. J.

    2015-12-01

    InSAR is commonly used to measure surface deformation between different radar passes at cm-scale accuracy and m-scale resolution. However, InSAR measurements are often decorrelated due to vegetation growth, which greatly limits high quality InSAR data coverage. Here we present an algorithm for retrieving InSAR deformation measurements over areas with significant vegetation decorrelation through the use of adaptive interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. The interpolation filter restores phase continuity in space and greatly reduces errors in phase unwrapping. We apply this algorithm to process L-band ALOS interferograms acquired over the San Luis Valley, Colorado and the Tulare Basin, California. In both areas, groundwater extraction for irrigation results in land deformation that can be detected using InSAR. We show that the PS-based algorithm reduces the artifacts from vegetation decorrelation while preserving the deformation signature. The spatial sampling resolution achieved over agricultural fields is on the order of hundreds of meters, usually sufficient for groundwater studies. The improved InSAR data allow us further to reconstruct the SBAS ground deformation time series and transform the measured deformation to head levels using the skeletal storage coefficient and time delay constant inferred from a joint InSAR-well data analysis. The resulting InSAR-head and well-head measurements in the San Luis valley show good agreement with primary confined aquifer pumping activities. This case study demonstrates that high quality InSAR deformation data can be obtained over vegetation-decorrrelated region if processed correctly.

  8. Landslide inventory map as a tool for landscape planning and management in Buzau Land Geopark

    NASA Astrophysics Data System (ADS)

    Tatu, Mihai; Niculae, Lucica; Popa, Răzvan-Gabriel

    2015-04-01

    Buzău Land is an aspiring Geopark in Romania, located in the mountainous region of the southern part of the Carpathian Bend Area. From a geologic point of view, the East Carpathians represent a segment of the Alpine - Carpathian orogene, and they are composed of numerous tectonic units put up throughout the Mesozoic and Cenozoic orogenesis. They represent a result of two compressional phases, (1) during Late Cretaceous and (2) during Early and Middle Miocene that were responsible for thrusting of internal units onto external units. The latter cover tectonically the Foredeep folded deposits. Landslides are one of the most widespread and dangerous natural hazards in this region, disrupting access routes and damaging property and habitats at least twice per year, in the rainy seasons. This hazard induces deep changes in the landscape and has serious economic consequences related to the damaging of infrastructure and isolation of localities. The proximity to the Vrancea seismogenic zone increases the risk of landslide triggering. A first step in observing the space and time tendency and amplitude of landslides, in order to distinguish the main vulnerabilities and estimate the risk, is to produce an inventory map. We shall present a landslide inventory map for the Buzău Land territory (~1036 km2), which is the primary base of information for further discussions regarding this phenomenon and an essential tool in observing the development of mass-wasting processes and in landscape planning. The inventory map is in accordance with the recommendations of the IAEG Commission on Landslides and other Mass-Movement, applied across the EU. Based on this work, we can already draw some remarks: - The Geopark territory mostly covers two major tectonic units of the East Carpathians: the external nappes and the folded foredeep; areas with landslide potential are common, but by far the highest landslide frequency is observed in the foredeep. This is related to the soft, argillaceous

  9. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms

    NASA Astrophysics Data System (ADS)

    Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad

    2016-01-01

    In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.

  10. A new approach of mapping soils in the Alps - Challenges of deriving soil information and creating soil maps for sustainable land use. An example from South Tyrol (Italy)

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Gruber, Fabian E.; Geitner, Clemens

    2015-04-01

    Nowadays sustainable land use management is gaining importance because intensive land use leads to increasing soil degradation. Especially in mountainous regions like the Alps sustainable land use management is important, as topography limits land use. Therefore, a database containing detailed information of soil characteristics is required. However, information of soil properties is far from being comprehensive. The project "ReBo - Terrain classification based on airborne laser scanning data to support soil mapping in the Alps", founded by the Autonomous Province of Bolzano, aims at developing a methodical framework of how to obtain soil data. The approach combines geomorphometric analysis and soil mapping to generate modern soil maps at medium-scale in a time and cost efficient way. In this study the open source GRASS GIS extension module r.geomorphon (Jasciewicz and Stepinski, 2013) is used to derive topographically homogeneous landform units out of high resolution DTMs on scale 1:5.000. Furthermore, for terrain segmentation and classification we additionally use medium-scale data sets (geology, parent material, land use etc.). As the Alps are characterized by a great variety of topography, parent material, wide range of moisture regimes etc. getting reliable soil data is difficult. Additionally, geomorphic activity (debris flow, landslide etc.) leads to natural disturbances. Thus, soil properties are highly diverse and largely scale dependent. Furthermore, getting soil information of anthropogenically influenced soils is an added challenge. Due to intensive cultivation techniques the natural link between the soil forming factors is often repealed. In South Tyrol we find the largest pome producing area in Europe. Normally, the annual precipitation is not enough for intensive orcharding. Thus, irrigation strategies are in use. However, as knowledge about the small scaled heterogeneous soil properties is mostly lacking, overwatering and modifications of the

  11. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    possible range of future land use change. The first one is a compact city scenario and the second one is a dispersion scenario. In the compact city scenario, we assumed that commuting to work by cars would be prohibited. In the dispersion scenario, we assumed that all workers would work in their own houses and the time of commuting to work would be zero. The spatially explicit emissions are mapped by using Geographical Information System (GIS). As for the CO2 emission, this study focuses on the analysis of the tendency from the viewpoint of both direct and indirect emission. As a result, people would live in suburbs in the second scenario, and the emissions would increase. It is concluded that the results shows the importance of low-carbon city as compact city. Moreover, the anthropogenic heat emission estimated in this study can used as the input parameters for the climate models. The developed system can be used for analyzing the implications of urban planning and carbon management scenarios.

  12. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhao, Yuanyuan; Li, Congcong; Yu, Le; Liu, Desheng; Gong, Peng

    2015-05-01

    Global land cover types in 2001 and 2010 were mapped at 250 m resolution with multiple year time series Moderate Resolution Imaging Spectrometer (MODIS) data. The map for each single year was produced not only from data of that particular year but also from data acquired in the preceding and subsequent years as temporal context. Slope data and geographical coordinates of pixels were also used. The classification system was derived from the finer resolution observation and monitoring of global land cover (FROM-GLC) project. Samples were based on the 2010 FROM-GLC project and samples for other years were obtained by excluding those changed from 2010. A random forest classifier was used to obtain original class labels and to estimate class probabilities for 2000-2002, and 2009-2011. The overall accuracies estimated from cross validation of samples are 74.93% for 2001 and 75.17% for 2010. The classification results were further improved through post processing. A spatial-temporal consistency model, Maximum a Posteriori Markov Random Fields (MAP-MRF), was first applied to improve land cover classification for each 3 consecutive years. The MRF outputs for 2001 and 2010 were then processed with a rule-based label adjustment method with MOD44B, slope and composited EVI series as auxiliary data. The label adjustment process relabeled the over-classified forests, water bodies and barren lands to alternative classes with maximum probabilities.

  13. Estimation of land surface evaporation map over large areas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Jiang, Le

    Accurate estimation of surface energy fluxes is essential for various hydrological, meteorological, agricultural and ecological applications. Over the years, a wide variety of instrument systems and estimation methodologies have been developed to measure and estimate surface fluxes. In this study, a simple scheme is proposed to estimate surface evaporation over large heterogeneous areas using remote sensing data. This approach is based on an extension of the Priestley-Taylor equation and a relationship between remotely sensed surface temperature and vegetation index. Further simplification by using more generalized form for remotely sensed surface parameters set leads to a simpler formulation for evaporative fraction within a trapezoid/triangle space of remotely sensed vegetation index and surface temperature parameter space. Compared to ground flux observations by the Atmospheric Radiation Measurement (ARM) program, six case studies varying from early spring to late summer over the central United States show that the proposed method provides better estimation accuracy for surface evaporation than the original Priestley-Taylor method. Detailed comparison with the widely used aerodynamic resistance energy balance residual method suggests that the proposed method can achieve similar or better estimation of latent heat flux over large areas with much less input parameters. The residual method, on the other hand, requires estimation of aerodynamic resistance to heat transfer that necessitates the measurements of several ground-based observations including land surface vegetation height and surface wind.

  14. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars

    USGS Publications Warehouse

    Li, R.; Archinal, B.A.; Arvidson, R. E.; Bell, J.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Di, K.; Duxbury, T.; Golombek, M.P.; Grant, J. A.; Greeley, R.; Guinn, J.; Johnson, Aaron H.; Kirk, R.L.; Maimone, M.; Matthies, L.H.; Malin, M.; Parker, T.; Sims, M.; Thompson, S.; Squyres, S. W.; Soderblom, L.A.

    2006-01-01

    By sol 440, the Spirit rover has traversed a distance of 3.76 km (actual distance traveled instead of odometry). Localization of the lander and the rover along the traverse has been successfully performed at the Gusev crater landing site. We localized the lander in the Gusev crater using two-way Doppler radio positioning and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were used to verify the determined lander position. Visual odometry and bundle adjustment technologies were applied to compensate for wheel slippage, azimuthal angle drift, and other navigation errors (which were as large as 10.5% in the Husband Hill area). We generated topographic products, including 72 ortho maps and three-dimensional (3-D) digital terrain models, 11 horizontal and vertical traverse profiles, and one 3-D crater model (up to sol 440). Also discussed in this paper are uses of the data for science operations planning, geological traverse surveys, surveys of wind-related features, and other science applications. Copyright 2006 by the American Geophysical Union.

  15. Updating Landsat-derived land-cover maps using change detection and masking techniques

    NASA Technical Reports Server (NTRS)

    Likens, W.; Maw, K.

    1982-01-01

    The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.

  16. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  17. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  18. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  19. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  20. Computer-aided analysis of Skylab scanner data for land use mapping, forestry and water resource applications

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1975-01-01

    Skylab data were obtained over a mountainous test site containing a complex association of cover types and rugged topography. The application of computer-aided analysis techniques to the multispectral scanner data produced a number of significant results. Techniques were developed to digitally overlay topographic data (elevation, slope, and aspect) onto the S-192 MSS data to provide a method for increasing the effectiveness and accuracy of computer-aided analysis techniques for cover type mapping. The S-192 MSS data were analyzed using computer techniques developed at Laboratory for Applications of Remote Sensing (LARS), Purdue University. Land use maps, forest cover type maps, snow cover maps, and area tabulations were obtained and evaluated. These results compared very well with information obtained by conventional techniques. Analysis of the spectral characteristics of Skylab data has conclusively proven the value of the middle infrared portion of the spectrum (about 1.3-3.0 micrometers), a wavelength region not previously available in multispectral satellite data.

  1. Korean coastal water depth/sediment and land cover mapping (1:25,000) by computer analysis of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Park, K. Y.; Miller, L. D.

    1978-01-01

    Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals.

  2. A regional land use survey based on remote sensing and other data: A report on a LANDSAT and computer mapping project, volume 2

    NASA Technical Reports Server (NTRS)

    Nez, G. (Principal Investigator); Mutter, D.

    1977-01-01

    The author has identified the following significant results. The project mapped land use/cover classifications from LANDSAT computer compatible tape data and combined those results with other multisource data via computer mapping/compositing techniques to analyze various land use planning/natural resource management problems. Data were analyzed on 1:24,000 scale maps at 1.1 acre resolution. LANDSAT analysis software and linkages with other computer mapping software were developed. Significant results were also achieved in training, communication, and identification of needs for developing the LANDSAT/computer mapping technologies into operational tools for use by decision makers.

  3. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data

    NASA Astrophysics Data System (ADS)

    Castellazzi, Pascal; Arroyo-Domínguez, Norma; Martel, Richard; Calderhead, Angus I.; Normand, Jonathan C. L.; Gárfias, Jaime; Rivera, Alfonso

    2016-05-01

    Significant structural damages to urban infrastructures caused by compaction of over-exploited aquifers are an important problem in Central Mexico. While the case of Mexico City has been well-documented, insight into land subsidence problems in other cities of Central Mexico is still limited. Among the cities concerned, we present and discuss the cases of five of them, located within the Trans-Mexican Volcanic Belt (TMVB): Toluca, Celaya, Aguascalientes, Morelia, and Queretaro. Applying the SBAS-InSAR method to C-Band RADARSAT-2 data, five high resolution ground motion time-series were produced to monitor the spatio-temporal variations of displacements and fracturing from 2012 to 2014. The study presents recent changes of land subsidence rates along with concordant geological and water data. It aims to provide suggestions to mitigate future damages to infrastructure and to assist in groundwater resources management. Aguascalientes, Celaya, Morelia and Queretaro (respectively in order of decreasing subsidence rates) are typical cases of fault-limited land subsidence of Central Mexico. It occurs as a result of groundwater over-exploitation in lacustrine and alluvial deposits covering highly variable bedrock topography, typical of horst-graben geological settings. Aguascalientes and Toluca show high rates of land subsidence (up to 10 cm/yr), while Celaya and Morelia show lower rates (from 2 to 5 cm/yr). Comparing these results with previous studies, it is inferred that the spatial patterns of land subsidence have changed in the city of Toluca. This change appears to be mainly controlled by the spatial heterogeneity of compressible sediments since no noticeable change occurred in groundwater extraction and related drawdown rates. While land subsidence of up to 8 cm/yr has been reported in the Queretaro Valley before 2011, rates inferior to 1 cm/yr are measured in 2013-2014. The subsidence has been almost entirely mitigated by major changes in the water management

  4. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia.

    PubMed

    Hüttich, Christian; Herold, Martin; Strohbach, Ben J; Dech, Stefan

    2011-05-01

    Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.

  5. Evaluating the Synergistic Use of Low-Altitude AVIRIS and AIRSAR Data for Land Cover Mapping in Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Spruce, Joseph

    2001-01-01

    Current land cover maps are needed by Yellowstone National Park (YNP) managers to assist them in protecting and preserving native flora and fauna. Synergistic use of hyperspectral and radar imagery offers great promise for mapping habitat in terms of cover type composition and structure. In response, a study was conducted to assess the utility of combining low-altitude AVIRIS and AIRSAR data for mapping land cover in a portion of northeast YNP. Land cover maps were produced from individual AVIRIS and AIRSAR data sets, as well as from a hybrid data stack of selected AVIRIS and AIRSAR data bands. The three resulting classifications were compared to field survey data and aerial photography to assess apparent benefits of hyperspectral/SAR data fusion for land cover mapping. Preliminary results will be presented.

  6. An operational methodology for riparian land cover fine scale regional mapping for the study of landscape influence on river ecological status

    NASA Astrophysics Data System (ADS)

    Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.

    2010-12-01

    Preservation and restoration of river ecosystems require an improved understanding of the mechanisms through which they are influenced by landscape at multiple spatial scales and particularly at river corridor scale considering the role of riparian vegetation for regulating and protecting river ecological status and the relevance of this specific area for implementing efficient and realistic strategies. Assessing correctly this influence over large river networks involves accurate broad scale (i.e. at least regional) information on Land Cover within Riparian Areas (LCRA). As the structure of land cover along rivers is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose we developed a generic multi-scale Object Based Image Analysis (OBIA) scheme able to produce LCRA maps in different geographic context by exploiting information available from very high spatial resolution imagery (satellite or airborne) and/or metric to decametric spatial thematic data on a given study zone thanks to fuzzy expert knowledge classification rules. A first experimentation was carried out on the Herault river watershed (southern of France), a 2650 square kilometers basin that presents a contrasted landscape (different ecoregions) and a total stream length of 1150 Km, using high and very high multispectral remotely-sensed images (10m Spot5 multispectral images and 0.5m aerial photography) and existing spatial thematic data. Application of the OBIA scheme produced a detailed (22 classes) LCRA map with an overall accuracy of 89% and a Kappa index of 83% according to a land cover pressures typology (six categories). A second experimentation (using the same data sources) was carried out on a larger test zone, a part of the Normandy river network (25 000 square kilometers basin; 6000 km long river network; 155 ecological stations). This second work aimed at elaborating a robust statistical

  7. Mapping of land use and geomorphology in the APAPORE project area by LANDSAT satellite data, volume 1

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Kux, H. J.; Sausen, T. M.; Bueno, A. M. T. R.; Desouza, L. F.; Nunes, J. S. D.

    1982-01-01

    The results of a land use and geomorphological mapping of the so-called Projeto APAPORE area, at Mato Grosso do Sul State are presented. The study was carried out using multispectral scanner (MSS) and return beam vidicon LANDSAT images (channels 5 and 7 for the MSS) at the scale of 1:250,000 from 1980 through visual interpretation. The results indicate that pastureland is the most widespead class and that the agricultural areas re concentrated in the north of the area under study. The area covered with cerradao (arboreous savanna type) has a great areal extention, thus permitting the advance of the agricultural frontier. The geomorphological mapping can be useful to regional planning of future land use within the studied area.

  8. Mapping Land and Water Surface Topography with instantaneous Structure from Motion

    NASA Astrophysics Data System (ADS)

    Dietrich, J.; Fonstad, M. A.

    2012-12-01

    Structure from Motion (SfM) has given researchers an invaluable tool for low-cost, high-resolution 3D mapping of the environment. These SfM 3D surface models are commonly constructed from many digital photographs collected with one digital camera (either handheld or attached to aerial platform). This method works for stationary or very slow moving objects. However, objects in motion are impossible to capture with one-camera SfM. With multiple simultaneously triggered cameras, it becomes possible to capture multiple photographs at the same time which allows for the construction 3D surface models of moving objects and surfaces, an instantaneous SfM (ISfM) surface model. In river science, ISfM provides a low-cost solution for measuring a number of river variables that researchers normally estimate or are unable to collect over large areas. With ISfM and sufficient coverage of the banks and RTK-GPS control it is possible to create a digital surface model of land and water surface elevations across an entire channel and water surface slopes at any point within the surface model. By setting the cameras to collect time-lapse photography of a scene it is possible to create multiple surfaces that can be compared using traditional digital surface model differencing. These water surface models could be combined the high-resolution bathymetry to create fully 3D cross sections that could be useful in hydrologic modeling. Multiple temporal image sets could also be used in 2D or 3D particle image velocimetry to create 3D surface velocity maps of a channel. Other applications in earth science include anything where researchers could benefit from temporal surface modeling like mass movements, lava flows, dam removal monitoring. The camera system that was used for this research consisted of ten pocket digital cameras (Canon A3300) equipped with wireless triggers. The triggers were constructed with an Arduino-style microcontroller and off-the-shelf handheld radios with a maximum

  9. Mapping and quantifying geodiversity in land-water transition zones using MBES and topobathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Brandbyge Ernstsen, Verner; Skovgaard Andersen, Mikkel; Gergely, Aron; Schulze Tenberge, Yvonne; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Winter, Christian; Bartholomä, Alexander

    2016-04-01

    Land-water transition zones, like e.g. coastal and fluvial environments, are valuable ecosystems which are often characterised by high biodiversity and geodiversity. However, often these land-water transition zones are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. Combining vessel borne shallow water multibeam echosounder (MBES) surveys ,to cover the subtidal coastal areas and the river channel areas, with airborne topobathymetric light detection and ranging (LiDAR) surveys, to cover the intertidal and supratidal coastal areas and the river floodplain areas, potentially enables full-coverage and high-resolution mapping in these challenging environments. We have carried out MBES and topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage, and in the Ribe Vesterå, a fluvial environment in the Ribe Å river catchment discharging into the Knudedyb tidal basin. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the MBES and the LiDAR point clouds, which both have point densities in the order of 20 points/m2. Morphometric analyses of the DEMs enabled the identification and mapping of the different landforms within the coastal and fluvial environments. Hereby, we demonstrate that vessel borne MBES and airborne topobathymetric LiDAR, here in combination, are promising tools for seamless mapping across land-water transition zones as well as for the quantification of a range of landforms at landscape scale in different land-water transition zone environments. Hence, we demonstrate the potential for mapping and quantifying geomorphological diversity, which is one of the main components of geodiversity and a prerequisite for assessing geoheritage. Acknowledgements This work was funded by the Danish Council for

  10. Built-up land mapping capabilities of the ASTER and Landsat ETM+ sensors in coastal areas of southeastern China

    NASA Astrophysics Data System (ADS)

    Xu, Hanqiu; Huang, Shaolin; Zhang, Tiejun

    2013-10-01

    Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9-6.3% estimated with the IBI-based approach or 3.9-6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.

  11. New England reservoir management: Land use/vegetation mapping in reservoir management (Merrimack River Basin). [Massachusetts and New Hamshire

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. It is evident from this comparison that for land use/vegetation mapping the S190B Skylab photography compares favorably with the RB-57 photography and is much superior to the ERTS-1 and Skylab 190A imagery. For most purposes the 12.5 meter resolution of the S190B imagery is sufficient to permit extraction of the information required for rapid land use and vegetation surveys necessary in the management of reservoir or watershed. The ERTS-1 and S190A data products are not considered adequate for this purpose, although they are useful for rapid regional surveys at the level 1 category of the land use/vegetation classification system.

  12. Census Cities experiment in urban change detection. [mapping of land use changes in San Francisco, Washington D.C., Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac

    NASA Technical Reports Server (NTRS)

    Wray, J. R. (Principal Investigator); Milazzo, V. A.

    1974-01-01

    The author has identified the following significant results. Mapping of 1970 and 1972 land use from high-flight photography has been completed for all test sites: San Francisco, Washington, Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac. Area analysis of 1970 and 1972 land use has been completed for each of the mandatory urban areas. All 44 sections of the 1970 land use maps of the San Francisco test site have been officially released through USGS Open File at 1:62,500. Five thousand copies of the Washington one-sheet color 1970 land use map, census tract map, and point line identification map are being printed by USGS Publication Division. ERTS-1 imagery for each of the eight test sites is being received and analyzed. Color infrared photo enlargements at 1:100,000 of ERTS-1 MSS images of Phoenix taken on October 16, 1972 and May 2, 1973 are being analyzed to determine to what level land use and land use changes can be identified and to what extent the ERTS-1 imagery can be used in updating the 1970 aircraft photo-derived land use data base. Work is proceeding on the analysis of ERTS-1 imagery by computer manipulation of ERTS-1 MSS data in digital format. ERTS-1 CCT maps at 1:24,000 are being analyzed for two dates over Washington and Phoenix. Anniversary tape sets have been received at Purdue LARS for some additional urban test sites.

  13. Mapping

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1978-01-01

    Geologic mapping in the United States increased by about one-quarter in the past year. Examinations of mapping trends were in the following categories: (1) Mapping at scales of 1:100, 000; (2) Metric-scale base maps; (3) International mapping, and (4) Planetary mapping. (MA)

  14. Orbital-science investigation: Part J: preliminary geologic map of the region around the candidate Proclus Apollo landing site

    USGS Publications Warehouse

    Wilhelms, Don E.

    1972-01-01

    The Proclus Crater region was mapped to test the value, for photogeologic mapping purposes, of Apollo 15 metric photographs and to estimate the scientific value of the area as a potential landing site. A metric photographic frame (fig. 25-67) serves as a base for a map of the region around the Proclus Crater (fig. 25-68), and adjacent frames were overlapped with the base frame to provide stereographic images. The excellent stereocoverage allows easy simultaneous observation of topography and albedo. The large forward overlap and the extensive areal photographic coverage provide the best photogeologic data available to date. Brief study has already refined earlier interpretations of the area (refs. 25-7 and 25-32). Although volcanic units have been shown to be extensive in this region, mass wasting apparently has been more important than volcanism in shaping terra landforms.

  15. Korean coastal water depth/sediment and land cover mapping /1:25,000/ by computer analysis of Landsat imagery

    NASA Technical Reports Server (NTRS)

    Park, K. Y.; Miller, L. D.

    1980-01-01

    Computer analysis was applied to single data Landsat MSS imagery of a coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map, and featuring large dynamic sediment transport processes. Supervised image processing yielded a test classification map containing five water depth/sediment classes, two shoreline/tidal classes and five coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%; the training sets were selected by direct examination of the digitally displayed imagery. The unsupervised ISOCLAS (Senkus, 1976) clustering analysis was performed to assess the relative value of this approach to image classification in areas of sparse or nonexistent ground control. Results indicate that it is feasible to produce quantitative maps for detailed study of dynamic coastal processes given a Landsat image data base at sufficiently frequent time intervals.

  16. Phreatophytic land-cover map of the northern and central Great Basin Ecoregion: California, Idaho, Nevada, Utah, Oregon, and Wyoming

    USGS Publications Warehouse

    Mathie, Amy M.; Welborn, Toby L.; Susong, David D.; Tumbusch, Mary L.

    2011-01-01

    Increasing water use and changing climate in the Great Basin of the western United States are likely affecting the distribution of phreatophytic vegetation in the region. Phreatophytic plant communities that depend on groundwater are susceptible to natural and anthropogenic changes to hydrologic flow systems. The purpose of this report is to document the methods used to create the accompanying map that delineates areas of the Great Basin that have the greatest potential to support phreatophytic vegetation. Several data sets were used to develop the data displayed on the map, including Shrub Map (a land-cover data set derived from the Regional Gap Analysis Program) and Gap Analysis Program (GAP) data sets for California and Wyoming. In addition, the analysis used the surface landforms from the U.S. Geological Survey (USGS) Global Ecosystems Mapping Project data to delineate regions of the study area based on topographic relief that are most favorable to support phreatophytic vegetation. Using spatial analysis techniques in a GIS, phreatophytic vegetation classes identified within Shrub Map and GAP were selected and compared to the spatial distribution of selected landforms in the study area to delineate areas of phreatophyte vegetation. Results were compared to more detailed studies conducted in selected areas. A general qualitative description of the data and the limitations of the base data determined that these results provide a regional overview but are not intended for localized studies or as a substitute for detailed field analysis. The map is intended as a decision-support aide for land managers to better understand, anticipate, and respond to ecosystem changes in the Great Basin.

  17. Application of remote sensing and GIS in land use/land cover mapping and change detection in Shasha forest reserve, Nigeria

    NASA Astrophysics Data System (ADS)

    Olokeogun, O. S.; Iyiola, K.; Iyiola, O. F.

    2014-11-01

    Mapping of LULC and change detection using remote sensing and GIS techniques is a cost effective method of obtaining a clear understanding of the land cover alteration processes due to land use change and their consequences. This research focused on assessing landscape transformation in Shasha Forest Reserve, over an 18 year period. LANDSAT Satellite imageries (of 30 m resolution) covering the area at two epochs were characterized into five classes (Water Body, Forest Reserve, Built up Area, Vegetation, and Farmland) and classification performs with maximum likelihood algorithm, which resulted in the classes of each land use. The result of the comparison of the two classified images showed that vegetation (degraded forest) has increased by 30.96 %, farmland cover increased by 22.82 % and built up area by 3.09 %. Forest reserve however, has decreased significantly by 46.12 % during the period. This research highlights the increasing rate of modification of forest ecosystem by anthropogebic activities and the need to apprehend the situation to ensure sustainable forest management.

  18. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    NASA Astrophysics Data System (ADS)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  19. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  20. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  1. Mapping Land Cover in the Taita Hills, se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion

    NASA Astrophysics Data System (ADS)

    Piiroinen, R.; Heiskanen, J.; Maeda, E.; Hurskainen, P.; Hietanen, J.; Pellikka, P.

    2015-04-01

    The Taita Hills, located in south-eastern Kenya, is one of the world's biodiversity hotspots. Despite the recognized ecological importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape. Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes. Simultaneous ALS and IS data were acquired over a 10 km x 10 km area in February 2013 of which 1 km x 8 km test site was selected. The ALS data had mean pulse density of 9.6 pulses/m2, while the IS data had spatial resolution of 1 m and spectral resolution of 4.5-5 nm in the 400-1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be difficult to map using pixel-based methods.

  2. Digital mapping of the Mars Pathfinder landing site: Design, acquisition, and derivation of cartographic products for science applications

    USGS Publications Warehouse

    Gaddis, L.R.; Kirk, R.L.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Barrett, J.; Becker, K.; Decker, T.; Blue, J.; Cook, D.; Eliason, E.; Hare, T.; Howington-Kraus, E.; Isbell, C.; Lee, E.M.; Redding, B.; Sucharski, R.; Sucharski, T.; Smith, P.H.; Britt, D.T.

    1999-01-01

    The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S.Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360?? azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ???60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data. Copyright 1999 by the American Geophysical Union.

  3. Mapping a Balance: Democratic Land-Use Planning on Galiano Island.

    ERIC Educational Resources Information Center

    Holden, Meg

    2000-01-01

    The residents of Galiano Island, British Columbia, have used geographic information systems (GIS) to create a local information database that informs community decisions about sustainable use of forest land. The islanders' involvement with GIS promotes a democratic land-use planning process that is reasoned and well informed. (SV)

  4. Global land cover mapping and characterization: present situation and future research priorities

    USGS Publications Warehouse

    Giri, Chandra

    2005-01-01

    The availability and accessibility of global land cover data sets plays an important role in many global change studies. The importance of such science‐based information is also reflected in a number of international, regional, and national projects and programs. Recent developments in earth observing satellite technology, information technology, computer hardware and software, and infrastructure development have helped developed better quality land cover data sets. As a result, such data sets are increasingly becoming available, the user‐base is ever widening, application areas have been expanding, and the potential of many other applications are enormous. Yet, we are far from producing high quality global land cover data sets. This paper examines the progress in the development of digital global land cover data, their availability, and current applications. Problems and opportunities are also explained. The overview sets the stage for identifying future research priorities needed for operational land cover assessment and monitoring.

  5. Spatial land-use inventory, modeling, and projection/Denver metropolitan area, with inputs from existing maps, airphotos, and LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Tom, C.; Miller, L. D.; Christenson, J. W.

    1978-01-01

    A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.

  6. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  7. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe's "Fast Track Land Reform Programme".

    PubMed

    Hentze, Konrad; Thonfeld, Frank; Menz, Gunter

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) data forms the basis for numerous land use and land cover (LULC) mapping and analysis frameworks at regional scale. Compared to other satellite sensors, the spatial, temporal and spectral specifications of MODIS are considered as highly suitable for LULC classifications which support many different aspects of social, environmental and developmental research. The LULC mapping of this study was carried out in the context of the development of an evaluation approach for Zimbabwe's land reform program. Within the discourse about the success of this program, a lack of spatially explicit methods to produce objective data, such as on the extent of agricultural area, is apparent. We therefore assessed the suitability of moderate spatial and high temporal resolution imagery and phenological parameters to retrieve regional figures about the extent of cropland area in former freehold tenure in a series of 13 years from 2001-2013. Time-series data was processed with TIMESAT and was stratified according to agro-ecological potential zoning of Zimbabwe. Random Forest (RF) classifications were used to produce annual binary crop/non crop maps which were evaluated with high spatial resolution data from other satellite sensors. We assessed the cropland products in former freehold tenure in terms of classification accuracy, inter-annual comparability and heterogeneity. Although general LULC patterns were depicted in classification results and an overall accuracy of over 80% was achieved, user accuracies for rainfed agriculture were limited to below 65%. We conclude that phenological analysis has to be treated with caution when rainfed agriculture and grassland in semi-humid tropical regions have to be separated based on MODIS spectral data and phenological parameters. Because classification results significantly underestimate redistributed commercial farmland in Zimbabwe, we argue that the method cannot be used to produce spatial

  8. The South Florida Ecosystem Portfolio Model - A Map-Based Multicriteria Ecological, Economic, and Community Land-Use Planning Tool

    USGS Publications Warehouse

    Labiosa, William B.; Bernknopf, Richard; Hearn, Paul; Hogan, Dianna; Strong, David; Pearlstine, Leonard; Mathie, Amy M.; Wein, Anne M.; Gillen, Kevin; Wachter, Susan

    2009-01-01

    The South Florida Ecosystem Portfolio Model (EPM) prototype is a regional land-use planning Web tool that integrates ecological, economic, and social information and values of relevance to decision-makers and stakeholders. The EPM uses a multicriteria evaluation framework that builds on geographic information system-based (GIS) analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to regional land-use/land-cover (LULC) change. The EPM uses both economics (monetized) and multiattribute utility (nonmonetized) approaches to valuing these endpoints and consequences. This hybrid approach represents a methodological middle ground between rigorous economic and ecological/ environmental scientific approaches. The EPM sacrifices some degree of economic- and ecological-forecasting precision to gain methodological transparency, spatial explicitness, and transferability, while maintaining credibility. After all, even small steps in the direction of including ecosystem services evaluation are an improvement over current land-use planning practice (Boyd and Wainger, 2003). There are many participants involved in land-use decision-making in South Florida, including local, regional, State, and Federal agencies, developers, environmental groups, agricultural groups, and other stakeholders (South Florida Regional Planning Council, 2003, 2004). The EPM's multicriteria evaluation framework is designed to cut across the objectives and knowledge bases of all of these participants. This approach places fundamental importance on social equity and stakeholder participation in land-use decision-making, but makes no attempt to determine normative socially 'optimal' land-use plans. The EPM is thus a map-based set of evaluation tools for planners and stakeholders to use in their deliberations of what is 'best', considering a balancing of disparate interests within a regional perspective. Although

  9. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  10. Linking Landsat observations with MODIS derived Land Surface Phenology data to map agricultural expansion and contraction in Russia

    NASA Astrophysics Data System (ADS)

    Caliskan, S.; de Beurs, K.

    2010-12-01

    Direct human impacts on the land surface are especially pronounced in agricultural regions that cover a substantial portion of the global land surface: 12% of the terrestrial surface is under active agricultural management. Crops display phenologies distinct from natural vegetation; the growing seasons are often shifted in time, crop establishment is generally fast and the vegetation is rapidly removed at harvest. Previously we have demonstrated that agricultural land abandonment alters land surface phenology sufficiently to be detectable from a time series of coarse resolution imagery. With land surface phenology models based on accumulated growing degree-days (AGDD) and AVHRR NDVI, we demonstrated that abandoned croplands covered with native grasses and weeds typically greened-up and peaked sooner than active croplands. Here we present an expansion of these analyses for the MODIS time period with the ultimate goal to map agricultural abandonment and expansion in European Russia from 2000 to 2010. We used the 8-day, 1km L3 Land Surface Temperature data (MOD11A2) to generate the accumulated growing degree days and the 16-day L3 Nadir BRDF-Adjusted reflectance data at 500m resolution (MCD43A4) to calculate NDVI. We calculated phenological metrics based on three methods: 1) Double-logistic models such as those applied to produce the standard MODIS phenology product (MOD12Q2); 2) A combination of NDII and NDVI; this method has been shown to provide start/end of season measurement closest to field observations in snowy areas; and 3) A quadratic model linking accumulated growing degree days and vegetation indices which we successfully applied in agricultural areas of Kazakhstan and semi-arid Africa. We selected Landsat imagery for two vastly different regions in Russia and present a Landsat-guided probabilistic detection of abandoned and active croplands for all available years of the MODIS image time series (2000-2010). For each region, we selected at least two images

  11. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1973: ERTS as an aid in a nationwide program for mapping general land use. [Phoenix Quadrangle, Arizona

    NASA Technical Reports Server (NTRS)

    Place, J. L.

    1974-01-01

    Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.

  12. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  13. Before and after wasting disease in common eelgrass Zostera marina along the French Atlantic coasts: a general overview and first accurate mapping.

    PubMed

    Godet, Laurent; Fournier, Jérôme; van Katwijk, Marieke M; Olivier, Frédéric; Le Mao, Patrick; Retière, Christian

    2008-05-01

    We examined the original manuscripts of a French national survey conducted in 1933 on the state of common eelgrass Zostera marina beds along the French Atlantic coasts during the period when wasting disease struck the entire North Atlantic population in the 1930s. Based on GIS related techniques and old sets of aerial photographs, we present the first accurate mapping of the Z. marina beds before wasting disease occurred and assess their spatial recolonization since the 1950s in the Chausey Archipelago (France), which contains large Z. marina beds. The national survey confirmed that the Z. marina beds almost totally disappeared from the French coasts during the 1930s. However, the disease symptoms seem to have begun locally a few years before. On the study site, we found that the Z. marina beds were more than twice as extended than as they are today, and covered both subtidal and intertidal areas. By the 1950s, 20 yr after the onset of the disease, the beds had hardly recolonized, and contrary to the recolonization patterns reported elsewhere in Europe, they were mainly restricted to subtidal areas. The subtidal and intertidal Z. marina beds on the site are now rapidly expanding.

  14. Graph-Based Urban Land Use Mapping from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Walde, I.; Hese, S.; Berger, C.; Schmullius, C.

    2012-07-01

    Due to the dynamic character of urban land use (e.g. urban sprawl) there is a demand for frequent updates for monitoring, modeling, and controlling purposes. Urban land use is an added value that can be indirectly derived with the help of various properties of land cover classes that describe a certain area and create a distinguishable structure. The goal of this project is to extract land use (LU) classes out of a structure of land cover (LC) classes from high resolution Quickbird data and additional LiDAR building height models. The study area is Rostock, a German city with more than 200.000 inhabitants. To model the properties of urban land use a graph based approach is adapted from other disciplines (industrial image processing, medicine, informatics). A graph consists of nodes and edges while nodes describe the land cover and edges define the relationship of neighboring objects. To calculate the adjacency that describes which nodes are combined with an edge several distance ranges and building height properties are tested. Furthermore the information value of planar versus non-planar graph types is analyzed. After creating the graphs specific indices are computed that evaluate how compact or connected the graphs are. In this work several graph indices are explained and applied to training areas. Results show that the distance of buildings and building height are reliable indicators for LU-categories. The separability of LU-classes improves when properties of land cover classes and graph indices are combined to a LU-signature.

  15. Mapping Agricultural Land-Use Change in the US: Biofuel scenarios from 2000-2030

    NASA Astrophysics Data System (ADS)

    West, T. O.; Bandaru, V.; Hellwinckel, C. M.; Brandt, C. C.

    2011-12-01

    Uniform methods for land use assessment from local to continental scales are important for supporting national policies that focus on local management. In an effort to bridge local and national scales, we have been conducting land-use change research for the continental U.S. and doing so using 56-m resolution land use data. We have recently completed five scenarios of agricultural land-use change that represent a range of plausible biomass feedstock production. The scenarios include meeting targets of the Energy Independence and Security Act; alternative scenarios of only corn grain ethanol versus only cellulosic ethanol production; and alternative scenarios of no ethanol production with current agricultural program incentives versus no ethanol production with no monetary incentives for agricultural practices. These scenarios have implications for carbon cycling, greenhouse gas emissions, soil erosion, water quality, and other environmental variables. These scenarios also represent relevant policy issues that are currently being debated. We will present methods used to estimate future land-use change that include use of the USDA Cropland Data Layer, the POLYSYS agricultural economic model, and the Land Use Carbon Allocation model. We will present results that include spatially-explicit changes in crop rotations associated with the aforementioned biofuel scenarios. Results will consist of acreage changes per crop and the expected geographic location of these changes for years 2000-2030.

  16. EVOLUTIONARY COMPUTATION AND POST-WILDFIRE LAND-COVER MAPPING WITH MULTISPECTRAL IMAGERY.

    SciTech Connect

    Brumby, Steven P.; Koch, S. W.; Hansen, L. A.

    2001-01-01

    The Cerro Grande Los Alamos wildfire devastated approximately 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos. The need to monitor the continuing impact of the fire on the local environment has led to the application of a number of advanced remote sensing technologies. During and after the fire, remote-sensing data was acquired fiorn a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique io the automated classification of land cover using multispectral imagery. We apply a hybrid gertelic programminghupervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery fiom the Landsat 7 ETM+ instrument fiom before and after the wildfire. Using an existing land cover classification based on a Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, along with clouds and cloud shadows. The details of our evolved classification are compared to the manually produced land-cover classification. Keywords: Feature Extraction, Genetic programming, Supervised classification, Multi-spectral imagery, Land cover, Wildfire.

  17. Machine processing of S-192 and supporting aircraft data: Studies of atmospheric effects, agricultural classifications, and land resource mapping

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1975-01-01

    Two tasks of machine processing of S-192 multispectral scanner data are reviewed. In the first task, the effects of changing atmospheric and base altitude on the ability to machine-classify agricultural crops were investigated. A classifier and atmospheric effects simulation model was devised and its accuracy verified by comparison of its predicted results with S-192 processed results. In the second task, land resource maps of a mountainous area near Cripple Creek, Colorado were prepared from S-192 data collected on 4 August 1973.

  18. Land Cover Mapping for the Development of Green House Gas (GHG) Inventories in the Eastern and Southern Africa Region

    NASA Astrophysics Data System (ADS)

    Wakhayanga, J. A.; Oduor, P.; Korme, T.; Farah, H.; Limaye, A. S.; Irwin, D.; Artis, G.

    2014-12-01

    Anthropogenic activities are responsible for the largest share of green house gas (GHG) emissions. Research has shown that greenhouse gases cause radioactive forcing in the stratosphere, leading to ozone depletion. Different land cover types act as sources or sinks of carbon dioxide (CO2), the most dominant GHG.Under the oversight of the United Nations Framework Convention on Climate Change (UNFCCC) the Eastern and Southern Africa (ESA) region countries are developing Sustainable National GHG Inventory Management Systems. While the countries in the ESA region are making substantial progress in setting up GHG inventories, there remains significant constraints in the development of quality and sustainable National GHG Inventory Systems. For instance, there are fundamental challenges in capacity building and technology transfer, which can affect timely and consistent reporting on the land use, land-use change and forestry (LULUCF) component of the GHG inventory development. SERVIR Eastern and Southern Africa is a partnership project between the National Aeronautics and Space Administration (NASA) and the Regional Center for Mapping of Resources for Development (RCMRD), an intergovernmental organization in Africa, with 21 member states in the ESA region. With support from the United States Agency for International Development (USAID), SERVIR ESA is implementing the GHG Project in 9 countries. The main deliverables of the project are land cover maps for the years 2000 and 2010 (also 1990 for Malawi and Rwanda), and related technical reports, as well as technical training in land cover mapping using replicable methodologies. Landsat imagery which is freely available forms the main component of earth observation input data, in addition to ancillary data collected from each country. Supervised classification using maximum likelihood algorithm is applied to the Landsat images. The work is completed for the initial 6 countries (Malawi, Zambia, Rwanda, Tanzania, Botswana, and

  19. The 1980 land cover for the Puget Sound region

    NASA Technical Reports Server (NTRS)

    Shinn, R. D.; Westerlund, F. V.; Eby, J. R.

    1982-01-01

    Both LANDSAT imagery and the video information communications and retrieval software were used to develop a land cover classifiction of the Puget Sound of Washington. Planning agencies within the region were provided with a highly accurate land cover map registered to the 1980 census tracts which could subsequently be incorporated as one data layer in a multi-layer data base. Many historical activities related to previous land cover mapping studies conducted in the Puget Sound region are summarized. Valuable insight into conducting a project with a large community of users and in establishing user confidence in a multi-purpose land cover map derived from LANDSAT is provided.

  20. A spatial-temporal Hopfield neural network approach for super-resolution land cover mapping with multi-temporal different resolution remotely sensed images

    NASA Astrophysics Data System (ADS)

    Li, Xiaodong; Ling, Feng; Du, Yun; Feng, Qi; Zhang, Yihang

    2014-07-01

    The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial-temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the

  1. Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling.

    PubMed

    Swetnam, R D; Fisher, B; Mbilinyi, B P; Munishi, P K T; Willcock, S; Ricketts, T; Mwakalila, S; Balmford, A; Burgess, N D; Marshall, A R; Lewis, S L

    2011-03-01

    We present a GIS method to interpret qualitatively expressed socio-economic scenarios in quantitative map-based terms. (i) We built scenarios using local stakeholders and experts to define how major land cover classes may change under different sets of drivers; (ii) we formalized these as spatially explicit rules, for example agriculture can only occur on certain soil types; (iii) we created a future land cover map which can then be used to model ecosystem services. We illustrate this for carbon storage in the Eastern Arc Mountains of Tanzania using two scenarios: the first based on sustainable development, the second based on 'business as usual' with continued forest-woodland degradation and poor protection of existing forest reserves. Between 2000 and 2025 4% of carbon stocks were lost under the first scenario compared to a loss of 41% of carbon stocks under the second scenario. Quantifying the impacts of differing future scenarios using the method we document here will be important if payments for ecosystem services are to be used to change policy in order to maintain critical ecosystem services. PMID:20932636

  2. NALC/MEXICO LAND-COVER MAPPING RESULTS: IMPLICATIONS FOR ASSESSING LANDSCAPE CONDITION

    EPA Science Inventory

    An inventory of land-cover conditions throughout Mexico was performed using North American Landscape Characterization (NLAC) Landsat Mult-Spectral Scann (MSS) 'triplicate' images, corresponding to the 1970s, 1980s and 1990s epoch periods. The equivalents of 300 image scenes were...

  3. NALC/MEXICO LAND-COVER MAPPING RESULTS: IMPLICATIONS FOR ASSESSING LANDSCAPE CHANGE

    EPA Science Inventory

    An inventory of land-cover conditions throughout Mexico was performed using North American Landscape Characterization (NALC) Landsat Multi-Spectral Scanner (MSS) 'triplicate' images, corresponding to the 1970s, 1980s, and 1990s epoch periods. The equivalent of 300 image scenes we...

  4. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  5. LARGE AREA LAND COVER MAPPING THROUGH SCENE-BASED CLASSIFICATION COMPOSITING

    EPA Science Inventory

    Over the past decade, a number of initiatives have been undertaken to create definitive national and global data sets consisting of precision corrected Landsat MSS and TM scenes. One important application of these data is the derivation of large area land cover products spanning ...

  6. NALC/MEXICO LAND-COVER MAPPING RESULTS: IMPLICATIONS FOR ASSESSING LANDSCAPE CONDITION

    EPA Science Inventory

    An inventory of land-cover conditions throughout Mexico was performed using North American Landscap Characterization ( NALC) Landsat Multi-Spectral Scanner (MSS) 'triplicate' images, corresponding to the 1970s, 1980s and1990s epoch periods. The equivalent of 300 image scenes were...

  7. Mapping Agricultural Land-Use Change in the U.S. 2008-2012

    NASA Astrophysics Data System (ADS)

    Lark, T.; Salmon, M.; Gibbs, H.

    2014-12-01

    Cultivation of corn and soybeans in the United States reached record levels following the biofuels boom of the late 2000s. Debate churns about whether expansion of these crops caused conversion of carbon-rich natural ecosystems or instead replaced other crops on existing fields. Here we describe a novel trajectory-based methodology for analyzing satellite-derived land cover products that enables integration of all available and intermediate-year data to improve consistency across data sources, time, and geographic boundaries. Using this approach, we track crop-specific expansion pathways across the conterminous U.S., 2008-2012, and identify the types, amount, and locations of all land converted to and from cropland. We find total cropland area increased by a net of 3 million acres over the study period, with gross land conversion to cropland 2.5 times greater than net expansion. Grasslands were the source of 77% of all new cropland, and we estimate 1.6 million acres (22%) were virgin grasslands that had not been previously planted or plowed. Corn was the most common crop planted directly on new land, as well as the largest indirect contributor to change through its displacement of other crops. Results identify holes in federal policies including improper enforcement of the Renewable Fuels Standard and insufficient coverage of recent Farm Bill provisions, suggesting current implementations of federal policies are likely insufficient to protect remaining grassland habitat.

  8. Modeling LAI based on land cover map and NDVI using SPOT and Landsat data in two Mediterranean sites: preliminary results

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos; Monachou, Styliani; Strati, Stavroula; Alexandridis, Thomas; Stavridou, Domna; Silleos, Nikolaos; Misopolinos, Nikolaos; Nunes, Antonio; Araújo, Antonio

    2013-08-01

    Leaf Area Index (LAI) is considered to be a key parameter of ecosystem processes and it is widely used as input to biogeochemical process models that predict net primary production (NPP) or can be a useful parameter for crop yield prediction and crop stress assessment as well as estimation of the exchanges of carbon dioxide, water, and nutrients in forests. LAI can be derived from satellite optical data using models referred to physical-based approaches, which describe the physical processes of energy flow in the soil-vegetation-atmosphere system, and models using empirically derived regression relationships based on spectral vegetation indices (VIs). The first category of models are more general in application because they can account for the different sources of variability, although in many cases the information needed to constrain model inputs is not available. In contrast, empirical models depend on the site and time. The aim of this paper is to create a reliable semi-empirical method, applied in two Mediterranean sites, to estimate LAI with high spatial resolution images. The model uses a minimum dataset of a Landsat 5 TM or SPOT 4 XS image, land cover map and DEM for each area. Specifically, this model calculates the reflectance of initial bands implementing topographic correction with the aid of DEM and metadata of the images and afterwards uses a list of NDVI values that correspond to certain LAI values on different land cover types which has been proposed by the MODIS Land Team. This model has been applied in two areas; in the river basin of Nestos (Greece and Bulgaria) and in the river basin of Tamega (Portugal). The predicted LAI map was validated with ground truth data from hemispherical images showing high correlation, with r reaching 0.79 and RMSE less than 1 m2/m2.

  9. Land cover/use mapping using multi-band imageries captured by Cropcam Unmanned Aerial Vehicle Autopilot (UAV) over Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Fuyi, Tan; Boon Chun, Beh; Mat Jafri, Mohd Zubir; Hwee San, Lim; Abdullah, Khiruddin; Mohammad Tahrin, Norhaslinda

    2012-11-01

    The problem of difficulty in obtaining cloud-free scene at the Equatorial region from satellite platforms can be overcome by using airborne imagery. Airborne digital imagery has proved to be an effective tool for land cover studies. Airborne digital camera imageries were selected in this present study because of the airborne digital image provides higher spatial resolution data for mapping a small study area. The main objective of this study is to classify the RGB bands imageries taken from a low-altitude Cropcam UAV for land cover/use mapping over USM campus, penang Island, Malaysia. A conventional digital camera was used to capture images from an elevation of 320 meter on board on an UAV autopilot. This technique was cheaper and economical compared with other airborne studies. The artificial neural network (NN) and maximum likelihood classifier (MLC) were used to classify the digital imageries captured by using Cropcam UAV over USM campus, Penang Islands, Malaysia. The supervised classifier was chosen based on the highest overall accuracy (<80%) and Kappa statistic (<0.8). The classified land cover map was geometrically corrected to provide a geocoded map. The results produced by this study indicated that land cover features could be clearly identified and classified into a land cover map. This study indicates the use of a conventional digital camera as a sensor on board on an UAV autopilot can provide useful information for planning and development of a small area of coverage.

  10. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  11. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  12. The use of geo-technologies for land use mapping on reclaimed areas. (Polish Title: Zastosowanie technik geomatycznych w opracowywaniu map pokrycia i użytkowania terenu dla obszarów zrekultywowanych)

    NASA Astrophysics Data System (ADS)

    Szostak, M.; Nowicka, M.

    2013-12-01

    The aim of this study was to investigate the possible use of geotechniques and generally available geodata for mapping land cover on reclaimed areas . The choice of subject was dictated by the growing number of such areas and the related problem of restoring their value. The validity of the use of modern technology, including GIS, photogrammetry and remote sensing, was determined, especially for the land cover classes mapping that are relevant in assessing the effects of reclamation and analyzes of the changes taking place on such sites. The study was performed for dump site of the Sulphur Mine "Machów", which is an example of the reclaimed area, located in the Tarnobrzeski district. The research materials consisted of aerial orthophotos, which were the basis of on-screen vectorization of land cover classes; Landsat satellite images, which were used in the pixel based classification; and the CORINE Land Cover database as a general reference to the global maps of land cover and land use. The site was characterized by relatively large mosaic of landscape which is typical for reclaimed areas. Due to this fact, high resolution aerial photos were most suitable for the land cover mapping, allowing distinguishing highest number of land cover classes. The process was also successfully automated with the means of pixel-based image classification on the satellite images. This resulted also in the subjectivity of the operator and time costs. The effort made to develop land cover classes, supported with thorough knowledge of the operator, is important for the proper evaluation of the reclamation process.

  13. Geomorphic/Geologic Mapping, Localization, and Traverse Planning at the Opportunity Landing Site, Mars

    NASA Astrophysics Data System (ADS)

    Parker, T. J.; Golombek, M. P.; Powell, M. W.

    2010-03-01

    Mapping of the Opportunity traverse, using the project’s planning tool, “maestro”, and GIS software. Experience gained by the science and engineering teams will be invaluable for planning and conducting future mobile explorer missions to Mars and other planetary bodies.

  14. The Luna-Glob Candidate Landing Region: Geological Mapping Based on the Lunar Reconnaissance Orbiter Data

    NASA Astrophysics Data System (ADS)

    Abdrakhimov, A. M.; Ivanov, M. A.; Basilevsky, A. T.; Dickson, J. L.; Head, J. W.; Zuber, M. T.; Smith, D. E.; Mazarico, E.; Neish, C. D.; Bussey, D. B. J.

    2012-03-01

    The new regional detailed geologic map was made using recent LRO data for the Luna-Glob mission. The most probable unit that could be sampled by the lander is a feldspathic Imbrian highland plains-forming material, resembling the Cayley Formation.

  15. Mapping large areas of radioactively contaminated land with a self adapted, handheld, GPS coupled, scintillation detector.

    PubMed

    Paridaens, Johan

    2008-03-01

    In Belgium, during several decennia, a phosphate plant discharged radium chloride containing waste water into two small rivers. One of those is part of a hydrographically very complex ecosystem with lots of small tributaries and hundreds of hectares of flooding zones. Hence, the river banks and large parts of these flooding zones have become contaminated with radium, heavy metals and chlorides. During a foot campaign, using a home made portable data logging system, consisting of a commercial 2.5 kg NaI detector, a computer mouse sized GPS, and a small pocket PC, the radioactive contamination of about 600 ha of sometimes very rough terrain was measured and mapped. The resulting very detailed radium contamination maps shed a whole new light on the water flow patterns of the ecosystem. The apparatus can also be used for efficiently guiding sampling campaigns for investigating other types of contamination. The ground maps are also compared to existing maps from helicopter measurements, evaluating strengths and weaknesses from both methods. PMID:17904702

  16. The "Land Unit and Soil Capability Map of Sardinia" at a 1:50,000 scale, a new tool for land use planning in Sardinia (Italy) - The pilot area of Pula-Capoterra (southwestern Sardinia)

    NASA Astrophysics Data System (ADS)

    Vacca, Andrea; Marrone, Vittorio Alessandro; Loddo, Stefano

    2014-05-01

    The Regional Landscape Plan (RLP) of Sardinia (Italy), approved in 2006, establishes the directions for any land use planning in Sardinia and requires that pre-existing plans have to be changed to comply with these directives. In the RLP, the soil is specifically considered one of the main landscape components and in the RLP guidelines a soil survey of the whole communal territory is required. Moreover, Land Unit and Land Capability maps are explicitly required, and the adoption of a single regional reference legend for these maps is strongly recommended. The Planning Department of the Regional Administration of Sardinia (RAS) has recently realized the need for specific knowledge and tools to support land use planning according to the RLP rules. Consequently, a new project for the creation of a "Land Unit and Soil Capability Map of Sardinia", at a scale of 1:50,000, was recently initiated in four pilot areas. Two Universities (Cagliari and Sassari) and two regional Agencies (AGRIS and LAORE) are involved in the project, each of them being responsible for one pilot area. In this work we present the map of the pilot area Pula-Capoterra (southwestern Sardinia, 46,040 ha). A GIS approach was used. We used the soil-landscape paradigm for the prediction of soil classes and their spatial distribution based on landscape features. The work was divided into two main phases. In the first phase, the available digital data on topography, geology and land cover were processed and classified according to their influence on weathering processes and soil properties. Digital thematic maps of soil-forming factors (landform, parent material, land cover) were produced to build the first draft of the Land Unit Map. The dataset was developed in a GIS environment, exploiting its potential to produce derived maps by intersections, reclassifications and summarizing themes using GIS functions. The existing soil data (areal and point data) were collected, reviewed, validated and standardized

  17. Land Area Changes in Coastal Louisiana After the 2005 Hurricanes: A Series of Three Maps

    USGS Publications Warehouse

    Barras, John A.

    2006-01-01

    This report includes three posters with analyses of net land area changes in coastal Louisiana after the 2005 hurricanes (Katrina and Rita). The first poster presents a basic analysis of net changes from 2004 to 2005; the second presents net changes within marsh communities from 2004 to 2005; and the third presents net changes from 2004 to 2005 within the historical perspective of change in coastal Louisiana from 1956 to 2004. The purpose of this analysis was to provide preliminary information on land area changes shortly after Hurricanes Katrina and Rita and to serve as a regional baseline for monitoring wetland recovery following the 2005 hurricane season. Estimation of permanent losses cannot be made until several growing seasons have passed and the transitory impacts of the hurricanes are minimized, but this preliminary analysis indicates an approximate 217-mi2 (562.03-km2) decrease in land/increase in water across coastal Louisiana. These posters are presented in high-resolution PDF format that is not Section 508 compliant. For ease in accessibility, viewing, and printing, each poster is accompanied by PDF files that contain the corresponding methodology, tables, and figures. Funding for this project was provided by the Louisiana Coastal Area (LCA) Science & Technology Office.

  18. CARETS: A prototype regional environmental information system. Volume 6: Cost, accuracy and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Fitzpatrick, K. A.

    1975-01-01

    The author has identified the following significant results. Level 2 land use maps produced at three scales (1:24,000, 1:100,000, and 1:250,000) from high altitude photography were compared with each other and with point data obtained in the field. The same procedures were employed to determine the accuracy of the Level 1 land use maps produced at 1:250,000 from high altitude photography and color composite ERTS imagery. Accuracy of the Level 2 maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000 and 73.0 percent at 1:250,000. Accuracy of the Level 1 1:250,000 maps was 76.5 percent for aerial photographs and 69.5 percent for ERTS imagery. The cost of Level 2 land use mapping at 1:24,000 was found to be high ($11.93 per sq km). The cost of mapping at 1:100,000 ($1.75) was about two times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent.

  19. On the Effectiveness of Sentinel-2 Data for Land-Cover Mapping: Comparison with Landsat and SPOT Imagery

    NASA Astrophysics Data System (ADS)

    Buchholz, Tim; Marconcini, Mattia; Fernandez-Prieto, Diego

    2012-04-01

    The objective of this work is twofold. On the one hand, we aim at assessing the effectiveness of Sentinel-2 data for land-cover mapping, and evaluating the improved discrimination capabilities offered by new features of the Multi-Spectral Imager (MSI) sensor. On the other hand, we compare the performances with those obtained using both Landsat-5 TM and SPOT-5 HRG imagery. Simulated Sentinel-2 data are derived from hyperspectral airborne images acquired in the framework of four different ESA campaigns, namely SPARC 2003 (Barrax, Castilla-La Mancha, Spain), AGRISAR 2006 (Demmin, Pomerania, Germany) and CEFLES2 2007 (Marmande, Aquitaine, France). In each case, we discard the three spectral bands at 60 meter resolution (i.e., band 1, band 9 and band 10) and resample all the 20 meter-resolution bands to 10 meter resolution using nearest neighbour interpolation. Available prior knowledge is used for defining a complete ground truth for all the land-cover classes characterizing each investigated site. In each case, besides considering the whole available 10 spectral bands, we also run the branch & bound feature selection algorithm for identifying the subset of n features (varying n from 1 to 9) maximizing the (expected) separability between the investigated land-cover classes (for which training samples are available). Furthermore we run experiments by adding the new features of Sentinel-2 successive to the corresponding Landsat-5 Thematic Mapper (TM) bands. Then, in order to assess the discrimination capabilities offered by different features, for each subset we run two supervised classifiers, namely, the Maximum Likelihood (ML) classifier and Support Vector Machines (SVM). ML is a simple yet generally rather effective statistical classifier, which does not require the user to set any free parameter. SVM are advanced state-of-art classifiers, which proved capable of outperforming other traditional approaches. For the selection of the two free parameters (i.e., a

  20. A preliminary evaluation of land use mapping and change detection capabilities using an ERTS image covering a portion of the CARETS region

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, K. A.; Lins, H. F., Jr.

    1972-01-01

    The author has identified the following significant results. A preliminary study on the capabilities of ERTS data in land use mapping and change detection was carried out in the area around Frederick County, Maryland, which lies in the northwest corner of the Central Atlantic Regional Ecological Test Site. The investigation has revealed that Level 1 (of the Anderson classification system) land use mapping can be performed and that, in some cases, land undergoing change can be identified. Results to date suggest that more work should be done in areas where land use changes are known to exist, in order to establish some form of base for recognizing the spectral signature indicative of change areas.

  1. Digital classification of Landsat data for vegetation and land-cover mapping in the Blackfoot River watershed, southeastern Idaho

    USGS Publications Warehouse

    Pettinger, L.R.

    1982-01-01

    This paper documents the procedures, results, and final products of a digital analysis of Landsat data used to produce a vegetation and landcover map of the Blackfoot River watershed in southeastern Idaho. Resource classes were identified at two levels of detail: generalized Level I classes (for example, forest land and wetland) and detailed Levels II and III classes (for example, conifer forest, aspen, wet meadow, and riparian hardwoods). Training set statistics were derived using a modified clustering approach. Environmental stratification that separated uplands from lowlands improved discrimination between resource classes having similar spectral signatures. Digital classification was performed using a maximum likelihood algorithm. Classification accuracy was determined on a single-pixel basis from a random sample of 25-pixel blocks. These blocks were transferred to small-scale color-infrared aerial photographs, and the image area corresponding to each pixel was interpreted. Classification accuracy, expressed as percent agreement of digital classification and photo-interpretation results, was 83.0:t 2.1 percent (0.95 probability level) for generalized (Level I) classes and 52.2:t 2.8 percent (0.95 probability level) for detailed (Levels II and III) classes. After the classified images were geometrically corrected, two types of maps were produced of Level I and Levels II and III resource classes: color-coded maps at a 1:250,000 scale, and flatbed-plotter overlays at a 1:24,000 scale. The overlays are more useful because of their larger scale, familiar format to users, and compatibility with other types of topographic and thematic maps of the same scale.

  2. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A possibly more accurate method to determine snowcover area change has been tried; snowcover area change over periods of an ERTS-1 cycle are very useful in determining energy balances over regional areas and to determine snow depth as a function of altitude. Also since shadow and cloud cover areas are highlighted this method may be a step toward more complete machine processing.

  3. Evaluation of ERTS imagery for mapping and detection of changes of snowcover land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F.

    1973-01-01

    The percentage of snowcover area on specific drainage basins was measured from ERTS imagery by video density slicing with a repeatability of 4 percent of the snowcovered area. Data from ERTS images of the melt season snowcover in the Thunder Creek drainage basin in the North Cascades were combined with existing hydrologic and meteorologic observations to enable calculation of the time distribution of the water stored in this mountain snowpack. Similar data could be used for frequent updating of expected inflow to reservoirs. Equivalent snowline altitudes were determined from area measurements. Snowline altitudes were also determined by combining enlarged ERTS images with maps with an accuracy of about 60 m under favorable conditions. Ability to map snowcover or to determine snowline altitude depends primarily on cloud cover and vegetation and secondarily on slope, terrain roughness, sun angle, radiometric fidelity, and amount of spectral information available.

  4. computer land use mapping via TV waveform analysis of space photography

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An instrumentation and computer system which offers the potential for analyzing photogeographic distributions is described. To satisfy the requirement for computer acceptance, a television and waveform system was developed to transpose pictorial or iconic photo forms to the analytic. A video conversion was accomplished, and each pattern visible on the original photography was represented by a certain range of percentages. With spatial occurrences in digital form, a computer program was developed that could identify, analyze, and map geographic inputs.

  5. Urban land use/land cover mapping with high-resolution SAR imagery by integrating support vector machines into object-based analysis

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Ban, Yifang

    2008-10-01

    This paper investigates the capability of high-resolution SAR data for urban landuse/land-cover mapping by integrating support vector machines (SVMs) into object-based analysis. Five-date RADARSAT fine-beam C-HH SAR images with a pixel spacing of 6.25 meter were acquired over the rural-urban fringe of the Great Toronto Area (GTA) during May to August in 2002. First, the SAR images were segmented using multi-resolution segmentation algorithm and two segmentation levels were created. Next, a range of spectral, shape and texture features were selected and calculated for all image objects on both levels. The objects on the lower level then inherited features of their super objects. In this way, the objects on the lower level received detailed descriptions about their neighbours and contexts. Finally, SVM classifiers were used to classify the image objects on the lower level based on the selected features. For training the SVM, sample image objects on the lower level were used. One-against-one approach was chosen to apply SVM to multiclass classification of SAR images in this research. The results show that the proposed method can achieve a high accuracy for the classification of high-resolution SAR images over urban areas.

  6. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services.

    PubMed

    Gallant, Alisa L; Euliss, Ned H; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops. PMID:24919181

  7. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services.

    PubMed

    Gallant, Alisa L; Euliss, Ned H; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  8. Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services

    PubMed Central

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops. PMID:24919181

  9. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    NASA Technical Reports Server (NTRS)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  10. Cost reduction and minimization of land based on an accurate determination of fault current distribution in shield wires and grounding systems

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1993-01-01

    Careful analysis of Fault Current Distribution in neutral metallic paths, Power System Protection requirements and Ground Potential Rise (GPR) evaluations were carried out at FPL's Lauderdale Power Plant and associated switchyard. These studies resulted in substantial cost savings and land utilization minimization for the power system expansions at Lauderdale Plant by confirming that the in-situ expansion and reconfiguration aimed at constructing two electrically independent substations sharing the same site and grounding system is a sound economical alternative to the construction of a new substation and associated significant site preparation and construction costs. This paper describes the methodology used to conduct this study.

  11. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S

    USGS Publications Warehouse

    Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.

    2004-01-01

    SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.

  12. Low Altitude AVIRIS Data for Mapping Land Form Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Otvos, Ervin G.; Giardino, Marco J.

    2002-01-01

    Barrier islands help protect the southern and southeastern U.S. shoreline from hurricanes and severe storms. They are important for coastal resource management and geologic research, especially in studies that involve changes in island areas and surface environments, and they display a dynamically changing and diverse mix of landform and vegetative cover habitats. Many Gulf Coast barrier islands have undergone dramatic decreases in areal extent, often due to hurricane and severe storm damage. For example, Louisiana's barrier islands have lost 55 percent of their surface area over the past 100 years. Aerial photography and Landsat data have been used to monitor changes in barrier island areal extent, although neither data source is optimal for making maps of detailed landform types at site-specific scales. High spatial resolution hyperspectral imagery, such as that obtained from the high spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, may enable improved mapping of landform types, which would benefit studies of the dynamics of barrier island environments. During the summers of 2000 and 2001, a study was conducted to assess low-altitude AVIRIS data for mapping the landform types of West Ship Island, a barrier island in Harrison County, Mississippi. This study area was selected because of the availability of low-altitude AVIRIS data acquired on July 22, 1999, and because of the area's accessibility to the investigating team. West Ship Island is one of the six barrier islands that belong to the Gulf Shores National Seashore, which is managed by the National Park Service. This island contains an impressive range of landform categories. Surface types include beach, dune, and sand flat environments. West Ship Island also harbors Fort Massachusetts, a historic fort used during the Civil War. Because it is located near Stennis Space Center, the island is frequently imaged by NASA's airborne and spaceborne sensors.

  13. Object Based Agricultural Land Cover Classification Map of Shadowed Areas from Aerial Image and LIDAR Data Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Celestino, A. B.; Hernando, P. J. C.; Isip, M. F.; Orge, K. M.; Quinto, M. J. C.; Tagaca, R. C.

    2016-06-01

    Aerial image and LiDAR data offers a great possibility for agricultural land cover mapping. Unfortunately, these images leads to shadowy pixels. Management of shadowed areas for classification without image enhancement were investigated. Image segmentation approach using three different segmentation scales were used and tested to segment the image for ground features since only the ground features are affected by shadow caused by tall features. The RGB band and intensity were the layers used for the segmentation having an equal weights. A segmentation scale of 25 was found to be the optimal scale that will best fit for the shadowed and non-shadowed area classification. The SVM using Radial Basis Function kernel was then applied to extract classes based on properties extracted from the Lidar data and orthophoto. Training points for different classes including shadowed areas were selected homogeneously from the orthophoto. Separate training points for shadowed areas were made to create additional classes to reduced misclassification. Texture classification and object-oriented classifiers have been examined to reduced heterogeneity problem. The accuracy of the land cover classification using 25 scale segmentation after accounting for the shadow detection and classification was significantly higher compared to higher scale of segmentation.

  14. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    PubMed Central

    KAFFASH-CHARANDABI, Neda; SADEGHI-NIARAKI, Abolghasem; PARK, Dong-Kyun

    2015-01-01

    Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identified and cardiac rehabilitation defibrillators installed there. Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, economic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS). Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost function in the PSO method. Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives. PMID:26587471

  15. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    NASA Astrophysics Data System (ADS)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  16. Covariance of biophysical data with digital topograpic and land use maps over the FIFE site

    NASA Technical Reports Server (NTRS)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-01-01

    This paper discusses the biophysical stratification of the FIFE site, implementation of the stratification utilizing geographic information system methods, and validation of the stratification with respect to field measurements of biomass, Bowen ratio, soil moisture, and the greenness vegetation index (GVI) derived from TM satellite data. Maps of burning and topographic position were significantly associated with variation in GVI, biomass, and Bowen ratio. The stratified design did not significantly alter the estimated site-wide means for surface climate parameters but accounted for between 25 and 45 percent of the sample variance depending on the variable.

  17. Monitoring of land subsidence and ground fissures in Xian, China 2005-2006: Mapped by sar Interferometry

    USGS Publications Warehouse

    Zhao, C.Y.; Zhang, Q.; Ding, X.-L.; Lu, Zhiming; Yang, C.S.; Qi, X.M.

    2009-01-01

    The City of Xian, China, has been experiencing significant land subsidence and ground fissure activities since 1960s, which have brought various severe geohazards including damages to buildings, bridges and other facilities. Monitoring of land subsidence and ground fissure activities can provide useful information for assessing the extent of, and mitigating such geohazards. In order to achieve robust Synthetic Aperture Radar Interferometry (InSAR) results, six interferometric pairs of Envisat ASAR data covering 2005-2006 are collected to analyze the InSAR processing errors firstly, such as temporal and spatial decorrelation error, external DEM error, atmospheric error and unwrapping error. Then the annual subsidence rate during 2005-2006 is calculated by weighted averaging two pairs of D-InSAR results with similar time spanning. Lastly, GPS measurements are applied to calibrate the InSAR results and centimeter precision is achieved. As for the ground fissure monitoring, five InSAR cross-sections are designed to demonstrate the relative subsidence difference across ground fissures. In conclusion, the final InSAR subsidence map during 2005-2006 shows four large subsidence zones in Xian hi-tech zones in western, eastern and southern suburbs of Xian City, among which two subsidence cones are newly detected and two ground fissures are deduced to be extended westward in Yuhuazhai subsidence cone. This study shows that the land subsidence and ground fissures are highly correlated spatially and temporally and both are correlated with hi-tech zone construction in Xian during the year of 2005-2006. ?? Springer-Verlag 2008.

  18. The use of remote sensing imagery for environmental land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.

    1976-01-01

    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  19. Evaluating the Potential of Multispectral Airborne LIDAR for Topographic Mapping and Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F.

    2015-08-01

    Recently multispectral LiDAR became a promising research field for enhanced LiDAR classification workflows and e.g. the assessment of vegetation health. Current analyses on multispectral LiDAR are mainly based on experimental setups, which are often limited transferable to operational tasks. In late 2014 Optech Inc. announced the first commercially available multispectral LiDAR system for airborne topographic mapping. The combined system makes synchronic multispectral LiDAR measurements possible, solving time shift problems of experimental acquisitions. This paper presents an explorative analysis of the first airborne collected data with focus on class specific spectral signatures. Spectral patterns are used for a classification approach, which is evaluated in comparison to a manual reference classification. Typical spectral patterns comparable to optical imagery could be observed for homogeneous and planar surfaces. For rough and volumetric objects such as trees, the spectral signature becomes biased by signal modification due to multi return effects. However, we show that this first flight data set is suitable for conventional geometrical classification and mapping procedures. Additional classes such as sealed and unsealed ground can be separated with high classification accuracies. For vegetation classification the distinction of species and health classes is possible.

  20. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  1. The Importance of Measurement Errors for Deriving Accurate Reference Leaf Area Index Maps for Validation of Moderate-Resolution Satellite LAI Products

    NASA Technical Reports Server (NTRS)

    Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.

    2006-01-01

    The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.

  2. Thematic mapping, land use, geological structure and water resources in central Spain

    NASA Technical Reports Server (NTRS)

    Delascuevas, N. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The images can be positioned in an absolute reference system (geographical coordinates or polar stereographic coordinates) by means of their marginal indicators. By digital analysis of LANDSAT data and geometric positioning of pixels in UTM projection, accuracy was achieved for corrected MSS information which could be used for updating maps at scale 1:200,000 or smaller. Results show that adjustment of the UTM grid was better obtained by a first order, or even second order, algorithm of geometric correction. Digital analysis of LANDSAT data from the Madrid area showed that this line of study was promising for automatic classification of data applied to thematic cartography and soils identification.

  3. Global land surface albedo maps from MODIS using the Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Mitraka, Zina; Benas, Nikolaos; Gorelick, Noel; Chrysoulakis, Nektarios

    2016-04-01

    The land surface albedo (LSA) is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Its role is highly significant in both global and local scales; hence, LSA measurements provide a quantitative means for better constraining global and regional scale climate modelling efforts. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, on board NASA's Terra and Aqua platforms, provides the parameters needed for the computation of LSA on an 8-day temporal scale and a variety of spatial scales (ranging between 0.5 - 5 km). This dataset was used here for the LSA estimation and its changes over the study area at 0.5 km spatial resolution. More specifically, the MODIS albedo product was used, which includes both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). The LSA was estimated for the whole globe on an 8-day basis for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate LSA from black-sky and white-sky albedos, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since LSA also depends on solar zenith angle (SZA), 8-day mean LSA values were computed as averages of corresponding LSA values for representative SZAs covering the 24-hour day. The estimated LSA was analysed in terms of both spatial and seasonal characteristics, while LSA changes during the period examined were assessed. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application

  4. Wildfire Risk Mapping over the State of Mississippi: Land Surface Modeling Approach

    SciTech Connect

    Cooke, William H.; Mostovoy, Georgy; Anantharaj, Valentine G; Jolly, W. Matt

    2012-01-01

    Three fire risk indexes based on soil moisture estimates were applied to simulate wildfire probability over the southern part of Mississippi using the logistic regression approach. The fire indexes were retrieved from: (1) accumulated difference between daily precipitation and potential evapotranspiration (P-E); (2) top 10 cm soil moisture content simulated by the Mosaic land surface model; and (3) the Keetch-Byram drought index (KBDI). The P-E, KBDI, and soil moisture based indexes were estimated from gridded atmospheric and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). Normalized deviations of these indexes from the 31-year mean (1980-2010) were fitted into the logistic regression model describing probability of wildfires occurrence as a function of the fire index. It was assumed that such normalization provides more robust and adequate description of temporal dynamics of soil moisture anomalies than the original (not normalized) set of indexes. The logistic model parameters were evaluated for 0.25 x0.25 latitude/longitude cells and for probability representing at least one fire event occurred during 5 consecutive days. A 23-year (1986-2008) forest fires record was used. Two periods were selected and examined (January mid June and mid September December). The application of the logistic model provides an overall good agreement between empirical/observed and model-fitted fire probabilities over the study area during both seasons. The fire risk indexes based on the top 10 cm soil moisture and KBDI have the largest impact on the wildfire odds (increasing it by almost 2 times in response to each unit change of the corresponding fire risk index during January mid June period and by nearly 1.5 times during mid September-December) observed over 0.25 x0.25 cells located along the state of Mississippi Coast line. This result suggests a rather strong control of fire risk indexes on fire occurrence probability

  5. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Cascade Mountains

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Snowlines on a small drainage basin were accurately identified on bulk ERTS-1 images without use of digital processing, and results checked with high altitude and ground-based photography. The area and approximate shape of snow patches as small as 20,000 sq m could be correctly identified with a magnifying scanning densitometer. The resolution of ERTS is more than ample for most snow mapping needs. Mount Baker, Washington, has a large crater south of the summit and an area north of the summit which emit considerable geothermal heat in the form of fumaroles and hot ground. Temperatures are being monitored using an ERTS DCS. Debris flows are occassionally released from the crater due to water saturation at the base of a heavy snowpack lying on hydrothermally altered hot ground. These debris flows present a possible hazard to life and property, as they are discharged down the Boulder Glacier toward Baker Lake, the upper of two major hydroelectric power reservoirs which are situated above the populated Skagit River Valley. ERTS-1 images show that the most recent debris flow (20-21 August 1973) can be clearly discerned and mapped. ERTS images provide another important tool for monitoring this potential hazard.

  6. Seismotectonic, structural, volcanologic, and geomorphic study of New Zealand; indigenous forest assessment in New Zealand; mapping, land use and environmental studies in New Zealand, volume 3

    NASA Technical Reports Server (NTRS)

    Probine, M. C.; Suggate, R. P.; Mcgreevy, M. G.; Stirling, I. F. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The present resolution of LANDSAT precludes its use for topographic mapping at scales larger than 1:250,000. Encouraging potential was displayed for environmental and land use studies at scales up to 1:100,000.

  7. Mapping vegetation patterns in arable land using the models STICS and DAISY

    NASA Astrophysics Data System (ADS)

    Heuer, Antje; Casper, Markus

    2010-05-01

    Several statistical methods exist to detect spatial and / or temporal variability with regard to ecological data-analysis: Semivariance-analysis, Trend surface analysis, Kriging, Voronoi polygons, Moran's I and Mantel-test, to mention just some of them. In this contribution, we concentrate on spatial vegetation patterns within the soil-vegetation-atmosphere (SVAT) system. Using variography, spatial analysis with a geographic information system and self-organizing maps, spatial patterns of yield have been isolated in an agro-ecosystem (see poster contribution EGU 2009, EGU2009-8948). Data were derived from two agricultural plots, each about 5 hectare, in the area of Newel, located in Western Palatinate, Germany. The plots have been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. The aim of the present study is to find out if the existing natural spatial patterns can be mapped by means of SVAT models. If so, the discretization of a landscape according to its spatial patterns could be the basis for parameterization of SVAT models in order to model soil-vegetation-atmosphere interaction over a large area, that is for up-scaling. For this purpose the SVAT models STICS (developed by INRA, France) and DAISY (developed at Tåstrup University, Denmark) are applied. After a wide sensitivity analysis both models are parameterized with field data according to the given situation of each of the detected spatial patterns. The results of the simulation per representative location of a pattern are validated first with field data concerning yield, soil water content and soil nitrogen; besides, above ground dry matter, root depth and specific stress indices are used for validation. The conclusions that can be made with regard to up-scaling are discussed in detail. In a second step the results of the STICS model are compared with those of the DAISY model to analyse the models' behaviour, to get further knowledge about the inner structure

  8. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products

    NASA Astrophysics Data System (ADS)

    Vintrou, Elodie; Desbrosse, Annie; Bégué, Agnès; Traoré, Sibiry; Baron, Christian; Lo Seen, Danny

    2012-02-01

    In Africa, food security early warning systems use satellite-derived data concerning crop conditions and agricultural production. Such systems can be improved if they are provided with a more reliable estimation of the cultivated area at national scale. This paper evaluates the potential of using time series from the MODerate resolution Imaging Spectroradiometer MOD13Q1 (16-day composite of normalized difference vegetation index at 250 m resolution) to extract cultivated areas in the fragmented rural landscapes of Mali. To this end, we first stratified Southern Mali into 13 rural landscapes based on the spatio-temporal variability of NDVI and textural indices, using an object-oriented classification scheme. The accuracy of the resulting map (MODIS crop) and how it compares with existing coarse-resolution global land products (GLC2000 Africa, GLOBCOVER, MODIS V05 and ECOCLIMAP-II), was then assessed against six crop/non-crop maps derived from SPOT 2.5 m resolution images used as references. For crop areal coverage, the MODIS crop cultivated map was successful in assessing the overall cultivated area at five out of the six validation sites (less than 6% of the absolute difference), while in terms of crop spatial distribution, the producer accuracy was between 33.1% and 80.8%. This accuracy was linearly correlated with the mean patch size index calculated on the SPOT crop maps ( r2 = 0.8). Using the Pareto boundary as an accuracy assessment method at the study sites, we showed that (i) 20-40% of the classification crop error was due to the spatial resolution of the MODIS sensor (250 m), and that (ii) compared to MODIS V05, which otherwise performed better than the other existing products, MODIS crop generally minimized omission-commission errors. A spatial validation of the different products was carried out using SPOT image classifications as reference. In the corresponding error matrices, the fraction of correctly classified pixels for our product was 70%, compared

  9. Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain

    NASA Astrophysics Data System (ADS)

    Santos-Alamillos, F. J.; Pozo-Vázquez, D.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2015-04-01

    In this work, we evaluate the influence of land-use representation accuracy on the reliability of wind speed and direction estimates derived from the Weather Research and Forecasting (WRF) model. To this end, the 100-m spatial resolution Coordination of Information on the Environment (CORINE) land-use dataset was implemented as static geographic data in WRF. Next, a set of one-year long simulations at 1-km spatial resolution was conducted using both the CORINE and Global Land Cover Characterization (GLCC) land-use datasets, the latter the default in WRF. The simulations were conducted for three locations in southern Spain, and were characterized by variable land-use composition and topography. At these locations, wind speed and direction estimates were compared against observations at different measurement elevations. Results showed that the selection of land-use database has a major influence on wind estimate bias. The effect on the wind direction distribution is also significant, whereas that on the standard deviation is much weaker. CORINE provided a more reliable land-use representation than GLCC. Nevertheless, as a consequence of the interpolation procedure used for land use in the domain setup, this representation did not necessarily translate to a superior roughness length, thereby affecting wind speed and direction estimates. This was particularly so for areas of high spatial variability in land-use categories. In such areas, the misrepresentation of land use may result in large wind speed estimation errors.

  10. Sharpening landsat 8 thermal imagery for field scale ET mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing provides valuable information for mapping land surface energy flux and evapotranspiration (ET). Landsat 8 carries a TIR instrument with two thermal bands that can provide a more accurate estimate of land surface temperature (LST) than prior landsat satellites. H...

  11. Mineral Mapping of High Priority Landing Sites for MSL and Beyond Using Mars Express OMEGA and HRSC Data

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Bibring, J.; Poulet, F.; Mangold, N.; Loizeau, D.; Hauber, E.; Altieri, F.; Carrozzo, G.

    2008-12-01

    High priority candidate landing sites for the Mars Science Laboratory (MSL) mission have been proposed by various researchers, their significance based largely on spectroscopic and geomorphic evidence for aqueous processes. Specifically, seven candidate landing sites are under consideration for MSL at the time of this writing: Mawrth Vallis, Nili Fossae, southern Meridiani Planum, Eberswalde Crater, Holden Crater, Gale Crater, and Miyamoto Crater. While only one of these sites can be visited by MSL, the other sites remain among the most compelling localities on Mars for future in-situ exploration by ESA's ExoMars mission or an international Mars sample return mission. We have produced regional scale mineral maps of these sites using data from the Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA). Visible images from the High Resolution Stereo Camera (HRSC) are used as a map base. OMEGA infrared band parameters are used to identify and map pyroxene, olivine, oxides, sulfates, phyllosilicates, and other hydrated phases. OMEGA visible channel data also provide color information, which gives an estimate of dust cover and additional insights into the mineralogy of altered deposits. The dustiest site is Gale Crater and the least dusty is Nili Fossae. The strongest signature of phyllosilicates occurs in Mawrth Vallis, followed by Nili Fossae. However, Nili Fossae also has some of the strongest olivine signatures on the planet. One fundamental difference between the Nili Fossae and Mawrth Vallis sites is that in Mawrth Vallis, phyllosilicate-bearing, light-toned rocks contain no evidence for primary phases in OMEGA data, but in the Nili Fossae area, phyllosilicates, olivine, and pyroxene are mixed at the subpixel level. South Meridiani Planum shows hydrated plains in contact with ancient, pyroxene-bearing, slightly altered, older bedrock. Patchy deposits of phyllosilicates are found in Miyamoto Crater, but their geologic context is

  12. Evaluation of techniques for mapping land and crops irrigated by center pivots from computer-enhanced Landsat imagery in part of the James River basin near Huron, South Dakota

    USGS Publications Warehouse

    Kolm, K.E.

    1985-01-01

    The objective of this study was to evaluate remote sensing techniques for mapping irrigated crop types and acreages in part of the James River basin of South Dakota, using Landsat imagery. The results demonstrated that a subtraction (band 7 minus band 4) method was best for identifying the location of cropland irrigated by groundwater. Two separate principal-spectral-components analyses (analysis of the second principal-spectral component and the simultaneous analysis of the first three principal-spectral components) were best for identifying the crop type and estimating crop acreages. However, only 50 percent of the irrigated lands could be identified and only 79 percent of these could be classified accurately by crop type. Therefore, a 39 percent overall accuracy was achieved in irrigated crop-type identification. (USGS)

  13. Coastal-Change and Glaciological Map of the Palmer Land Area, Antarctica: 1947-2009

    USGS Publications Warehouse

    Ferrigno, Jane G.; Cook, Alison J.; Mathie, Amy M.; Williams, Richard S.; Swithinbank, Charles; Foley, Kevin M.; Fox, Adrian J.; Thomson, Janet W.; Sievers, Jorn

    2009-01-01

    out a comprehensive analysis of the glaciological features of the coastal regions and changes in ice fronts of Antarctica (Swithinbank, 1988; Williams and Ferrigno, 1988). The project was later modified to include Landsat 4 and 5 MSS and Thematic Mapper (TM) images (and in some areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images), RADARSAT images, aerial photography, and other data where available, to compare changes that occurred during a 20- to 25- or 30-year time interval (or longer where data were available, as in the Antarctic Peninsula). The results of the analysis are being used to produce a digital database and a series of USGS Geologic Investigations Series Maps (I-2600) (Williams and others, 1995; Swithinbank and others, 2003a,b, 2004; Ferrigno and others, 2002, 2005, 2006, 2007, 2008, and in press; and Williams and Ferrigno, 2005) (available online at http://www.glaciers.er.usgs.gov).

  14. History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J.-P.; Bishop, J. L.; Michalski, J.; Quantin, C.

    2015-11-01

    The Mawrth Vallis region is covered by some of the largest phyllosilicate-rich outcrops on Mars, making it a unique window into the past history of Mars in terms of water alteration, potential habitability, and the search for past life. A landing ellipse had been proposed for the Curiosity rover. This area has been extensively observed by the High Resolution Imaging Science Experiment and the Compact Reconnaissance Imaging Spectrometer for Mars, offering the possibility to produce geologic, structural, and topographic maps at very high resolution. These observations provide an unprecedented detailed context of the rocks at Mawrth Vallis, in terms of deposition, alteration, erosion, and mechanical constraints. Our analyses demonstrate the presence of a variety of alteration environments on the surface and readily accessible to a rover, the presence of flowing water at the surface postdating the formation of the clay-rich units, and evidence for probable circulation of fluids in the rocks at different depths. These rocks undergo continuous erosion, creating fresh outcrops where potential biomarkers may have been preserved. The diversity of aqueous environments over geological time coupled to excellent preservation properties make the area a very strong candidate for future robotic investigation on Mars, like the NASA Mars 2020 mission.

  15. Prototype land-cover mapping of the Huascarán Biosphere Reserve (Peru) using a digital elevation model, and the NDSI and NDVI indices

    NASA Astrophysics Data System (ADS)

    Silverio, Walter; Jaquet, Jean-Michel

    2009-03-01

    On the basis of Landsat 7 ETM+ imagery, a prototype land-cover map was prepared for the Huascarán Biosphere Reserve (Peru). This document should contribute to the sustainable management of the Huascarán Biosphere Reserve, while making it possible to establish a regional planning policy and to prepare a natural risks map, which is still lacking in the region. The influence of the topography on radiometry was attenuated by using the normalized difference snow index (NDSI) and normalized difference vegetation index (NDVI), which were segmented using their histogram. A digital elevation model (DEM) was introduced to define the "highlands" and "lowlands". In the latter, the slope derived from the DEM was combined with the NDVI to map the agricultural surfaces. Twenty-one spectral classes were defined and their correspondence with land-cover themes was checked by field observations. The land-cover map provides original information on the extent of the glacial cover, debris-covered glaciers, 881 lakes, vegetation density, agricultural surfaces, urban zones and mines.

  16. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  17. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, T.R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  18. Utilizing NASA Earth Observations to Assess Estuary Health and Enhance Management of Water Resources in Coastal Texas through Land Cover and Precipitation Mapping

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Gonsoroski, E.; Lynn, T.; Schick, R.; Pereira da Silva, R.

    2015-12-01

    This project partnered with the National Park Service (NPS) to help analyze the correlation between mesquite trees and the salinity of the Laguna Madre of Padre Island National Seashore. The lagoon is a hypersaline estuary; however, there is historical evidence that this was not always the case. It is hypothesized that the increase in the number of honey mesquite trees (Prosopis grandulosa var. glandulosa) in the area has contributed to the Laguna Madre's increased salinity by decreasing the groundwater inflow to the lagoon. These mesquite trees have long taproots capable of extracting significant amounts of groundwater. This project utilized Earth observation data in ERDAS IMAGINE and ArcGIS software to create map time series and analyze the data. Landsat 5, 7, and 8 data were used to create land use/land cover (LULC) maps in order to analyze the change in the occurrence of mesquite trees over time. Thermal maps of the lagoon were generated using Landsat 5, 7, and 8 data to understand changes in groundwater inflow. In addition, TRMM and GRACE derived changes in root zone soil moisture content data were compared over the study period. By investigating the suspected positive correlation between the mesquite trees and the salinity of the Laguna Madre, the NPS can improve future land management practices.

  19. Report on the lands of the arid region of the United States with a more detailed account of the land of Utah with maps

    USGS Publications Warehouse

    Powell, John Wesley

    1879-01-01

    A report from Maj. J. W.Powell, geologist in charge of the United States Geographical and Geological Survey of the Rocky Mountain Region, upon the lands of the Arid Region of the United States, setting forth the extent of said region, and making suggestions as to the conditions under which the lands embraced within its limit may be rendered available for agricultural and grazing purposes. With the report is transmitted a statement of the rainfall of the western portion of the United States, with reports upon the subject of irrigation by Capt. C. E. Button, U. S. A., Prof. A. H. Thompson, and Mr. G. K. Gilbert.

  20. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP)

    USGS Publications Warehouse

    Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.

    2007-01-01

    Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.

  1. Mapping decadal land cover changes in the woodlands of north eastern Namibia using the Landsat satellite archive (1975-2014)

    NASA Astrophysics Data System (ADS)

    Wingate, Vladimir; Phinn, Stuart; Kuhn, Nikolaus

    2016-04-01

    Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes over 108,038 km2 in NE Namibia using multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.

  2. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study.

    PubMed

    Zhu, Shun; Travis, Sue M; Elcock, Adrian H

    2013-07-01

    A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant

  3. Assessing and mapping spatial associations among oral cancer mortality rates, concentrations of heavy metals in soil, and land use types based on multiple scale data.

    PubMed

    Lin, Wei-Chih; Lin, Yu-Pin; Wang, Yung-Chieh; Chang, Tsun-Kuo; Chiang, Li-Chi

    2014-02-21

    In this study, a deconvolution procedure was used to create a variogram of oral cancer (OC) rates. Based on the variogram, area-to-point (ATP) Poisson kriging and p-field simulation were used to downscale and simulate, respectively, the OC rate data for Taiwan from the district scale to a 1 km × 1 km grid scale. Local cluster analysis (LCA) of OC mortality rates was then performed to identify OC mortality rate hot spots based on the downscaled and the p-field-simulated OC mortality maps. The relationship between OC mortality and land use was studied by overlapping the maps of the downscaled OC mortality, the LCA results, and the land uses. One thousand simulations were performed to quantify local and spatial uncertainties in the LCA to identify OC mortality hot spots. The scatter plots and Spearman's rank correlation yielded the relationship between OC mortality and concentrations of the seven metals in the 1 km cell grid. The correlation analysis results for the 1 km scale revealed a weak correlation between OC mortality rate and concentrations of the seven studied heavy metals in soil. Accordingly, the heavy metal concentrations in soil are not major determinants of OC mortality rates at the 1 km scale at which soils were sampled. The LCA statistical results for local indicator of spatial association (LISA) revealed that the sites with high probability of high-high (high value surrounded by high values) OC mortality at the 1 km grid scale were clustered in southern, eastern, and mid-western Taiwan. The number of such sites was also significantly higher on agricultural land and in urban regions than on land with other uses. The proposed approach can be used to downscale and evaluate uncertainty in mortality data from a coarse scale to a fine scale at which useful additional information can be obtained for assessing and managing land use and risk.

  4. Assessing and Mapping Spatial Associations among Oral Cancer Mortality Rates, Concentrations of Heavy Metals in Soil, and Land Use Types Based on Multiple Scale Data

    PubMed Central

    Lin, Wei-Chih; Lin, Yu-Pin; Wang, Yung-Chieh; Chang, Tsun-Kuo; Chiang, Li-Chi

    2014-01-01

    In this study, a deconvolution procedure was used to create a variogram of oral cancer (OC) rates. Based on the variogram, area-to-point (ATP) Poisson kriging and p-field simulation were used to downscale and simulate, respectively, the OC rate data for Taiwan from the district scale to a 1 km × 1 km grid scale. Local cluster analysis (LCA) of OC mortality rates was then performed to identify OC mortality rate hot spots based on the downscaled and the p-field-simulated OC mortality maps. The relationship between OC mortality and land use was studied by overlapping the maps of the downscaled OC mortality, the LCA results, and the land uses. One thousand simulations were performed to quantify local and spatial uncertainties in the LCA to identify OC mortality hot spots. The scatter plots and Spearman’s rank correlation yielded the relationship between OC mortality and concentrations of the seven metals in the 1 km cell grid. The correlation analysis results for the 1 km scale revealed a weak correlation between OC mortality rate and concentrations of the seven studied heavy metals in soil. Accordingly, the heavy metal concentrations in soil are not major determinants of OC mortality rates at the 1 km scale at which soils were sampled. The LCA statistical results for local indicator of spatial association (LISA) revealed that the sites with high probability of high-high (high value surrounded by high values) OC mortality at the 1 km grid scale were clustered in southern, eastern, and mid-western Taiwan. The number of such sites was also significantly higher on agricultural land and in urban regions than on land with other uses. The proposed approach can be used to downscale and evaluate uncertainty in mortality data from a coarse scale to a fine scale at which useful additional information can be obtained for assessing and managing land use and risk. PMID:24566045

  5. Land use/land cover mapping (1:25000) of Taiwan, Republic of China by automated multispectral interpretation of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Sung, Q. C.; Miller, L. D.

    1977-01-01

    Three methods were tested for collection of the training sets needed to establish the spectral signatures of the land uses/land covers sought due to the difficulties of retrospective collection of representative ground control data. Computer preprocessing techniques applied to the digital images to improve the final classification results were geometric corrections, spectral band or image ratioing and statistical cleaning of the representative training sets. A minimal level of statistical verification was made based upon the comparisons between the airphoto estimates and the classification results. The verifications provided a further support to the selection of MSS band 5 and 7. It also indicated that the maximum likelihood ratioing technique can achieve more agreeable classification results with the airphoto estimates than the stepwise discriminant analysis.

  6. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe’s “Fast Track Land Reform Programme”

    PubMed Central

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) data forms the basis for numerous land use and land cover (LULC) mapping and analysis frameworks at regional scale. Compared to other satellite sensors, the spatial, temporal and spectral specifications of MODIS are considered as highly suitable for LULC classifications which support many different aspects of social, environmental and developmental research. The LULC mapping of this study was carried out in the context of the development of an evaluation approach for Zimbabwe’s land reform program. Within the discourse about the success of this program, a lack of spatially explicit methods to produce objective data, such as on the extent of agricultural area, is apparent. We therefore assessed the suitability of moderate spatial and high temporal resolution imagery and phenological parameters to retrieve regional figures about the extent of cropland area in former freehold tenure in a series of 13 years from 2001–2013. Time-series data was processed with TIMESAT and was stratified according to agro-ecological potential zoning of Zimbabwe. Random Forest (RF) classifications were used to produce annual binary crop/non crop maps which were evaluated with high spatial resolution data from other satellite sensors. We assessed the cropland products in former freehold tenure in terms of classification accuracy, inter-annual comparability and heterogeneity. Although general LULC patterns were depicted in classification results and an overall accuracy of over 80% was achieved, user accuracies for rainfed agriculture were limited to below 65%. We conclude that phenological analysis has to be treated with caution when rainfed agriculture and grassland in semi-humid tropical regions have to be separated based on MODIS spectral data and phenological parameters. Because classification results significantly underestimate redistributed commercial farmland in Zimbabwe, we argue that the method cannot be used to produce

  7. Method for estimating potential wetland extent by utilizing streamflow statistics and flood-inundation mapping techniques: Pilot study for land along the Wabash River near Terre Haute, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.

    2012-01-01

    Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream

  8. A detailed procedure for the use of small-scale photography in land use classification

    NASA Technical Reports Server (NTRS)

    Vegas, P. L.

    1974-01-01

    A procedure developed to produce accurate land use maps from available high-altitude, small-scale photography in a cost-effective manner is presented. An alternative procedure, for use when the capability for updating the resultant land use map is not required, is also presented. The technical approach is discussed in detail, and personnel and equipment needs are analyzed. Accuracy percentages are listed, and costs are cited. The experiment land use classification categories are explained, and a proposed national land use classification system is recommended.

  9. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. Part 4: Review of land use surveys using orbital imagery outside of the USA

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. Outside the U.S., various attempts were made to investigate the feasibility of utilizing orbital MSS imagery in the production of small scale land use maps. Overall, these studies are not as elaborate or extensive in their scope as the U.S. ones, and generally the non-U.S. investigators have employed nonsophisticated and less expensive techniques. A representative range of studies is presented to demonstrate the approaches and trends dealing with reprocessing, interpretation, classification, sampling, and ground truth procedures.

  10. Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2016-05-01

    Recent scientific studies based on large-scale climate model have highlighted the importance of the heat release from the southern side of the Himalayas for the development of South Asian Summer Monsoon. However, studies related to land surface heat fluxes are nonexistent on the southern side. In this study, we test the feasibility of deriving land surface heat fluxes on the central Himalayan region using Topographically Enhanced Surface Energy Balance System (TESEBS), which is forced by MODIS land surface products and Global Land Data Assimilation System (GLDAS) meteorological data. The model results were validated using the first eddy covariance measurement system established in the southern side of the central Himalayas. The derived land surface heat fluxes were close to the field measurements with mean bias of 15.97, -19.89, 8.79, and -20.39 W m-2 for net radiation flux, ground heat flux, sensible heat flux, and latent heat flux respectively. Land surface heat fluxes show strong contrast in pre monsoon, summer monsoon, post monsoon, and winter seasons and different land surface states among the different physiographic regions. In the central Himalayas, the latent heat flux is the dominant consumer of available energy for all physiographic regions except for the High Himalaya where the sensible heat flux is high.

  11. Accuracy Assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Yang, Limin; Stehman, Stephen V.; Czaplewski, Raymond L.

    2000-01-01

    The U.S. Geological Survey, in cooperation with other government and private organizations, is producing a conterminous U.S. land-cover map using Landsat Thematic Mapper 30-meter data for the Federal regions designated by the U.S. Environmental Protection Agency. Accuracy assessment is to be conducted for each Federal region to estimate overall and class-specific accuracies. In Region 2, consisting of New York and New Jersey, the accuracy assessment was completed for 15 land-cover and land-use classes, using interpreted 1:40,000-scale aerial photographs as reference data. The methodology used for Region 2 features a two-stage, geographically stratified approach, with a general sample of all classes (1,033 sample sites), and a separate sample for rare classes (294 sample sites). A confidence index was recorded for each land-cover interpretation on the 1:40,000-scale aerial photography The estimated overall accuracy for Region 2 was 63 percent (standard error 1.4 percent) using all sample sites, and 75.2 percent (standard error 1.5 percent) using only reference sites with a high-confidence index. User's and producer's accuracies for the general sample and user's accuracy for the sample of rare classes, as well as variance for the estimated accuracy parameters, were also reported. Narrowly defined land-use classes and heterogeneous conditions of land cover are the major causes of misclassification errors. Recommendations for modifying the accuracy assessment methodology for use in the other nine Federal regions are provided.

  12. A procedure for merging land cover/use data from LANDSAT, aerial photography, and map sources: Compatibility, accuracy, and cost. Remote Sensing Project

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Tilmann, S. E.; Hill-Rowley, R.; Rogers, R. H.

    1977-01-01

    Regional planning agencies are currently expressing a need for detailed land cover/use information to effectively meet the requirements of various federal programs. Individual data sources have advantages and limitations in fulfilling this need, both in terms of time/cost and technological capability. A methodology has been developed to merge land cover/use data from LANDSAT, aerial photography and map sources to maximize the effective use of a variety of data sources in the provision of an integrated information system for regional analysis. A test of the proposed inventory method is currently under way in four central Michigan townships. This test will evaluate the compatibility, accuracy and cost of the integrated method with reference to inventories developed from a single data source, and determine both the technological feasibility and analytical potential of such a system.

  13. Determination of wetland ecosystem boundaries and validation of land use maps using remote sensing: Fuente de Piedra case study (Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.

    2016-04-01

    Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox

  14. Significant applications of ERTS-1 data to resource management activities at the state level in Ohio. [strip mining and land use mapping

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Meier, C. J.; Garrett, G. B.; Herd, L.; Wukelic, G. E.; Stephan, J. G.; Smail, H. E.

    1974-01-01

    Described are techniques utilized and the progress made in applying ERTS-1 data to (1) detecting, inventorying, and monitoring surface mining activities, particularly in relation to recently passed strip mine legislation in Ohio; (2) updating current land use maps at various scales for multiagency usage, and (3) solving other real-time problems existing throughout the various Ohio governmental agencies. General conclusions regarding current user views as to the opportunities and limitations of operationally using ERTS-1 data at the state level are also noted.

  15. Mapping and characterization of land subsidence in Beijing Plain caused by groundwater pumping using the Small Baseline Subset (SBAS) InSAR technique

    NASA Astrophysics Data System (ADS)

    Gao, M. L.; Gong, H. L.; Chen, B. B.; Zhou, C. F.; Liu, K. S.; Shi, M.

    2015-11-01

    InSAR time series analysis is widely used for detection and monitoring of slow surface deformation. In this paper, 15 TerraSAR-X radar images acquired in stripmap mode between 2012 and 2013 are processed for land subsidence monitoring with the Small Baseline Subset (SBAS) approach in Beijing Plain in China. Mapping results produced by SBAS show that the subsidence rates in the area of Beijing Plain range from -97.5 (subsidence) and to +23.8 mm yr-1 (uplift), relative to a presumably stable benchmark. The mapping result also reveals that there are the five subsidence centers formed by surface deformation spreading north to south east of the downtown. An uneven subsidence patten was detected near the Beijing Capital International Airpor, which may be related to loading of buildings and the aircraft.

  16. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture

  17. Scientific Collaboration Along the Trinational Frontier of Brazil-Bolivia-Peru: Implications for Regional Land-Use in the MAP Region of Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Brown, I.

    2002-12-01

    High-speed road systems are connecting southwestern Amazonia (~1.5 million km2) to Pacific and Atlantic ports as well as providing greater access to Brazilian, Bolivian and Peruvian urban markets. Coupled with this increased accessibility are ambitious governmental plans to expand production of timber, non-timber forest products, and beef, all of which are likely to modify human migrations in the region. The heart of southwestern Amazonia lies in the trinational frontier region of Madre de Dios Department/Peru, eastern Acre State/Brazil and Pando Department/Bolivia (MAP region: ~200,000 km2, ~500,000 inhabitants). The MAP region composes a global hot spot of terrestrial biodiversity and has become an axis of integration for the three countries. Faced with rapid change in socioeconomic trends, regional environmental scientists and professionals have promoted collaborative projects to analyze land use trends and their forcing functions and to supply these results to local and regional societies. In addition, they have begun to develop a regional scientific community that bridges different nationalities and specialties. The projects are both international - as they involve three countries - and local/regional as they involve institutions that are within a radius of 300 km of the border. In the past two years, LBA-sponsored activities have helped bring over 100 professionals together in the region in five MAP-oriented workshops. The research results are now influencing public policy and are being incorporated into the regional school systems with the objective of maximizing the benefits and minimizing the adverse impacts of the changing socio-economic trends on land-use and development in the MAP region.

  18. "Where On Mars?": A Web Map Visualisation of the ExoMars 2018 Rover Candidate Landing Sites

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Boix, O.; Vago, J.; Hill, A.; Iriberri, C.; Carrión, D.

    2015-10-01

    The ExoMars 2018 mission will deliver a European rover and a Russian surface platform to the surface of Mars. Armed with a drill that can bore 2 metres into rock, the ExoMars rover will travel across the Martian surface to search for signs of life, past or present. But where on Mars to land? - The search for a suitable ExoMars rover landing site began in December 2013, when the planetary science community was asked to propose candidates. Eight proposals were considered during a workshop held by the ExoMars Landing Site Selection Working Group (LSSWG). By the end of the workshop, there were four clear front-runners. Following additional review, the four sites have now been formally recommended for further detailed analysis [1]: Mawrth Vallis, Oxia Planum, Hypanis Vallis and Aram Dorsum. Scientists will continue working on the characterisation of these four sites until they provide their final recommendation in October 2017.

  19. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  20. US/MEXICO STUDY: NALC/MEXICO LAND COVER MAPPING RESULTS-IMPLICATIONS FOR ASSESSING LANDSCAPE CONDITIONS

    EPA Science Inventory

    An inventory of land-cover conditions throughout Mexico was performed using North American Landscape Characterization (NLAC) Landsat Mult-Spectral Scann (MSS) 'triplicate' images, corresponding to the 1970s, 1980s and 1990s epoch periods. The equivalents of 300 image scenes were...

  1. Synergistic use of RADARSAT-2 Ultra Fine and Fine Quad-Pol data to map oilsands infrastructure land: Object-based approach

    NASA Astrophysics Data System (ADS)

    Jiao, Xianfeng; Zhang, Ying; Guindon, Bert

    2015-06-01

    The landscape of Alberta's oilsands regions is undergoing extensive change due to the creation of infrastructure associated with the exploration for and extraction of this resource. Since most oil sands mining activities take place in remote forests or wetlands, one of the challenges is to collect up-to date and reliable information about the current state of land. Compared to optical sensors, SAR sensors have the advantage of being able to routinely collect imagery for timely monitoring by regulatory agencies. This paper explores the capability of high resolution RADARSAT-2 Ultra Fine and Fine Quad-Pol imagery for mapping oilsands infrastructure land using an object-based classification approach. Texture measurements extracted from Ultra Fine data are used to support an Ultra Fine based classification. Moreover, a radar vegetation index (RVI) calculated from PolSAR data is introduced for improved classification performance. The RVI is helpful in reducing confusion between infrastructure land and low vegetation covered surfaces. When Ultra Fine and PolSAR data are used in combination, the kappa value of well pads and processing facilities detection reached 0.87. In this study, we also found that core hole sites can be identified from early spring Ultra Fine data. With single-date image, kappa value of core hole sites ranged from 0.61 to 0.69.

  2. Commentary: A cautionary tale regarding use of the National Land Cover Dataset 1992

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Gallant, Alisa L.; Knutson, Melinda G.; Fox, Timothy J.; Suarez, Manuel J.

    2004-01-01

    Digital land-cover data are among the most popular data sources used in ecological research and natural resource management. However, processes for accurate land-cover classification over large regions are still evolving. We identified inconsistencies in the National Land Cover Dataset 1992, the most current and available representation of land cover for the conterminous United States. We also report means to address these inconsistencies in a bird-habitat model. We used a Geographic Information System (GIS) to position a regular grid (or lattice) over the upper midwestern United States and summarized the proportion of individual land covers in each cell within the lattice. These proportions were then mapped back onto the lattice, and the resultant lattice was compared to satellite paths, state borders, and regional map classification units. We observed mapping inconsistencies at the borders between mapping regions, states, and Thematic Mapper (TM) mapping paths in the upper midwestern United States, particularly related to grass I and-herbaceous, emergent-herbaceous wetland, and small-grain land covers. We attributed these discrepancies to differences in image dates between mapping regions, suboptimal image dates for distinguishing certain land-cover types, lack of suitable ancillary data for improving discrimination for rare land covers, and possibly differences among image interpreters. To overcome these inconsistencies for the purpose of modeling regional populations of birds, we combined grassland-herbaceous and pasture-hay land-cover classes and excluded the use of emergent-herbaceous and small-grain land covers. We recommend that users of digital land-cover data conduct similar assessments for other regions before using these data for habitat evaluation. Further, caution is advised in using these data in the analysis of regional land-cover change because it is not likely that future digital land-cover maps will repeat the same problems, thus resulting in

  3. National Land Cover Database 2001 (NLCD01)

    USGS Publications Warehouse

    LaMotte, Andrew E.

    2016-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  4. Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines.

    PubMed

    Carlsten, Erik S; Wicks, Geoffrey R; Repasky, Kevin S; Carlsten, John L; Bromenshenk, Jerry J; Henderson, Colin B

    2011-05-10

    A biological detection scheme based on the natural foraging behavior of conditioned honeybees for detecting chemical vapor plumes associated with unexploded ordnance devices utilizes a scanning lidar instrument to provide spatial mapping of honeybee densities. The scanning light detection and ranging (lidar) instrument uses a frequency doubled Nd:YAG microchip laser to send out a series of pulses at a pulse repetition rate of 6.853 kHz. The scattered light is monitored to produce a discrete time series for each range. This discrete time series is then processed using an efficient algorithm that is able to isolate and identify the return signal from a honeybee in a cluttered environment, producing spatially mapped honeybee densities. Two field experiments were performed with the scanning lidar instrument that demonstrate good correlation between the honeybee density maps and the target locations. PMID:21556112

  5. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  6. Utilization of satellite and close range digital data for mapping soils and soil properties in arid rangeland and agricultural rainfed and irrigated lands, Morocco

    NASA Astrophysics Data System (ADS)

    Naimi, Mustapha

    SPOT multispectral, spectroradiometric and ERS-1 radar data were used for mapping soils at Aarid and Sais sites in Morocco. Spectral curves at the Aarid site showed differences between soils and a significant amount of variability within soils. The reflectance variation was explained by the crusting, stoniness, and carbonate content of the soil surface. Although these factors explained some reflectance variation, intrinsic factors were used in regression models to predict color hue (Rsp2 = 0.34), and carbonates (0.66). Spectral reflectance differences at the Sais site were insignificant to discriminate soil types. Similar spectral behavior and low amplitude between soil curves were striking. Besides, soil intrinsic factors seemed meaningful in explaining reflectance variability. But, only sand and clay, carbonate, CEC, iron oxides and organic matter could be predicted. Extrinsic soil factors, such as tillage, crop residues and stoniness determined the reflectance. Use of SPOT imagery in mapping Aarid soils allowed us to conclude that: more than one soil transect was needed; primary SPOT data were as good as enhanced bands in mapping soils and land cover; mapping soils in locations away from the training site locations was difficult. Identification of soils using vegetation was very reliable for Stipa-covered soils. Although combined dual SPOT data was more suitable to depict linear features and geometric polygons, merged data improved significantly visual quality and image spatial detail for refining soil and land cover boundaries. Despite spectral differences between soils at the Sais site, soil mapping using multispectral data was very difficult because soil natural boundaries interfere with artificial borders of parcels. The integration of digital elevation model helped overcome limitations of SPOT digital data. Relationships between ERS-1 sigmasp0 and soil surface moisture and roughness were studied. Simple regressions between sigmasp0 and moisture was

  7. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  8. Guidelines for the selection of appropriate remote sensing technologies for landslide detection, monitoring and rapid mapping: the experience of the SafeLand European Project.

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Malet, J.-P.; Kerle, N.; Tofani, V.; Segoni, S.; Casagli, N.; Michoud, C.; Jaboyedoff, M.; Fornaro, G.; Peduto, D.; Cascini, L.; Baron, I.; Supper, R.; Oppikofer, T.; L'Heureux, J.-S.; Van Den Eeckhaut, M.; Hervás, J.; Moya, J.; Raucoules, D.; Carman, M.

    2012-04-01

    New earth observation satellites, innovative airborne platforms and sensors, high precision laser scanners, and enhanced ground-based geophysical investigation tools are a few examples of the increasing diversity of remote sensing technologies used in landslide analysis. The use of advanced sensors and analysis methods can help to significantly increase our understanding of potentially hazardous areas and helps to reduce associated risk. However, the choice of the optimal technology, analysis method and observation strategy requires careful considerations of the landslide process in the local and regional context, and the advantages and limitations of each technique. Guidelines for the selection of the most suitable remote sensing technologies according to different landslide types, displacement velocities, observational scales and risk management strategies have been proposed. The guidelines are meant to aid operational decision making, and include information such as spatial resolution and coverage, data and processing costs, and maturity of the method. The guidelines target scientists and end-users in charge of risk management, from the detection to the monitoring and the rapid mapping of landslides. They are illustrated by recent innovative methodologies developed for the creation and updating of landslide inventory maps, for the construction of landslide deformation maps and for the quantification of hazard. The guidelines were compiled with contributions from experts on landslide remote sensing from 13 European institutions coming from 8 different countries. This work is presented within the framework of the SafeLand project funded by the European Commission's FP7 Programme.

  9. Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps

    NASA Astrophysics Data System (ADS)

    Safronov, A. N.; Fokeeva, E. V.; Rakitin, V. S.; Yurganov, L. N.; Grechko, E. I.

    2012-12-01

    This study is devoted to estimation of carbon monoxide (CO) emissions during the wildfires of the anomalously hot 2010 summer in the central part of the Russian Plain. CO emissions from the forest wildfires have been estimated with use of the Active Fires (AF) (MODIS MCD14ML) and Burned Areas (BA) (MODIS MCD45) methods for AVHRR/UDM, Global Land Cover 2000 (GLC 2000), GlobCover, and MCD12Q1 vegetation maps. A comparison of the vegetation maps and investigation of forest structure dynamics for the period from 2005 to 2009 have been carried out. It is shown that the major uncertainties during the estimation of CO in decreasing order are the following: distinctions in emission-calculation methods, differences in the vegetation maps used, differences in satellite data from Terra and Aqua, and the insufficient registration of forest structure dynamics. For additional comparison of estimations obtained by an independent method with the use of orbital (MOPITT, AIRS, and IASI) and ground-based (Moscow and Zvenigorod) spectroscopic measurements of CO content were presented.

  10. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  11. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  12. The National Map - Orthoimagery

    USGS Publications Warehouse

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  13. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [North Cascades, Washington and Tweedsmuir Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Snowlines on a small (6 sq km) drainage basin were accurately measured without use of digital processing, and snow patches as small as 150 m (maximum dimension) were correctly identified, proving that the resolution of ERTS is ample for snow mapping needs. The area of snow cover on 10 individual drainage basins in the North Cascades, Washington, has been determined at 12 different times; these data can be used for more accurate forecasts of streamflow. Progress has been made in distinguishing snow in trees using multispectral analysis. Motion of the surging Tweedsmuir Glacier was measured. Velocities ranged from 2 to 88 m per day; a zone of intense crevassing also appeared to spread up and down the glacier (at about 200 m per day upglacier). This tentative result may be of great importance to an understanding of surging glacier dynamics. ERTS images also show that the most recent debris flow (20-21 August 1973) from Mount Baker can be clearly discerned and mapped, in order to monitor this potential hazard.

  14. Orbital-science investigation: Part H: sketch map of the region around the candidate Littrow Apollo landing sites

    USGS Publications Warehouse

    Carr, M.H.

    1972-01-01

    The photograph in figure 25-59 and the corresponding map (fig. 25-60) show the geology of part of the lunar surface just east of the Littrow rilles at the eastern edge of Mare Serenitatis. The most striking feature of the region is the extremely low albedo of the area mapped as Eld in the western half of the map. The low albedo is believed to be caused by a thin layer of pyroclastic volcanic material at the surface. Another notable feature is the fresh-appearing ridges that cross the mare and the adjacent terra. The fine-braided texture of these ridges contrasts markedly with the rounded, subdued topography more common to such features, an indication that the ridges here may be unusually young. Also evident is a well-exposed succession of marelike plains units, which probably represent different stages in the filling of the Serenitatis basin. Several sets of rilles are present; most are roughly tangential to the basin and terminate against the different plains units according to the relative ages. In the northwest corner of the map is a relatively fresh volcanic crater chain (Cch) from which material appears to have been ejected over the surrounding terrain, forming rays of volcanic ejecta. The area thus includes an unusually wide variety of lunar features.

  15. Map showing areas of visible land disturbances caused by two military training operations in the Mojave Desert, California

    USGS Publications Warehouse

    Prose, D.V.

    1986-01-01

    Land disturbances caused by these training exercises are still evident today throughout the designated training areas (Lathrop, 1983; Prose, 1985; Prose and Metzger, 1985). The World War II base-camp locations are easily identified because the networks of dirt roads are still used by campers, hunters, artifact seekers, and other visitors. Vehicle trails and single tracks remain on many relatively stable surfaces and are most conspicuous on surfaces composed of a veneer of stones (desert pavement).

  16. A priori evaluation of two-stage cluster sampling for accuracy assessment of large-area land-cover maps

    USGS Publications Warehouse

    Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Wade, T.G.; Yang, L.

    2004-01-01

    Two-stage cluster sampling reduces the cost of collecting accuracy assessment reference data by constraining sample elements to fall within a limited number of geographic domains (clusters). However, because classification error is typically positively spatially correlated, within-cluster correlation may reduce the precision of the accuracy estimates. The detailed population information to quantify a priori the effect of within-cluster correlation on precision is typically unavailable. Consequently, a convenient, practical approach to evaluate the likely performance of a two-stage cluster sample is needed. We describe such an a priori evaluation protocol focusing on the spatial distribution of the sample by land-cover class across different cluster sizes and costs of different sampling options, including options not imposing clustering. This protocol also assesses the two-stage design's adequacy for estimating the precision of accuracy estimates for rare land-cover classes. We illustrate the approach using two large-area, regional accuracy assessments from the National Land-Cover Data (NLCD), and describe how the a priorievaluation was used as a decision-making tool when implementing the NLCD design.

  17. Land cover mapping of the upper Kuskokwim Resource Managment Area using LANDSAT and a digital data base approach

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.

  18. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of

  19. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    PubMed

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances

  20. Mapping Carbon Storage in Urban Trees with Multi-source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods

    NASA Astrophysics Data System (ADS)

    Raciti, S. M.; Hutyra, L.

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We develop a very high resolution map of urban tree biomass, assess the scale sensitivities in biomass estimation, compare our results with lower resolution estimates, and explore the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1 m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355 Gg (28.8 Mg C ha-1) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha-1), but residential (32.8 Mg C ha-1) and developed open (23.5 Mg C ha-1) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R2=0.26, p=0.04) and correlated with Priority Planting Index values (R2=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in

  1. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI) Satellite Data

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, A.; Hashim, M.

    2015-10-01

    This study evaluates the capability of Earth Observing-1 (EO1) Advanced Land Imager (ALI) data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF) was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  2. An evaluation of machine processing techniques of ERTS-1 data for user applications. [urban land use and soil association mapping in Indiana

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.

    1974-01-01

    A broad study is described to evaluate a set of machine analysis and processing techniques applied to ERTS-1 data. Based on the analysis results in urban land use analysis and soil association mapping together with previously reported results in general earth surface feature identification and crop species classification, a profile of general applicability of this procedure is beginning to emerge. Put in the hands of a user who knows well the information needed from the data and also is familiar with the region to be analyzed it appears that significantly useful information can be generated by these methods. When supported by preprocessing techniques such as the geometric correction and temporal registration capabilities, final products readily useable by user agencies appear possible. In parallel with application, through further research, there is much potential for further development of these techniques both with regard to providing higher performance and in new situations not yet studied.

  3. Digital mapping of soil properties in Zala County, Hungary for the support of county-level spatial planning and land management

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Fodor, Nándor; Bakacsi, Zsófia; Szabó, József; Illés, Gábor

    2014-05-01

    The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy soil data, which still represent a valuable treasure of soil information at the present time. Impact assessment of the forecasted climate change and the analysis of the possibilities of the adaptation in the agriculture and forestry can be supported by scenario based land management modelling, whose results can be incorporated in spatial planning. This framework requires adequate, preferably timely and spatially detailed knowledge of the soil cover. For the satisfaction of these demands in Zala County (one of the nineteen counties of Hungary), the soil conditions of the agricultural areas were digitally mapped based on the most detailed, available recent and legacy soil data. The agri-environmental conditions were characterized according to the 1:10,000 scale genetic soil mapping methodology and the category system applied in the Hungarian soil-agricultural chemistry practice. The factors constraining the fertility of soils were featured according to the biophysical criteria system elaborated for the delimitation of naturally handicapped areas in the EU. Production related soil functions were regionalized incorporating agro-meteorological modelling. The appropriate derivatives of a 20m digital elevation model were used in the analysis. Multitemporal MODIS products were selected from the period of 2009-2011 representing different parts of the growing season and years with various climatic conditions. Additionally two climatic data layers, the 1

  4. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  5. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  6. A system of regional agricultural land use mapping tested against small scale Apollo 9 color infrared photography of the Imperial Valley (California)

    USGS Publications Warehouse

    Johnson, Claude W.; Browden, Leonard W.; Pease, Robert W.

    1969-01-01

    Interpretation results of the small scale ClR photography of the Imperial Valley (California) taken on March 12, 1969 by the Apollo 9 earth orbiting satellite have shown that world wide agricultural land use mapping can be accomplished from satellite ClR imagery if sufficient a priori information is available for the region being mapped. Correlation of results with actual data is encouraging although the accuracy of identification of specific crops from the single image is poor. The poor results can be partly attributed to only one image taken during mid-season when the three major crops were reflecting approximately the same and their ClR image appears to indicate the same crop type. However, some incapacity can be attributed to lack of understanding of the subtle variations of visual and infrared color reflectance of vegetation and surrounding environment. Analysis of integrated color variations of the vegetation and background environment recorded on ClR imagery is discussed. Problems associated with the color variations may be overcome by development of a semi-automatic processing system which considers individual field units or cells. Design criteria for semi-automatic processing system are outlined.

  7. Monitoring avian productivity and survivorship (MAPS) 5-year summary, Naval Outlying Landing Field, Imperial Beach, southwestern San Diego County, California, 2009-13

    USGS Publications Warehouse

    Lynn, Suellen; Madden, Melanie C.; Houston, Alexandra; Kus, Barbara E.

    2015-01-01

    During 2009–13, a Monitoring Avian Productivity and Survivorship (MAPS) banding station was operated at the Naval Outlying Landing Field (NOLF), Imperial Beach, in southwestern San Diego County, California. The station was established as part of a long-term monitoring program of Neotropical migratory bird populations on NOLF and helps Naval Base Coronado (NOLF is a component) meet the goals and objectives of Department of Defense Partners in Flight program and the Birds and Migratory Birds Management Strategies of the Naval Base Coronado Integrated Natural Resources Management Plan. During 2009–13, captures averaged 644 ±155 per year. Fifty-seven species were captured, of which 44 are Neotropical migratory species and 33 breed at the MAPS station. Twenty-two sensitive species were detected, including Least Bell’s Vireo (Vireo bellii pusillus), Willow Flycatcher (Empidonax traillii), Yellow-breasted Chat (Icteria virens) and Yellow Warbler (Setophaga petechia). Local population trends varied among species and years, as did annual productivity (number of young per adult). We found no significant relationship between productivity and the observed population size in the subsequent year for any species, nor did we find an association between productivity and precipitation for the current bio-year. Similarly, survivorship varied across species and years, and there was no obvious relationship between adult survivorship and observed population size for any species except Wrentit (Chamaea fasciata), for which the relationship was positive. Adult survivorship was unrelated to precipitation at the MAPS station. Additional years of data will be required to generate sample sizes adequate for more rigorous analyses of survivorship and productivity as predictors of population growth.

  8. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Alaska and Washington

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A new procedure to determine snowcovered areas has been devised. Aside from problems in heavily forested areas this method shows promise in predicting snowmelt runoff from mountain areas and will also assist in energy balance modeling of large snowfields. Snowcover results compare favorably with measurements made by high altitude aircraft photography. Changes in snowcover in areas as small as 3 x 5 km can be determined from ERTS-1 images by both optical and electronic methods. Snowcover changes determined by these two methods in the experimental South Cascade Glacier Basin were verified by field mapping. Image enahancement techniques on ERTS-1 images of large Alaskan glaciers (the Hubbard, Yentna, and Kahiltna) have given new insights into the large-scale structures and flow dynamics of these potentially hazardous glaciers. The Hubbard Glacier, in particular, is one which poses a threat to man and should be monitored for future changes.

  9. Pictometry digital video mapping

    NASA Astrophysics Data System (ADS)

    Ciampa, John A.

    1995-09-01

    Pictometry is a proprietary digital imaging process which computationally maps each pixel of a digital land image to actual geographic coordinates, so that features in a mosaic of land images may be located and or measured.

  10. Mapping the world's tropical cyclone rainfall contribution over land using TRMM satellite data: precipitation budget and extreme rainfall

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.

    2012-12-01

    A study was performed to characterize over-land precipitation associated with tropical cyclones (TCs) for basins around the world gathered in the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2010, rainfall data from TRMM 3B42, showed that TCs accounted for 8-, 11-, 7-, 10-, and 12-% of the annual over-land precipitation for North America, East Asia, Northern Indian Ocean, Australia, and South-West Indian Ocean respectively, and that TC-contribution decreased importantly within the first 150-km from the coast. At the local scale, TCs contributed on average to more than 40% and up to 77% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. The East Asia domain presented the higher and most constant TC-rain (170±23%-mm/yr) normalized over the area impacted, while the Southwest Indian domain presented the highest variability (130±48%-mm/yr), and the North American domain displayed the lowest average TC-rain (77±27%-mm/yr) despite a higher TC-activity. The maximum monthly TC-contribution (11-15%) was found later in the TC-season and was a conjunction between the peak of TC-activity, TC-rainfall, and the domain annual antagonism between dry and wet regimes if any. Furthermore, TC-days that accounted globally for 2±0.5% of all precipitation events for all basins, represented between 11-30% of rainfall extremes (>101.6mm/day). Locally, TC-rainfall was linked with the majority (>70%) or the quasi-totality (≈100%) of extreme rainfall. Finally, because of their importance in terms of rainfall amount, the contribution of tropical cyclones is provided for a selection of fifty urban areas experiencing cyclonic activity. Cases studies conducted at the regional scale will focus on the link between TC-activity, water resources, and hydrohazards such as floods and droughts.

  11. Spectral and Spatial-Based Classification for Broad-Scale Land Cover Mapping Based on Logistic Regression

    PubMed Central

    Mallinis, Georgios; Koutsias, Nikos

    2008-01-01

    Improvement of satellite sensor characteristics motivates the development of new techniques for satellite image classification. Spatial information seems to be critical in classification processes, especially for heterogeneous and complex landscapes such as those observed in the Mediterranean basin. In our study, a spectral classification method of a LANDSAT-5 TM imagery that uses several binomial logistic regression models was developed, evaluated and compared to the familiar parametric maximum likelihood algorithm. The classification approach based on logistic regression modelling was extended to a contextual one by using autocovariates to consider spatial dependencies of every pixel with its neighbours. Finally, the maximum likelihood algorithm was upgraded to contextual by considering typicality, a measure which indicates the strength of class membership. The use of logistic regression for broad-scale land cover classification presented