Science.gov

Sample records for accurately predict critical

  1. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  2. Predictability of critical transitions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhu; Kuehn, Christian; Hallerberg, Sarah

    2015-11-01

    Critical transitions in multistable systems have been discussed as models for a variety of phenomena ranging from the extinctions of species to socioeconomic changes and climate transitions between ice ages and warm ages. From bifurcation theory we can expect certain critical transitions to be preceded by a decreased recovery from external perturbations. The consequences of this critical slowing down have been observed as an increase in variance and autocorrelation prior to the transition. However, especially in the presence of noise, it is not clear whether these changes in observation variables are statistically relevant such that they could be used as indicators for critical transitions. In this contribution we investigate the predictability of critical transitions in conceptual models. We study the quadratic integrate-and-fire model and the van der Pol model under the influence of external noise. We focus especially on the statistical analysis of the success of predictions and the overall predictability of the system. The performance of different indicator variables turns out to be dependent on the specific model under study and the conditions of accessing it. Furthermore, we study the influence of the magnitude of transitions on the predictive performance.

  3. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  4. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  5. You Can Accurately Predict Land Acquisition Costs.

    ERIC Educational Resources Information Center

    Garrigan, Richard

    1967-01-01

    Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…

  6. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  7. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  8. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  9. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  10. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  11. Accurate Critical Parameters for the Modified Lennard-Jones Model

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Fuchizaki, Kazuhiro

    2017-03-01

    The critical parameters of the modified Lennard-Jones system were examined. The isothermal-isochoric ensemble was generated by conducting a molecular dynamics simulation for the system consisting of 6912, 8788, 10976, and 13500 particles. The equilibrium between the liquid and vapor phases was judged from the chemical potential of both phases upon establishing the coexistence envelope, from which the critical temperature and density were obtained invoking the renormalization group theory. The finite-size scaling enabled us to finally determine the critical temperature, pressure, and density as Tc = 1.0762(2), pc = 0.09394(17), and ρc = 0.331(3), respectively.

  12. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  13. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  14. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  15. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  16. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    PubMed Central

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel C.; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-01-01

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. PMID:23499924

  17. Transition from precise to accurate critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ukraintsev, Vladimir A.; Tsai, Margaret C.; Lii, Tom; Jackson, Ricky A.

    2007-03-01

    A new measurement system analysis (MSA) methodology has been developed at Texas Instruments (TI) to evaluate the status of the 65 nm technology critical dimension (CD) metrology and its readiness for production. Elements of the methodology were used in a previously reported scatterometry evaluation [1]. At every critical process level the precision, bias, linearity and total measurement uncertainty (TMU) were evaluated for metrology fleet over extended periods of time, and with the technology representative set of samples. The samples with variations that fully covered and often exceeded process space were pre-calibrated by CD atomic force microscope (AFM). CD AFM measurement precision was determined for every analyzed process level based on repeated measurements conducted over several days. The National Institute of Standards and Technologies (NIST) traceable standards were used to verify CD AFM line CD and scale calibrations. Therefore, for the first time the NIST traceability has been established for CD metrology at every critical process level for the entire technology. The data indicates an overall healthy status of the 65 nm CD metrology. Sub-nanometer accuracy has been established for gate CD metrology. The thorough CD metrology characterization and specifically absolute CD calibration were instrumental in seamless technology transfer from 200 mm to 300 mm fabs. The qualification of CD metrology also revealed several problems. Most of these are well-known from previous studies and should soon be addressed. CD scanning electron microscopy (SEM) has a systematic problem with bias of CD measurements. The problem is common for several front-end and back-end of line process levels. For most process levels, TMU of CD SEM is noticeably affected by sample modification inflicted by electron irradiation (shrinkage, charging, buildups, etc.). This causes problems, especially in the case of fleet TMU evaluation. An improved data collection methodology should be devised

  18. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  19. Mouse models of human AML accurately predict chemotherapy response.

    PubMed

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W

    2009-04-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.

  20. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  1. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  2. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-07

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  3. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  4. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  5. Critical review of prostate cancer predictive tools.

    PubMed

    Shariat, Shahrokh F; Kattan, Michael W; Vickers, Andrew J; Karakiewicz, Pierre I; Scardino, Peter T

    2009-12-01

    Prostate cancer is a very complex disease, and the decision-making process requires the clinician to balance clinical benefits, life expectancy, comorbidities and potential treatment-related side effects. Accurate prediction of clinical outcomes may help in the difficult process of making decisions related to prostate cancer. In this review, we discuss attributes of predictive tools and systematically review those available for prostate cancer. Types of tools include probability formulas, look-up and propensity scoring tables, risk-class stratification prediction tools, classification and regression tree analysis, nomograms and artificial neural networks. Criteria to evaluate tools include discrimination, calibration, generalizability, level of complexity, decision analysis and ability to account for competing risks and conditional probabilities. The available predictive tools and their features, with a focus on nomograms, are described. While some tools are well-calibrated, few have been externally validated or directly compared with other tools. In addition, the clinical consequences of applying predictive tools need thorough assessment. Nevertheless, predictive tools can facilitate medical decision-making by showing patients tailored predictions of their outcomes with various alternatives. Additionally, accurate tools may improve clinical trial design.

  6. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    PubMed Central

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  7. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    PubMed

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  8. Prediction of Preoperative Anxiety in Children: Who is Most Accurate?

    PubMed Central

    MacLaren, Jill E.; Thompson, Caitlin; Weinberg, Megan; Fortier, Michelle A.; Morrison, Debra E.; Perret, Danielle; Kain, Zeev N.

    2009-01-01

    Background In this investigation, we sought to assess the ability of pediatric attending anesthesiologists, resident anesthesiologists and mothers to predict anxiety during induction of anesthesia in 2 to 16-year-old children (n=125). Methods Anesthesiologists and mothers provided predictions using a visual analog scale and children's anxiety was assessed using a valid behavior observation tool the Modified Yale Preoperative Anxiety Scale (mYPAS). All mothers were present during anesthetic induction and no child received sedative premedication. Correlational analyses were conducted. Results A total of 125 children aged 2 to 16 years, their mothers, and their attending pediatric anesthesiologists and resident anesthesiologists were studied. Correlational analyses revealed significant associations between attending predictions and child anxiety at induction (rs= 0.38, p<0.001). Resident anesthesiologist and mother predictions were not significantly related to children's anxiety during induction (rs = 0.01 and 0.001, respectively). In terms of accuracy of prediction, 47.2% of predictions made by attending anesthesiologists were within one standard deviation of the observed anxiety exhibited by the child, and 70.4% of predictions were within 2 standard deviations. Conclusions We conclude that attending anesthesiologists who practice in pediatric settings are better than mothers in predicting the anxiety of children during induction of anesthesia. While this finding has significant clinical implications, it is unclear if it can be extended to attending anesthesiologists whose practice is not mostly pediatric anesthesia. PMID:19448201

  9. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  10. Fast and accurate automatic structure prediction with HHpred.

    PubMed

    Hildebrand, Andrea; Remmert, Michael; Biegert, Andreas; Söding, Johannes

    2009-01-01

    Automated protein structure prediction is becoming a mainstream tool for biological research. This has been fueled by steady improvements of publicly available automated servers over the last decade, in particular their ability to build good homology models for an increasing number of targets by reliably detecting and aligning more and more remotely homologous templates. Here, we describe the three fully automated versions of the HHpred server that participated in the community-wide blind protein structure prediction competition CASP8. What makes HHpred unique is the combination of usability, short response times (typically under 15 min) and a model accuracy that is competitive with those of the best servers in CASP8.

  11. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    PubMed

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  12. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  13. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  14. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration.

  15. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  16. Accurate Theoretical Prediction of the Properties of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    calculations (e.g. Cheetah ). 8. Sensitivity. The structure prediction and lattice potential work will serve as a platform to examine impact/shock...nitromethane molecules. (In an extension of the present work, we will freeze the internal coordinates of the molecules and assess the extent to which the

  17. Learning regulatory programs that accurately predict differential expression with MEDUSA.

    PubMed

    Kundaje, Anshul; Lianoglou, Steve; Li, Xuejing; Quigley, David; Arias, Marta; Wiggins, Chris H; Zhang, Li; Leslie, Christina

    2007-12-01

    Inferring gene regulatory networks from high-throughput genomic data is one of the central problems in computational biology. In this paper, we describe a predictive modeling approach for studying regulatory networks, based on a machine learning algorithm called MEDUSA. MEDUSA integrates promoter sequence, mRNA expression, and transcription factor occupancy data to learn gene regulatory programs that predict the differential expression of target genes. Instead of using clustering or correlation of expression profiles to infer regulatory relationships, MEDUSA determines condition-specific regulators and discovers regulatory motifs that mediate the regulation of target genes. In this way, MEDUSA meaningfully models biological mechanisms of transcriptional regulation. MEDUSA solves the problem of predicting the differential (up/down) expression of target genes by using boosting, a technique from statistical learning, which helps to avoid overfitting as the algorithm searches through the high-dimensional space of potential regulators and sequence motifs. Experimental results demonstrate that MEDUSA achieves high prediction accuracy on held-out experiments (test data), that is, data not seen in training. We also present context-specific analysis of MEDUSA regulatory programs for DNA damage and hypoxia, demonstrating that MEDUSA identifies key regulators and motifs in these processes. A central challenge in the field is the difficulty of validating reverse-engineered networks in the absence of a gold standard. Our approach of learning regulatory programs provides at least a partial solution for the problem: MEDUSA's prediction accuracy on held-out data gives a concrete and statistically sound way to validate how well the algorithm performs. With MEDUSA, statistical validation becomes a prerequisite for hypothesis generation and network building rather than a secondary consideration.

  18. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    PubMed Central

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  19. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  20. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  1. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  2. Predictive rendering for accurate material perception: modeling and rendering fabrics

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2012-03-01

    In computer graphics, rendering algorithms are used to simulate the appearance of objects and materials in a wide range of applications. Designers and manufacturers rely entirely on these rendered images to previsualize scenes and products before manufacturing them. They need to differentiate between different types of fabrics, paint finishes, plastics, and metals, often with subtle differences, for example, between silk and nylon, formaica and wood. Thus, these applications need predictive algorithms that can produce high-fidelity images that enable such subtle material discrimination.

  3. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  4. Critical heat flux predictions in rod bundles

    SciTech Connect

    Kao, S.P.; Kazimi, M.S.

    1983-01-01

    The prediction of critical heat flux (CHF) in rod bundles has been studied with both subchannel and bundle-average methods. The correlations of Biasi, Bowring, CISE-4, and Barnett were considered. The General Electric 9-rod bundle CHF data were used in the comparisons. Calculations were performed by the two-fluid subchannel code THERMIT-2. The results indicate that the subchannel method yields more conservative CHF predictions than the bundleaverage method. This is attributed to the two-phase turbulent mixing phenomenon in the bundle, which can be modeled only on a subchannel basis. The results also indicate that the CISE-4 correlation had the smallest error in prediction of transition boiling for both subchannel and bundle-average methods.

  5. Objective criteria accurately predict amputation following lower extremity trauma.

    PubMed

    Johansen, K; Daines, M; Howey, T; Helfet, D; Hansen, S T

    1990-05-01

    MESS (Mangled Extremity Severity Score) is a simple rating scale for lower extremity trauma, based on skeletal/soft-tissue damage, limb ischemia, shock, and age. Retrospective analysis of severe lower extremity injuries in 25 trauma victims demonstrated a significant difference between MESS values for 17 limbs ultimately salvaged (mean, 4.88 +/- 0.27) and nine requiring amputation (mean, 9.11 +/- 0.51) (p less than 0.01). A prospective trial of MESS in lower extremity injuries managed at two trauma centers again demonstrated a significant difference between MESS values of 14 salvaged (mean, 4.00 +/- 0.28) and 12 doomed (mean, 8.83 +/- 0.53) limbs (p less than 0.01). In both the retrospective survey and the prospective trial, a MESS value greater than or equal to 7 predicted amputation with 100% accuracy. MESS may be useful in selecting trauma victims whose irretrievably injured lower extremities warrant primary amputation.

  6. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...incorporate extremely fast but accurate light calculations into coupled physical-biological-optical ocean ecosystem models as used for operational three...dimensional ecosystem predictions. Improvements in light calculations lead to improvements in predictions of chlorophyll concentrations and other

  7. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    PubMed Central

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-01-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination. PMID:28304378

  8. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  9. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    NASA Astrophysics Data System (ADS)

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-03-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

  10. Change in BMI Accurately Predicted by Social Exposure to Acquaintances

    PubMed Central

    Oloritun, Rahman O.; Ouarda, Taha B. M. J.; Moturu, Sai; Madan, Anmol; Pentland, Alex (Sandy); Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R2. This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends. PMID

  11. A mathematical recursive model for accurate description of the phase behavior in the near-critical region by Generalized van der Waals Equation

    NASA Astrophysics Data System (ADS)

    Kim, Jibeom; Jeon, Joonhyeon

    2015-01-01

    Recently, related studies on Equation Of State (EOS) have reported that generalized van der Waals (GvdW) shows poor representations in the near critical region for non-polar and non-sphere molecules. Hence, there are still remains a problem of GvdW parameters to minimize loss in describing saturated vapor densities and vice versa. This paper describes a recursive model GvdW (rGvdW) for an accurate representation of pure fluid materials in the near critical region. For the performance evaluation of rGvdW in the near critical region, other EOS models are also applied together with two pure molecule group: alkane and amine. The comparison results show rGvdW provides much more accurate and reliable predictions of pressure than the others. The calculating model of EOS through this approach gives an additional insight into the physical significance of accurate prediction of pressure in the nearcritical region.

  12. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  13. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  14. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  15. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    PubMed Central

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  16. Predicting speech intelligibility in noise for hearing-critical jobs

    NASA Astrophysics Data System (ADS)

    Soli, Sigfrid D.; Laroche, Chantal; Giguere, Christian

    2003-10-01

    Many jobs require auditory abilities such as speech communication, sound localization, and sound detection. An employee for whom these abilities are impaired may constitute a safety risk for himself or herself, for fellow workers, and possibly for the general public. A number of methods have been used to predict these abilities from diagnostic measures of hearing (e.g., the pure-tone audiogram); however, these methods have not proved to be sufficiently accurate for predicting performance in the noise environments where hearing-critical jobs are performed. We have taken an alternative and potentially more accurate approach. A direct measure of speech intelligibility in noise, the Hearing in Noise Test (HINT), is instead used to screen individuals. The screening criteria are validated by establishing the empirical relationship between the HINT score and the auditory abilities of the individual, as measured in laboratory recreations of real-world workplace noise environments. The psychometric properties of the HINT enable screening of individuals with an acceptable amount of error. In this presentation, we will describe the predictive model and report the results of field measurements and laboratory studies used to provide empirical validation of the model. [Work supported by Fisheries and Oceans Canada.

  17. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  18. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    SciTech Connect

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-21

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T{sub c} = 1.3128 ± 0.0016, ρ{sub c} = 0.316 ± 0.004, and p{sub c} = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ{sub t} ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r{sub cut} = 3.5σ yield T{sub c} and p{sub c} that are higher by 0.2% and 1.4% than simulations with r{sub cut} = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r{sub cut} = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard

  19. Critical conceptualism in environmental modeling and prediction.

    PubMed

    Christakos, G

    2003-10-15

    Many important problems in environmental science and engineering are of a conceptual nature. Research and development, however, often becomes so preoccupied with technical issues, which are themselves fascinating, that it neglects essential methodological elements of conceptual reasoning and theoretical inquiry. This work suggests that valuable insight into environmental modeling can be gained by means of critical conceptualism which focuses on the software of human reason and, in practical terms, leads to a powerful methodological framework of space-time modeling and prediction. A knowledge synthesis system develops the rational means for the epistemic integration of various physical knowledge bases relevant to the natural system of interest in order to obtain a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, generate meaningful predictions of environmental processes in space-time, and produce science-based decisions. No restriction is imposed on the shape of the distribution model or the form of the predictor (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated). The scientific reasoning structure underlying knowledge synthesis involves teleologic criteria and stochastic logic principles which have important advantages over the reasoning method of conventional space-time techniques. Insight is gained in terms of real world applications, including the following: the study of global ozone patterns in the atmosphere using data sets generated by instruments on board the Nimbus 7 satellite and secondary information in terms of total ozone-tropopause pressure models; the mapping of arsenic concentrations in the Bangladesh drinking water by assimilating hard and soft data from an extensive network of monitoring wells; and the dynamic imaging of probability distributions of pollutants across the Kalamazoo river.

  20. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  1. Accurate prediction of band gaps and optical properties of HfO2

    NASA Astrophysics Data System (ADS)

    Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka

    2016-10-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.

  2. Copeptin Predicts Mortality in Critically Ill Patients

    PubMed Central

    Krychtiuk, Konstantin A.; Honeder, Maria C.; Lenz, Max; Maurer, Gerald; Wojta, Johann; Heinz, Gottfried; Huber, Kurt; Speidl, Walter S.

    2017-01-01

    Background Critically ill patients admitted to a medical intensive care unit exhibit a high mortality rate irrespective of the cause of admission. Besides its role in fluid and electrolyte balance, vasopressin has been described as a stress hormone. Copeptin, the C-terminal portion of provasopressin mirrors vasopressin levels and has been described as a reliable biomarker for the individual’s stress level and was associated with outcome in various disease entities. The aim of this study was to analyze whether circulating levels of copeptin at ICU admission are associated with 30-day mortality. Methods In this single-center prospective observational study including 225 consecutive patients admitted to a tertiary medical ICU at a university hospital, blood was taken at ICU admission and copeptin levels were measured using a commercially available automated sandwich immunofluorescent assay. Results Median acute physiology and chronic health evaluation II score was 20 and 30-day mortality was 25%. Median copeptin admission levels were significantly higher in non-survivors as compared with survivors (77.6 IQR 30.7–179.3 pmol/L versus 45.6 IQR 19.6–109.6 pmol/L; p = 0.025). Patients with serum levels of copeptin in the third tertile at admission had a 2.4-fold (95% CI 1.2–4.6; p = 0.01) increased mortality risk as compared to patients in the first tertile. When analyzing patients according to cause of admission, copeptin was only predictive of 30-day mortality in patients admitted due to medical causes as opposed to those admitted after cardiac surgery, as medical patients with levels of copeptin in the highest tertile had a 3.3-fold (95% CI 1.66.8, p = 0.002) risk of dying independent from APACHE II score, primary diagnosis, vasopressor use and need for mechanical ventilation. Conclusion Circulating levels of copeptin at ICU admission independently predict 30-day mortality in patients admitted to a medical ICU. PMID:28118414

  3. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.

    PubMed

    Faraggi, Eshel; Kloczkowski, Andrzej

    2017-01-01

    Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a software package to predict secondary structure as well as accessible surface area and dihedral angles ϕ and ψ. For secondary structure SPINE-X achieves an accuracy of between 81 and 84 % depending on the dataset and choice of tests. The Pearson correlation coefficient for accessible surface area prediction is 0.75 and the mean absolute error from the ϕ and ψ dihedral angles are 20(∘) and 33(∘), respectively. The source code and a Linux executables for SPINE-X are available from Research and Information Systems at http://mamiris.com .

  4. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided.

  5. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  6. Accurately predicting copper interconnect topographies in foundry design for manufacturability flows

    NASA Astrophysics Data System (ADS)

    Lu, Daniel; Fan, Zhong; Tak, Ki Duk; Chang, Li-Fu; Zou, Elain; Jiang, Jenny; Yang, Josh; Zhuang, Linda; Chen, Kuang Han; Hurat, Philippe; Ding, Hua

    2011-04-01

    This paper presents a model-based Chemical Mechanical Polishing (CMP) Design for Manufacturability (DFM) () methodology that includes an accurate prediction of post-CMP copper interconnect topographies at the advanced process technology nodes. Using procedures of extensive model calibration and validation, the CMP process model accurately predicts post-CMP dimensions, such as erosion, dishing, and copper thickness with excellent correlation to silicon measurements. This methodology provides an efficient DFM flow to detect and fix physical manufacturing hotspots related to copper pooling and Depth of Focus (DOF) failures at both block- and full chip level designs. Moreover, the predicted thickness output is used in the CMP-aware RC extraction and Timing analysis flows for better understanding of performance yield and timing impact. In addition, the CMP model can be applied to the verification of model-based dummy fill flows.

  7. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  8. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises.

  9. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  10. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (keff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methodsmore » and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  11. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  12. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2017-04-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  13. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2016-12-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  14. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  15. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  16. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients With Heart Failure

    PubMed Central

    Testani, Jeffrey M.; Hanberg, Jennifer S.; Cheng, Susan; Rao, Veena; Onyebeke, Chukwuma; Laur, Olga; Kula, Alexander; Chen, Michael; Wilson, F. Perry; Darlington, Andrew; Bellumkonda, Lavanya; Jacoby, Daniel; Tang, W. H. Wilson; Parikh, Chirag R.

    2015-01-01

    Background Removal of excess sodium and fluid is a primary therapeutic objective in acute decompensated heart failure (ADHF) and commonly monitored with fluid balance and weight loss. However, these parameters are frequently inaccurate or not collected and require a delay of several hours after diuretic administration before they are available. Accessible tools for rapid and accurate prediction of diuretic response are needed. Methods and Results Based on well-established renal physiologic principles an equation was derived to predict net sodium output using a spot urine sample obtained one or two hours following loop diuretic administration. This equation was then prospectively validated in 50 ADHF patients using meticulously obtained timed 6-hour urine collections to quantitate loop diuretic induced cumulative sodium output. Poor natriuretic response was defined as a cumulative sodium output of <50 mmol, a threshold that would result in a positive sodium balance with twice-daily diuretic dosing. Following a median dose of 3 mg (2–4 mg) of intravenous bumetanide, 40% of the population had a poor natriuretic response. The correlation between measured and predicted sodium output was excellent (r=0.91, p<0.0001). Poor natriuretic response could be accurately predicted with the sodium prediction equation (AUC=0.95, 95% CI 0.89–1.0, p<0.0001). Clinically recorded net fluid output had a weaker correlation (r=0.66, p<0.001) and lesser ability to predict poor natriuretic response (AUC=0.76, 95% CI 0.63–0.89, p=0.002). Conclusions In patients being treated for ADHF, poor natriuretic response can be predicted soon after diuretic administration with excellent accuracy using a spot urine sample. PMID:26721915

  17. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  18. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism.

    PubMed

    Kieslich, Chris A; Tamamis, Phanourios; Guzman, Yannis A; Onel, Melis; Floudas, Christodoulos A

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.

  19. Accurate similarity index based on activity and connectivity of node for link prediction

    NASA Astrophysics Data System (ADS)

    Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun

    2015-05-01

    Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.

  20. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts.

    PubMed

    Stephanou, Pavlos S; Mavrantzas, Vlasis G

    2014-06-07

    We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data.

  1. Prediction of Accurate Thermochemistry of Medium and Large Sized Radicals Using Connectivity-Based Hierarchy (CBH).

    PubMed

    Sengupta, Arkajyoti; Raghavachari, Krishnan

    2014-10-14

    Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known.

  2. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  3. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  4. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  5. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  6. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  7. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  8. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    PubMed Central

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-01-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  9. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  10. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGES

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  11. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  12. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  13. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    SciTech Connect

    Jorgensen, S.

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  14. Prediction of Walking and Arm Recovery after Stroke: A Critical Review

    PubMed Central

    Kwah, Li Khim; Herbert, Robert D.

    2016-01-01

    Clinicians often base their predictions of walking and arm recovery on multiple predictors. Multivariate prediction models may assist clinicians to make accurate predictions. Several reviews have been published on the prediction of motor recovery after stroke, but none have critically appraised development and validation studies of models for predicting walking and arm recovery. In this review, we highlight some common methodological limitations of models that have been developed and validated. Notable models include the proportional recovery model and the PREP algorithm. We also identify five other models based on clinical predictors that might be ready for further validation. It has been suggested that neurophysiological and neuroimaging data may be used to predict arm recovery. Current evidence suggests, but does not show conclusively, that the addition of neurophysiological and neuroimaging data to models containing clinical predictors yields clinically important increases in predictive accuracy. PMID:27827835

  15. Accurate prediction of human drug toxicity: a major challenge in drug development.

    PubMed

    Li, Albert P

    2004-11-01

    Over the past decades, a number of drugs have been withdrawn or have required special labeling due to adverse effects observed post-marketing. Species differences in drug toxicity in preclinical safety tests and the lack of sensitive biomarkers and nonrepresentative patient population in clinical trials are probable reasons for the failures in predicting human drug toxicity. It is proposed that toxicology should evolve from an empirical practice to an investigative discipline. Accurate prediction of human drug toxicity requires resources and time to be spent in clearly defining key toxic pathways and corresponding risk factors, which hopefully, will be compensated by the benefits of a lower percentage of clinical failure due to toxicity and a decreased frequency of market withdrawal due to unacceptable adverse drug effects.

  16. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals.

    PubMed

    Brian, Jayne V; Harris, Catherine A; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P

    2005-06-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration-response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk.

  17. Accurate Prediction of the Response of Freshwater Fish to a Mixture of Estrogenic Chemicals

    PubMed Central

    Brian, Jayne V.; Harris, Catherine A.; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P.

    2005-01-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration–response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk. PMID:15929895

  18. IDSite: An accurate approach to predict P450-mediated drug metabolism

    PubMed Central

    Li, Jianing; Schneebeli, Severin T.; Bylund, Joseph; Farid, Ramy; Friesner, Richard A.

    2011-01-01

    Accurate prediction of drug metabolism is crucial for drug design. Since a large majority of drugs metabolism involves P450 enzymes, we herein describe a computational approach, IDSite, to predict P450-mediated drug metabolism. To model induced-fit effects, IDSite samples the conformational space with flexible docking in Glide followed by two refinement stages using the Protein Local Optimization Program (PLOP). Sites of metabolism (SOMs) are predicted according to a physical-based score that evaluates the potential of atoms to react with the catalytic iron center. As a preliminary test, we present in this paper the prediction of hydroxylation and O-dealkylation sites mediated by CYP2D6 using two different models: a physical-based simulation model, and a modification of this model in which a small number of parameters are fit to a training set. Without fitting any parameters to experimental data, the Physical IDSite scoring recovers 83% of the experimental observations for 56 compounds with a very low false positive rate. With only 4 fitted parameters, the Fitted IDSite was trained with the subset of 36 compounds and successfully applied to the other 20 compounds, recovering 94% of the experimental observations with high sensitivity and specificity for both sets. PMID:22247702

  19. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  20. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  1. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  2. Predicting Next Year's Resources--Short-Term Enrollment Forecasting for Accurate Budget Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Salley, Charles D.

    Accurate enrollment forecasts are a prerequisite for reliable budget projections. This is because tuition payments make up a significant portion of a university's revenue, and anticipated revenue is the immediate constraint on current operating expenditures. Accurate forecasts are even more critical to revenue projections when a university's…

  3. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2013-11-01

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  4. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

    PubMed

    Shvab, I; Sadus, Richard J

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  5. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  6. The prediction and confirmation of critical epitaxial parameters

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan; Jesser, W. A.

    1988-01-01

    The coherency-incoherency transition in epitaxial crystals is said to take place at a critical misfit f(c) or, for a system in which a monolayer is subcritical, at a critical thickness h(c). In this paper, the physical principles and models used to predict critical parameters are analyzed and put into perspective. The dependence of the relevant principles on the equilibrium-nonequilibrium conditions under which the quantities are measured in practice is stressed. The advantages and disadvantages of the models used (essentially the Frenkel-Kontorowa and Volterra models) are highlighted.

  7. Predicting Critical Speeds in Rotordynamics: A New Method

    NASA Astrophysics Data System (ADS)

    Knight, J. D.; Virgin, L. N.; Plaut, R. H.

    2016-09-01

    In rotordynamics, it is often important to be able to predict critical speeds. The passage through resonance is generally difficult to model. Rotating shafts with a disk are analyzed in this study, and experiments are conducted with one and two disks on a shaft. The approach presented here involves the use of a relatively simple prediction technique, and since it is a black-box data-based approach, it is suitable for in-situ applications.

  8. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  9. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  10. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  11. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  12. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  13. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats.

    PubMed

    Audet, Gerald N; Quinn, Carrie M; Leon, Lisa R

    2015-11-15

    Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.

  14. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients

    PubMed Central

    Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.

    2016-01-01

    BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218

  15. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.

  16. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  17. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  18. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries.

    PubMed

    Schrauwen, Jelle T C; Koeze, Dion J; Wentzel, Jolanda J; van de Vosse, Frans N; van der Steen, Anton F W; Gijsen, Frank J H

    2015-01-01

    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

  19. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  20. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  1. Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning

    PubMed Central

    Abraham, Gad; Tye-Din, Jason A.; Bhalala, Oneil G.; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2014-01-01

    Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite differences in ethnicity. The models explained 30–35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases. PMID:24550740

  2. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2016-03-01

    Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)).

  3. Bundle critical power predictions under normal and abnormal conditions in pressurized water reactors

    SciTech Connect

    Lin, W.S.; Pei, B.S. ); Lee, C.H. )

    1992-06-01

    In this paper a new approach to bundle critical power predictions is presented. In addition to a very accurate critical heat flux (CHF) model, correction factors that account for the effects of grid spacers, heat flux non-uniformities, and cold walls, which are needed for critical power predictions for practical fuel bundles, are developed. By using the subchannel analysis code COBRA IIIC/MIT-1, local flow conditions needed as input to CHF correlations are obtained. Critical power is therefore obtained iteratively to ensure that the bundle power value from the subchannel analysis will cause CHF at only one point in the bundle. Good agreement with the experimental data is obtained. The accuracy is higher than that of the W-3 and EPRI-1 correlations for the limited data base used in this study. The effects of three types of fuel abnormalities, namely, local heat flux spikes, local flow blockages, and rod bowing, on bundle critical power are also analyzed. The local heat flux spikes and flow blockages have no significant influence on critical power. However, rod bowing phenomena have some effect, the severity of which depends on system pressure, the gap closure between adjacent rods, and the presence or absence of thimble tubes (cold walls). A correlation for the influence of various rod bowing phenomena on bundle critical power is developed. Good agreement with experimental data is shown.

  4. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  5. Sequence features accurately predict genome-wide MeCP2 binding in vivo

    PubMed Central

    Rube, H. Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H.; Hess, John F.; LaSalle, Janine M.; Song, Jun S.; Gong, Qizhi

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915

  6. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  7. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.

    PubMed

    Polzer, S; Gasser, T C; Novak, K; Man, V; Tichy, M; Skacel, P; Bursa, J

    2015-03-01

    Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical

  8. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  9. New consensus definition for acute kidney injury accurately predicts 30-day mortality in cirrhosis with infection

    PubMed Central

    Wong, Florence; O’Leary, Jacqueline G; Reddy, K Rajender; Patton, Heather; Kamath, Patrick S; Fallon, Michael B; Garcia-Tsao, Guadalupe; Subramanian, Ram M.; Malik, Raza; Maliakkal, Benedict; Thacker, Leroy R; Bajaj, Jasmohan S

    2015-01-01

    Background & Aims A consensus conference proposed that cirrhosis-associated acute kidney injury (AKI) be defined as an increase in serum creatinine by >50% from the stable baseline value in <6 months or by ≥0.3mg/dL in <48 hrs. We prospectively evaluated the ability of these criteria to predict mortality within 30 days among hospitalized patients with cirrhosis and infection. Methods 337 patients with cirrhosis admitted with or developed an infection in hospital (56% men; 56±10 y old; model for end-stage liver disease score, 20±8) were followed. We compared data on 30-day mortality, hospital length-of-stay, and organ failure between patients with and without AKI. Results 166 (49%) developed AKI during hospitalization, based on the consensus criteria. Patients who developed AKI had higher admission Child-Pugh (11.0±2.1 vs 9.6±2.1; P<.0001), and MELD scores (23±8 vs17±7; P<.0001), and lower mean arterial pressure (81±16mmHg vs 85±15mmHg; P<.01) than those who did not. Also higher amongst patients with AKI were mortality in ≤30 days (34% vs 7%), intensive care unit transfer (46% vs 20%), ventilation requirement (27% vs 6%), and shock (31% vs 8%); AKI patients also had longer hospital stays (17.8±19.8 days vs 13.3±31.8 days) (all P<.001). 56% of AKI episodes were transient, 28% persistent, and 16% resulted in dialysis. Mortality was 80% among those without renal recovery, higher compared to partial (40%) or complete recovery (15%), or AKI-free patients (7%; P<.0001). Conclusions 30-day mortality is 10-fold higher among infected hospitalized cirrhotic patients with irreversible AKI than those without AKI. The consensus definition of AKI accurately predicts 30-day mortality, length of hospital stay, and organ failure. PMID:23999172

  10. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  11. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  12. Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function prediction

    NASA Astrophysics Data System (ADS)

    Cataneo, Matteo; Rapetti, David; Lombriser, Lucas; Li, Baojiu

    2016-12-01

    We refine the mass and environment dependent spherical collapse model of chameleon f(R) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N-body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f(R) halo abundance with respect to that of General Relativity (GR) within a precision of lesssim 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f(R) mass function on the condition that the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.

  13. Developing neuronal networks: self-organized criticality predicts the future.

    PubMed

    Pu, Jiangbo; Gong, Hui; Li, Xiangning; Luo, Qingming

    2013-01-01

    Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation, dynamical activity patterns through the entire neural development still remains unclear. Here we show that a series of metastable network states emerged in the developing and "aging" process of hippocampal networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest that self-organized criticality may guide spontaneous activity into a sequential succession of homeostatically-regulated transient patterns during development, which may help to predict the tendency of neural development at early ages in the future.

  14. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  15. Raoult’s law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

    PubMed Central

    Bowler, Michael G.

    2017-01-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111–114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult’s law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample. PMID:28381983

  16. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  17. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  18. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  19. Covariance matrices for use in criticality safety predictability studies

    SciTech Connect

    Derrien, H.; Larson, N.M.; Leal, L.C.

    1997-09-01

    Criticality predictability applications require as input the best available information on fissile and other nuclides. In recent years important work has been performed in the analysis of neutron transmission and cross-section data for fissile nuclei in the resonance region by using the computer code SAMMY. The code uses Bayes method (a form of generalized least squares) for sequential analyses of several sets of experimental data. Values for Reich-Moore resonance parameters, their covariances, and the derivatives with respect to the adjusted parameters (data sensitivities) are obtained. In general, the parameter file contains several thousand values and the dimension of the covariance matrices is correspondingly large. These matrices are not reported in the current evaluated data files due to their large dimensions and to the inadequacy of the file formats. The present work has two goals: the first is to calculate the covariances of group-averaged cross sections from the covariance files generated by SAMMY, because these can be more readily utilized in criticality predictability calculations. The second goal is to propose a more practical interface between SAMMY and the evaluated files. Examples are given for {sup 235}U in the popular 199- and 238-group structures, using the latest ORNL evaluation of the {sup 235}U resonance parameters.

  20. Reduction of model structure bias in the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2009-04-01

    Effective mitigation strategies to reduce the contamination of surface waters by agrochemicals rely on an accurate identification of critical source areas (CSA). We used a spatially distributed hydrological model to identify CSA in a small agricultural catchment in Switzerland. Since the knowledge about model parameters is coarse, prior predictions of CSA involve large uncertainties. We investigated to which degree river discharge data can constrain parameter values and improve the prediction. Thereby, we combined the prior knowledge used for the prior prediction with additional river discharge data within a Bayesian inference approach. In order to consider the effect of uncertainty in input data and in the model structure we formulated the likelihood function with an autoregressive error model additive to the river discharge calculated by the deterministic hydrological model. The additional information gained from river discharge data slightly reduced the width of some of the marginal parameter distributions and the prediction uncertainty for high or low-risk areas. However, the analysis of the statistical assumptions of the inference process revealed deficits in the model structure. Thus the base flow during dry periods tended to be overestimated. By making the percolation process water table dependent the base flow prediction could be improved. These improvements in model structure significantly reduced the model structure bias and thus improved the statistical basis of the probabilistic CSA prediction. Furthermore, the improved model structure led to a large constraint of the CSA prediction uncertainty.

  1. Can Transthoracic Echocardiography Be Used to Predict Fluid Responsiveness in the Critically Ill Patient? A Systematic Review

    PubMed Central

    Mandeville, Justin C.; Colebourn, Claire L.

    2012-01-01

    Introduction. We systematically evaluated the use of transthoracic echocardiography in the assessment of dynamic markers of preload to predict fluid responsiveness in the critically ill adult patient. Methods. Studies in the critically ill using transthoracic echocardiography (TTE) to predict a response in stroke volume or cardiac output to a fluid load were selected. Selection was limited to English language and adult patients. Studies on patients with an open thorax or abdomen were excluded. Results. The predictive power of diagnostic accuracy of inferior vena cava diameter and transaortic Doppler signal changes with the respiratory cycle or passive leg raising in mechanically ventilated patients was strong throughout the articles reviewed. Limitations of the technique relate to patient tolerance of the procedure, adequacy of acoustic windows, and operator skill. Conclusions. Transthoracic echocardiographic techniques accurately predict fluid responsiveness in critically ill patients. Discriminative power is not affected by the technique selected. PMID:22400109

  2. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (keff) Predictions

    SciTech Connect

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (keff) evaluations based on best-available data and methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate keff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth

  3. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  4. An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes.

    PubMed

    Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min

    2013-03-15

    Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research.

  5. Sensor data fusion for accurate cloud presence prediction using Dempster-Shafer evidence theory.

    PubMed

    Li, Jiaming; Luo, Suhuai; Jin, Jesse S

    2010-01-01

    Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent.

  6. Parcel-scale urban coastal flood prediction: Identifying critical data and forcing requirements

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Sanders, B. F.

    2012-12-01

    Coastal flooding represents a significant socio-economic and humanitarian threat to urbanized lowlands throughout the world. In California, sea levels are projected to rise 1-1.4 meters in the next century. Numerous coastal communities are currently at risk of flooding during high tides or large wave events and a significant body of evidence suggests climate change will exacerbate flooding in these low lying, and often highly populated, areas. Flood prediction in urbanized embayments pose a number of challenges including water level characterization, appropriate representation of both weir-like (i.e. wall) overflow and wave runup/overtopping volumes and the need for highly accurate local data and site knowledge. In addition, a paucity of high quality validation data fundamentally obstructs predictive flood modeling efforts. Here, a Southern California coastal community which benefits from two unique flood event validation data sets is modeled in context of current and future sea level scenarios. The uncalibrated hydrodynamic model resolves critical urban infrastructure and includes essential dynamic processes such as tidal amplification, weir-like overflow and spatially distributed wave overtopping volumes. Results identify data and forcing requirements that are essential to accurate parcel-scale (individual home or street) flood prediction in defended urban terrain.

  7. Predicting colloid transport through saturated porous media: A critical review

    NASA Astrophysics Data System (ADS)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities

  8. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy.

  9. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    PubMed

    Kosugi, Shunichi; Yanagawa, Hiroshi; Terauchi, Ryohei; Tabata, Satoshi

    2014-09-01

    The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  10. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

    PubMed Central

    Kim, Minseung; Rai, Navneet; Zorraquino, Violeta; Tagkopoulos, Ilias

    2016-01-01

    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery. PMID:27713404

  11. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  12. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF

    PubMed Central

    Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.

    2016-01-01

    The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113

  13. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  14. A Comparison of Predictive Equations of Energy Expenditure and Measured Energy Expenditure in Critically Ill Patients

    PubMed Central

    Kross, Erin K.; Sena, Matthew; Schmidt, Karyn; Stapleton, Renee D.

    2012-01-01

    PURPOSE Multiple equations exist for predicting resting energy expenditure (REE). The accuracy of these for estimating caloric requirements of critically ill patients is not clear, especially for obese patients. We sought to compare REE, calculated with published formulas, with measured REE in a cohort of mechanically-ventilated subjects. MATERIALS AND METHODS We retrospectively identified all mechanically-ventilated patients with measured body mass index (BMI) who underwent indirect calorimetry (IC) in the ICU. Limits of agreement and Pitman’s test of difference in variance were performed to compare REE by equations with REE measured by IC. RESULTS 927 patients were identified, including 401 obese patients. There was bias and poor agreement between measured REE and REE predicted by the Harris-Benedict, Owen, ACCP, and Mifflin equations (p > 0.05). There was poor agreement between measured and predicted REE by the Ireton-Jones equation, stratifying by gender. Ireton-Jones was the only equation which was unbiased, for men and those in weight categories I and II. In all cases except Ireton-Jones, predictive equations underestimated measured REE. CONCLUSION None of these equations accurately estimated measured REE in this group of mechanically-ventilated patients, most underestimating caloric needs. Development of improved predictive equations for adequate assessment of energy needs is needed. PMID:22425340

  15. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    DTIC Science & Technology

    2014-09-01

    SUBJECT TERMS EOARD, orbital debris , HAMR objects, multi-layered insulation, orbital dynamics, orbit predictions, orbital propagation 16. SECURITY...illustration are orbital debris [Souce: NASA...piece of space junk (a paint fleck) during the STS-7 mission (Photo: NASA Orbital Debris Program Office

  16. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression.

    PubMed

    Stempler, Shiri; Waldman, Yedael Y; Wolf, Lior; Ruppin, Eytan

    2012-09-01

    Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.

  17. Predicting repeat self-harm in children--how accurate can we expect to be?

    PubMed

    Chitsabesan, Prathiba; Harrington, Richard; Harrington, Valerie; Tomenson, Barbara

    2003-01-01

    The main objective of the study was to find which variables predict repetition of deliberate self-harm in children. The study is based on a group of children who took part in a randomized control trial investigating the effects of a home-based family intervention for children who had deliberately poisoned themselves. These children had a range of baseline and outcome measures collected on two occasions (two and six months follow-up). Outcome data were collected from 149 (92 %) of the initial 162 children over the six months. Twenty-three children made a further deliberate self-harm attempt within the follow-up period. A number of variables at baseline were found to be significantly associated with repeat self-harm. Parental mental health and a history of previous attempts were the strongest predictors. A model of prediction of further deliberate self-harm combining these significant individual variables produced a high positive predictive value (86 %) but had low sensitivity (28 %). Predicting repeat self-harm in children is difficult, even with a comprehensive series of assessments over multiple time points, and we need to adapt services with this in mind. We propose a model of service provision which takes these findings into account.

  18. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.

    PubMed

    Hashmi, Muhammad Ali; Andreassend, Sarah K; Keyzers, Robert A; Lein, Matthias

    2016-09-21

    Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

  19. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  20. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.

    PubMed

    Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L

    2015-06-30

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives.

  1. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  2. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-07

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  3. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  4. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  5. Accurate prediction of drug-induced liver injury using stem cell-derived populations.

    PubMed

    Szkolnicka, Dagmara; Farnworth, Sarah L; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P; Flint, Oliver; Hay, David C

    2014-02-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies.

  6. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    NASA Astrophysics Data System (ADS)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  7. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  8. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  9. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    SciTech Connect

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-11-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water.

  10. Does preoperative cross-sectional imaging accurately predict main duct involvement in intraductal papillary mucinous neoplasm?

    PubMed

    Barron, M R; Roch, A M; Waters, J A; Parikh, J A; DeWitt, J M; Al-Haddad, M A; Ceppa, E P; House, M G; Zyromski, N J; Nakeeb, A; Pitt, H A; Schmidt, C Max

    2014-03-01

    Main pancreatic duct (MPD) involvement is a well-demonstrated risk factor for malignancy in intraductal papillary mucinous neoplasm (IPMN). Preoperative radiographic determination of IPMN type is heavily relied upon in oncologic risk stratification. We hypothesized that radiographic assessment of MPD involvement in IPMN is an accurate predictor of pathological MPD involvement. Data regarding all patients undergoing resection for IPMN at a single academic institution between 1992 and 2012 were gathered prospectively. Retrospective analysis of imaging and pathologic data was undertaken. Preoperative classification of IPMN type was based on cross-sectional imaging (MRI/magnetic resonance cholangiopancreatography (MRCP) and/or CT). Three hundred sixty-two patients underwent resection for IPMN. Of these, 334 had complete data for analysis. Of 164 suspected branch duct (BD) IPMN, 34 (20.7%) demonstrated MPD involvement on final pathology. Of 170 patients with suspicion of MPD involvement, 50 (29.4%) demonstrated no MPD involvement. Of 34 patients with suspected BD-IPMN who were found to have MPD involvement on pathology, 10 (29.4%) had invasive carcinoma. Alternatively, 2/50 (4%) of the patients with suspected MPD involvement who ultimately had isolated BD-IPMN demonstrated invasive carcinoma. Preoperative radiographic IPMN type did not correlate with final pathology in 25% of the patients. In addition, risk of invasive carcinoma correlates with pathologic presence of MPD involvement.

  11. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  12. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  13. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.

    PubMed

    Krokhotin, Andrey; Dokholyan, Nikolay V

    2015-01-01

    Computational methods can provide significant insights into RNA structure and dynamics, bridging the gap in our understanding of the relationship between structure and biological function. Simulations enrich and enhance our understanding of data derived on the bench, as well as provide feasible alternatives to costly or technically challenging experiments. Coarse-grained computational models of RNA are especially important in this regard, as they allow analysis of events occurring in timescales relevant to RNA biological function, which are inaccessible through experimental methods alone. We have developed a three-bead coarse-grained model of RNA for discrete molecular dynamics simulations. This model is efficient in de novo prediction of short RNA tertiary structure, starting from RNA primary sequences of less than 50 nucleotides. To complement this model, we have incorporated additional base-pairing constraints and have developed a bias potential reliant on data obtained from hydroxyl probing experiments that guide RNA folding to its correct state. By introducing experimentally derived constraints to our computer simulations, we are able to make reliable predictions of RNA tertiary structures up to a few hundred nucleotides. Our refined model exemplifies a valuable benefit achieved through integration of computation and experimental methods.

  14. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods.

  15. Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e

    PubMed Central

    Cilia, Elisa; Vuister, Geerten W.; Lenaerts, Tom

    2012-01-01

    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods. PMID:23209399

  16. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  17. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  18. How Accurate Is the Prediction of Maximal Oxygen Uptake with Treadmill Testing?

    PubMed Central

    Wicks, John R.; Oldridge, Neil B.

    2016-01-01

    Background Cardiorespiratory fitness measured by treadmill testing has prognostic significance in determining mortality with cardiovascular and other chronic disease states. The accuracy of a recently developed method for estimating maximal oxygen uptake (VO2peak), the heart rate index (HRI), is dependent only on heart rate (HR) and was tested against oxygen uptake (VO2), either measured or predicted from conventional treadmill parameters (speed, incline, protocol time). Methods The HRI equation, METs = 6 x HRI– 5, where HRI = maximal HR/resting HR, provides a surrogate measure of VO2peak. Forty large scale treadmill studies were identified through a systematic search using MEDLINE, Google Scholar and Web of Science in which VO2peak was either measured (TM-VO2meas; n = 20) or predicted (TM-VO2pred; n = 20) based on treadmill parameters. All studies were required to have reported group mean data of both resting and maximal HRs for determination of HR index-derived oxygen uptake (HRI-VO2). Results The 20 studies with measured VO2 (TM-VO2meas), involved 11,477 participants (median 337) with a total of 105,044 participants (median 3,736) in the 20 studies with predicted VO2 (TM-VO2pred). A difference of only 0.4% was seen between mean (±SD) VO2peak for TM- VO2meas and HRI-VO2 (6.51±2.25 METs and 6.54±2.28, respectively; p = 0.84). In contrast, there was a highly significant 21.1% difference between mean (±SD) TM-VO2pred and HRI-VO2 (8.12±1.85 METs and 6.71±1.92, respectively; p<0.001). Conclusion Although mean TM-VO2meas and HRI-VO2 were almost identical, mean TM-VO2pred was more than 20% greater than mean HRI-VO2. PMID:27875547

  19. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile.

    PubMed

    Faraggi, Eshel; Kouza, Maksim; Zhou, Yaoqi; Kloczkowski, Andrzej

    2017-01-01

    A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation profiles generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for ASAquick are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org .

  20. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  1. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    NASA Astrophysics Data System (ADS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-02-01

    A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by Dpb. Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the Dpb of base pairs in DNA along C-H and N-H bonds are obtained for the first time. All results show that C7-H of A-T and C8-H of G-C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate Dpb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules.

  2. Fast and accurate prediction for aerodynamic forces and moments acting on satellites flying in Low-Earth Orbit

    NASA Astrophysics Data System (ADS)

    Jin, Xuhon; Huang, Fei; Hu, Pengju; Cheng, Xiaoli

    2016-11-01

    A fundamental prerequisite for satellites operating in a Low Earth Orbit (LEO) is the availability of fast and accurate prediction of non-gravitational aerodynamic forces, which is characterised by the free molecular flow regime. However, conventional computational methods like the analytical integral method and direct simulation Monte Carlo (DSMC) technique are found failing to deal with flow shadowing and multiple reflections or computationally expensive. This work develops a general computer program for the accurate calculation of aerodynamic forces in the free molecular flow regime using the test particle Monte Carlo (TPMC) method, and non-gravitational aerodynamic forces actiong on the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is calculated for different freestream conditions and gas-surface interaction models by the computer program.

  3. Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention.

    PubMed

    Resnic, F S; Ohno-Machado, L; Selwyn, A; Simon, D I; Popma, J J

    2001-07-01

    The objectives of this analysis were to develop and validate simplified risk score models for predicting the risk of major in-hospital complications after percutaneous coronary intervention (PCI) in the era of widespread stenting and use of glycoprotein IIb/IIIa antagonists. We then sought to compare the performance of these simplified models with those of full logistic regression and neural network models. From January 1, 1997 to December 31, 1999, data were collected on 4,264 consecutive interventional procedures at a single center. Risk score models were derived from multiple logistic regression models using the first 2,804 cases and then validated on the final 1,460 cases. The area under the receiver operating characteristic (ROC) curve for the risk score model that predicted death was 0.86 compared with 0.85 for the multiple logistic model and 0.83 for the neural network model (validation set). For the combined end points of death, myocardial infarction, or bypass surgery, the corresponding areas under the ROC curves were 0.74, 0.78, and 0.81, respectively. Previously identified risk factors were confirmed in this analysis. The use of stents was associated with a decreased risk of in-hospital complications. Thus, risk score models can accurately predict the risk of major in-hospital complications after PCI. Their discriminatory power is comparable to those of logistic models and neural network models. Accurate bedside risk stratification may be achieved with these simple models.

  4. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes

    PubMed Central

    Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T.; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G.; Qin, Jun; Chen, Rui

    2016-01-01

    Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414

  5. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  6. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    PubMed

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  7. Searching for Computational Strategies to Accurately Predict pKas of Large Phenolic Derivatives.

    PubMed

    Rebollar-Zepeda, Aida Mariana; Campos-Hernández, Tania; Ramírez-Silva, María Teresa; Rojas-Hernández, Alberto; Galano, Annia

    2011-08-09

    Twenty-two reaction schemes have been tested, within the cluster-continuum model including up to seven explicit water molecules. They have been used in conjunction with nine different methods, within the density functional theory and with second-order Møller-Plesset. The quality of the pKa predictions was found to be strongly dependent on the chosen scheme, while only moderately influenced by the method of calculation. We recommend the E1 reaction scheme [HA + OH(-) (3H2O) ↔ A(-) (H2O) + 3H2O], since it yields mean unsigned errors (MUE) lower than 1 unit of pKa for most of the tested functionals. The best pKa values obtained from this reaction scheme are those involving calculations with PBE0 (MUE = 0.77), TPSS (MUE = 0.82), BHandHLYP (MUE = 0.82), and B3LYP (MUE = 0.86) functionals. This scheme has the additional advantage, compared to the proton exchange method, which also gives very small values of MUE, of being experiment independent. It should be kept in mind, however, that these recommendations are valid within the cluster-continuum model, using the polarizable continuum model in conjunction with the united atom Hartree-Fock cavity and the strategy based on thermodynamic cycles. Changes in any of these aspects of the used methodology may lead to different outcomes.

  8. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  9. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  10. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  11. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    PubMed Central

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735

  12. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  13. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  14. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  15. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?

    PubMed

    Ballester, Pedro J; Schreyer, Adrian; Blundell, Tom L

    2014-03-24

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein-ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein-ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data.

  16. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.

    PubMed

    Staranowicz, Aaron N; Ray, Christopher; Mariottini, Gian-Luca

    2015-01-01

    Falls are the most-common causes of unintentional injury and death in older adults. Many clinics, hospitals, and health-care providers are urgently seeking accurate, low-cost, and easy-to-use technology to predict falls before they happen, e.g., by monitoring the human walking pattern (or "gait"). Despite the wide popularity of Microsoft's Kinect and the plethora of solutions for gait monitoring, no strategy has been proposed to date to allow non-expert users to calibrate the cameras, which is essential to accurately fuse the body motion observed by each camera in a single frame of reference. In this paper, we present a novel multi-Kinect calibration algorithm that has advanced features when compared to existing methods: 1) is easy to use, 2) it can be used in any generic Kinect arrangement, and 3) it provides accurate calibration. Extensive real-world experiments have been conducted to validate our algorithm and to compare its performance against other multi-Kinect calibration approaches, especially to show the improved estimate of gait parameters. Finally, a MATLAB Toolbox has been made publicly available for the entire research community.

  17. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race

    PubMed Central

    Hourihan, Kathleen L.; Benjamin, Aaron S.; Liu, Xiping

    2012-01-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness’s claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness. PMID:23162788

  18. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  19. Shrinking the Psoriasis Assessment Gap: Early Gene-Expression Profiling Accurately Predicts Response to Long-Term Treatment.

    PubMed

    Correa da Rosa, Joel; Kim, Jaehwan; Tian, Suyan; Tomalin, Lewis E; Krueger, James G; Suárez-Fariñas, Mayte

    2017-02-01

    There is an "assessment gap" between the moment a patient's response to treatment is biologically determined and when a response can actually be determined clinically. Patients' biochemical profiles are a major determinant of clinical outcome for a given treatment. It is therefore feasible that molecular-level patient information could be used to decrease the assessment gap. Thanks to clinically accessible biopsy samples, high-quality molecular data for psoriasis patients are widely available. Psoriasis is therefore an excellent disease for testing the prospect of predicting treatment outcome from molecular data. Our study shows that gene-expression profiles of psoriasis skin lesions, taken in the first 4 weeks of treatment, can be used to accurately predict (>80% area under the receiver operating characteristic curve) the clinical endpoint at 12 weeks. This could decrease the psoriasis assessment gap by 2 months. We present two distinct prediction modes: a universal predictor, aimed at forecasting the efficacy of untested drugs, and specific predictors aimed at forecasting clinical response to treatment with four specific drugs: etanercept, ustekinumab, adalimumab, and methotrexate. We also develop two forms of prediction: one from detailed, platform-specific data and one from platform-independent, pathway-based data. We show that key biomarkers are associated with responses to drugs and doses and thus provide insight into the biology of pathogenesis reversion.

  20. Critical evidence for the prediction error theory in associative learning.

    PubMed

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  1. Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique

    NASA Astrophysics Data System (ADS)

    Bozinoski, Radoslav

    Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions

  2. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields.

    PubMed

    Chang, Kuan Y; Lin, Tung-pei; Shih, Ling-Yi; Wang, Chien-Kuo

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.

  3. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging

    NASA Astrophysics Data System (ADS)

    Hughes, Timothy J.; Kandathil, Shaun M.; Popelier, Paul L. A.

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G**, B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol-1, decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol-1.

  4. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1).

  5. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  6. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    PubMed

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin; Brehm Christensen, Peer; Langeland, Nina; Buhl, Mads Rauning; Pedersen, Court; Mørch, Kristine; Wejstål, Rune; Norkrans, Gunnar; Lindh, Magnus; Färkkilä, Martti; Westin, Johan

    2014-01-01

    Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV) infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI) in the paper, was based on the model: Log-odds (predicting cirrhosis) = -12.17+ (age × 0.11) + (BMI (kg/m(2)) × 0.23) + (D7-lathosterol (μg/100 mg cholesterol)×(-0.013)) + (Platelet count (x10(9)/L) × (-0.018)) + (Prothrombin-INR × 3.69). The area under the ROC curve (AUROC) for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96). The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98). In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  7. Bicarbonate kinetics and predicted energy expenditure in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine nutrient requirements by the carbon oxidation techniques, it is necessary to know the fraction of carbon dioxide produced during the oxidative process but not excreted. This fraction has not been described in critically ill children. By measuring the dilution of (13)C infused by metabol...

  8. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  9. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David

    2017-03-01

    Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  10. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  11. An Aspect of Critical Thinking: Predicting Students' Use of Evidence.

    ERIC Educational Resources Information Center

    Feely, Ted

    This study seeks to illuminate those characteristics of students which predict their performance in using evidence to test a hypothesis. The research is conceived as part of a larger investigative strategy for understanding the relationships among characteristics of students, characteristics of social studies thinking tasks, and characteristics of…

  12. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  13. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.

  14. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals

    NASA Astrophysics Data System (ADS)

    Lau, K.-C.; Ng, C. Y.

    2006-01-01

    The ionization energies (IEs) for the 2-propyl (2-C3H7), phenyl (C6H5), and benzyl (C6H5CH2) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction have been also made in these calculations. Although a precise IE value for the 2-C3H7 radical has not been directly determined before due to the poor Franck-Condon factor for the photoionization transition at the ionization threshold, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. The comparison between the predicted value through the focal-point analysis and the highly precise experimental value for the IE(C6H5CH2) determined in the previous pulsed field ionization photoelectron (PFI-PE) study shows that the CCSD(T)/CBS method is capable of providing an accurate IE prediction for C6H5CH2, achieving an error limit of 35 meV. The benchmarking of the CCSD(T)/CBS IE(C6H5CH2) prediction suggests that the CCSD(T)/CBS IE(C6H5) prediction obtained here has a similar accuracy of 35 meV. Taking into account this error limit for the CCSD(T)/CBS prediction and the experimental uncertainty, the CCSD(T)/CBS IE(C6H5) value is also consistent with the IE(C6H5) reported in the previous HeI photoelectron measurement. Furthermore, the present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can be used to provide reliable IE predictions for C3-C7 hydrocarbon radicals with an uncertainty of +/-35 meV. Employing the atomization scheme, we have also computed the 0 K (298 K) heats of formation in kJ/mol at the CCSD(T)/CBS level for 2-C3H7

  15. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-03-31

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  16. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  17. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  18. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  19. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  20. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

    PubMed

    Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong

    2016-06-01

    Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

  1. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)

  2. Accuracy of critical-temperature sensitivity coefficients predicted by multilayered composite plate theories

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Burton, Scott

    1992-01-01

    An assessment is made of the accuracy of the critical-temperature sensitivity coefficients of multilayered plates predicted by different modeling approaches, based on two-dimensional shear-deformation theories. The sensitivity coefficients considered measure the sensitivity of the critical temperatures to variations in different lamination and material parameters of the plate. The standard of comparison is taken to be the sensitivity coefficients obtained by the three-dimensional theory of thermoelasticity. Numerical studies are presented showing the effects of variation in the geometric and lamination parameters of the plate on the accuracy of both the sensitivity coefficients and the critical temperatures predicted by the different modeling approaches.

  3. Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.

    2007-07-01

    We present a new set of model predictions for 16 Lick absorption line indices from Hδ through Fe5335 and UBV colors for single stellar populations with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from -1.3 to +0.3, and variable abundance ratios. The models are based on accurate stellar parameters for the Jones library stars and a new set of fitting functions describing the behavior of line indices as a function of effective temperature, surface gravity, and iron abundance. The abundances of several key elements in the library stars have been obtained from the literature in order to characterize the abundance pattern of the stellar library, thus allowing us to produce model predictions for any set of abundance ratios desired. We develop a method to estimate mean ages and abundances of iron, carbon, nitrogen, magnesium, and calcium that explores the sensitivity of the various indices modeled to those parameters. The models are compared to high-S/N data for Galactic clusters spanning the range of ages, metallicities, and abundance patterns of interest. Essentially all line indices are matched when the known cluster parameters are adopted as input. Comparing the models to high-quality data for galaxies in the nearby universe, we reproduce previous results regarding the enhancement of light elements and the spread in the mean luminosity-weighted ages of early-type galaxies. When the results from the analysis of blue and red indices are contrasted, we find good consistency in the [Fe/H] that is inferred from different Fe indices. Applying our method to estimate mean ages and abundances from stacked SDSS spectra of early-type galaxies brighter than L*, we find mean luminosity-weighed ages of the order of ~8 Gyr and iron abundances slightly below solar. Abundance ratios, [X/Fe], tend to be higher than solar and are positively correlated with galaxy luminosity. Of all elements, nitrogen is the more strongly correlated with galaxy luminosity, which seems to indicate

  4. An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation.

    PubMed

    Messerly, Richard A; Rowley, Richard L; Knotts, Thomas A; Wilding, W Vincent

    2015-09-14

    A rigorous statistical analysis is presented for Gibbs ensemble Monte Carlo simulations. This analysis reduces the uncertainty in the critical point estimate when compared with traditional methods found in the literature. Two different improvements are recommended due to the following results. First, the traditional propagation of error approach for estimating the standard deviations used in regression improperly weighs the terms in the objective function due to the inherent interdependence of the vapor and liquid densities. For this reason, an error model is developed to predict the standard deviations. Second, and most importantly, a rigorous algorithm for nonlinear regression is compared to the traditional approach of linearizing the equations and propagating the error in the slope and the intercept. The traditional regression approach can yield nonphysical confidence intervals for the critical constants. By contrast, the rigorous algorithm restricts the confidence regions to values that are physically sensible. To demonstrate the effect of these conclusions, a case study is performed to enhance the reliability of molecular simulations to resolve the n-alkane family trend for the critical temperature and critical density.

  5. An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Messerly, Richard A.; Rowley, Richard L.; Knotts, Thomas A.; Wilding, W. Vincent

    2015-09-01

    A rigorous statistical analysis is presented for Gibbs ensemble Monte Carlo simulations. This analysis reduces the uncertainty in the critical point estimate when compared with traditional methods found in the literature. Two different improvements are recommended due to the following results. First, the traditional propagation of error approach for estimating the standard deviations used in regression improperly weighs the terms in the objective function due to the inherent interdependence of the vapor and liquid densities. For this reason, an error model is developed to predict the standard deviations. Second, and most importantly, a rigorous algorithm for nonlinear regression is compared to the traditional approach of linearizing the equations and propagating the error in the slope and the intercept. The traditional regression approach can yield nonphysical confidence intervals for the critical constants. By contrast, the rigorous algorithm restricts the confidence regions to values that are physically sensible. To demonstrate the effect of these conclusions, a case study is performed to enhance the reliability of molecular simulations to resolve the n-alkane family trend for the critical temperature and critical density.

  6. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  7. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (Tc) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the Tc of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔEHL and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract Tc by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in Tc of the two phases. This study shows the applicability of the DFT+U approach for predicting Tc of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  8. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  9. Do Skilled Elementary Teachers Hold Scientific Conceptions and Can They Accurately Predict the Type and Source of Students' Preconceptions of Electric Circuits?

    ERIC Educational Resources Information Center

    Lin, Jing-Wen

    2016-01-01

    Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…

  10. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    SciTech Connect

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission

  11. Critical Motor Involvement in Prediction of Human and Non-biological Motion Trajectories

    PubMed Central

    de Wit, Matthieu M.; Buxbaum, Laurel J.

    2017-01-01

    Objectives Adaptive interaction with the environment requires the ability to predict both human and non-biological motion trajectories. Prior accounts of the neurocognitive basis for prediction of these two motion classes may generally be divided into those that posit that non-biological motion trajectories are predicted using the same motor planning and/or simulation mechanisms used for human actions, and those that posit distinct mechanisms for each. Using brain lesion patients and healthy controls, this study examined critical neural substrates and behavioral correlates of human and non-biological motion prediction. Methods Twenty-seven left hemisphere stroke patients and 13 neurologically intact controls performed a visual occlusion task requiring prediction of pantomimed tool use, real tool use, and non-biological motion videos. Patients were also assessed with measures of motor strength and speed, praxis, and action recognition. Results Prediction impairment for both human and non-biological motion was associated with limb apraxia and, weakly, with the severity of motor production deficits, but not with action recognition ability. Furthermore, impairment for human and non-biological motion prediction was equivalently associated with lesions in the left inferior parietal cortex, left dorsal frontal cortex, and the left insula. Conclusions These data suggest that motor planning mechanisms associated with specific loci in the sensorimotor network are critical for prediction of spatiotemporal trajectory information characteristic of both human and non-biological motions. PMID:28205497

  12. Critical Features Predicting Sustained Implementation of School-Wide Positive Behavioral Interventions and Supports

    ERIC Educational Resources Information Center

    Mathews, Susanna; McIntosh, Kent; Frank, Jennifer L.; May, Seth L.

    2014-01-01

    The current study explored the extent to which a common measure of perceived implementation of critical features of Positive Behavioral Interventions and Supports (PBIS) predicted fidelity of implementation 3 years later. Respondents included school personnel from 261 schools across the United States implementing PBIS. School teams completed the…

  13. Critical Features Predicting Sustained Implementation of School-Wide Positive Behavior Support

    ERIC Educational Resources Information Center

    Mathews, Susanna; McIntosh, Kent; Frank, Jennifer; May, Seth

    2014-01-01

    The current study explored the extent to which a common measure of perceived implementation of critical features of School-wide Positive Behavior Support (SWPBS) predicted fidelity of implementation 3 years later. Respondents included school personnel from 261 schools across the United States implementing SWPBS. School teams completed the…

  14. Time Critical Targeting: Predictive Vs Reactionary Methods An Analysis For The Future

    DTIC Science & Technology

    2002-06-01

    Chapter 5 Results & Conclusions Having investigated the different methods and techniques that can be used for time critical targeting in the......Targeting: Predictive Vs Reactionary Methods An Analysis For The Future 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  15. ACCEPT: Introduction of the Adverse Condition and Critical Event Prediction Toolbox

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Santanu, Das; Janakiraman, Vijay Manikandan; Hosein, Stefan

    2015-01-01

    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we introduce a generic framework developed in MATLAB (sup registered mark) called ACCEPT (Adverse Condition and Critical Event Prediction Toolbox). ACCEPT is an architectural framework designed to compare and contrast the performance of a variety of machine learning and early warning algorithms, and tests the capability of these algorithms to robustly predict the onset of adverse events in any time-series data generating systems or processes.

  16. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    PubMed

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  17. Can the theory of critical distances predict the failure of shape memory alloys?

    PubMed

    Kasiri, Saeid; Kelly, Daniel J; Taylor, David

    2011-06-01

    Components made from shape memory alloys (SMAs) such as nitinol often fail from stress concentrations and defects such as notches and cracks. It is shown here for the first time that these failures can be predicted using the theory of critical distances (TCDs), a method which has previously been used to study fracture and fatigue in other materials. The TCD uses the stress at a certain distance ahead of the notch to predict the failure of the material due to the stress concentration. The critical distance is believed to be a material property which is related to the microstructure of the material. The TCD is simply applied to a linear model of the material without the need to model the complication of its non-linear behaviour. The non-linear behaviour of the material at fracture is represented in the critical stress. The effect of notches and short cracks on the fracture of SMA NiTi was studied by analysing experimental data from the literature. Using a finite element model with elastic material behaviour, it is shown that the TCD can predict the effect of crack length and notch geometry on the critical stress and stress intensity for fracture, with prediction errors of less than 5%. The value of the critical distance obtained for this material was L = 90 μm; this may be related to its grain size. The effects of short cracks on stress intensity were studied. It was shown that the same value of the critical distance (L = 90 μm) could estimate the experimental data for both notches and short cracks.

  18. Prediction of the vapor-liquid distribution constants for volatile nonelectrolytes in water up to its critical temperature

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.; Shock, Everett L.

    2003-12-01

    The distribution of solutes between coexisting liquid and vapor phases of water can be expressed by the distribution constant, K D, defined as K D= limitlim x→0y/x, where y and x stand for the mole fraction concentrations of a solute in vapor and liquid phases, respectively. Research reported here is concerned with the prediction of this property, K D, for volatile nonelectrolytes, over the whole temperature range of existence of the vapor-liquid equilibrium for water, i.e. from 273 K to the critical temperature at 647.1 K. A simple empirical method is proposed to extrapolate the values of K D from 298 K to 500-550 K. Calculations at higher temperatures are based on the theoretical relation that establishes the proportionality between RTlnK D and the Krichevskii parameter, A Kr, which is the single most important property of a solute at near-critical conditions, and can be evaluated using the method proposed here. The comparison of predicted and experimental values of K D and A Kr for a few well-studied solutes reveals the satisfactory performance of the proposed method. It appears that the accuracy of predictions in the framework of this method is limited mainly by the accuracy of the values of the thermodynamic functions of hydration of solutes at 298 K, and that the best way to improve the quality of predictions of K D and A Kr is to increase the inventory of accurate calorimetric enthalpy and heat capacity data for aqueous solutes at 298 K. We stress that the values of the Krichevskii parameter, such as those generated in this study, are of crucial importance for reliable predictions of the chemical potential and its derivatives (V 2o, Cp 2o) for aqueous solutes at near-critical and supercritical conditions. Values of K D and A Kr are predicted for many inorganic volatile nonelectrolytes and some halogenated derivatives of methane and ethene. We show that both ln K D and A Kr for aqueous organic solutes follow group additivity systematics, and we derive a set

  19. Can the conventional sextant prostate biopsy accurately predict unilateral prostate cancer in low-risk, localized, prostate cancer?

    PubMed

    Mayes, Janice M; Mouraviev, Vladimir; Sun, Leon; Tsivian, Matvey; Madden, John F; Polascik, Thomas J

    2011-01-01

    We evaluate the reliability of routine sextant prostate biopsy to detect unilateral lesions. A total of 365 men with complete records including all clinical and pathologic variables who underwent a preoperative sextant biopsy and subsequent radical prostatectomy (RP) for clinically localized prostate cancer at our medical center between January 1996 and December 2006 were identified. When the sextant biopsy detects unilateral disease, according to RP results, the NPV is high (91%) with a low false negative rate (9%). However, the sextant biopsy has a PPV of 28% with a high false positive rate (72%). Therefore, a routine sextant prostate biopsy cannot provide reliable, accurate information about the unilaterality of tumor lesion(s).

  20. Topology prediction of Brucella abortus Omp2b and Omp2a porins after critical assessment of transmembrane beta strands prediction by several secondary structure prediction methods.

    PubMed

    Paquet, J Y; Vinals, C; Wouters, J; Letesson, J J; Depiereux, E

    2000-02-01

    In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.

  1. Predicting the unpredictable: critical analysis and practical implications of predictive anticipatory activity

    PubMed Central

    Mossbridge, Julia A.; Tressoldi, Patrizio; Utts, Jessica; Ives, John A.; Radin, Dean; Jonas, Wayne B.

    2014-01-01

    A recent meta-analysis of experiments from seven independent laboratories (n = 26) indicates that the human body can apparently detect randomly delivered stimuli occurring 1–10 s in the future (Mossbridge etal., 2012). The key observation in these studies is that human physiology appears to be able to distinguish between unpredictable dichotomous future stimuli, such as emotional vs. neutral images or sound vs. silence. This phenomenon has been called presentiment (as in “feeling the future”). In this paper we call it predictive anticipatory activity (PAA). The phenomenon is “predictive” because it can distinguish between upcoming stimuli; it is “anticipatory” because the physiological changes occur before a future event; and it is an “activity” because it involves changes in the cardiopulmonary, skin, and/or nervous systems. PAA is an unconscious phenomenon that seems to be a time-reversed reflection of the usual physiological response to a stimulus. It appears to resemble precognition (consciously knowing something is going to happen before it does), but PAA specifically refers to unconscious physiological reactions as opposed to conscious premonitions. Though it is possible that PAA underlies the conscious experience of precognition, experiments testing this idea have not produced clear results. The first part of this paper reviews the evidence for PAA and examines the two most difficult challenges for obtaining valid evidence for it: expectation bias and multiple analyses. The second part speculates on possible mechanisms and the theoretical implications of PAA for understanding physiology and consciousness. The third part examines potential practical applications. PMID:24723870

  2. Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset

    PubMed Central

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease. PMID:25938675

  3. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    PubMed

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  4. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  5. Accurate Prediction of Protein Functional Class From Sequence in the Mycobacterium Tuberculosis and Escherichia Coli Genomes Using Data Mining

    PubMed Central

    Karwath, Andreas; Clare, Amanda; Dehaspe, Luc

    2000-01-01

    The analysis of genomics data needs to become as automated as its generation. Here we present a novel data-mining approach to predicting protein functional class from sequence. This method is based on a combination of inductive logic programming clustering and rule learning. We demonstrate the effectiveness of this approach on the M. tuberculosis and E. coli genomes, and identify biologically interpretable rules which predict protein functional class from information only available from the sequence. These rules predict 65% of the ORFs with no assigned function in M. tuberculosis and 24% of those in E. coli, with an estimated accuracy of 60–80% (depending on the level of functional assignment). The rules are founded on a combination of detection of remote homology, convergent evolution and horizontal gene transfer. We identify rules that predict protein functional class even in the absence of detectable sequence or structural homology. These rules give insight into the evolutionary history of M. tuberculosis and E. coli. PMID:11119305

  6. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    PubMed

    Danner, Holger; Desurmont, Gaylord A; Cristescu, Simona M; van Dam, Nicole M

    2017-01-30

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.

  7. Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action

    PubMed Central

    Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano

    2014-01-01

    Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030

  8. The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyang; Han, Le; Chang, Haiping; Liu, Nan; Xu, Tiejun

    2016-02-01

    An accurate critical heat flux (CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions. An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ɛ model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions. Moreover, local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWS-IF97. Therefore, this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition. An experimental example is simulated based on the improved and the uncorrected methods. The simulation results, such as temperature, void fraction and heat transfer coefficient, are analyzed to achieve the CHF prediction. The results show that the maximum error of CHF based on the improved method is 23.7%, while that of CHF based on uncorrected method is up to 188%, as compared with the experiment results of Ref. [12]. Finally, this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor (ITER), with a maximum error of 6% only. This method provides an efficient tool for the CHF prediction of water-cooled divertors. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and National Natural Science Foundation of China (No. 51406085)

  9. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  10. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response.

  11. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

    PubMed

    Barone, Veronica; Hod, Oded; Peralta, Juan E; Scuseria, Gustavo E

    2011-04-19

    Over the last several years, low-dimensional graphene derivatives, such as carbon nanotubes and graphene nanoribbons, have played a central role in the pursuit of a plausible carbon-based nanotechnology. Their electronic properties can be either metallic or semiconducting depending purely on morphology, but predicting their electronic behavior has proven challenging. The combination of experimental efforts with modeling of these nanometer-scale structures has been instrumental in gaining insight into their physical and chemical properties and the processes involved at these scales. Particularly, approximations based on density functional theory have emerged as a successful computational tool for predicting the electronic structure of these materials. In this Account, we review our efforts in modeling graphitic nanostructures from first principles with hybrid density functionals, namely the Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid and the hybrid meta-generalized functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh). These functionals provide a powerful tool for quantitatively studying structure-property relations and the effects of external perturbations such as chemical substitutions, electric and magnetic fields, and mechanical deformations on the electronic and magnetic properties of these low-dimensional carbon materials. We show how HSE and TPSSh successfully predict the electronic properties of these materials, providing a good description of their band structure and density of states, their work function, and their magnetic ordering in the cases in which magnetism arises. Moreover, these approximations are capable of successfully predicting optical transitions (first and higher order) in both metallic and semiconducting single-walled carbon nanotubes of various chiralities and diameters with impressive accuracy. This versatility includes the correct prediction of the trigonal warping splitting in metallic nanotubes. The results predicted

  13. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates.

    PubMed

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV-vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  14. An Electroacoustic Hearing Protector Simulator That Accurately Predicts Pressure Levels in the Ear Based on Standard Performance Metrics

    DTIC Science & Technology

    2013-08-01

    24 Figure 20. ABQ experiment showing five volunteers located 1.0 m from source in upper-left panel wearing...study (Royster et al.,1996) in which users self-fit hearing protectors (ANSI S12.6- 2008 method B: user fit) with no experimenter instruction gives an...values provided by the experimenters and simulator fits for the intact and modified muffs. Figure 22 (upper panel) shows the simulator prediction

  15. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  16. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.

    PubMed

    Cleves, Ann E; Jain, Ajay N

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  17. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  18. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.

    PubMed

    Baldassi, Carlo; Zamparo, Marco; Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.

  19. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  20. How many clinic BP readings are needed to predict cardiovascular events as accurately as ambulatory BP monitoring?

    PubMed

    Eguchi, K; Hoshide, S; Shimada, K; Kario, K

    2014-12-01

    We tested the hypothesis that multiple clinic blood pressure (BP) readings over an extended baseline period would be as predictive as ambulatory BP (ABP) for cardiovascular disease (CVD). Clinic and ABP monitoring were performed in 457 hypertensive patients at baseline. Clinic BP was measured monthly and the means of the first 3, 5 and 10 clinic BP readings were taken as the multiple clinic BP readings. The subjects were followed up, and stroke, HARD CVD, and ALL CVD events were determined as outcomes. In multivariate Cox regression analyses, ambulatory systolic BP (SBP) best predicted three outcomes independently of baseline and multiple clinic SBP readings. The mean of 10 clinic SBP readings predicted stroke (hazards ratio (HR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.04) and ALL CVD (HR=1.41, 95% CI=1.13-1.74, P=0.002) independently of baseline clinic SBP. Clinic SBPs by three and five readings were not associated with any CVD events, except that clinic SBP by three readings was associated with ALL CVD (P=0.015). Besides ABP values, the mean of the first 10 clinic SBP values was a significant predictor of stroke and ALL CVD events. It is important to take more than several clinic BP readings early after the baseline period for the risk stratification of future CVD events.

  1. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.

    PubMed

    Pearce, K L; Ferguson, M; Gardner, G; Smith, N; Greef, J; Pethick, D W

    2009-01-01

    Fifty merino wethers (liveweight range from 44 to 81kg, average of 58.6kg) were lot fed for 42d and scanned through a dual X-ray absorptiometry (DXA) as both a live animal and whole carcass (carcass weight range from 15 to 32kg, average of 22.9kg) producing measures of total tissue, lean, fat and bone content. The carcasses were subsequently boned out into saleable cuts and the weights and yield of boned out muscle, fat and bone recorded. The relationship between chemical lean (protein+water) was highly correlated with DXA carcass lean (r(2)=0.90, RSD=0.674kg) and moderately with DXA live lean (r(2)=0.72, RSD=1.05kg). The relationship between the chemical fat was moderately correlated with DXA carcass fat (r(2)=0.86, RSD=0.42kg) and DXA live fat (r(2)=0.70, RSD=0.71kg). DXA carcass and live animal bone was not well correlated with chemical ash (both r(2)=0.38, RSD=0.3). DXA carcass lean was moderately well predicted from DXA live lean with the inclusion of bodyweight in the regression (r(2)=0.82, RSD=0.87kg). DXA carcass fat was well predicted from DXA live fat (r(2)=0.86, RSD=0.54kg). DXA carcass lean and DXA carcass fat with the inclusion of carcass weight in the regression significantly predicted boned out muscle (r(2)=0.97, RSD=0.32kg) and fat weight, respectively (r(2)=0.92, RSD=0.34kg). The use of DXA live lean and DXA live fat with the inclusion of bodyweight to predict boned out muscle (r(2)=0.83, RSD=0.75kg) and fat (r(2)=0.86, RSD=0.46kg) weight, respectively, was moderate. The use of DXA carcass and live lean and fat to predict boned out muscle and fat yield was not correlated as weight. The future for the DXA will exist in the determination of body composition in live animals and carcasses in research experiments but there is potential for the DXA to be used as an online carcass grading system.

  2. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  3. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  4. A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure

    NASA Astrophysics Data System (ADS)

    Saberifar, S.; Mashreghi, A. R.

    2012-06-01

    The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 107 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami's model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami's model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.

  5. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  6. Network Biomarkers Constructed from Gene Expression and Protein-Protein Interaction Data for Accurate Prediction of Leukemia

    PubMed Central

    Yuan, Xuye; Chen, Jiajia; Lin, Yuxin; Li, Yin; Xu, Lihua; Chen, Luonan; Hua, Haiying; Shen, Bairong

    2017-01-01

    Leukemia is a leading cause of cancer deaths in the developed countries. Great efforts have been undertaken in search of diagnostic biomarkers of leukemia. However, leukemia is highly complex and heterogeneous, involving interaction among multiple molecular components. Individual molecules are not necessarily sensitive diagnostic indicators. Network biomarkers are considered to outperform individual molecules in disease characterization. We applied an integrative approach that identifies active network modules as putative biomarkers for leukemia diagnosis. We first reconstructed the leukemia-specific PPI network using protein-protein interactions from the Protein Interaction Network Analysis (PINA) and protein annotations from GeneGo. The network was further integrated with gene expression profiles to identify active modules with leukemia relevance. Finally, the candidate network-based biomarker was evaluated for the diagnosing performance. A network of 97 genes and 400 interactions was identified for accurate diagnosis of leukemia. Functional enrichment analysis revealed that the network biomarkers were enriched in pathways in cancer. The network biomarkers could discriminate leukemia samples from the normal controls more effectively than the known biomarkers. The network biomarkers provide a useful tool to diagnose leukemia and also aids in further understanding the molecular basis of leukemia. PMID:28243332

  7. Elevated Omentin Serum Levels Predict Long-Term Survival in Critically Ill Patients

    PubMed Central

    Luedde, Mark; Benz, Fabian; Niedeggen, Jennifer; Vucur, Mihael; Hippe, Hans-Joerg; Spehlmann, Martina E.; Schueller, Florian; Loosen, Sven; Frey, Norbert; Trautwein, Christian; Koch, Alexander; Luedde, Tom; Tacke, Frank

    2016-01-01

    Introduction. Omentin, a recently described adipokine, was shown to be involved in the pathophysiology of inflammatory and infectious diseases. However, its role in critical illness and sepsis is currently unknown. Materials and Methods. Omentin serum concentrations were measured in 117 ICU-patients (84 with septic and 33 with nonseptic disease etiology) admitted to the medical ICU. Results were compared with 50 healthy controls. Results. Omentin serum levels of critically ill patients at admission to the ICU or after 72 hours of ICU treatment were similar compared to healthy controls. Moreover, circulating omentin levels were independent of sepsis and etiology of critical illness. Notably, serum concentrations of omentin could not be linked to concentrations of inflammatory cytokines or routinely used sepsis markers. While serum levels of omentin were not predictive for short term survival during ICU treatment, low omentin concentrations were an independent predictor of patients' overall survival. Omentin levels strongly correlated with that of other adipokines (e.g., leptin receptor or adiponectin), which have also been identified as prognostic markers in critical illness. Conclusions. Although circulating omentin levels did not differ between ICU-patients and controls, elevated omentin levels were predictive for an impaired patients' long term survival. PMID:27867249

  8. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.

    PubMed

    Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C

    2017-03-01

    Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.

  9. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  10. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.

    PubMed

    Walsh, Susan; Liu, Fan; Ballantyne, Kaye N; van Oven, Mannis; Lao, Oscar; Kayser, Manfred

    2011-06-01

    A new era of 'DNA intelligence' is arriving in forensic biology, due to the impending ability to predict externally visible characteristics (EVCs) from biological material such as those found at crime scenes. EVC prediction from forensic samples, or from body parts, is expected to help concentrate police investigations towards finding unknown individuals, at times when conventional DNA profiling fails to provide informative leads. Here we present a robust and sensitive tool, termed IrisPlex, for the accurate prediction of blue and brown eye colour from DNA in future forensic applications. We used the six currently most eye colour-informative single nucleotide polymorphisms (SNPs) that previously revealed prevalence-adjusted prediction accuracies of over 90% for blue and brown eye colour in 6168 Dutch Europeans. The single multiplex assay, based on SNaPshot chemistry and capillary electrophoresis, both widely used in forensic laboratories, displays high levels of genotyping sensitivity with complete profiles generated from as little as 31pg of DNA, approximately six human diploid cell equivalents. We also present a prediction model to correctly classify an individual's eye colour, via probability estimation solely based on DNA data, and illustrate the accuracy of the developed prediction test on 40 individuals from various geographic origins. Moreover, we obtained insights into the worldwide allele distribution of these six SNPs using the HGDP-CEPH samples of 51 populations. Eye colour prediction analyses from HGDP-CEPH samples provide evidence that the test and model presented here perform reliably without prior ancestry information, although future worldwide genotype and phenotype data shall confirm this notion. As our IrisPlex eye colour prediction test is capable of immediate implementation in forensic casework, it represents one of the first steps forward in the creation of a fully individualised EVC prediction system for future use in forensic DNA intelligence.

  11. Genomic inference accurately predicts the timing and severity of a recent bottleneck in a non-model insect population

    PubMed Central

    McCoy, Rajiv C.; Garud, Nandita R.; Kelley, Joanna L.; Boggs, Carol L.; Petrov, Dmitri A.

    2015-01-01

    The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here we present and evaluate a method of SNP discovery using RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all-in-one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other non-model systems. PMID:24237665

  12. An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading

    NASA Astrophysics Data System (ADS)

    Russo, A.; Zuccarello, B.

    2007-07-01

    The paper presents a theoretical-numerical hybrid method for determining the stresses distribution in composite laminates containing a circular hole and subjected to uniaxial tensile loading. The method is based upon an appropriate corrective function allowing a simple and rapid evaluation of stress distributions in a generic plate of finite width with a hole based on the theoretical stresses distribution in an infinite plate with the same hole geometry and material. In order to verify the accuracy of the method proposed, various numerical and experimental tests have been performed by considering different laminate lay-ups; in particular, the experimental results have shown that a combined use of the method proposed and the well-know point-stress criterion leads to reliable strength predictions for GFRP or CFRP laminates with a circular hole.

  13. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  14. A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters.

    PubMed

    Deleebeeck, Nele M E; De Laender, Frederik; Chepurnov, Victor A; Vyverman, Wim; Janssen, Colin R; De Schamphelaere, Karel A C

    2009-04-01

    The major research questions addressed in this study were (i) whether green microalgae living in soft water (operationally defined water hardness<10mg CaCO(3)/L) are intrinsically more sensitive to Ni than green microalgae living in hard water (operationally defined water hardness >25mg CaCO(3)/L), and (ii) whether a single bioavailability model can be used to predict the effect of water hardness on the toxicity of Ni to green microalgae in both soft and hard water. Algal growth inhibition tests were conducted with clones of 10 different species collected in soft and hard water lakes in Sweden. Soft water algae were tested in a 'soft' and a 'moderately hard' test medium (nominal water hardness=6.25 and 16.3mg CaCO(3)/L, respectively), whereas hard water algae were tested in a 'moderately hard' and a 'hard' test medium (nominal water hardness=16.3 and 43.4 mg CaCO(3)/L, respectively). The results from the growth inhibition tests in the 'moderately hard' test medium revealed no significant sensitivity differences between the soft and the hard water algae used in this study. Increasing water hardness significantly reduced Ni toxicity to both soft and hard water algae. Because it has previously been demonstrated that Ca does not significantly protect the unicellular green alga Pseudokirchneriella subcapitata against Ni toxicity, it was assumed that the protective effect of water hardness can be ascribed to Mg alone. The logK(MgBL) (=5.5) was calculated to be identical for the soft and the hard water algae used in this study. A single bioavailability model can therefore be used to predict Ni toxicity to green microalgae in soft and hard surface waters as a function of water hardness.

  15. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species

    NASA Astrophysics Data System (ADS)

    Tan, Samuel; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I.

    2017-02-01

    The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current "gold standard" method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller-Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ɛΔ s=E/INT O SEIN T S S , calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3-4 usually observed for the ratio of absolute correlation energy, ɛs=E/OSES S , in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups: (1) complexes with ɛΔ s< 1 and (2) complexes with ɛΔ s≥ 1 . A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning's basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol-1 and maximum errors below 6.2 kJ mol-1. The new modification, spin-ratio scaled second-order Møller-Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic

  16. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  17. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  18. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    ERIC Educational Resources Information Center

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  19. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs.

  20. Women's age and embryo developmental speed accurately predict clinical pregnancy after single vitrified-warmed blastocyst transfer.

    PubMed

    Kato, Keiichi; Ueno, Satoshi; Yabuuchi, Akiko; Uchiyama, Kazuo; Okuno, Takashi; Kobayashi, Tamotsu; Segawa, Tomoya; Teramoto, Shokichi

    2014-10-01

    The aim of this study was to establish a simple, objective blastocyst grading system using women's age and embryo developmental speed to predict clinical pregnancy after single vitrified-warmed blastocyst transfer. A 6-year retrospective cohort study was conducted in a private infertility centre. A total of 7341 single vitrified-armed blastocyst transfer cycles were included, divided into those carried out between 2006 and 2011 (6046 cycles) and 2012 (1295 cycles). Clinical pregnancy rate, ongoing pregnancy rate and delivery rates were stratified by women's age (<35, 35-37, 38-39, 40-41, 42-45 years) and time to blastocyst expansion (<120, 120-129, 130-139, 140-149, >149 h) as embryo developmental speed. In all the age groups, clinical pregnancy rate, ongoing pregnancy rate and delivery rates decreased as the embryo developmental speed decreased (P < 0.0001). A simple five-grade score based on women's age and embryo developmental speed was determined by actual clinical pregnancy rates observed in the 2006-2011 cohort. Subsequently, the novel grading score was validated in the 2012 cohort (1295 cycles), finding an excellent association. In conclusion, we established a novel blastocyst grading system using women's age and embryo developmental speed as objective parameters.

  1. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  2. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  3. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  4. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    PubMed

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  5. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  6. A Critical Assessment of Information-guided Protein–Protein Docking Predictions*

    PubMed Central

    Shih, Edward S. C.; Hwang, Ming-Jing

    2013-01-01

    The structures of protein complexes are increasingly predicted via protein–protein docking (PPD) using ambiguous interaction data to help guide the docking. These data often are incomplete and contain errors and therefore could lead to incorrect docking predictions. In this study, we performed a series of PPD simulations to examine the effects of incompletely and incorrectly assigned interface residues on the success rate of PPD predictions. The results for a widely used PPD benchmark dataset obtained using a new interface information-driven PPD (IPPD) method developed in this work showed that the success rate for an acceptable top-ranked model varied, depending on the information content used, from as high as 95% when contact relationships (though not contact distances) were known for all residues to 78% when only the interface/non-interface state of the residues was known. However, the success rates decreased rapidly to ∼40% when the interface/non-interface state of 20% of the residues was assigned incorrectly, and to less than 5% for a 40% incorrect assignment. Comparisons with results obtained by re-ranking a global search and with those reported for other data-guided PPD methods showed that, in general, IPPD performed better than re-ranking when the information used was more complete and more accurate, but worse when it was not, and that when using bioinformatics-predicted information on interface residues, IPPD and other data-guided PPD methods performed poorly, at a level similar to simulations with a 40% incorrect assignment. These results provide guidelines for using information about interface residues to improve PPD predictions and reveal a bottleneck for such improvement imposed by the low accuracy of current bioinformatic interface residue predictions. PMID:23242549

  7. Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.

    PubMed

    Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy

    2016-01-01

    With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.

  8. Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform

    PubMed Central

    Poucke, Sven Van; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; Deyne, Cathy De

    2016-01-01

    With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286

  9. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  10. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  11. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  12. Comparison of different approaches to predict the spatial distributed of critical source areas to manage the water quality on the catchment scale

    NASA Astrophysics Data System (ADS)

    Frey, M.; David, T.; Juwe, A.-L.; Reichert, P.; Stamm, C.

    2009-04-01

    Diffuse losses of agrochemicals from agricultural fields to surface water are in general limited to certain areas in a catchment prone to fast flow processes, also called critical source areas (CSA) or hydrologically sensitive areas (HSA). Effective mitigation strategies to reduce those losses rely on an accurate identification of those CSA/HSA. Different approaches to identify such areas are available. To compare them, we applied six approaches to the same small agricultural catchment in Switzerland, where spatial data on herbicide losses are available. The investigated approaches are a risk map integrated in the local soil map, an approach to delineate the Dominant Runoff Processes (DRP), an adaptation of the classification schema of HOST (Hydrology Of Soil Types), a regression model to predict the spatial distribution of the Fast Flow Index (FFI), the topographic wetness index (l) and the continuous physically-based water balance Soil Moisture Distribution and Routing model (SMDR). Despite their conceptual difference the spatial agreement in the prediction of risk classes is surprisingly high given the fact that not all approaches use the same input data. The risk map, DRP, HOST and FFI approaches are all based on the local soil map. In contrast, the l and the SMDR approaches are primarily based on the digital elevation model. This observation indicates that topography reflects important aspects of the soil distribution in this landscape. A comparison with observed spatial variability of herbicide losses revealed that all approaches fail to accurately predict the variability if the surface connectivity is not accurately considered.

  13. Multireference correlation consistent composite approach [MR-ccCA]: toward accurate prediction of the energetics of excited and transition state chemistry.

    PubMed

    Oyedepo, Gbenga A; Wilson, Angela K

    2010-08-26

    The correlation consistent Composite Approach, ccCA [ Deyonker , N. J. ; Cundari , T. R. ; Wilson , A. K. J. Chem. Phys. 2006 , 124 , 114104 ] has been demonstrated to predict accurate thermochemical properties of chemical species that can be described by a single configurational reference state, and at reduced computational cost, as compared with ab initio methods such as CCSD(T) used in combination with large basis sets. We have developed three variants of a multireference equivalent of this successful theoretical model. The method, called the multireference correlation consistent composite approach (MR-ccCA), is designed to predict the thermochemical properties of reactive intermediates, excited state species, and transition states to within chemical accuracy (e.g., 1 kcal/mol for enthalpies of formation) of reliable experimental values. In this study, we have demonstrated the utility of MR-ccCA: (1) in the determination of the adiabatic singlet-triplet energy separations and enthalpies of formation for the ground states for a set of diradicals and unsaturated compounds, and (2) in the prediction of energetic barriers to internal rotation, in ethylene and its heavier congener, disilene. Additionally, we have utilized MR-ccCA to predict the enthalpies of formation of the low-lying excited states of all the species considered. MR-ccCA is shown to give quantitative results without reliance upon empirically derived parameters, making it suitable for application to study novel chemical systems with significant nondynamical correlation effects.

  14. Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model.

    PubMed

    Reichen, J; Widmer, T; Cotting, J

    1991-09-01

    We retrospectively analyzed the predictive accuracy of serial determinations of galactose elimination capacity in 61 patients with primary biliary cirrhosis. Death was predicted from the time that the regression line describing the decline in galactose elimination capacity vs. time intersected a value of 4 mg.min-1.kg-1. Thirty-one patients exhibited decreasing galactose elimination capacity; in 11 patients it remained stable and in 19 patients only one value was available. Among those patients with decreasing galactose elimination capacity, 10 died and three underwent liver transplantation; prediction of death was accurate to 7 +/- 19 mo. This criterion incorrectly predicted death in two patients with portal-vein thrombosis; otherwise, it did better than or as well as the Mayo clinic score. The latter was also tested on our patients and was found to adequately describe risk in yet another independent population of patients with primary biliary cirrhosis. Cox regression analysis selected only bilirubin and galactose elimination capacity, however, as independent predictors of death. We submit that serial determination of galactose elimination capacity in patients with primary biliary cirrhosis may be a useful adjunct to optimize the timing of liver transplantation and to evaluate new pharmacological treatment modalities of this disease.

  15. Development of uncertainty methodology for COBRA-TF void distribution and critical power predictions

    NASA Astrophysics Data System (ADS)

    Aydogan, Fatih

    Thermal hydraulic codes are commonly used tools in licensing processes for the evaluation of various thermal hydraulic scenarios. The uncertainty of a thermal hydraulic code prediction is calculated with uncertainty analyses. The objective of all the uncertainty analysis is to determine how well a code predicts with corresponding uncertainties. If a code has a big output uncertainty, this code needs further development and/or model improvements. If a code has a small uncertainty, this code needs maintenance program in order to keep this small output uncertainty. Uncertainty analysis also indicates the more validation data is needed. Uncertainty analyses for the BWR nominal steady state and transient scenarios are necessary in order to develop and improve the two phase flow models in the thermal hydraulic codes. Because void distribution is the key factor in order to determine the flow regime and heat transfer regime of the flow and critical power is an important factor for the safety margin, both steady state void distribution and critical power predictions are important features of a code. An uncertainty analysis for these two phenomena/cases provides valuable results. These results can be used for the development of the thermal hydraulic codes that are used for designing a BWR bundle or for licensing procedures. This dissertation includes the development of a particular uncertainty methodology for the steady state void distribution and critical power predictions. In this methodology, the PIRT element of CSAU was used to eliminate the low ranked uncertainty parameters. The SPDF element of GRS was utilized to make the uncertainty methodology flexible for the assignment of PDFs to the uncertainty parameters. The developed methodology includes the uncertainty comparison methods to assess the code precision with the sample-averaged bias, to assess the code spreading with the sample-averaged standard deviation and to assess the code reliability with the proportion of

  16. Reduced Responsiveness of Blood Leukocytes to Lipopolysaccharide Does not Predict Nosocomial Infections in Critically Ill Patients.

    PubMed

    van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Scicluna, Brendon P; Belkasim-Bohoudi, Hakima; Horn, Janneke; Schultz, Marcus J; van der Poll, Tom

    2015-08-01

    Critically ill patients show signs of immune suppression, which is considered to increase vulnerability to nosocomial infections. Whole-blood stimulation is frequently used to test the function of the innate immune system. We here assessed the association between whole-blood leukocyte responsiveness to lipopolysaccharide (LPS) and subsequent occurrence of nosocomial infections in critically ill patients admitted to the intensive care unit (ICU). All consecutive critically ill patients admitted to the ICU between April 2012 and June 2013 with two or more systemic inflammatory response syndrome criteria and an expected length of ICU stay of more than 24 h were enrolled. Age- and sex-matched healthy individuals were included as controls. Blood was drawn the first morning after ICU admission and stimulated ex vivo with 100 ng/mL ultrapure LPS for 3 h. Tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 were measured in supernatants. Seventy-three critically ill patients were included, of whom 10 developed an ICU-acquired infection. Compared with healthy subjects, whole-blood leukocytes of patients were less responsive to ex vivo stimulation with LPS, as reflected by strongly reduced tumor necrosis factor-α, IL-1β, and IL-6 levels in culture supernatants. Results were not different between patients who did and those who did not develop an ICU-acquired infection. The extent of reduced LPS responsiveness of blood leukocytes in critically ill patients on the first day after ICU admission does not relate to the subsequent development of ICU-acquired infections. These results argue against the use of whole-blood stimulation as a functional test applied early after ICU admission to predict nosocomial infection.

  17. Analysis of locality-sensitive hashing for fast critical event prediction on physiological time series.

    PubMed

    Kim, Yongwook Bryce; O'Reilly, Una-May

    2016-08-01

    We apply the sublinear time, scalable locality-sensitive hashing (LSH) and majority discrimination to the problem of predicting critical events based on physiological waveform time series. Compared to using the linear exhaustive k-nearest neighbor search, our proposed method vastly speeds up prediction time up to 25 times while sacrificing only 1% of accuracy when demonstrated on an arterial blood pressure dataset extracted from the MIMIC2 database. We compare two widely used variants of LSH, the bit sampling based (L1LSH) and the random projection based (E2LSH) methods to measure their direct impact on retrieval and prediction accuracy. We experimentally show that the more sophisticated E2LSH performs worse than L1LSH in terms of accuracy, correlation, and the ability to detect false negatives. We attribute this to E2LSH's simultaneous integration of all dimensions when hashing the data, which actually makes it more impotent against common noise sources such as data misalignment. We also demonstrate that the deterioration of accuracy due to approximation at the retrieval step of LSH has a diminishing impact on the prediction accuracy as the speed up gain accelerates.

  18. Ab initio prediction of the critical thickness of a precipitate.

    PubMed

    Sampath, S; Janisch, R

    2013-09-04

    Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface.Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.

  19. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  20. Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.

    PubMed

    Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild

    2013-08-01

    This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.

  1. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis

    NASA Astrophysics Data System (ADS)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia

    2016-04-01

    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  2. Can Student Nurse Critical Thinking Be Predicted from Perceptions of Structural Empowerment within the Undergraduate, Pre-Licensure Learning Environment?

    ERIC Educational Resources Information Center

    Caswell-Moore, Shelley P.

    2013-01-01

    The purpose of this study was to test a model using Rosabeth Kanter's theory (1977; 1993) of structural empowerment to determine if this model can predict student nurses' level of critical thinking. Major goals of nursing education are to cultivate graduates who can think critically with a keen sense of clinical judgment, and who can perform…

  3. Predicting Fatigue and Psychophysiological Test Performance from Speech for Safety-Critical Environments

    PubMed Central

    Baykaner, Khan Richard; Huckvale, Mark; Whiteley, Iya; Andreeva, Svetlana; Ryumin, Oleg

    2015-01-01

    Automatic systems for estimating operator fatigue have application in safety-critical environments. A system which could estimate level of fatigue from speech would have application in domains where operators engage in regular verbal communication as part of their duties. Previous studies on the prediction of fatigue from speech have been limited because of their reliance on subjective ratings and because they lack comparison to other methods for assessing fatigue. In this paper, we present an analysis of voice recordings and psychophysiological test scores collected from seven aerospace personnel during a training task in which they remained awake for 60 h. We show that voice features and test scores are affected by both the total time spent awake and the time position within each subject’s circadian cycle. However, we show that time spent awake and time-of-day information are poor predictors of the test results, while voice features can give good predictions of the psychophysiological test scores and sleep latency. Mean absolute errors of prediction are possible within about 17.5% for sleep latency and 5–12% for test scores. We discuss the implications for the use of voice as a means to monitor the effects of fatigue on cognitive performance in practical applications. PMID:26380259

  4. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats

    PubMed Central

    Howdeshell, Kembra L.; Rider, Cynthia V.; Wilson, Vickie S.; Furr, Johnathan R.; Lambright, Christy R.; Gray, L. Earl

    2015-01-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17–100% of F1 males when fetal T production was reduced by about 25–72%, respectively. PMID:26350170

  5. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  6. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  7. Simultaneous Prediction of Upper and Lower Critical Temperatures in Polymer Solutions Using a Constant Parameter Set

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2009-03-01

    Polymer solutions commonly exhibit phase separation and so the ability to predict temperatures and compositions associated with immiscibility is advantageous to experimentalists. We have been applying a simple lattice model that is capable of capturing both upper (UCST) and lower critical solution temperature (LCST) type phase behavior for polymer blends. Most recently we have become interested in mixtures which simultaneously exhibit both types of phase behavior. Examples include polyisobutylene (PIB) in pure and mixed solvents, and cyclohexane/polystyrene mixtures. We have found that with a single set of temperature-independent parameters the lattice theory is capable of capturing all the physics of these solutions; in addition we discuss conditions under which 'hourglass' phase diagrams result.

  8. Defining risks and predicting adverse events after lower extremity bypass for critical limb ischemia

    PubMed Central

    Siracuse, Jeffrey J; Huang, Zhen S; Gill, Heather L; Parrack, Inkyong; Schneider, Darren B; Connolly, Peter H; Meltzer, Andrew J

    2014-01-01

    Successful treatment of patients with critical limb ischemia (CLI), hinges on the adequacy of revascularization. However, CLI is associated with a severe burden of systemic atherosclerosis, and patients often suffer from multiple cardiovascular comorbidities. Therefore, CLI patients in general represent a cohort at increased risk for procedural complications and adverse events. Although endovascular therapy represents a minimally invasive alternative to open surgical bypass, the durability of surgical reconstruction is superior, and it remains the “gold standard” approach to revascularization in CLI. Therefore, selection of the optimal treatment modality for individual patients requires careful consideration of the procedural risks and likelihood of adverse events associated with surgery. Individualized decision-making with regard to revascularization strategy requires a comprehensive understanding of the likelihood of adverse outcomes after major surgery. Here we review the risks of surgical bypass in patients with CLI, with particular emphasis on the identification of preoperative variables that predict poor outcome. PMID:25018636

  9. The Need for Accurate Risk Prediction Models for Road Mapping, Shared Decision Making and Care Planning for the Elderly with Advanced Chronic Kidney Disease.

    PubMed

    Stryckers, Marijke; Nagler, Evi V; Van Biesen, Wim

    2016-11-01

    As people age, chronic kidney disease becomes more common, but it rarely leads to end-stage kidney disease. When it does, the choice between dialysis and conservative care can be daunting, as much depends on life expectancy and personal expectations of medical care. Shared decision making implies adequately informing patients about their options, and facilitating deliberation of the available information, such that decisions are tailored to the individual's values and preferences. Accurate estimations of one's risk of progression to end-stage kidney disease and death with or without dialysis are essential for shared decision making to be effective. Formal risk prediction models can help, provided they are externally validated, well-calibrated and discriminative; include unambiguous and measureable variables; and come with readily applicable equations or scores. Reliable, externally validated risk prediction models for progression of chronic kidney disease to end-stage kidney disease or mortality in frail elderly with or without chronic kidney disease are scant. Within this paper, we discuss a number of promising models, highlighting both the strengths and limitations physicians should understand for using them judiciously, and emphasize the need for external validation over new development for further advancing the field.

  10. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Beckwith, Martha A; Ames, William; Vila, Fernando D; Krewald, Vera; Pantazis, Dimitrios A; Mantel, Claire; Pécaut, Jacques; Gennari, Marcello; Duboc, Carole; Collomb, Marie-Noëlle; Yano, Junko; Rehr, John J; Neese, Frank; DeBeer, Serena

    2015-10-14

    First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.

  11. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  12. Consideration notes on the critical rainfall threshold to predict the triggering of pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Scotto di Santolo, A.

    2009-04-01

    This paper reports the results of a theoretical analysis carried out designed to evaluate meteoric events that can be defined as critical since they are capable of triggering landslides in partially saturated pyroclastic soils. The study refers to analyses of the pyroclastic covers in the area of Campania, Italy, which is often affected by complex phenomena that begin as rotational or translational slide or fall and evolve into rapid landslides as earth-flows (debris or mud as function of grain size distributions). The prediction of triggering factors is of extreme importance for the implementation of civic protection schemes, given the dynamic features that characterize these phenomena during their evolution. The study highlights the fact that it is impossible to define the criticality of a meteoric event by means of empiric laws that correlate the mean intensity of rainfall and the "mean" duration of the event. However, it is possible to identify the criticality of a meteoric event in partially saturated soils, by means of a more complex approach which is physically conditioned. The rainfall is critical if it is capable of causing the rainwater to filter into the subsoil into "weak" layers where there is an increase in the specific volume with a significant reduction of the suction and resistance to the shear of the terrain (Fredlund et al., 78). This study focuses exclusively on seepage, regardless of the resistance of the soil, by analyzing, among various aspects, the phenomenon using a simplified subsoil model. For this study, it is assumed that the rainfall is critical when it is capable of saturating the soil cover for a predefined summit thickness Zc. For the purposes of this study, value Zc could be given an arbitrary value. This has been assumed to be 1m, considering that the experimental evidence has shown that rapid flows, at least when triggered, prove to be superficial. The other hypotheses are: • 1D infiltration, • Rigid solid skeleton;

  13. The critical power function is dependent on the duration of the predictive exercise tests chosen.

    PubMed

    Bishop, D; Jenkins, D G; Howard, A

    1998-02-01

    The linear relationship between work accomplished (W(lim)) and time to exhaustion (t(lim)) can be described by the equation: W(lim) = a + CP x t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five all-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W(lim)-t(lim) regression and calculated three ways: 1) using the first, third and fifth W(lim)-t(lim) coordinates (I135), 2) using coordinates from the three highest power outputs (I123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0+/-37.9W) > CPI135 (176.1+/-27.6W) > CPI345 (164.0+/-22.8W) (P<0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P<0.05). The shorter the predictive trials, the greater the slope of the W(lim)-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain "for a very long time without fatigue" then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.

  14. Prediction of Critical Power and W′ in Hypoxia: Application to Work-Balance Modelling

    PubMed Central

    Townsend, Nathan E.; Nichols, David S.; Skiba, Philip F.; Racinais, Sebastien; Périard, Julien D.

    2017-01-01

    Purpose: Develop a prediction equation for critical power (CP) and work above CP (W′) in hypoxia for use in the work-balance (WBAL′) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W′ at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W′ at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W′ were used to compute W′ during HIIT using differential (WBALdiff′) and integral (WBALint′) forms of the WBAL′ model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W′ decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W′ (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W′) on modelled WBAL′ at 2,250 m (P = 0.24). WBALdiff′ returned higher values than WBALint′ throughout HIIT (P < 0.001). During HIIT, WBALdiff′ was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (−1.3 ± 3.5 kJ; P = 0.30). However, WBALint′ was lower than 0 kJ at 250 m (−0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (−2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W′ developed in this study are suitable for use with the WBAL′ model in acute hypoxia. This enables the application of WBAL′ modelling to training prescription and competition analysis at altitude. PMID:28386237

  15. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling.

    PubMed

    Townsend, Nathan E; Nichols, David S; Skiba, Philip F; Racinais, Sebastien; Périard, Julien D

    2017-01-01

    Purpose: Develop a prediction equation for critical power (CP) and work above CP (W') in hypoxia for use in the work-balance ([Formula: see text]) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W' at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W' at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W' were used to compute W' during HIIT using differential ([Formula: see text]) and integral ([Formula: see text]) forms of the [Formula: see text] model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R(2) = 0.99). W' decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W' (R(2) = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W') on modelled [Formula: see text] at 2,250 m (P = 0.24). [Formula: see text] returned higher values than [Formula: see text] throughout HIIT (P < 0.001). During HIIT, [Formula: see text] was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (-1.3 ± 3.5 kJ; P = 0.30). However, [Formula: see text] was lower than 0 kJ at 250 m (-0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (-2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W' developed in this study are suitable for use with the [Formula: see text] model in acute hypoxia. This enables the application of [Formula: see text] modelling to training prescription and competition analysis at altitude.

  16. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-03

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  17. Increased total serum random cortisol levels predict mortality in critically ill trauma patients.

    PubMed

    Pandya, Urmil; Polite, Nathan; Wood, Teresa; Lieber, Michael

    2014-11-01

    Dysfunction in the hypothalamopituitary adrenal axis is thought to exist; however, there continues to be controversy about what level of serum cortisol corresponds to adrenal insufficiency. Few studies have focused on the significance of serum random cortisol in the critically ill trauma patient. Trauma patients with total serum random cortisol levels drawn in the intensive care unit within the first seven days of hospitalization were retrospectively reviewed. The primary outcome measured was in-hospital mortality. Two hundred forty-two patients were analyzed. Nonsurvivors had significantly higher mean cortisol levels than survivors (28.7 ± 15.80 μg/dL vs 22.9 ± 12.35 μg/dL, P = 0.01). Patients with cortisol 30 μg/dL or greater were more likely to die with odds ratio of 2.7 (95% confidence interval [CI], 1.5 to 5). The odds ratio increased to 4.0 and 3.8 (95% CI, 1.4 to 11.4 and 1.3 to 10.9) when cortisol was drawn on hospital Day 2 and Days 3 through 7, respectively. Among nonsurvivors, patients with an injury severity score less than 25 had significantly higher cortisol levels than patients with an Injury Severity Score 25 or higher (35.3 ± 19.21 μg/dL vs 25.7 ± 13.21 μg/dL, P = 0.009). Patients with massive transfusion, traumatic brain injury, spinal cord injury, or solid organ injury did not have significantly different cortisol levels. The covariate-adjusted area under the receiver operating characteristic curve indicated that cortisol level has a 77 per cent accuracy in differentiating survivors from nonsurvivors. Higher cortisol levels were predictive of mortality in critically ill trauma patients. Whether serum cortisol level is a marker that can be modified remains an area of interest for future study.

  18. Effectiveness of Automated Notification and Customer Service Call Centers for Timely and Accurate Reporting of Critical Values: A Laboratory Medicine Best Practices Systematic Review and Meta-Analysis

    PubMed Central

    Liebow, Edward B.; Derzon, James H.; Fontanesi, John; Favoretto, Alessandra M.; Baetz, Rich Ann; Shaw, Colleen; Thompson, Pamela; Mass, Diana; Christenson, Robert; Epner, Paul; Snyder, Susan R.

    2015-01-01

    Objective To conduct a systematic review of automatic notification methods and consider evidence-based recommendations for best practices in improving the timeliness and accuracy of critical value reporting. Results 196 bibliographic records were identified, with nine meeting review inclusion criteria. Four studies examined automated notification systems and five assessed call center performance. Average improvement from implementing automated notification systems is d = 0.42 (95% CI = 0.2 – 0.62) while the average odds ratio for call centers is OR = 22.1 (95% CI = 17.1 – 28.6). Conclusions The evidence, though suggestive, is not sufficient to make a recommendation for or against using automated notification systems as a best practice to improve the timeliness and accuracy of critical value reporting in an in-patient care setting. Call centers, however, are effective in improving the timeliness and accuracy of critical value reporting in an in-patient care setting, and are recommended as an “evidence-based best practice.” PMID:22750773

  19. Could dysnatremias play a role as independent factors to predict mortality in surgical critically ill patients?

    PubMed Central

    Nicolini, Edson A.; Nunes, Roosevelt S.; Santos, Gabriela V.; da Silva, Silvana Lia; Carreira, Mariana M.; Pellison, Fernanda G.; Menegueti, Mayra G.; Auxiliadora-Martins, Maria; Bellissimo-Rodrigues, Fernando; Feres, Marcus A.; Basile-Filho, Anibal

    2017-01-01

    Abstract Several studies have demonstrated the impact of dysnatremias on mortality of intensive care unit (ICU) patients. The objective of this study was to assess whether dysnatremia is an independent factor to predict mortality in surgical critically ill patients admitted to ICU in postoperative phase. One thousand five hundred and ninety-nine surgical patients (58.8% males; mean age of 60.6 ± 14.4 years) admitted to the ICU in the postoperative period were retrospectively studied. The patients were classified according to their serum sodium levels (mmol/L) at admission as normonatremia (135–145), hyponatremia (<135), and hypernatremia (>145). APACHE II, SAPS III, and SOFA were recorded. The capability of each index to predict mortality of ICU and hospital mortality of patients was analyzed by multiple logistic regression. Hyponatremia did not have an influence on mortality in the ICU with a relative risk (RR) = 0.95 (0.43–2.05) and hospital mortality of RR = 1.40 (0.75–2.59). However, this association was greater in patients with hypernatremia mortality in the ICU (RR = 3.33 [95% confidence interval, CI 1.58–7.0]) and also in hospital mortality (RR = 2.9 [ 95% CI = 1.51–5.55). The pairwise comparison of ROC curves among the different prognostic indexes (APACHE II, SAPS III, SOFA) did not show statistical significance. The comparison of these indexes with serum sodium levels for general population, hyponatremia, and normonatremia was statistically significant (P < .001). For hypernatremia, the AUC and 95% CI for APACHE II, SAPS III, SOFA, and serum sodium level were 0.815 (0.713–0.892), 0.805 (0.702–0.885), 0.885 (0.794–0.945), and 0.663 (0.549–0.764), respectively. The comparison among the prognostic indexes was not statistically significant. Only SOFA score had a statistic difference compared with hypernatremia (P < .02). The serum sodium levels at admission, especially hypernatremia, may be used as an

  20. Integrating trans-abdominal ultrasonography with fecal steroid metabolite monitoring to accurately diagnose pregnancy and predict the timing of parturition in the red panda (Ailurus fulgens styani).

    PubMed

    Curry, Erin; Browning, Lissa J; Reinhart, Paul; Roth, Terri L

    2017-02-23

    Red pandas (Ailurus fulgens styani) exhibit a variable gestation length and may experience a pseudopregnancy indistinguishable from true pregnancy; therefore, it is not possible to deduce an individual's true pregnancy status and parturition date based on breeding dates or fecal progesterone excretion patterns alone. The goal of this study was to evaluate the use of transabdominal ultrasonography for pregnancy diagnosis in red pandas. Two to three females were monitored over 4 consecutive years, generating a total of seven profiles (four pregnancies, two pseudopregnancies, and one lost pregnancy). Fecal samples were collected and assayed for progesterone (P4) and estrogen conjugate (EC) to characterize patterns associated with breeding activity and parturition events. Animals were trained for voluntary transabdominal ultrasound and examinations were performed weekly. Breeding behaviors and fecal EC data suggest that the estrus cycle of this species is 11-12 days in length. Fecal steroid metabolite analyses also revealed that neither P4 nor EC concentrations were suitable indicators of pregnancy in this species; however, a secondary increase in P4 occurred 69-71 days prior to parturition in all pregnant females, presumably coinciding with embryo implantation. Using ultrasonography, embryos were detected as early as 62 days post-breeding/50 days pre-partum and serial measurements of uterine lumen diameter were documented throughout four pregnancies. Advances in reproductive diagnostics, such as the implementation of ultrasonography, may facilitate improved husbandry of pregnant females and allow for the accurate prediction of parturition.

  1. Prediction scores do not correlate with clinically adjudicated categories of pulmonary embolism in critically ill patients

    PubMed Central

    Katsios, CM; Donadini, M; Meade, M; Mehta, S; Hall, R; Granton, J; Kutsiogiannis, J; Dodek, P; Heels-Ansdell, D; McIntyre, L; Vlahakis, N; Muscedere, J; Friedrich, J; Fowler, R; Skrobik, Y; Albert, M; Cox, M; Klinger, J; Nates, J; Bersten, A; Doig, C; Zytaruk, N; Crowther, M; Cook, DJ

    2014-01-01

    BACKGROUND: Prediction scores for pretest probability of pulmonary embolism (PE) validated in outpatient settings are occasionally used in the intensive care unit (ICU). OBJECTIVE: To evaluate the correlation of Geneva and Wells scores with adjudicated categories of PE in ICU patients. METHODS: In a randomized trial of thromboprophylaxis, patients with suspected PE were adjudicated as possible, probable or definite PE. Data were then retrospectively abstracted for the Geneva Diagnostic PE score, Wells, Modified Wells and Simplified Wells Diagnostic scores. The chance-corrected agreement between adjudicated categories and each score was calculated. ANOVA was used to compare values across the three adjudicated PE categories. RESULTS: Among 70 patients with suspected PE, agreement was poor between adjudicated categories and Geneva pretest probabilities (kappa 0.01 [95% CI −0.0643 to 0.0941]) or Wells pretest probabilities (kappa −0.03 [95% CI −0.1462 to 0.0914]). Among four possible, 16 probable and 50 definite PEs, there were no significant differences in Geneva scores (possible = 4.0, probable = 4.7, definite = 4.5; P=0.90), Wells scores (possible = 2.8, probable = 4.9, definite = 4.1; P=0.37), Modified Wells (possible = 2.0, probable = 3.4, definite = 2.9; P=0.34) or Simplified Wells (possible = 1.8, probable = 2.8, definite = 2.4; P=0.30). CONCLUSIONS: Pretest probability scores developed outside the ICU do not correlate with adjudicated PE categories in critically ill patients. Research is needed to develop prediction scores for this population. PMID:24083302

  2. [Predicting the moments of critical vigilance decline by visuomotor coordination parameters].

    PubMed

    Arsen'ev, G N; Tkachenko, O N; Ukraintseva, Iu V; Dorokhov, V B

    2014-01-01

    A psychomotor test for induction of the state of monotony and visuomotor coordination analysis has been developed. The subject had to follow a small cicle slowly moving in circular orbit on a screen with a "mouse" cursor. When an additional target unexpectedly appeared, he had to catch it with a cursor and click a "mouse" button when the cursor was on it. Eye movements were recorded with an eyetracker. The experts marked the episodes of declined vigilance based on EEG and video of a subject. Analysis of parameters of visuomotor coordination demonstrated their high sensitivity to the vigilance decline. We have found the increase of variability in pursuit eye movements and "mouse" cursor movements during the episodes of lowered vigilance before the appearance of the additional target and also a growing latency of saccadic eye movements, cursor movements and "mouse" button presses when the cursor contacted the additional target. For latency of saccadic eye movements, cursor movements and mouse button presses significant increase was found 2-3 min before experts can detect vigilance decline too. The ability by visuomotor coordination parameters to predict the moments of critical vigilance decline is discussed.

  3. Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers.

    PubMed

    Kendall, Kristina L; Fukuda, David H; Smith, Abbie E; Cramer, Joel T; Stout, Jeffrey R

    2012-03-01

    The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.

  4. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment.

    PubMed

    Chételat, Gaël; Eustache, Francis; Viader, Fausto; De La Sayette, Vincent; Pélerin, Alice; Mézenge, Florence; Hannequin, Didier; Dupuy, Benoît; Baron, Jean-Claude; Desgranges, Béatrice

    2005-02-01

    The accurate prediction, at a pre-dementia stage of Alzheimer's disease (AD), of the subsequent clinical evolution of patients would be a major breakthrough from both therapeutic and research standpoints. Amnestic mild cognitive impairment (MCI) is presently the most common reference to address the pre-dementia stage of AD. However, previous longitudinal studies on patients with MCI assessing neuropsychological and PET markers of future conversion to AD are sparse and yield discrepant findings, while a comprehensive comparison of the relative accuracy of these two categories of measure is still lacking. In the present study, we assessed the global cognitive decline as measured by the Mattis scale in 18 patients with amnestic MCI over an 18-month follow-up period, studying which subtest of this scale showed significant deterioration over time. Using baseline measurements from neuropsychological evaluation of memory and PET, we then assessed significant markers of global cognitive change, that is, percent annual change in the Mattis scale total score, and searched for the best predictor of this global cognitive decline. Altogether, our results revealed significant decline over the 18-month follow-up period in the total score and the verbal initiation and memory-recall subscores of the Mattis scale. The percent annual change in the total Mattis score significantly correlated with age and baseline performances in delayed episodic memory recall as well as semantic autobiographical and category word fluencies. Regarding functional imaging, significant correlations were also found with baseline PET values in the right temporo-parietal and medial frontal areas. Age and right temporo-parietal PET values were the most significant predictors of subsequent global cognitive decline, and the only ones to survive stepwise regression analyses. Our findings are consistent with previous works showing predominant delayed recall and semantic memory impairment at a pre-dementia stage

  5. IMPre: An Accurate and Efficient Software for Prediction of T- and B-Cell Receptor Germline Genes and Alleles from Rearranged Repertoire Data

    PubMed Central

    Zhang, Wei; Wang, I-Ming; Wang, Changxi; Lin, Liya; Chai, Xianghua; Wu, Jinghua; Bett, Andrew J.; Dhanasekaran, Govindarajan; Casimiro, Danilo R.; Liu, Xiao

    2016-01-01

    Large-scale study of the properties of T-cell receptor (TCR) and B-cell receptor (BCR) repertoires through next-generation sequencing is providing excellent insights into the understanding of adaptive immune responses. Variable(Diversity)Joining [V(D)J] germline genes and alleles must be characterized in detail to facilitate repertoire analyses. However, most species do not have well-characterized TCR/BCR germline genes because of their high homology. Also, more germline alleles are required for humans and other species, which limits the capacity for studying immune repertoires. Herein, we developed “Immune Germline Prediction” (IMPre), a tool for predicting germline V/J genes and alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a new algorithm, “Seed_Clust,” for clustering, produced a multiway tree for assembly and optimized the sequence according to the characteristics of rearrangement. We trained IMPre on human samples of T-cell receptor beta (TRB) and immunoglobulin heavy chain and then tested it on additional human samples. Accuracy of 97.7, 100, 92.9, and 100% was obtained for TRBV, TRBJ, IGHV, and IGHJ, respectively. Analyses of subsampling performance for these samples showed IMPre to be robust using different data quantities. Subsequently, IMPre was tested on samples from rhesus monkeys and human long sequences: the highly accurate results demonstrated IMPre to be stable with animal and multiple data types. With rapid accumulation of high-throughput sequence data for TCR and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre. PMID:27867380

  6. Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Hilbert, Stefan

    2015-03-01

    We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.

  7. Soft-Cliff Retreat, Self-Organized Critical Phenomena in the Limit of Predictability?

    NASA Astrophysics Data System (ADS)

    Paredes, Carlos; Godoy, Clara; Castedo, Ricardo

    2015-03-01

    The coastal erosion along the world's coastlines is a natural process that occurs through the actions of marine and subaerial physico-chemical phenomena, waves, tides, and currents. The development of cliff erosion predictive models is limited due to the complex interactions between environmental processes and material properties over a wide range of temporal and spatial scales. As a result of this erosive action, gravity driven mass movements occur and the coastline moves inland. Like other studied earth natural and synthetically modelled phenomena characterized as self-organized critical (SOC), the recession of the cliff has a seemingly random, sporadic behavior, with a wide range of yearly recession rate values probabilistically distributed by a power-law. Usually, SOC systems are defined by a number of scaling features in the size distribution of its parameters and on its spatial and/or temporal pattern. Particularly, some previous studies of derived parameters from slope movements catalogues, have allowed detecting certain SOC features in this phenomenon, which also shares the recession of cliffs. Due to the complexity of the phenomenon and, as for other natural processes, there is no definitive model of recession of coastal cliffs. In this work, various analysis techniques have been applied to identify SOC features in the distribution and pattern to a particular case: the Holderness shoreline. This coast is a great case study to use when examining coastal processes and the structures associated with them. It is one of World's fastest eroding coastlines (2 m/yr in average, max observed 22 m/yr). Cliffs, ranging from 2 m up to 35 m in height, and made up of glacial tills, mainly compose this coast. It is this soft boulder clay that is being rapidly eroded and where coastline recession measurements have been recorded by the Cliff Erosion Monitoring Program (East Riding of Yorkshire Council, UK). The original database has been filtered by grouping contiguous

  8. Predicting Critical Thinking Skills of University Students through Metacognitive Self-Regulation Skills and Chemistry Self-Efficacy

    ERIC Educational Resources Information Center

    Uzuntiryaki-Kondakci, Esen; Capa-Aydin, Yesim

    2013-01-01

    This study aimed at examining the extent to which metacognitive self-regulation and chemistry self-efficacy predicted critical thinking. Three hundred sixty-five university students participated in the study. Data were collected using appropriate dimensions of Motivated Strategies for Learning Questionnaire and College Chemistry Self-Efficacy…

  9. Predictive validity of critical thinking skills and disposition for the national board dental hygiene examination: a preliminary investigation.

    PubMed

    Williams, Karen B; Schmidt, Colleen; Tilliss, Terri S I; Wilkins, Kris; Glasnapp, Douglas R

    2006-05-01

    The objective of this study was to determine if preexisting critical thinking skills and critical thinking disposition predict student performance on the National Board Dental Hygiene Examination (NBDHE). The predictive value of critical thinking skills scores and disposition (habits of mind, attitudes, and character attributes) scores were examined above that provided by traditional predictors: entering grade point average, age, and total number of college hours at entry into the dental hygiene program. Seventy-six first-year dental hygiene students from three baccalaureate dental hygiene programs participated in this study. Participants' preexisting general critical thinking skills and disposition were assessed during the first week of classes in their respective baccalaureate level programs using the California Critical Thinking Skills Test (CCTST) and California Critical Thinking Disposition Inventory (CCTDI). At the completion of their two-year educational program, the CCTST and CCTDI were administered a final time, and students' scores on the multiple-choice and case-based NBDHE were obtained. A series of hierarchical multiple regression analyses demonstrated that CCTST scores explained a statistically significant (p<.05) proportion of variance in students' multiple-choice and case-based NBDHE scores, above and beyond that explained by other predictor variables. Although CCTDI scores were not a significant predictor of either outcome measure, CCTST is a good predictor of student performance on high-stakes qualifying examinations and may have utility for student selection and retention.

  10. Usefulness of full outline of unresponsiveness score to predict extubation failure in intubated critically-ill patients: A pilot study

    PubMed Central

    Said, Tarek; Chaari, Anis; Hakim, Karim Abdel; Hamama, Dalia; Casey, William Francis

    2016-01-01

    Objective: To assess the usefulness of the full outline of unresponsiveness (FOUR) score in predicting extubation failure in critically ill intubated patients admitted with disturbed level of conscious in comparison with the Glasgow coma scale (GCS). Patients and Methods: All intubated critically ill patients with a disturbed level of consciousness were assessed using both the FOUR score and the GCS. The FOUR score and the GCS were compared regarding their predictive value for successful extubation at 14 days after intubation as a primary outcome measure. The 28-day mortality and the neurological outcome at 3 months were used as secondary outcome measures. Results: Eighty-six patients were included in the study. Median age was 63 (50–77) years. Sex–ratio (M/F) was 1.46. On admission, median GCS was 7 (3–10) while median FOUR score was 8.5 (2.3–11). A GCS ≤ 7 predicted the extubation failure at 14 days after intubation with a sensitivity of 88.5% and specificity of 68.3%, whereas a FOUR score <10 predicted the same outcome with a sensitivity of 80.8% and a specificity of 81.7%. The areas under the curves was significantly higher with the FOUR score than with GCS (respectively 0.867 confidence interval [CI]: 95% [0790–0.944] and 0.832 CI: 95% [0.741–0.923]; P = 0.014). When calculated before extubation, FOUR score <12 predicted extubation failure with a sensitivity of 92.3% and a specificity of 85%, whereas a GCS <12 predicted the same outcome with a sensitivity of 73% and a specificity of 61.7%. Both scores had similar accuracy for predicting 28-day mortality and neurological outcome at 3 months. Conclusion: The FOUR score is superior to the GCS for the prediction of successful extubation of intubated critically ill patients. PMID:28149821

  11. Investigating Predictive Role of Critical Thinking on Metacognition with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Arslan, Serhat

    2015-01-01

    The purpose of this study is to examine the relationships between critical thinking and metacognition. The sample of study consists of 390 university students who were enrolled in different programs at Sakarya University, in Turkey. In this study, the Critical Thinking Disposition Scale and Metacognitive Thinking Scale were used. The relationships…

  12. Quantitative research on critical thinking and predicting nursing students' NCLEX-RN performance.

    PubMed

    Romeo, Elizabeth M

    2010-07-01

    The concept of critical thinking has been influential in several disciplines. Both education and nursing in general have been attempting to define, teach, and measure this concept for decades. Nurse educators realize that critical thinking is the cornerstone of the objectives and goals for nursing students. The purpose of this article is to review and analyze quantitative research findings relevant to the measurement of critical thinking abilities and skills in undergraduate nursing students and the usefulness of critical thinking as a predictor of National Council Licensure Examination-Registered Nurse (NCLEX-RN) performance. The specific issues that this integrative review examined include assessment and analysis of the theoretical and operational definitions of critical thinking, theoretical frameworks used to guide the studies, instruments used to evaluate critical thinking skills and abilities, and the role of critical thinking as a predictor of NCLEX-RN outcomes. A list of key assumptions related to critical thinking was formulated. The limitations and gaps in the literature were identified, as well as the types of future research needed in this arena.

  13. A critical examination of the predictive capabilities of a new type of general laminated plate theory in the inelastic response regime

    SciTech Connect

    Williams, Todd O

    2008-01-01

    Recently, a new type of general, multiscale plate theory was developed for application to the analysis of the history-dependent response of laminated plates (Williams). In particular, the history-dependent behavior in a plate was considered to arise from both delamination effects as well as history-dependent material point responses (such as from viscoelasticity, viscoplasticity, damage, etc.). The multiscale nature of the theoretical framework is due to the use of a superposition of both general global and local displacement effects. Using this global-local displacement field the governing equations of the theory are obtained by satisfying the governing equations of nonlinear continuum mechanics referenced to the initial configuration. In order to accomplish the goal of conducting accurate analyses in the history-dependent response regimes the formulation of the theory has been carried out in a sufficiently general fashion that any cohesive zone model (CZM) and any history-dependent constitutive model for a material point can be incorporated into the analysis without reformulation. Recently, the older multiscale theory of Williams has been implemented into the finite element (FE) framework by Mourad et al. and the resulting capabilities where used to shown that in a qualitative sense it is important that the local fields be accurately obtained in order to correctly predict even the overall response characteristics of a laminated plate in the inelastic regime. The goal of this work is to critically examine the predictive capabilities of this theory, as well as the older multiscale theory of Williams and other types of laminated plate theories, with recently developed exact solutions for the response of inelastic plates in cylindrical bending (Williams). These exact solutions are valid for both nonlinear CZMs as well as inelastic material responses obtained from different constitutive theories. In particular, the accuracy with which the different plate theories

  14. Evaluation of cloud prediction and determination of critical relative humidity for a mesoscale numerical weather prediction model

    SciTech Connect

    Seaman, N.L.; Guo, Z.; Ackerman, T.P.

    1996-04-01

    Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.

  15. Critical velocity and anaerobic paddling capacity determined by different mathematical models and number of predictive trials in canoe slalom.

    PubMed

    Messias, Leonardo H D; Ferrari, Homero G; Reis, Ivan G M; Scariot, Pedro P M; Manchado-Gobatto, Fúlvia B

    2015-03-01

    The purpose of this study was to analyze if different combinations of trials as well as mathematical models can modify the aerobic and anaerobic estimates from critical velocity protocol applied in canoe slalom. Fourteen male elite slalom kayakers from Brazilian canoe slalom team (K1) were evaluated. Athletes were submitted to four predictive trials of 150, 300, 450 and 600 meters in a lake and the time to complete each trial was recorded. Critical velocity (CV-aerobic parameter) and anaerobic paddling capacity (APC-anaerobic parameter) were obtained by three mathematical models (Linear1=distance-time; Linear 2=velocity-1/time and Non-Linear = time-velocity). Linear 1 was chosen for comparison of predictive trials combinations. Standard combination (SC) was considered as the four trials (150, 300, 450 and 600 m). High fits of regression were obtained from all mathematical models (range - R² = 0.96-1.00). Repeated measures ANOVA pointed out differences of all mathematical models for CV (p = 0.006) and APC (p = 0.016) as well as R² (p = 0.033). Estimates obtained from the first (1) and the fourth (4) predictive trials (150 m = lowest; and 600 m = highest, respectively) were similar and highly correlated (r=0.98 for CV and r = 0.96 for APC) with the SC. In summary, methodological aspects must be considered in critical velocity application in canoe slalom, since different combinations of trials as well as mathematical models resulted in different aerobic and anaerobic estimates. Key pointsGreat attention must be given for methodological concerns regarding critical velocity protocol applied on canoe slalom, since different estimates were obtained depending on the mathematical model and the predictive trials used.Linear 1 showed the best fits of regression. Furthermore, to the best of our knowledge and considering practical applications, this model is the easiest one to calculate the estimates from critical velocity protocol. Considering this, the abyss between science

  16. Critical Velocity and Anaerobic Paddling Capacity Determined by Different Mathematical Models and Number of Predictive Trials in Canoe Slalom

    PubMed Central

    Messias, Leonardo H. D.; Ferrari, Homero G.; Reis, Ivan G. M.; Scariot, Pedro P. M.; Manchado-Gobatto, Fúlvia B.

    2015-01-01

    The purpose of this study was to analyze if different combinations of trials as well as mathematical models can modify the aerobic and anaerobic estimates from critical velocity protocol applied in canoe slalom. Fourteen male elite slalom kayakers from Brazilian canoe slalom team (K1) were evaluated. Athletes were submitted to four predictive trials of 150, 300, 450 and 600 meters in a lake and the time to complete each trial was recorded. Critical velocity (CV-aerobic parameter) and anaerobic paddling capacity (APC-anaerobic parameter) were obtained by three mathematical models (Linear1=distance-time; Linear 2=velocity-1/time and Non-Linear = time-velocity). Linear 1 was chosen for comparison of predictive trials combinations. Standard combination (SC) was considered as the four trials (150, 300, 450 and 600 m). High fits of regression were obtained from all mathematical models (range - R² = 0.96-1.00). Repeated measures ANOVA pointed out differences of all mathematical models for CV (p = 0.006) and APC (p = 0.016) as well as R² (p = 0.033). Estimates obtained from the first (1) and the fourth (4) predictive trials (150 m = lowest; and 600 m = highest, respectively) were similar and highly correlated (r=0.98 for CV and r = 0.96 for APC) with the SC. In summary, methodological aspects must be considered in critical velocity application in canoe slalom, since different combinations of trials as well as mathematical models resulted in different aerobic and anaerobic estimates. Key points Great attention must be given for methodological concerns regarding critical velocity protocol applied on canoe slalom, since different estimates were obtained depending on the mathematical model and the predictive trials used. Linear 1 showed the best fits of regression. Furthermore, to the best of our knowledge and considering practical applications, this model is the easiest one to calculate the estimates from critical velocity protocol. Considering this, the abyss between

  17. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  18. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    PubMed

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.

  19. Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression

    NASA Astrophysics Data System (ADS)

    Timesli, Abdelaziz; Braikat, Bouazza; Jamal, Mohammad; Damil, Noureddine

    2017-02-01

    In this paper, we propose a new explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes into account van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences generally neglected in the derived expressions of the critical buckling load published in the literature. The elastic multiple Donnell shells continuum approach is employed for modelling the multi-walled carbon nanotubes. The validation of the proposed formula is made by comparison with a numerical solution. The influence of the neglected terms is also studied.

  20. Patient-Specific Predictive Modeling Using Random Forests: An Observational Study for the Critically Ill

    PubMed Central

    2017-01-01

    Background With a large-scale electronic health record repository, it is feasible to build a customized patient outcome prediction model specifically for a given patient. This approach involves identifying past patients who are similar to the present patient and using their data to train a personalized predictive model. Our previous work investigated a cosine-similarity patient similarity metric (PSM) for such patient-specific predictive modeling. Objective The objective of the study is to investigate the random forest (RF) proximity measure as a PSM in the context of personalized mortality prediction for intensive care unit (ICU) patients. Methods A total of 17,152 ICU admissions were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. A number of predictor variables were extracted from the first 24 hours in the ICU. Outcome to be predicted was 30-day mortality. A patient-specific predictive model was trained for each ICU admission using an RF PSM inspired by the RF proximity measure. Death counting, logistic regression, decision tree, and RF models were studied with a hard threshold applied to RF PSM values to only include the M most similar patients in model training, where M was varied. In addition, case-specific random forests (CSRFs), which uses RF proximity for weighted bootstrapping, were trained. Results Compared to our previous study that investigated a cosine similarity PSM, the RF PSM resulted in superior or comparable predictive performance. RF and CSRF exhibited the best performances (in terms of mean area under the receiver operating characteristic curve [95% confidence interval], RF: 0.839 [0.835-0.844]; CSRF: 0.832 [0.821-0.843]). RF and CSRF did not benefit from personalization via the use of the RF PSM, while the other models did. Conclusions The RF PSM led to good mortality prediction performance for several predictive models, although it failed to induce improved performance in RF and CSRF. The distinction

  1. A critical discussion on the applicability of Compound Topographic Index (CTI) for predicting ephemeral gully erosion

    NASA Astrophysics Data System (ADS)

    Casalí, Javier; Chahor, Youssef; Giménez, Rafael; Campo-Bescós, Miguel

    2016-04-01

    The so-called Compound Topographic Index (CTI) can be calculated for each grid cell in a DEM and be used to identify potential locations for ephemeral gullies (e. g.) based on land topography (CTI = A.S.PLANC, where A is upstream drainage area, S is local slope and PLANC is planform curvature, a measure of the landscape convergence) (Parker et al., 2007). It can be shown that CTI represents stream power per unit bed area and it considers the major parameters controlling the pattern and intensity of concentrated surface runoff in the field (Parker et al., 2007). However, other key variables controlling e.g. erosion (e. g. e.) such as soil characteristics, land-use and management, are not had into consideration. The critical CTI value (CTIc) "represents the intensity of concentrated overland flow necessary to initiate erosion and channelised flow under a given set of circumstances" (Parker et al., 2007). AnnAGNPS (Annualized Agriculture Non-Point Source) pollution model is an important management tool developed by (USDA) and uses CTI to locate potential ephemeral gullies. Then, and depending on rainfall characteristics of the period simulated by AnnAGNPS, potential e. g. can become "actual", and be simulated by the model accordingly. This paper presents preliminary results and a number of considerations after evaluating the CTI tool in Navarre. CTIc values found are similar to those cited by other authors, and the e. g. networks that on average occur in the area have been located reasonably well. After our experience we believe that it is necessary to distinguish between the CTIc corresponding to the location of headcuts whose migrations originate the e. g. (CTIc1); and the CTIc necessary to represent the location of the gully networks in the watershed (CTIc2), where gully headcuts are located in the upstream end of the gullies. Most scientists only consider one CTIc value, although, from our point of view, the two situations are different. CTIc1 would represent the

  2. The Impact of Macro-and Micronutrients on Predicting Outcomes of Critically Ill Patients Requiring Continuous Renal Replacement Therapy

    PubMed Central

    Somlaw, Nicha; Lakananurak, Narisorn; Dissayabutra, Thasinas; Phonork, Chayanat; Leelahavanichkul, Asada; Tiranathanagul, Khajohn; Susantithapong, Paweena; Loaveeravat, Passisd; Suwachittanont, Nattachai; Wirotwan, Thaksa-on; Praditpornsilpa, Kearkiat; Tungsanga, Kriang; Eiam-Ong, Somchai; Kittiskulnam, Piyawan

    2016-01-01

    Critically ill patients with acute kidney injury (AKI) who receive renal replacement therapy (RRT) have very high mortality rate. During RRT, there are markedly loss of macro- and micronutrients which may cause malnutrition and result in impaired renal recovery and patient survival. We aimed to examine the predictive role of macro- and micronutrients on survival and renal outcomes in critically ill patients undergoing continuous RRT (CRRT). This prospective observational study enrolled critically ill patients requiring CRRT at Intensive Care Unit of King Chulalongkorn Memorial Hospital from November 2012 until November 2013. The serum, urine, and effluent fluid were serially collected on the first three days to calculate protein metabolism including dietary protein intake (DPI), nitrogen balance, and normalized protein catabolic rate (nPCR). Serum zinc, selenium, and copper were measured for micronutrients analysis on the first three days of CRRT. Survivor was defined as being alive on day 28 after initiation of CRRT.Dialysis status on day 28 was also determined. Of the 70 critically ill patients requiring CRRT, 27 patients (37.5%) survived on day 28. The DPI and serum albumin of survivors were significantly higher than non-survivors (0.8± 0.2 vs 0.5 ±0.3g/kg/day, p = 0.001, and 3.2±0.5 vs 2.9±0.5 g/dL, p = 0.03, respectively) while other markers were comparable. The DPI alone predicted patient survival with area under the curve (AUC) of 0.69. A combined clinical model predicted survival with AUC of 0.78. When adjusted for differences in albumin level, clinical severity score (APACHEII and SOFA score), and serum creatinine at initiation of CRRT, DPI still independently predicted survival (odds ratio 4.62, p = 0.009). The serum levels of micronutrients in both groups were comparable and unaltered following CRRT. Regarding renal outcome, patients in the dialysis independent group had higher serum albumin levels than the dialysis dependent group, p = 0.01. In

  3. Effect of microorganism characteristics on leak size critical to predicting package sterility.

    PubMed

    Keller, Scott; Marcy, Joseph; Blakistone, Barbara; Hackney, Cameron; Carter, W Hans; Lacy, George

    2003-09-01

    The effects of microorganism size and motility on the leak size critical to the sterility of a package, along with the imposed pressure required to initiate liquid flow for the critical leak size, were measured. Pseudomonas fragi Lacy-1052, Bacillus atrophaeus ATCC 49337, and Enterobacter aerogenes ATCC 29007 were employed to assess package sterility. One hundred twenty-six 7-mm-long microtubes with interior diameters of 5, 10, and 20 microm were used to simulate package defects. Forty-two solid microtubes were used as controls. No significant differences were found between sizes or motility statuses of test organisms with respect to loss of sterility as a result of microbial ingress into test cells with microtube interior diameters of 5, 10, and 20 microm (P > 0.05). Interactions between the initiation of liquid flow as a result of applied threshold pressures and sterility loss for test cells were significant (P < 0.05).

  4. Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry

    ERIC Educational Resources Information Center

    DeWit, David G.

    2006-01-01

    A course module in general chemistry focusing on predicting the products of simple inorganic reactions is described. This component of the course is intended to be presented near the end of the last term of the general chemistry sequence and is designed to afford practice in applying the variety of principles encountered throughout the general…

  5. Interspecies scaling of urinary excretory amounts of nine drugs belonging to different therapeutic areas with diverse chemical structures - accurate prediction of the human urinary excretory amounts.

    PubMed

    Bhamidipati, Ravi Kanth; Mullangi, Ramesh; Srinivas, Nuggehally R

    2017-02-01

    1. The human urinary excretory amounts of total drug (parent + metabolites) were predicted for nine drugs with diverse chemical structures using simple allometry. The drugs used for scaling were cephapirin, olanzapine, labetolol, carisbamate, voriconazole, tofacitinib, nevirapine, ropinirole, and cyclindole. 2. The traditional allometric scaling was attempted using Y = aW(b) relationship. The corresponding predicted urinary amounts were converted into % recovery by using appropriate human dose. Appropriate statistical tests comprising of fold-difference (predicted/observed values) and error calculations (MAE and RMSE) were performed. 3. The interspecies scaling of all nine drugs tested showed excellent correlation (r > 0.9672). The predictions for eight out of nine drugs (exception was cephaphirin) were contained within 0.80-1.25 fold-differences. The MAE and RMSE were within ± 18% and 14.64%, respectively. 4. The present work supported the potential application of prospective allometry scaling to predict the urinary excretory amounts of the total drug and gauge any issues for the renal handling of the total drug.

  6. Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging.

    PubMed

    Olavarria, Jaime F; Bock, Andrew S; Leigland, Lindsey A; Kroenke, Christopher D

    2012-01-01

    Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI) measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  7. Self-Criticism versus Neuroticism in Predicting Depression and Psychosocial Impairment over Four Years in a Clinical Sample

    PubMed Central

    Dunkley, David M.; Sanislow, Charles A.; Grilo, Carlos M.; McGlashan, Thomas H.

    2009-01-01

    The present study extended previous findings demonstrating self-criticism, assessed by the Dysfunctional Attitude Scale (DAS; 1), as a potentially important prospective predictor of depressive symptomatology and psychosocial functional impairment over time. Using data from a prospective, 4-year study of a clinical sample, DAS self-criticism and neuroticism were associated with self-report depressive symptoms, interviewer-rated major depression, and global domains of psychosocial functional impairment four years later. Hierarchical multiple regression results indicated that self-criticism uniquely predicted depressive symptoms, major depression, and global psychosocial impairment 4 years later over and above the Time 1 assessments of these outcomes and neuroticism. In contrast, neuroticism was a unique predictor of self-report depressive symptoms only 4 years later. Path analyses were used to test a preliminary three-wave mediational model and demonstrated that negative perceptions of social support at three years mediated the relation between self-criticism and depression/global psychosocial impairment over four years. PMID:19486732

  8. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    SciTech Connect

    Park, S; Robinson, A; Kiess, A; Quon, H; Wong, J; Lee, J; Plishker, W; Shekhar, R

    2015-06-15

    can accurately predict the tumor volume change with reduced errors. Although demonstrated only on HN nodal GTVs, the results imply improved accuracy for other critical structures. This work was supported by NIH/NCI under grant R42CA137886.

  9. A critical evaluation of the predictions of the NASA-Lockheed multielement airfoil computer program

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Manke, J. W.

    1978-01-01

    Theoretical predictions of several versions of the multielement airfoil computer program are evaluated. The computed results are compared with experimental high lift data of general aviation airfoils with a single trailing edge flap, and of airfoils with a leading edge flap and double slotted trailing edge flaps. Theoretical and experimental data include lift, pitching moment, profile drag and surface pressure distributions, boundary layer integral parameters, skin friction coefficients, and velocity profiles.

  10. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.

    PubMed

    Liu, Ruifeng; Schyman, Patric; Wallqvist, Anders

    2015-08-24

    To lower the possibility of late-stage failures in the drug development process, an up-front assessment of absorption, distribution, metabolism, elimination, and toxicity is commonly implemented through a battery of in silico and in vitro assays. As in vitro data is accumulated, in silico quantitative structure-activity relationship (QSAR) models can be trained and used to assess compounds even before they are synthesized. Even though it is generally recognized that QSAR model performance deteriorates over time, rigorous independent studies of model performance deterioration is typically hindered by the lack of publicly available large data sets of structurally diverse compounds. Here, we investigated predictive properties of QSAR models derived from an assembly of publicly available human liver microsomal (HLM) stability data using variable nearest neighbor (v-NN) and random forest (RF) methods. In particular, we evaluated the degree of time-dependent model performance deterioration. Our results show that when evaluated by 10-fold cross-validation with all available HLM data randomly distributed among 10 equal-sized validation groups, we achieved high-quality model performance from both machine-learning methods. However, when we developed HLM models based on when the data appeared and tried to predict data published later, we found that neither method produced predictive models and that their applicability was dramatically reduced. On the other hand, when a small percentage of randomly selected compounds from data published later were included in the training set, performance of both machine-learning methods improved significantly. The implication is that 1) QSAR model quality should be analyzed in a time-dependent manner to assess their true predictive power and 2) it is imperative to retrain models with any up-to-date experimental data to ensure maximum applicability.

  11. Self-organized criticality in COADS temperature time series: Implications for climate prediction

    SciTech Connect

    Selvam, A.M.; Joshi, R.R.; Vijayakumar, R.

    1994-12-31

    Continuous periodogram spectral analyses of global COADS seasonal (Sept.--Nov.) mean surface (air and sea) temperature time series for the 28-year period 1961--1988 show that the spectra follow the universal inverse power law form of the statistical normal distribution. The inverse power law form for power spectra of temporal fluctuations is ubiquitous to real-world dynamical systems and was recently identified as the temporal signature of self-organized criticality. Self-organized criticality implies long range temporal correlations (persistence or memory). The periodogram analyses also give the following results: (1) Periodicities up to 5 years contribute up to 50% of the total variance. (2) The spectra are broad-band with embedded dominant wavebands, the dominant bandwidth increasing with period length. (3) Spiral-like structure of atmospheric flows is seen in the continuous smooth rotation of the phase angle with increase in period length. The above results are consistent with a recently developed nondeterministic cell dynamical system model for atmospheric flows. Identification of a universal spectrum for temperature time series rules out linear secular trends in global surface (air and sea) temperatures The man-made greenhouse gas warming effect will result in energy propagation to all scales of weather and will be manifested immediately in the intensification of high-frequency fluctuations such as the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) cycles.

  12. A critical evaluation of theories for predicting microcracking in composite laminates

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Hu, Shoufeng; Bark, Jong S.

    1993-01-01

    We present experimental results on 21 different layups of Hercules AS4 carbon fiber/3501-6 epoxy laminates. All laminates had 90 deg plies; some had them in the middle, while some had them on a free surface. During tensile loading, the first form of damage in all laminates was microcracking of the 90 deg plies. For each laminate, we recorded both the crack density and the complete distribution of crack spacings as a function of the applied load. By rearranging various microcracking theories, we developed a master-curve approach that permitted plotting the results from all laminates on a single plot. By comparing master-curve plots for different theories, it was possible to critically evaluate the quality of those theories. We found that a critical-energy-release-rate criterion calculated using a 2D variational stress analysis gave the best results. All microcracking theories based on a strength-failure criteria gave poor results. All microcracking theories using 1D stress analyses, regardless of the failure criterion, also gave poor results.

  13. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database.

    PubMed

    Malshe, M; Pukrittayakamee, A; Raff, L M; Hagan, M; Bukkapatnam, S; Komanduri, R

    2009-09-28

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68,308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  14. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database

    NASA Astrophysics Data System (ADS)

    Malshe, M.; Pukrittayakamee, A.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2009-09-01

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68 308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  15. Validation of the ASSERT subchannel code: Prediction of critical heat flux in standard and nonstandard CANDU bundle geometries

    SciTech Connect

    Carver, M.B.; Kiteley, J.C.; Zhou, R.Q.N.; Junop, S.V.; Rowe, D.S.

    1995-12-01

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of Canada uranium deuterium (CANDU) pressurized heavy water reactor fuel channels and to provide a detailed prediction of critical heat flux (CHF) distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of predicting CHF at these local conditions makes it a unique tool for predicting CHF for situations outside the existing experimental database. In particular, ASSERT is an appropriate tool to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. The numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology are discussed. The evolutionary validation plan is also discussed and early validation exercises are summarized. More recent validation exercises in standard and nonstandard geometries are emphasized.

  16. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis.

    PubMed

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-04-01

    Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore

  17. Use of dose-dependent absorption into target tissues to more accurately predict cancer risk at low oral doses of hexavalent chromium.

    PubMed

    Haney, J

    2015-02-01

    The mouse dose at the lowest water concentration used in the National Toxicology Program hexavalent chromium (CrVI) drinking water study (NTP, 2008) is about 74,500 times higher than the approximate human dose corresponding to the 35-city geometric mean reported in EWG (2010) and over 1000 times higher than that based on the highest reported tap water concentration. With experimental and environmental doses differing greatly, it is a regulatory challenge to extrapolate high-dose results to environmental doses orders of magnitude lower in a meaningful and toxicologically predictive manner. This seems particularly true for the low-dose extrapolation of results for oral CrVI-induced carcinogenesis since dose-dependent differences in the dose fraction absorbed by mouse target tissues are apparent (Kirman et al., 2012). These data can be used for a straightforward adjustment of the USEPA (2010) draft oral slope factor (SFo) to be more predictive of risk at environmentally-relevant doses. More specifically, the evaluation of observed and modeled differences in the fraction of dose absorbed by target tissues at the point-of-departure for the draft SFo calculation versus lower doses suggests that the draft SFo be divided by a dose-specific adjustment factor of at least an order of magnitude to be less over-predictive of risk at more environmentally-relevant doses.

  18. Normal Tissue Complication Probability Estimation by the Lyman-Kutcher-Burman Method Does Not Accurately Predict Spinal Cord Tolerance to Stereotactic Radiosurgery

    SciTech Connect

    Daly, Megan E.; Luxton, Gary; Choi, Clara Y.H.; Gibbs, Iris C.; Chang, Steven D.; Adler, John R.; Soltys, Scott G.

    2012-04-01

    Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear-quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS). Methods and Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18-30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8-30.9 Gy) and 22.0 Gy (range, 20.2-26.6 Gy), respectively. By use of conventional values for {alpha}/{beta}, volume parameter n, 50% complication probability dose TD{sub 50}, and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of {alpha}/{beta} and n. Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of {alpha}/{beta} and n yielded better predictions (0.7 complications), with n = 0.023 and {alpha}/{beta} = 17.8 Gy. Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high {alpha}/{beta} value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models

  19. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans

    PubMed Central

    Green, AR; King, MV; Shortall, SE; Fone, KCF

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity. LINKED ARTICLES This article is commented on by Parrott, pp. 1518–1520 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01941.x and to view the the

  20. Prediction of risk and incidence of dry eye in critical patients1

    PubMed Central

    de Araújo, Diego Dias; Almeida, Natália Gherardi; Silva, Priscila Marinho Aleixo; Ribeiro, Nayara Souza; Werli-Alvarenga, Andreza; Chianca, Tânia Couto Machado

    2016-01-01

    Objectives: to estimate the incidence of dry eye, to identify risk factors and to establish a risk prediction model for its development in adult patients admitted to the intensive care unit of a public hospital. Method: concurrent cohort, conducted between March and June, 2014, with 230 patients admitted to an intensive care unit. Data were analyzed by bivariate descriptive statistics, with multivariate survival analysis and Cox regression. Results: 53% out of 230 patients have developed dry eye, with onset mean time of 3.5 days. Independent variables that significantly and concurrently impacted the time for dry eye to occur were: O2 in room air, blinking more than five times per minute (lower risk factors) and presence of vascular disease (higher risk factor). Conclusion: dry eye is a common finding in patients admitted to adults intensive care units, and care for its prevention should be established. PMID:27192415

  1. Race-specific genetic risk score is more accurate than nonrace-specific genetic risk score for predicting prostate cancer and high-grade diseases.

    PubMed

    Na, Rong; Ye, Dingwei; Qi, Jun; Liu, Fang; Lin, Xiaoling; Helfand, Brian T; Brendler, Charles B; Conran, Carly; Gong, Jian; Wu, Yishuo; Gao, Xu; Chen, Yaqing; Zheng, S Lilly; Mo, Zengnan; Ding, Qiang; Sun, Yinghao; Xu, Jianfeng

    2016-01-01

    Genetic risk score (GRS) based on disease risk-associated single nucleotide polymorphisms (SNPs) is an informative tool that can be used to provide inherited information for specific diseases in addition to family history. However, it is still unknown whether only SNPs that are implicated in a specific racial group should be used when calculating GRSs. The objective of this study is to compare the performance of race-specific GRS and nonrace-specific GRS for predicting prostate cancer (PCa) among 1338 patients underwent prostate biopsy in Shanghai, China. A race-specific GRS was calculated with seven PCa risk-associated SNPs implicated in East Asians (GRS7), and a nonrace-specific GRS was calculated based on 76 PCa risk-associated SNPs implicated in at least one racial group (GRS76). The means of GRS7 and GRS76 were 1.19 and 1.85, respectively, in the study population. Higher GRS7 and GRS76 were independent predictors for PCa and high-grade PCa in univariate and multivariate analyses. GRS7 had a better area under the receiver-operating curve (AUC) than GRS76 for discriminating PCa (0.602 vs 0.573) and high-grade PCa (0.603 vs 0.575) but did not reach statistical significance. GRS7 had a better (up to 13% at different cutoffs) positive predictive value (PPV) than GRS76. In conclusion, a race-specific GRS is more robust and has a better performance when predicting PCa in East Asian men than a GRS calculated using SNPs that are not shown to be associated with East Asians.

  2. The CUPIC algorithm: an accurate model for the prediction of sustained viral response under telaprevir or boceprevir triple therapy in cirrhotic patients.

    PubMed

    Boursier, J; Ducancelle, A; Vergniol, J; Veillon, P; Moal, V; Dufour, C; Bronowicki, J-P; Larrey, D; Hézode, C; Zoulim, F; Fontaine, H; Canva, V; Poynard, T; Allam, S; De Lédinghen, V

    2015-12-01

    Triple therapy using boceprevir or telaprevir remains the reference treatment for genotype 1 chronic hepatitis C in countries where new interferon-free regimens have not yet become available. Antiviral treatment is highly required in cirrhotic patients, but they represent a difficult-to-treat population. We aimed to develop a simple algorithm for the prediction of sustained viral response (SVR) in cirrhotic patients treated with triple therapy. A total of 484 cirrhotic patients from the ANRS CO20 CUPIC cohort treated with triple therapy were randomly distributed into derivation and validation sets. A total of 52.1% of patients achieved SVR. In the derivation set, a D0 score for the prediction of SVR before treatment initiation included the following independent predictors collected at day 0: prior treatment response, gamma-GT, platelets, telaprevir treatment, viral load. To refine the prediction at the early phase of the treatment, a W4 score included as additional parameter the viral load collected at week 4. The D0 and W4 scores were combined in the CUPIC algorithm defining three subgroups: 'no treatment initiation or early stop at week 4', 'undetermined' and 'SVR highly probable'. In the validation set, the rates of SVR in these three subgroups were, respectively, 11.1%, 50.0% and 82.2% (P < 0.001). By replacing the variable 'prior treatment response' with 'IL28B genotype', another algorithm was derived for treatment-naïve patients with similar results. The CUPIC algorithm is an easy-to-use tool that helps physicians weigh their decision between immediately treating cirrhotic patients using boceprevir/telaprevir triple therapy or waiting for new drugs to become available in their country.

  3. A framework for critical heat flux prediction in high heat flux, high subcooling components

    SciTech Connect

    Hechanova, A.E.; Kazimi, M.S.; Meyer, J.E.

    1995-12-31

    The critical heat flux (CHF) limits relevant to the design of plasma facing components in tokamak fusion reactors are considered. Highly subcooled water in unobstructed pipe flow are investigated using experiments and computational models. The experiments employ water flowing through a 9.5 mm bore in a 19 mm x 19 mm copper monoblock. Single-sized heating of the block is achieved by passing an electric current through a 51 mm long plasma sprayed thin layer (0.4 mm) of tungsten overlaying a thin film (0.1 mm) of plasma sprayed ceramic on an outer wall. In the analysis, the heat transfer coefficient on the coolant-side wall relies on extrapolation of existing nucleate boiling correlations but is validated using outer wall temperature measurements and a heat conduction model. The experimental results are combined with a CHF data base from several sources to enhance the generality of the proposed CHF correlation. The CHF data base parameter ranges are as follows: Peclet numbers between 7 {times}10{sup 4} to 3.2 {times} 10{sup 6}, coolant channel diameter between 5 and 25 mm, pressure between 1 and 7 MPa, and equilibrium quality between {minus}0.49 and {minus}0.07. The proposed correlation bounds the CHF data base as a lower limit and, thus, is an appropriate conservative limit for design applications.

  4. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  5. Accurate prediction of diradical chemistry from a single-reference density-matrix method: Model application to the bicyclobutane to gauche-1,3-butadiene isomerization

    SciTech Connect

    Bertels, Luke W.; Mazziotti, David A.

    2014-07-28

    Multireference correlation in diradical molecules can be captured by a single-reference 2-electron reduced-density-matrix (2-RDM) calculation with only single and double excitations in the 2-RDM parametrization. The 2-RDM parametrization is determined by N-representability conditions that are non-perturbative in their treatment of the electron correlation. Conventional single-reference wave function methods cannot describe the entanglement within diradical molecules without employing triple- and potentially even higher-order excitations of the mean-field determinant. In the isomerization of bicyclobutane to gauche-1,3-butadiene the parametric 2-RDM (p2-RDM) method predicts that the diradical disrotatory transition state is 58.9 kcal/mol above bicyclobutane. This barrier is in agreement with previous multireference calculations as well as recent Monte Carlo and higher-order coupled cluster calculations. The p2-RDM method predicts the Nth natural-orbital occupation number of the transition state to be 0.635, revealing its diradical character. The optimized geometry from the p2-RDM method differs in important details from the complete-active-space self-consistent-field geometry used in many previous studies including the Monte Carlo calculation.

  6. Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches

    PubMed Central

    Wu, Baojian; Wang, Xiaoqiang; Zhang, Shuxing; Hu, Ming

    2012-01-01

    Purpose The catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics were determined experimentally using 145 phenolics, and analyzed by 3D-QSAR methods. Methods The catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using the CoMFA and CoMSIA techniques. Molecular alignment of the substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered as a separate substrate. Results The 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2= 0.949, r2pred = 0.775; CoMSIA: q2 = 0.579, r2= 0.876, r2pred = 0.700). The contour coefficient maps were applied to elucidate structural features among substrates that are responsible for the selectivity differences. Furthermore, the contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9; this enabled us to identify the UGT1A9 catalytic pocket with a high degree of confidence. Conclusion The CoMFA/CoMSIA models can predict the substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and its substrate selectivity. PMID:22302521

  7. Mechanistic model for the prediction of water-subcooled-flow-boiling critical heat flux at high liquid velocity and subcooling

    SciTech Connect

    Celata, G.P.; Cumo, M.; Mariani, A.; Zummo, G.

    1996-07-01

    A new model is presented for the prediction of the critical heat flux (CHF) of subcooled flow boiling based on a liquid-sublayer dryout mechanism, i.e., the dryout of a thin, liquid layer beneath an intermittent vapor blanket due to the coalescence of small bubbles. The model focuses on the analysis of the CHF in subcooled flow boiling under conditions of very high mass flux and liquid subcooling, typical of fusion reactor thermal-hydraulic design, and is characterized by the absence of empirical constants always present in earlier models. Peripheral nonuniform heating and/or twisted-tape inserts are accounted for in the model, which was originally developed for uniform heating and straight flow. The simultaneous occurrence of the two events is also well predicted by the model. Although initially formulated for operating conditions typical of the thermal-hydraulic design of fusion reactor high-heat-flux components, the model is proven to be able to satisfactorily predict the CHF under more general conditions, provided local thermodynamic conditions of the bulk flow at the CHF are sufficiently far from the saturated state. 60 refs., 11 figs.

  8. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  9. SNP development from RNA-seq data in a nonmodel fish: how many individuals are needed for accurate allele frequency prediction?

    PubMed

    Schunter, C; Garza, J C; Macpherson, E; Pascual, M

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are rapidly becoming the marker of choice in population genetics due to a variety of advantages relative to other markers, including higher genomic density, data quality, reproducibility and genotyping efficiency, as well as ease of portability between laboratories. Advances in sequencing technology and methodologies to reduce genomic representation have made the isolation of SNPs feasible for nonmodel organisms. RNA-seq is one such technique for the discovery of SNPs and development of markers for large-scale genotyping. Here, we report the development of 192 validated SNP markers for parentage analysis in Tripterygion delaisi (the black-faced blenny), a small rocky-shore fish from the Mediterranean Sea. RNA-seq data for 15 individual samples were used for SNP discovery by applying a series of selection criteria. Genotypes were then collected from 1599 individuals from the same population with the resulting loci. Differences in heterozygosity and allele frequencies were found between the two data sets. Heterozygosity was lower, on average, in the population sample, and the mean difference between the frequencies of particular alleles in the two data sets was 0.135 ± 0.100. We used bootstrap resampling of the sequence data to predict appropriate sample sizes for SNP discovery. As cDNA library production is time-consuming and expensive, we suggest that using seven individuals for RNA sequencing reduces the probability of discarding highly informative SNP loci, due to lack of observed polymorphism, whereas use of more than 12 samples does not considerably improve prediction of true allele frequencies.

  10. Predictive value of C-reactive protein in critically ill patients after abdominal surgery

    PubMed Central

    Sapin, Frédéric; Biston, Patrick; Piagnerelli, Michael

    2017-01-01

    OBJECTIVES: The development of sepsis after abdominal surgery is associated with high morbidity and mortality. Due to inflammation, it may be difficult to diagnose infection when it occurs, but measurement of C-reactive protein could facilitate this diagnosis. In the present study, we evaluated the predictive value and time course of C-reactive protein in relation to outcome in patients admitted to the intensive care unit (ICU) after abdominal surgery. METHODS: We included patients admitted to the ICU after abdominal surgery over a period of two years. The patients were divided into two groups according to their outcome: favorable (F; left the ICU alive, without modification of the antibiotic regimen) and unfavorable (D; death in the ICU, surgical revision with or without modification of the antibiotic regimen or just modification of the regimen). We then compared the highest C-reactive protein level on the first day of admission between the two groups. RESULTS: A total of 308 patients were included: 86 patients had an unfavorable outcome (group D) and 222 had a favorable outcome (group F). The groups were similar in terms of leukocytosis, neutrophilia, and platelet count. C-reactive protein was significantly higher at admission in group D and was the best predictor of an unfavorable outcome, with a sensitivity of 74% and a specificity of 72% for a threshold of 41 mg/L. No changes in C-reactive protein, as assessed based on the delta C-reactive protein, especially at days 4 and 5, were associated with a poor prognosis. CONCLUSIONS: A C-reactive protein cut-off of 41 mg/L during the first day of ICU admission after abdominal surgery was a predictor of an adverse outcome. However, no changes in the C-reactive protein concentration, especially by day 4 or 5, could identify patients at risk of death. PMID:28226029

  11. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    SciTech Connect

    McMillan, K; Bostani, M; McNitt-Gray, M; McCollough, C

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate the complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not

  12. Full-Dimensional Potential Energy and Dipole Moment Surfaces of GeH4 Molecule and Accurate First-Principle Rotationally Resolved Intensity Predictions in the Infrared.

    PubMed

    Nikitin, A V; Rey, M; Rodina, A; Krishna, B M; Tyuterev, Vl G

    2016-11-17

    Nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) of the germane molecule are constructed using extended ab initio CCSD(T) calculations at 19 882 points. PES analytical representation is determined as an expansion in nonlinear symmetry adapted products of orthogonal and internal coordinates involving 340 parameters up to eighth order. Minor empirical refinement of the equilibrium geometry and of four quadratic parameters of the PES computed at the CCSD(T)/aug-cc-pVQZ-DK level of the theory yielded the accuracy below 1 cm(-1) for all experimentally known vibrational band centers of five stable isotopologues of (70)GeH4, (72)GeH4, (73)GeH4, (74)GeH4, and (76)GeH4 up to 8300 cm(-1). The optimized equilibrium bond re = 1.517 594 Å is very close to best ab initio values. Rotational energies up to J = 15 are calculated using potential expansion in normal coordinate tensors with maximum errors of 0.004 and 0.0006 cm(-1) for (74)GeH4 and (76)GeH4. The DMS analytical representation is determined through an expansion in symmetry-adapted products of internal nonlinear coordinates involving 967 parameters up to the sixth order. Vibration-rotation line intensities of five stable germane isotopologues were calculated from purely ab initio DMS using nuclear motion variational calculations with a full account of the tetrahedral symmetry of the molecules. For the first time a good overall agreement of main absorption features with experimental rotationally resolved Pacific Northwest National Laboratory spectra was achieved in the entire range of 700-5300 cm(-1). It was found that very accurate description of state-dependent isotopic shifts is mandatory to correctly describe complex patterns of observed spectra at natural isotopic abundance resulting from the superposition of five stable isotopologues. The data obtained in this work will be made available through the TheoReTS information system.

  13. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  14. Accurate prediction of hard-sphere virial coefficients B6 to B12 from a compressibility-based equation of state

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, Hendrik

    2016-04-01

    We derive an analytical equation of state for the hard-sphere fluid that is within 0.01% of computer simulations for the whole range of the stable fluid phase. In contrast, the commonly used Carnahan-Starling equation of state deviates by up to 0.3% from simulations. The derivation uses the functional form of the isothermal compressibility from the Percus-Yevick closure of the Ornstein-Zernike relation as a starting point. Two additional degrees of freedom are introduced, which are constrained by requiring the equation of state to (i) recover the exact fourth virial coefficient B4 and (ii) involve only integer coefficients on the level of the ideal gas, while providing best possible agreement with the numerical result for B5. Virial coefficients B6 to B10 obtained from the equation of state are within 0.5% of numerical computations, and coefficients B11 and B12 are within the error of numerical results. We conjecture that even higher virial coefficients are reliably predicted.

  15. A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies.

    PubMed

    Roettger, Mayo; Martin, William; Dagan, Tal

    2009-09-01

    Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.

  16. Accurate prediction of hard-sphere virial coefficients B6 to B12 from a compressibility-based equation of state.

    PubMed

    Hansen-Goos, Hendrik

    2016-04-28

    We derive an analytical equation of state for the hard-sphere fluid that is within 0.01% of computer simulations for the whole range of the stable fluid phase. In contrast, the commonly used Carnahan-Starling equation of state deviates by up to 0.3% from simulations. The derivation uses the functional form of the isothermal compressibility from the Percus-Yevick closure of the Ornstein-Zernike relation as a starting point. Two additional degrees of freedom are introduced, which are constrained by requiring the equation of state to (i) recover the exact fourth virial coefficient B4 and (ii) involve only integer coefficients on the level of the ideal gas, while providing best possible agreement with the numerical result for B5. Virial coefficients B6 to B10 obtained from the equation of state are within 0.5% of numerical computations, and coefficients B11 and B12 are within the error of numerical results. We conjecture that even higher virial coefficients are reliably predicted.

  17. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical.

    PubMed

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-15

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 2(2)Δ and 5(4)Π states are replulsive. The 1(2)Σ(+), 2(2)Σ(+), 4(2)Π, 3(4)Δ, 3(4)Σ(+), and 4(4)Π states possess double wells. The 3(2)Σ(+) state possesses three wells. The A(2)Π, 3(2)Π, 1(2)Φ, 2(4)Π, 3(4)Π, 2(4)Δ, 3(4)Δ, 1(6)Σ(+), and 1(6)Π states are inverted with the SO coupling effect included. The 1(4)Σ(+), 2(4)Σ(+), 2(4)Σ(-), 2(4)Δ, 1(4)Φ, 1(6)Σ(+), and 1(6)Π states, the second wells of 1(2)Σ(+), 3(4)Σ(+), 4(2)Π, 4(4)Π, and 3(4)Δ states, and the third well of 3(2)Σ(+) state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  18. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-01

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 22Δ and 54Π states are replulsive. The 12Σ+, 22Σ+, 42Π, 34Δ, 34Σ+, and 44Π states possess double wells. The 32Σ+ state possesses three wells. The A2Π, 32Π, 12Φ, 24Π, 34Π, 24Δ, 34Δ, 16Σ+, and 16Π states are inverted with the SO coupling effect included. The 14Σ+, 24Σ+, 24Σ-, 24Δ, 14Φ, 16Σ+, and 16Π states, the second wells of 12Σ+, 34Σ+, 42Π, 44Π, and 34Δ states, and the third well of 32Σ+ state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  19. Investigation into the Prediction Level of Professional Values of Prospective Teachers within the Context of Critical Thinking, Metacognition and Epistemological Beliefs in Turkey

    ERIC Educational Resources Information Center

    Demir, Özden; Doganay, Ahmet; Kaya, Halil Ibrahim

    2016-01-01

    The general aim of the present study is to identify to what extent the professional values of prospective teachers are predicted by the variables of critical thinking, metacognition, epistemological beliefs. The study also aims to determine which variables provide a better prediction of the professional values of prospective teachers than the…

  20. The M. D. Anderson Symptom Inventory-Head and Neck Module, a Patient-Reported Outcome Instrument, Accurately Predicts the Severity of Radiation-Induced Mucositis

    SciTech Connect

    Rosenthal, David I. Mendoza, Tito R.; Chambers, Mark; Burkett, V. Shannon; Garden, Adam S.; Hessell, Amy C.; Lewin, Jan S.; Ang, K. Kian; Kies, Merrill S.

    2008-12-01

    Purpose: To compare the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) module, a symptom burden instrument, with the Functional Assessment of Cancer Therapy-Head and Neck (FACT-HN) module, a quality-of-life instrument, for the assessment of mucositis in patients with head-and-neck cancer treated with radiotherapy and to identify the most distressing symptoms from the patient's perspective. Methods and Materials: Consecutive patients with head-and-neck cancer (n = 134) completed the MDASI-HN and FACT-HN before radiotherapy (time 1) and after 6 weeks of radiotherapy or chemoradiotherapy (time 2). The mean global and subscale scores for each instrument were compared with the objective mucositis scores determined from the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0. Results: The global and subscale scores for each instrument showed highly significant changes from time 1 to time 2 and a significant correlation with the objective mucositis scores at time 2. Only the MDASI scores, however, were significant predictors of objective Common Terminology Criteria for Adverse Events mucositis scores on multivariate regression analysis (standardized regression coefficient, 0.355 for the global score and 0.310 for the head-and-neck cancer-specific score). Most of the moderate and severe symptoms associated with mucositis as identified on the MDASI-HN are not present on the FACT-HN. Conclusion: Both the MDASI-HN and FACT-HN modules can predict the mucositis scores. However, the MDASI-HN, a symptom burden instrument, was more closely associated with the severity of radiation-induced mucositis than the FACT-HN on multivariate regression analysis. This greater association was most likely related to the inclusion of a greater number of face-valid mucositis-related items in the MDASI-HN compared with the FACT-HN.

  1. Application of the Sequential Organ Failure Assessment Score to predict outcome in critically ill dogs: preliminary results.

    PubMed

    Ripanti, D; Dino, G; Piovano, G; Farca, A

    2012-08-01

    In human medicine the Sequential Organ Failure Assessment (SOFA) score is one of the most commonly organ dysfunction scoring systems used to assess critically ill patients and to predict the outcome in Intensive Care Units (ICUs). It is composed of scores from six organ systems (respiratory, cardiovascular, hepatic, coagulation, renal, and neurological) graded according to the degree of the dysfunction. The aim of the current study was to describe the applicability of the SOFA score in assessing the outcome of critically ill dogs. A total of 45 dogs admitted to the ICU was enrolled. Among these, 40 dogs completed the study: 50 % survived and left the veterinary clinic. The SOFA score was computed for each dog every 24 hours for the first 3 days of ICU stay, starting on the day of admission. A statistically significant correlation between SOFA score and death or survival was found. Most of the dogs showing an increase of the SOFA score in the first 3 days of hospitalization died, whereas the dogs with a decrease of the score survived. These results suggest that the SOFA score system could be considered a useful indicator of prognosis in ICUs hospitalized dogs.

  2. Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy

    PubMed Central

    Sung, SooYoon; Park, Eun Young; Kay, Chul Seung

    2017-01-01

    Purpose The neutrophil-lymphocyte ratio (NLR) has been suggested as an inflammation-related factor, but also as an indicator of systemic anti-tumor immunity. We aimed to evaluate the prognostic value of the NLR and to propose a proper cut-off value in patients with locally advanced rectal cancer who received preoperative chemoradiation (CRT) followed by curative total mesorectal excision (TME). Methods A total of 110 rectal cancer patients with clinical T3-4 or node-positive disease were retrospectively analyzed. The NLR value before preoperative CRT (pre-CRT NLR) and the NLR value between preoperative CRT and surgery (post-CRT NLR) were obtained. Using a maximally selected log-rank test, cut-off values were determined as 1.75 for the pre-CRT NLR and 5.14 for the post-CRT NLR. Results Patients were grouped as follows: group A, pre-CRT NLR ≤ 1.75 and post-CRT NLR ≤ 5.14 (n = 29); group B, pre-CRT NLR > 1.75 and post-CRT NLR ≤ 5.14, or pre-CRT NLR ≤ 1.75 and post-CRT NLR > 5.14 (n = 61); group C, pre-CRT NLR > 1.75 and post-CRT NLR > 5.14 (n = 20). The median follow-up time was 31.1 months. The 3-year disease-free survival (DFS) and overall survival (OS) rates showed significant differences between the NLR groups (3-year DFS rate: 92.7% vs. 73.0% vs. 47.3%, for group A, B, and C, respectively, p = 0.018; 3-year OS rate: 96.0% vs. 85.5% vs. 59.8%, p = 0.034). Multivariate analysis revealed that the NLR was an independent prognostic factor for DFS (p = 0.028). Conclusion Both the pre-CRT NLR and the post-CRT NLR have a predictive value for the prognosis of patients with locally advanced rectal cancer treated with preoperative CRT followed by curative TME and adjuvant chemotherapy. A persistently elevated post-CRT NLR may be an indicator of an increased risk of distant metastasis. PMID:28291841

  3. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  4. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  5. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM:AVS) and dry weight- normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  6. Implementing the Effects of Changing Landscape by the Recent Bark Beetle Infestation on Snow Accumulation and Ablation to More Accurately Predict Stream Flow in the Upper Little Laramie River, Wyoming watershed.

    NASA Astrophysics Data System (ADS)

    Heward, J.; Ohara, N.

    2014-12-01

    In many alpine regions, especially in the western United States, the snow pack is the cause of the peak discharge and most of the annual flow. A distributed snow melt model with a point-scale snow melt theory is used to estimate the timing and intensity of both snow accumulation and ablation. The type and distribution of vegetation across a watershed influences timing and intensity of snow melt processes. Efforts are being made to understand how a changing landscape will ultimately affect stream flow in a mountainous environment. This study includes an analysis of the effects of the recent bark beetle infestation, using leaf area index (LAI) data acquired from MODIS data sets. These changes were incorporated into the snow model to more accurately predict snow melt timing and intensity. It was observed through the primary model implementation that snowmelt was intensified by the LAI reduction. The radiation change and turbulent flux effects were separately quantified by the vegetation parameterization in the snow model. This distributed snow model will be used to more accurately predict stream flow in the Upper Little Laramie River, Wyoming watershed.

  7. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  8. Accurate sperm morphology assessment predicts sperm function.

    PubMed

    Abu Hassan Abu, D; Franken, D R; Hoffman, B; Henkel, R

    2012-05-01

    Sperm morphology has been associated with in vitro as well as in vivo fertilisation. The study aimed to evaluate the possible relation between the percentage of spermatozoa with normal morphology and the following sperm functional assays: (i) zona-induced acrosome reaction (ZIAR); (ii) DNA integrity; (iii) chromatin condensation; (iv) sperm apoptosis; and (v) fertilisation rates. Regression analysis was employed to calculate the association between morphology and different functional tests. Normal sperm morphology correlated significantly with the percentages of live acrosome-reacted spermatozoa in the ZIAR (r = 0.518; P < 0.0001; n = 92), DNA integrity (r = -0.515; P = 0.0018; n = 34), CMA(3) -positive spermatozoa (r = -0.745; P < 0.0001; n = 92), sperm apoptosis (r = -0.395; P = 0.0206; n = 34) and necrosis (r = -0.545; P = 0.0009; n = 34). Negative correlations existed between for the acrosome reaction, and DNA integrity, while negative associations were recorded with the percentages of CMA(3) -positive spermatozoa, apoptotic and necrotic spermatozoa. Sperm morphology is related to sperm dysfunction such as poor chromatin condensation, acrosome reaction and DNA integrity. Negative and significant correlations existed between normal sperm morphology and chromatin condensation, the percentage of spermatozoa with abnormal DNA and spermatozoa with apoptotic activity. The authors do not regard sperm morphology as the only test for the diagnosis of male fertility, but sperm morphology can serve as a valuable indicator of underlying dysfunction.

  9. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    NASA Astrophysics Data System (ADS)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  10. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum.

    PubMed

    Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta

    2002-07-03

    Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.

  11. Prediction of Limb Salvage after Therapeutic Angiogenesis by Autologous Bone Marrow Cell Implantation in Patients with Critical Limb Ischemia

    PubMed Central

    Tara, Shuhei; Miyamoto, Masaaki; Takagi, Gen; Fukushima, Yoshimitsu; Kirinoki-ichikawa, Sonoko; Takano, Hitoshi; Takagi, Ikuyo; Mizuno, Hiroshi; Yasutake, Masahiro; Kumita, Shinichiro; Mizuno, Kyoichi

    2011-01-01

    Purpose: Despite advances in therapeutic angiogenesis by bone marrow cell implantation (BMCI), limb amputation remains a major unfavorable outcome in patients with critical limb ischemia (CLI). We sought to identify predictor(s) of limb salvage in CLI patients who received BMCI. Materials and Methods: Nineteen patients with CLI who treated by BMCI were divided into two groups; four patients with above-the-ankle amputation by 12 weeks after BMCI (amputation group) and the remaining 15 patients without (salvage group). We performed several blood-flow examinations before BMCI. Ankle-brachial index (ABI) was measured with the standard method. Transcutaneous oxygen tension (TcPO2) was measured at the dorsum of the foot, in the absence (baseline) and presence (maximum TcPO2) of oxygen inhalation. 99mtechnetium-tetrofosmin (99mTc-TF) perfusion index was determined at the foot and lower leg as the ratio of brain. Results: Maximum TcPO2 (p = 0.031) and 99mTc-TF perfusion index in the foot (p = 0.0068) was significantly higher in the salvage group than in the amputation group. Receiver operating characteristic (ROC) curve analysis identified maximum TcPO2 and 99mTc-TF perfusion index in the foot as having high predictive accuracy for limb salvage. Conclusion: Maximum TcPO2 and 99mTc-TF perfusion index in the foot are promising predictors of limb salvage after BMCI in CLI. PMID:23555423

  12. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  13. UTILIZATION OF A PBPK MODEL TO PREDICT THE DISTRIBUTION OF 2, 3, 7-8 TETRACHLORODIBENZO-P-DIOXIN (TCDD) IN HUMANS DURING CRITICAL WINDOWS OF DEVELOPMENT

    EPA Science Inventory

    Utilization of A PBPK model to predict the distribution of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in humans during critical windows of development.
    C Emond1, MJ DeVito2 and LS Birnbaum2
    1National Research Council, US EPA, ORD, NHEERL, (ETD, PK), RTP, NC, 27711, USA 2 US...

  14. Gradient liquid chromatographic retention time prediction for suspect screening applications: A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods.

    PubMed

    Barron, Leon P; McEneff, Gillian L

    2016-01-15

    For the first time, the performance of a generalised artificial neural network (ANN) approach for the prediction of 2492 chromatographic retention times (tR) is presented for a total of 1117 chemically diverse compounds present in a range of complex matrices and across 10 gradient reversed-phase liquid chromatography-(high resolution) mass spectrometry methods. Probabilistic, generalised regression, radial basis function as well as 2- and 3-layer multilayer perceptron-type neural networks were investigated to determine the most robust and accurate model for this purpose. Multi-layer perceptrons most frequently yielded the best correlations in 8 out of 10 methods. Averaged correlations of predicted versus measured tR across all methods were R(2)=0.918, 0.924 and 0.898 for the training, verification and test sets respectively. Predictions of blind test compounds (n=8-84 cases) resulted in an average absolute accuracy of 1.02±0.54min for all methods. Within this variation, absolute accuracy was observed to marginally improve for shorter runtimes, but was found to be relatively consistent with respect to analyte retention ranges (~5%). Finally, optimised and replicated network dependency on molecular descriptor data is presented and critically discussed across all methods. Overall, ANNs were considered especially suitable for suspects screening applications and could potentially be utilised in bracketed-type analyses in combination with high resolution mass spectrometry.

  15. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom.

    PubMed

    Harrison, David A; Griggs, Kathryn A; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E; Hutchinson, Peter J A; Menon, David K; Rowan, Kathryn M

    2015-10-01

    This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT "Lab" model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research.

  16. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom

    PubMed Central

    Griggs, Kathryn A.; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E.; Hutchinson, Peter J. A.; Menon, David K.; Rowan, Kathryn M.

    2015-01-01

    Abstract This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT “Lab” model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research. PMID:25898072

  17. Blind protein structure prediction using accelerated free-energy simulations

    PubMed Central

    Perez, Alberto; Morrone, Joseph A.; Brini, Emiliano; MacCallum, Justin L.; Dill, Ken A.

    2016-01-01

    We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition. PMID:27847872

  18. Prediction of serum IgG concentration by indirect techniques with adjustment for age and clinical and laboratory covariates in critically ill newborn calves.

    PubMed

    Fecteau, Gilles; Arsenault, Julie; Paré, Julie; Van Metre, David C; Holmberg, Charles A; Smith, Bradford P

    2013-04-01

    The objective of this study was to develop prediction models for the serum IgG concentration in critically ill calves based on indirect assays and to assess if the predictive ability of the models could be improved by inclusion of age, clinical covariates, and/or laboratory covariates. Seventy-eight critically ill calves between 1 and 13 days old were selected from 1 farm. Statistical models to predict IgG concentration from the results of the radial immunodiffusion test, the gold standard, were built as a function of indirect assays of serum and plasma protein concentrations, zinc sulfate (ZnSO4) turbidity and transmittance, and serum γ-glutamyl transferase (GGT) activity. For each assay 4 models were built: without covariates, with age, with age and clinical covariates (infection and dehydration status), and with age and laboratory covariates (fibrinogen concentration and packed cell volume). For the protein models, dehydration status (clinical model) and fibrinogen concentration (laboratory model) were selected for inclusion owing to their statistical significance. These variables increased the coefficient of determination (R (2) ) of the models by ≥ 7% but did not significantly improve the sensitivity or specificity of the models to predict passive transfer with a cutoff IgG concentration of 1000 mg/dL. For the GGT assay, including age as a covariate increased the R (2) of the model by 3%. For the ZnSO4 turbidity test, none of the covariates were statistically significant. Overall, the R (2) of the models ranged from 34% to 62%. This study has provided insight into the importance of adjusting for covariates when using indirect assays to predict IgG concentration in critically ill calves. Results also indicate that ZnSO4 transmittance and turbidity assays could be used advantageously in a field setting.

  19. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  20. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  1. Test of phi(sup 2) model predictions near the (sup 3)He liquid-gas critical point

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Zhong, F.; Hahn, I.

    2000-01-01

    NASA is supporting the development of an experiment called MISTE (Microgravity Scaling Theory Experiment) for future International Space Station mission. The main objective of this flight experiment is to perform in-situ PVT, heat capacity at constant volume, C(sub v) and chi(sub tau), measurements in the asymptotic region near the (sup 3)He liquid-gas critical point.

  2. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    SciTech Connect

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T

    2015-06-15

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  3. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  4. A new and accurate continuum description of moving fronts

    NASA Astrophysics Data System (ADS)

    Johnston, S. T.; Baker, R. E.; Simpson, M. J.

    2017-03-01

    Processes that involve moving fronts of populations are prevalent in ecology and cell biology. A common approach to describe these processes is a lattice-based random walk model, which can include mechanisms such as crowding, birth, death, movement and agent–agent adhesion. However, these models are generally analytically intractable and it is computationally expensive to perform sufficiently many realisations of the model to obtain an estimate of average behaviour that is not dominated by random fluctuations. To avoid these issues, both mean-field (MF) and corrected mean-field (CMF) continuum descriptions of random walk models have been proposed. However, both continuum descriptions are inaccurate outside of limited parameter regimes, and CMF descriptions cannot be employed to describe moving fronts. Here we present an alternative description in terms of the dynamics of groups of contiguous occupied lattice sites and contiguous vacant lattice sites. Our description provides an accurate prediction of the average random walk behaviour in all parameter regimes. Critically, our description accurately predicts the persistence or extinction of the population in situations where previous continuum descriptions predict the opposite outcome. Furthermore, unlike traditional MF models, our approach provides information about the spatial clustering within the population and, subsequently, the moving front.

  5. Modified Augmented Renal Clearance Score Predicts Rapid Piperacillin and Tazobactam Clearance in Critically Ill Surgery and Trauma Patients

    DTIC Science & Technology

    2014-04-24

    unit (ICU) patients re-mains high despite numerous clinical and technologic advances supporting the care of critically ill patients. Sepsis continues...From 83 subjects in both studies, 13 met the criteria for inclusion. The subjects varied in their mechanisms of injury/ illness, indication for...Characteristics of Study Subjects Receiving Piperacillin/Tazobactam Included in This Study Subject Age, y Sex Mechanism Indication Dose* eGFR** SOFA† APACHE II

  6. Fluconazole dosing predictions in critically-ill patients receiving prolonged intermittent renal replacement therapy: a Monte Carlo simulation approach.

    PubMed

    Gharibian, Katherine N; Mueller, Bruce A

    2016-07-01

    Fluconazole is a renally-eliminated antifungal commonly used to treat Candida species infections. In critically-ill patients receiving prolonged intermittent renal replacement therapy (PIRRT), limited pharmacokinetic (PK) data are available to guide fluconazole dosing. We used previously-published fluconazole clearance data and PK data of critically-ill patients with acute kidney injury to develop a PK model with the goal of determining a therapeutic dosing regimen for critically-ill patients receiving PIRRT. Monte Carlo simulations were performed to create a virtual cohort of patients receiving different fluconazole dosing regimens. Plasma drug concentration-time profiles were evaluated on the probability of attaining a mean 24-hour area under the drug concentration-time curve to minimum inhibitory concentration ratio (AUC24h : MIC) of 100 during the initial 48 hours of antifungal therapy. At the susceptibility breakpoint of Candida albicans (2 mg/L), 93 - 96% of simulated subjects receiving PIRRT attained the pharmacodynamic target with a fluconazole 800-mg loading dose plus 400 mg twice daily (q12h or pre and post PIRRT) regimen. Monte Carlo simulations of a PK model of PIRRT provided a basis for the development of an informed fluconazole dosing recommendation when PK data was limited. This finding should be validated in the clinical setting.

  7. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  8. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  9. Pressure induced self-doping and dependence of critical temperature in stoichiometry YBa2Cu3O6.95 predicted by first-principle and BVS calculations

    NASA Astrophysics Data System (ADS)

    Gao, Peifeng; Zhang, Rui; Wang, Xingzhe

    2017-03-01

    This paper deals with the pressure effect on self-doping and critical temperature in optimum oxygen stoichiometry YBa2Cu3O6.95 of high temperature superconductor (HTS) based on a numerical study combined the first-principle with bond valence sum (BVS) calculations. The microscopic electronic properties and equilibrium ionic position configurations in the superconductor under external pressure are firstly calculated using the first-principle method. The results show that the apex oxygen in the cuprate superconductor shifts towards CuO2 plane due to pressure effect, and the minimum buckling angle of CuO2 plane is correlated with the maximum critical temperature. A BVS formalism is then utilized for evaluating the valences of all ions in the superconductor on the basis of the electronic and ionic properties and the hole concentration in both CuO2 plane and Cu-O chain are deduced. It demonstrates that the pressure-induced charge redistribution leads to a self-doping process of the hole-transfer into CuO2 plane from both Cu-O chain and Y site in the cuprate superconductor, which is the dominant mechanism of pressure effect on the superconductive properties. In order to quantitatively predict critical temperature profile of YBa2Cu3O6.95 under pressure, a modified formula describing pressure-induced charge transfer taking into account pressure dependence of the optimum hole concentration is developed. The predicted results exhibit good agreements with the experimental data in the literature, and the model parameters on the critical characteristics of the superconductor are discussed in details.

  10. Critical Overview of the Risk Scoring Systems to Predict Non-Responsiveness to Intravenous Immunoglobulin in Kawasaki Syndrome.

    PubMed

    Rigante, Donato; Andreozzi, Laura; Fastiggi, Michele; Bracci, Benedetta; Natale, Marco Francesco; Esposito, Susanna

    2016-02-24

    Kawasaki syndrome (KS) is the most relevant cause of heart disease in children living in developed countries. Intravenous immunoglobulin (IVIG) has a preventive function in the formation of coronary artery abnormalities and a poor strictly-curative action in established coronary damage. More than two decades ago, the Harada score was set to assess which children with KS should be subject to administration of IVIG, evaluating retrospectively a large cohort of patients with regard to age, sex and laboratory data. Nowadays, high dose IVIG is administered to all children with a confirmed diagnosis of KS, but a tool for predicting non-responsiveness to the initial infusion of IVIG has not been found. The prediction of IVIG resistance is a crucial issue, as recognising these high-risk patients should consent the administration of an intensified initial treatment in combination with IVIG in order to prevent coronary injuries. Few reports have focused on factors, referring to both clinical parameters and laboratory data at the onset of KS, in order to predict which patients might be IVIG non-responsive. We have analysed three different risk scores which were formulated to predict IVIG resistance in Japanese children with typical KS, but their application in non-Japanese patients or in those with incomplete and atypical patterns of the disease has been studied in a fragmentary way. Overall, our analysis showed that early and definite ascertainment of likely IVIG non-responders who require additional therapies reducing the development of coronary artery involvement in children with KS is still a challenge.

  11. Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease 'driver' mutations.

    PubMed

    Villagrán, Martha Y Suárez; Miller, John H

    2015-08-27

    We report on a new technique, computational DNA hole spectroscopy, which creates spectra of electron hole probabilities vs. nucleotide position. A hole is a site of positive charge created when an electron is removed. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of mitochondrial DNA reveal a correlation between L-strand hole spectrum peaks and spikes in the human mutation spectrum. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with disease-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential disease 'driver' mutations. Such integration of DNA hole and variance spectra could ultimately prove invaluable for pinpointing critical regions of the vast non-protein-coding genome. An observed asymmetry in correlations, between the spectrum of human mtDNA variations and the L- and H-strand hole spectra, is attributed to asymmetric DNA replication processes that occur for the leading and lagging strands.

  12. Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease ‘driver’ mutations

    PubMed Central

    Suárez, Martha Y.; Villagrán; Miller, John H.

    2015-01-01

    We report on a new technique, computational DNA hole spectroscopy, which creates spectra of electron hole probabilities vs. nucleotide position. A hole is a site of positive charge created when an electron is removed. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of mitochondrial DNA reveal a correlation between L-strand hole spectrum peaks and spikes in the human mutation spectrum. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with disease-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential disease ‘driver’ mutations. Such integration of DNA hole and variance spectra could ultimately prove invaluable for pinpointing critical regions of the vast non-protein-coding genome. An observed asymmetry in correlations, between the spectrum of human mtDNA variations and the L- and H-strand hole spectra, is attributed to asymmetric DNA replication processes that occur for the leading and lagging strands. PMID:26310834

  13. Predicting the critical heat flux in concentric-tube open thermosiphon: a method based on support vector machine optimized by chaotic particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Cai, Jiejin

    2012-08-01

    This study presents a method based on support vector machine (SVM) optimized by chaotic particle swarm optimization algorithm (CPSO) for the prediction of the critical heat flux (CHF) in concentric-tube open thermosiphon. In this process, the parameters C, ɛ and δ2 of SVM have been determined by the CPSO. As for a comparision, the traditional back propagation neural network (BPNN), radial basis function neural network (RBFNN), general regression neural network (GRNN) are also used to predict the CHF for the same experimental results under a variety of operating conditions. The MER and RMSE of SVM-CPSO model are about 45% of the BPNN model, about 60% of the RBFNN model, and about 80% of GRNN model. The simulation results demonstrate that the SVM-CPSO method can get better accuracy.

  14. A comparison of equilibrium partitioning and critical body residue approaches for predicting toxicity of sediment-associated fluoranthene to freshwater amphipods

    SciTech Connect

    Driscoll, S.K.; Landrum, P.F.

    1997-10-01

    Equilibrium partitioning (EqP) theory predicts that the effects of organic compounds in sediments can be assessed by comparison of organic carbon-normalized sediment concentrations and estimated pore-water concentrations to effects determined in water-only exposures. A complementary approach, the critical body residue (CBR) theory, examines actual body burdens in relation to toxic effects. Critical body residue theory predicts that the narcotic effects of nonpolar compounds should be essentially constant for similar organisms, and narcosis should be observed at body burdens of 2 to 8 {micro}mol/g tissue. This study compares these two approaches for predicting toxicity of the polycyclic aromatic hydrocarbon (PAH) fluoranthene. The freshwater amphipods Hyalella azteca and Diporeia spp. were exposed for up to 30 d to sediment spiked with radiolabeled fluoranthene at concentrations of 0.1 (trace) to 3.940 nmol/g dry weight (= 346 {micro}mol/g organic carbon). Mean survival of Diporeia was generally high (>70%) and not significantly different from that of control animals. This result agrees with EqP predictions, because little mortality was observed for Diporeia in 10-d water-only exposures to fluoranthene in previous studies. After 10-d exposures, mortality of H. azteca was not significantly different from that of controls, even though measured interstitial water concentrations exceeded the previously determined 10-d water-only median lethal concentration (LC50). Equilibrium partitioning overpredicted fluoranthene sediment toxicity in this species. More mortality was observed for H. azteca at later time points, and a 16-d LC50 of 3.550 nmol/g dry weight sediment (291 {micro}mol/g organic carbon) was determined. A body burden of 1.10 {micro}mol fluoranthene-equivalents/g wet weight in H. azteca was associated with 50% mortality after 16-d exposures. Body burdens as high as 5.9 {micro}mol/g wet weight resulted in little mortality in Diporeia.

  15. The use of mathematical models to predict beach behavior for U.S. coastal engineering: A critical review

    USGS Publications Warehouse

    Thieler, E.R.; Pilkey, O.H.; Young, R.S.; Bush, D.M.; Chai, F.

    2000-01-01

    A number of assumed empirical relationships (e.g., the Bruun Rule, the equilibrium shoreface profile, longshore transport rate equation, beach length: durability relationship, and the renourishment factor) and deterministic numerical models (e.g., GENESIS, SBEACH) have become important tools for investigating coastal processes and for coastal engineering design in the U.S. They are also used as the basis for making public policy decisions, such as the feasibility of nourishing recreational beaches. A review of the foundations of these relationships and models, however, suggests that they are inadequate for the tasks for which they are used. Many of the assumptions used in analytical and numerical models are not valid in the context of modern oceanographic and geologic principles. We believe the models are oversimplifications of complex systems that are poorly understood. There are several reasons for this, including: (1) poor assumptions and important omissions in model formulation; (2) the use of relationships of questionable validity to predict the morphologic response to physical forcing; (3) the lack of hindsighting and objective evaluation of beach behavior predictions for engineering projects; (4) the incorrect use of model calibration and verification as assertions of model veracity; and (5) the fundamental inability to predict coastal evolution quantitatively at the engineering and planning time and space scales our society assumes and demands. It is essential that coastal geologists, beach designers and coastal modelers understand these model limitations. Each important model assumption must be examined in isolation; incorporating them into a model does not improve their validity. It is our belief that the models reviewed here should not be relied on as a design tool until they have been substantially modified and proven in real-world situations. The 'solution,' however, is not to increase the complexity of a model by increasing the number of variables

  16. Understanding and predicting the impact of critical dissolution variables for nifedipine immediate release capsules by multivariate data analysis.

    PubMed

    Mercuri, A; Pagliari, M; Baxevanis, F; Fares, R; Fotaki, N

    2017-02-25

    In this study the selection of in vivo predictive in vitro dissolution experimental set-ups using a multivariate analysis approach, in line with the Quality by Design (QbD) principles, is explored. The dissolution variables selected using a design of experiments (DoE) were the dissolution apparatus [USP1 apparatus (basket) and USP2 apparatus (paddle)], the rotational speed of the basket/or paddle, the operator conditions (dissolution apparatus brand and operator), the volume, the pH, and the ethanol content of the dissolution medium. The dissolution profiles of two nifedipine capsules (poorly soluble compound), under conditions mimicking the intake of the capsules with i. water, ii. orange juice and iii. an alcoholic drink (orange juice and ethanol) were analysed using multiple linear regression (MLR). Optimised dissolution set-ups, generated based on the mathematical model obtained via MLR, were used to build predicted in vitro-in vivo correlations (IVIVC). IVIVC could be achieved using physiologically relevant in vitro conditions mimicking the intake of the capsules with an alcoholic drink (orange juice and ethanol). The multivariate analysis revealed that the concentration of ethanol used in the in vitro dissolution experiments (47% v/v) can be lowered to less than 20% v/v, reflecting recently found physiological conditions.

  17. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  18. Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Multiple scoring systems have been developed for both the intensive care unit (ICU) and the emergency department (ED) to risk stratify patients and predict mortality. However, it remains unclear whether the additional data needed to compute ICU scores improves mortality prediction for critically ill patients compared to the simpler ED scores. Methods We studied a prospective observational cohort of 227 critically ill patients admitted to the ICU directly from the ED at an academic, tertiary care medical center. We compared Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE III, Simplified Acute Physiology Score (SAPS) II, Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), Prince of Wales Emergency Department Score (PEDS), and a pre-hospital critical illness prediction score developed by Seymour et al. (JAMA 2010, 304(7):747–754). The primary endpoint was 60-day mortality. We compared the receiver operating characteristic (ROC) curves of the different scores and their calibration using the Hosmer-Lemeshow goodness-of-fit test and visual assessment. Results The ICU scores outperformed the ED scores with higher area under the curve (AUC) values (p = 0.01). There were no differences in discrimination among the ED-based scoring systems (AUC 0.698 to 0.742; p = 0.45) or among the ICU-based scoring systems (AUC 0.779 to 0.799; p = 0.60). With the exception of the Seymour score, the ED-based scoring systems did not discriminate as well as the best-performing ICU-based scoring system, APACHE III (p = 0.005 to 0.01 for comparison of ED scores to APACHE III). The Seymour score had a superior AUC to other ED scores and, despite a lower AUC than all the ICU scores, was not significantly different than APACHE III (p = 0.09). When data from the first 24 h in the ICU was used to calculate the ED scores, the AUC for the ED scores improved numerically, but this improvement was not statistically significant

  19. A novel method for predicting critical flashover (CFO) voltages insulation strength of multiple dielectrics on distribution overhead lines

    SciTech Connect

    Shwehdi, M.H.; Shahzad, F.

    1996-12-31

    Electric utilities are striving to improve the appearance of distribution lines, apply different combinations of insulating components to establish the necessary insulation for such lines, by the use of new insulators and simultaneously reduce lightning outages. The impulse critical flashover (CFO) voltages of many overhead line insulators are determined for single and multiple (porcelain, fiberglass, polymers and wood). Laboratory investigation and studies relating to the evaluation of CFO values of distribution lines for multiple dielectrics were reported. Data used by the industry for transmission lines are not fully applicable to estimate CFO`s for distribution lines. Many engineers concerned with the design or operation of high voltage transmission lines have devised methods to estimate the performance of lightning impulse. There is at the present time no such method available on estimating insulation strengths of multiple dielectrics of distribution lines subjected to impulse CFO. This paper presents a method of estimating the CFO insulation strengths of two and three dielectric combinations used on distribution overhead lines using the developed Extended Multi Curves (EMC). The proper use and evaluation of the insulation level by this novel method has a major influence on the design and cost of distribution line construction, application, also improving the performance of specific line designs.

  20. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  1. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots

    PubMed Central

    Hajdin, Christine E.; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W.; Mathews, David H.; Weeks, Kevin M.

    2013-01-01

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified. PMID:23503844

  2. The Predictive Safety Testing Consortium: A synthesis of the goals, challenges and accomplishments of the Critical Path.

    PubMed

    Goodsaid, Federico M; Frueh, Felix W; Mattes, William

    2007-01-01

    The qualification of biomarkers of drug safety requires data on many compounds and nonclinical and clinical studies. The cost and effort associated with these qualifications cannot be easily covered by a single pharmaceutical company. Intellectual property associated with safety biomarkers is also held by many different companies. Consortia between different pharmaceutical companies can overcome cost and intellectual property hurdles to biomarker qualification. The Predictive Safety Testing Consortium (PSTC) is a collaborative effort between 16 different pharmaceutical companies to generate data supporting biomarker qualification. This Consortium is coordinated through the C-Path Institute, and currently has five biomarker qualification working groups engaged in this collaboration: nephrotoxicity, hepatotoxicity, vascular injury, myopathy, and non-genotoxic carcinogenicity. These working groups are aided by a data management team and a translational strategy team. Qualification studies of promising biomarkers are already progressing in several of the working groups, and results in the nephrotoxicity working group warranted a data submission to the FDA and EMEA for regulatory qualification of new nephrotoxicity biomarkers.:

  3. Blind testing cross-linking/mass spectrometry under the auspices of the 11th critical assessment of methods of protein structure prediction (CASP11)

    PubMed Central

    2016-01-01

    Determining the structure of a protein by any method requires various contributions from experimental and computational sides. In a recent study, high-density cross-linking/mass spectrometry (HD-CLMS) data in combination with ab initio structure prediction determined the structure of human serum albumin (HSA) domains, with an RMSD to X-ray structure of up to 2.5 Å, or 3.4 Å in the context of blood serum. This paper reports the blind test on the readiness of this technology through the help of Critical Assessment of protein Structure Prediction (CASP). We identified between 201-381 unique residue pairs at an estimated 5% FDR (at link level albeit with missing site assignment precision evaluation), for four target proteins. HD-CLMS proved reliable once crystal structures were released. However, improvements in structure prediction using cross-link data were slight. We identified two reasons for this. Spread of cross-links along the protein sequence and the tightness of the spatial constraints must be improved. However, for the selected targets even ideal contact data derived from crystal structures did not allow modellers to arrive at the observed structure. Consequently, the progress of HD-CLMS in conjunction with computational modeling methods as a structure determination method, depends on advances on both arms of this hybrid approach. PMID:28317030

  4. Increased Pre-operative Pulse Pressure Predicts Procedural Complications and Mortality in Patients Undergoing Tibial Interventions for Critical Limb Ischemia

    PubMed Central

    Darling, Jeremy D.; Lee, Vanessa; Schermerhorn, Marc L.; Guzman, Raul J.

    2015-01-01

    Introduction Pulse pressure is a non-invasive measure of arterial stiffness. Elevated pulse pressure is associated with an increased risk of cardiovascular events and death. The effects of pulse pressure on outcomes after endovascular interventions for critical limb ischemia (CLI), however, are unknown. We thus evaluated whether increased pre-operative pulse pressure was associated with adverse outcomes and mortality in patients undergoing endovascular tibial artery intervention. Methods All patients undergoing endovascular tibial intervention for CLI at a single institution from 2004 to 2014 were included in this study. Pre-operative pulse pressure was derived from measurements obtained in the holding area prior to the procedure. Patients were divided into 2 groups based on pulse pressure, < 80 or ≥ 80. Patient demographics and co-morbidities were documented, and outcomes including procedural complications, repeat intervention, amputation, and mortality were recorded. Multivariable logistic regression was utilized to account for patient demographics and comorbidities. Results Of 371 patients, 186 patients had a pre-operative pulse pressure <80 and 185 had a pre-operative pulse pressure ≥80. No significant differences in patient demographics or comorbidities were identified; however there was a trend toward older age in patients with elevated pulse pressure (70 vs. 72, P = 0.07). On univariate analysis, procedural complications (21% vs. 13%, P = 0.02), reinterventions (26% vs. 17%, P < 0.01), and restenosis (32% vs. 23%, P = 0.03) were more common among patients with pulse pressure ≥ 80. Procedural complications remained significant on multivariate analysis (OR 1.8, 95% CI 1.0-3.1, P = 0.04). There was no difference in 30-day mortality; however increased mortality was seen at 5 years of follow-up (OR: 1.6, 95% CI: 1.0-2.5, P = 0.04) following multivariable analysis. Conclusions Increased pre-operative pulse pressure is associated with procedural complications

  5. An improved shape shifting method of critical area extraction

    NASA Astrophysics Data System (ADS)

    Jiaojiao, Zhu; Xiaohua, Luo; Lisheng, Chen; Yi, Ye; Xiaolang, Yan

    2014-02-01

    As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.

  6. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.

    PubMed

    Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert

    2017-01-10

    The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.

  7. Superiority of Transcutaneous Oxygen Tension Measurements in Predicting Limb Salvage After Below-the-Knee Angioplasty: A Prospective Trial in Diabetic Patients With Critical Limb Ischemia

    SciTech Connect

    Redlich, Ulf; Xiong, Yan Y.; Pech, Maciej; Tautenhahn, Joerg; Halloul, Zuhir; Lobmann, Ralf; Adolf, Daniela; Ricke, Jens; Dudeck, Oliver

    2011-04-15

    Purpose: To assess postprocedural angiograms, the ankle-brachial index (ABI), and transcutaneous oxygen tension (TcPO{sub 2}) to predict outcome after infrageniculate angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI) scheduled for amputation. Materials and Methods: PTA was performed in 28 diabetic patients with CLI confined to infrapopliteal vessels. We recorded patency of crural vessels, including the vascular supply of the foot as well as the ABI and TcPO{sub 2} of the foot. Results: Technical success rate was 92.9% (n = 26), and limb-salvage rate at 12 months was 60.7% (n = 17). The number of patent straight vessels above and below the level of the malleoli increased significantly in patients avoiding amputation. Amputation was unnecessary in 88.2% (n = 15) patients when patency of at least one tibial artery was achieved. In 72.7% (n = 8) of patients, patency of the peroneal artery alone was not sufficient for limb salvage. ABI was of no predictive value for limb salvage. TcPO{sub 2} values increased significantly only in patients not requiring amputation (P = 0.015). In patients with only one tibial artery supplying the foot or only a patent peroneal artery in postprocedural angiograms, TcPO{sub 2} was capable of reliably predicting the outcome. Conclusion: Below-the-knee PTA as an isolated part of therapy was effective to prevent major amputation in more than a half of diabetic patients with CLI. TcPO{sub 2} was a valid predictor for limb salvage, even when angiographic outcome criteria failed.

  8. Obstetric critical care: A prospective analysis of clinical characteristics, predictability, and fetomaternal outcome in a new dedicated obstetric intensive care unit.

    PubMed

    Gupta, Sunanda; Naithani, Udita; Doshi, Vimla; Bhargava, Vaibhav; Vijay, Bhavani S

    2011-03-01

    A 1 year prospective analysis of all critically ill obstetric patients admitted to a newly developed dedicated obstetric intensive care unit (ICU) was done in order to characterize causes of admissions, interventions required, course and foetal maternal outcome. Utilization of mortality probability model II (MPM II) at admission for predicting maternal mortality was also assessed. During this period there were 16,756 deliveries with 79 maternal deaths (maternal mortality rate 4.7/1000 deliveries). There were 24 ICU admissions (ICU utilization ratio 0.14%) with mean age of 25.21±4.075 years and mean gestational age of 36.04±3.862 weeks. Postpartum admissions were significantly higher (83.33% n=20, P<0.05) with more patients presenting with obstetric complications (91.66%, n=22, P<0.01) as compared to medical complications (8.32% n=2). Obstetric haemorrhage (n=15, 62.5%) and haemodynamic instability (n=20, 83.33%) were considered to be significant risk factors for ICU admission (P=0.000). Inotropic support was required in 22 patients (91.66%) while 17 patients (70.83%) required ventilatory support but they did not contribute to risk factors for poor outcome. The mean duration of ventilation (30.17±21.65 h) and ICU stay (39.42±33.70 h) were of significantly longer duration in survivors (P=0.01, P=0.00 respectively) versus non-survivors. The observed mortality (n=10, 41.67%) was significantly higher than MPM II predicted death rate (26.43%, P=0.002). We conclude that obstetric haemorrhage leading to haemodynamic instability remains the leading cause of ICU admission and MPM II scores at admission under predict the maternal mortality.

  9. Scaling for interfacial tensions near critical endpoints.

    PubMed

    Zinn, Shun-Yong; Fisher, Michael E

    2005-01-01

    Parametric scaling representations are obtained and studied for the asymptotic behavior of interfacial tensions in the full neighborhood of a fluid (or Ising-type) critical endpoint, i.e., as a function both of temperature and of density/order parameter or chemical potential/ordering field. Accurate nonclassical critical exponents and reliable estimates for the universal amplitude ratios are included naturally on the basis of the "extended de Gennes-Fisher" local-functional theory. Serious defects in previous scaling treatments are rectified and complete wetting behavior is represented; however, quantitatively small, but unphysical residual nonanalyticities on the wetting side of the critical isotherm are smoothed out "manually." Comparisons with the limited available observations are presented elsewhere but the theory invites new, searching experiments and simulations, e.g., for the vapor-liquid interfacial tension on the two sides of the critical endpoint isotherm for which an amplitude ratio -3.25+/-0.05 is predicted.

  10. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  11. EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Hao; Wu, Li-Ching; Lee, Tzong-Yi; Chen, Shu-Pin; Huang, Hsien-Da; Horng, Jorng-Tzong

    2013-01-01

    The function of a protein is generally related to its subcellular localization. Therefore, knowing its subcellular localization is helpful in understanding its potential functions and roles in biological processes. This work develops a hybrid method for computationally predicting the subcellular localization of eukaryotic protein. The method is called EuLoc and incorporates the Hidden Markov Model (HMM) method, homology search approach and the support vector machines (SVM) method by fusing several new features into Chou's pseudo-amino acid composition. The proposed SVM module overcomes the shortcoming of the homology search approach in predicting the subcellular localization of a protein which only finds low-homologous or non-homologous sequences in a protein subcellular localization annotated database. The proposed HMM modules overcome the shortcoming of SVM in predicting subcellular localizations using few data on protein sequences. Several features of a protein sequence are considered, including the sequence-based features, the biological features derived from PROSITE, NLSdb and Pfam, the post-transcriptional modification features and others. The overall accuracy and location accuracy of EuLoc are 90.5 and 91.2 %, respectively, revealing a better predictive performance than obtained elsewhere. Although the amounts of data of the various subcellular location groups in benchmark dataset differ markedly, the accuracies of 12 subcellular localizations of EuLoc range from 82.5 to 100 %, indicating that this tool is much more balanced than other tools. EuLoc offers a high, balanced predictive power for each subcellular localization. EuLoc is now available on the web at http://euloc.mbc.nctu.edu.tw/.

  12. EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC.

    PubMed

    Chang, Tzu-Hao; Wu, Li-Ching; Lee, Tzong-Yi; Chen, Shu-Pin; Huang, Hsien-Da; Horng, Jorng-Tzong

    2013-01-01

    The function of a protein is generally related to its subcellular localization. Therefore, knowing its subcellular localization is helpful in understanding its potential functions and roles in biological processes. This work develops a hybrid method for computationally predicting the subcellular localization of eukaryotic protein. The method is called EuLoc and incorporates the Hidden Markov Model (HMM) method, homology search approach and the support vector machines (SVM) method by fusing several new features into Chou's pseudo-amino acid composition. The proposed SVM module overcomes the shortcoming of the homology search approach in predicting the subcellular localization of a protein which only finds low-homologous or non-homologous sequences in a protein subcellular localization annotated database. The proposed HMM modules overcome the shortcoming of SVM in predicting subcellular localizations using few data on protein sequences. Several features of a protein sequence are considered, including the sequence-based features, the biological features derived from PROSITE, NLSdb and Pfam, the post-transcriptional modification features and others. The overall accuracy and location accuracy of EuLoc are 90.5 and 91.2 %, respectively, revealing a better predictive performance than obtained elsewhere. Although the amounts of data of the various subcellular location groups in benchmark dataset differ markedly, the accuracies of 12 subcellular localizations of EuLoc range from 82.5 to 100 %, indicating that this tool is much more balanced than other tools. EuLoc offers a high, balanced predictive power for each subcellular localization. EuLoc is now available on the web at http://euloc.mbc.nctu.edu.tw/.

  13. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

    PubMed

    Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A

    2011-10-14

    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

  14. Serial measurement of hFABP and high-sensitivity troponin I post-PCI in STEMI: how fast and accurate can myocardial infarct size and no-reflow be predicted?

    PubMed

    Uitterdijk, André; Sneep, Stefan; van Duin, Richard W B; Krabbendam-Peters, Ilona; Gorsse-Bakker, Charlotte; Duncker, Dirk J; van der Giessen, Willem J; van Beusekom, Heleen M M

    2013-10-01

    The objective of this study was to compare heart-specific fatty acid binding protein (hFABP) and high-sensitivity troponin I (hsTnI) via serial measurements to identify early time points to accurately quantify infarct size and no-reflow in a preclinical swine model of ST-elevated myocardial infarction (STEMI). Myocardial necrosis, usually confirmed by hsTnI or TnT, takes several hours of ischemia before plasma levels rise in the absence of reperfusion. We evaluated the fast marker hFABP compared with hsTnI to estimate infarct size and no-reflow upon reperfused (2 h occlusion) and nonreperfused (8 h occlusion) STEMI in swine. In STEMI (n = 4) and STEMI + reperfusion (n = 8) induced in swine, serial blood samples were taken for hFABP and hsTnI and compared with triphenyl tetrazolium chloride and thioflavin-S staining for infarct size and no-reflow at the time of euthanasia. hFABP increased faster than hsTnI upon occlusion (82 ± 29 vs. 180 ± 73 min, P < 0.05) and increased immediately upon reperfusion while hsTnI release was delayed 16 ± 3 min (P < 0.05). Peak hFABP and hsTnI reperfusion values were reached at 30 ± 5 and 139 ± 21 min, respectively (P < 0.05). Infarct size (containing 84 ± 0.6% no-reflow) correlated well with area under the curve for hFABP (r(2) = 0.92) but less for hsTnI (r(2) = 0.53). At 50 and 60 min reperfusion, hFABP correlated best with infarct size (r(2) = 0.94 and 0.93) and no-reflow (r(2) = 0.96 and 0.94) and showed high sensitivity for myocardial necrosis (2.3 ± 0.6 and 0.4 ± 0.6 g). hFABP rises faster and correlates better with infarct size and no-reflow than hsTnI in STEMI + reperfusion when measured early after reperfusion. The highest sensitivity detecting myocardial necrosis, 0.4 ± 0.6 g at 60 min postreperfusion, provides an accurate and early measurement of infarct size and no-reflow.

  15. Ceramic Matrix Composites (CMC) Life Prediction Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Calomino, Anthony M.; Ellis, John R.; Opila, Elizabeth J.

    1990-01-01

    Advanced launch systems will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion and airframe components. The use of CMC will save weight, increase operating margin, safety and performance, and improve reuse capability. For reusable and single mission use, accurate life prediction is critical to success. The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation.

  16. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal☆

    PubMed Central

    Rekik, Islem; Allassonnière, Stéphanie; Carpenter, Trevor K.; Wardlaw, Joanna M.

    2012-01-01

    Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model

  17. Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance.

    PubMed

    Black, Matthew I; Durant, Jacob; Jones, Andrew M; Vanhatalo, Anni

    2014-01-01

    It has been shown that the critical power (CP) in cycling estimated using a novel 3-min all-out protocol is reliable and closely matches the CP derived from conventional procedures. The purpose of this study was to assess the predictive validity of the all-out test CP estimate. We hypothesised that the all-out test CP would be significantly correlated with 16.1-km road time-trial (TT) performance and more strongly correlated with performance than the gas exchange threshold (GET), respiratory compensation point (RCP) and VO2 max. Ten club-level male cyclists (mean±SD: age 33.8±8.2 y, body mass 73.8±4.3 kg, VO2 max 60±4 ml·kg(-1)·min(-1)) performed a 10-mile road TT, a ramp incremental test to exhaustion, and two 3-min all-out tests, the first of which served as familiarisation. The 16.1-km TT performance (27.1±1.2 min) was significantly correlated with the CP (309±34 W; r = -0.83, P<0.01) and total work done during the all-out test (70.9±6.5 kJ; r = -0.86, P<0.01), the ramp incremental test peak power (433±30 W; r = -0.75, P<0.05) and the RCP (315±29 W; r = -0.68, P<0.05), but not with GET (151±32 W; r = -0.21) or the VO2 max (4.41±0.25 L·min(-1); r = -0.60). These data provide evidence for the predictive validity and practical performance relevance of the 3-min all-out test. The 3-min all-out test CP may represent a useful addition to the battery of tests employed by applied sport physiologists or coaches to track fitness and predict performance in atheletes.

  18. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  19. Critical Combinations of Radiation Dose and Volume Predict Intelligence Quotient and Academic Achievement Scores After Craniospinal Irradiation in Children With Medulloblastoma

    SciTech Connect

    Merchant, Thomas E.; Schreiber, Jane E.; Wu, Shengjie; Lukose, Renin; Xiong, Xiaoping; Gajjar, Amar

    2014-11-01

    Purpose: To prospectively follow children treated with craniospinal irradiation to determine critical combinations of radiation dose and volume that would predict for cognitive effects. Methods and Materials: Between 1996 and 2003, 58 patients (median age 8.14 years, range 3.99-20.11 years) with medulloblastoma received risk-adapted craniospinal irradiation followed by dose-intense chemotherapy and were followed longitudinally with multiple cognitive evaluations (through 5 years after treatment) that included intelligence quotient (estimated intelligence quotient, full-scale, verbal, and performance) and academic achievement (math, reading, spelling) tests. Craniospinal irradiation consisted of 23.4 Gy for average-risk patients (nonmetastatic) and 36-39.6 Gy for high-risk patients (metastatic or residual disease >1.5 cm{sup 2}). The primary site was treated using conformal or intensity modulated radiation therapy using a 2-cm clinical target volume margin. The effect of clinical variables and radiation dose to different brain volumes were modeled to estimate cognitive scores after treatment. Results: A decline with time for all test scores was observed for the entire cohort. Sex, race, and cerebrospinal fluid shunt status had a significant impact on baseline scores. Age and mean radiation dose to specific brain volumes, including the temporal lobes and hippocampi, had a significant impact on longitudinal scores. Dichotomized dose distributions at 25 Gy, 35 Gy, 45 Gy, and 55 Gy were modeled to show the impact of the high-dose volume on longitudinal test scores. The 50% risk of a below-normal cognitive test score was calculated according to mean dose and dose intervals between 25 Gy and 55 Gy at 10-Gy increments according to brain volume and age. Conclusions: The ability to predict cognitive outcomes in children with medulloblastoma using dose-effects models for different brain subvolumes will improve treatment planning, guide intervention, and help

  20. Theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Reatto, L.; Meroni, A.; Parola, A.

    1990-12-01

    The authors discuss a differential approach to the theory of fluids, the hierarchical reference theory, which, above the critical temperature, has been shown to be (i) as accurate as the most widespread theories of liquid state in the high density region and (ii) able to reproduce the renormalization group results in the critical region. In this region it predicts both the universal and the non-universal quantities. The authors have studied the Lennard-Jones fluid in detail but the method can be directly applied to more realistic interactions between molecules. The treatment of temperatures below the critical one presents some additional difficulties due to the presence of the inhomogeneous two-phase region. Preliminary results indicate that the theory gives the coexistence curve with the correct scaling behaviour without any need for an ad hoc Maxwell construction. The extension of the formalism to binary mixtures is under way.

  1. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  2. Ethics and epistemology of accurate prediction in clinical research.

    PubMed

    Hey, Spencer Phillips

    2015-07-01

    All major research ethics policies assert that the ethical review of clinical trial protocols should include a systematic assessment of risks and benefits. But despite this policy, protocols do not typically contain explicit probability statements about the likely risks or benefits involved in the proposed research. In this essay, I articulate a range of ethical and epistemic advantages that explicit forecasting would offer to the health research enterprise. I then consider how some particular confidence levels may come into conflict with the principles of ethical research.

  3. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  4. How accurate is in vitro prediction of carcinogenicity?

    PubMed

    Walmsley, Richard Maurice; Billinton, Nicholas

    2011-03-01

    Positive genetic toxicity data suggest carcinogenic hazard, and this can stop a candidate pharmaceutical reaching the clinic. However, during the last decade, it has become clear that many non-carcinogens produce misleading positive results in one or other of the regulatory genotoxicity assays. These doubtful conclusions cost a lot of time and money, as they trigger additional testing of apparently genotoxic candidates, both in vitro and in animals, to discover whether the suggested hazard is genuine. This in turn means that clinical trials can be put on hold. This review describes the current approaches to the 'misleading positive' problem as well as efforts to reduce the use of animals in genotoxicity assessment. The following issues are then addressed: the application of genotoxicity testing screens earlier in development; the search for new or improved in vitro genotoxicity tests; proposed changes to the International Committee on Harmonisation guidance on genotoxicity testing [S2(R1)]. Together, developments in all these areas offer good prospects of a more rapid and cost-effective way to understand genetic toxicity concerns.

  5. Can Self-Organizing Maps Accurately Predict Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Klose, C. D.

    2012-03-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey’s main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo- z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Δz = zphot - zspec) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods.

  6. Accurate Coordinates and Predicted Position of Navigation Satellites NNSS,

    DTIC Science & Technology

    1980-11-28

    orbital elements of satellites No.s 13 , 14, 12, 19 and 20. The elements of SN-18 were given in Table 2. All these data refer to satellites operating in...December 1975. Table 4 lists transmitted orbital elements of satellites No.s 20, 14, 13 , 12 and 19 observed in January 1976. In Tables 3 and 4, the...equation 0s) - M*) + ( -mhI) (( 13 ) Let the longitude of the node Xw be its longitude at the first transit of the SN through the equator from South to

  7. Accurate Theoretical Predictions of the Properties of Energetic Materials

    DTIC Science & Technology

    2008-09-18

    collisionally induce a decomposition reaction at a liquid surface. (Given the paucity of full reactive potential functions that describe dissociation to...the correct structurally relaxed products, we believe that the diatomic model system at least provides a test of whether dissociation might be...and that the probability that the surface species will undergo a collision that leads to direct excitation of the diatomic above its bond dissociation

  8. Theory of High-TC Superconductivity: Accurate Predictions of TC

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    2012-02-01

    The superconducting transition temperatures of high-TC compounds based on copper, iron, ruthenium and certain organic molecules is discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as TC0, is given by the universal expression kBTC0 = e^2λ/lζ; l is the spacing between interacting charges within the layers, ζ is the distance between interacting layers and λ is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit TC < TC0. For the 31+ optimum compounds tested, the theoretical and experimental TC0 agree statistically to within ± 1.4 K. The elemental high-TC building block comprises two adjacent and spatially separated charge layers; the factor e^2/ζ arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented. * 1. doi:10.1088/0953-8984/23/29/295701

  9. Combining heterogeneous data sources for accurate functional annotation of proteins

    PubMed Central

    2013-01-01

    Combining heterogeneous sources of data is essential for accurate prediction of protein function. The task is complicated by the fact that while sequence-based features can be readily compared across species, most other data are species-specific. In this paper, we present a multi-view extension to GOstruct, a structured-output framework for function annotation of proteins. The extended framework can learn from disparate data sources, with each data source provided to the framework in the form of a kernel. Our empirical results demonstrate that the multi-view framework is able to utilize all available information, yielding better performance than sequence-based models trained across species and models trained from collections of data within a given species. This version of GOstruct participated in the recent Critical Assessment of Functional Annotations (CAFA) challenge; since then we have significantly improved the natural language processing component of the method, which now provides performance that is on par with that provided by sequence information. The GOstruct framework is available for download at http://strut.sourceforge.net. PMID:23514123

  10. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  11. Simple approach to approximate predictions of the vapor-liquid equilibrium curve near the critical point and its application to Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Staśkiewicz, B.; Okrasiński, W.

    2012-04-01

    We propose a simple analytical form of the vapor-liquid equilibrium curve near the critical point for Lennard-Jones fluids. Coexistence densities curves and vapor pressure have been determined using the Van der Waals and Dieterici equation of state. In described method the Bernoulli differential equations, critical exponent theory and some type of Maxwell's criterion have been used. Presented approach has not yet been used to determine analytical form of phase curves as done in this Letter. Lennard-Jones fluids have been considered for analysis. Comparison with experimental data is done. The accuracy of the method is described.

  12. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  13. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  14. Predicting Parental Mediation Behaviors: The Direct and Indirect I