Science.gov

Sample records for accurately predict drug

  1. How accurately can we predict the melting points of drug-like compounds?

    PubMed

    Tetko, Igor V; Sushko, Yurii; Novotarskyi, Sergii; Patiny, Luc; Kondratov, Ivan; Petrenko, Alexander E; Charochkina, Larisa; Asiri, Abdullah M

    2014-12-22

    This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638. PMID:25489863

  2. How Accurately Can We Predict the Melting Points of Drug-like Compounds?

    PubMed Central

    2014-01-01

    This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638. PMID:25489863

  3. RepurposeVS: A Drug Repurposing-Focused Computational Method for Accurate Drug-Target Signature Predictions.

    PubMed

    Issa, Naiem T; Peters, Oakland J; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2015-01-01

    We describe here RepurposeVS for the reliable prediction of drug-target signatures using X-ray protein crystal structures. RepurposeVS is a virtual screening method that incorporates docking, drug-centric and protein-centric 2D/3D fingerprints with a rigorous mathematical normalization procedure to account for the variability in units and provide high-resolution contextual information for drug-target binding. Validity was confirmed by the following: (1) providing the greatest enrichment of known drug binders for multiple protein targets in virtual screening experiments, (2) determining that similarly shaped protein target pockets are predicted to bind drugs of similar 3D shapes when RepurposeVS is applied to 2,335 human protein targets, and (3) determining true biological associations in vitro for mebendazole (MBZ) across many predicted kinase targets for potential cancer repurposing. Since RepurposeVS is a drug repurposing-focused method, benchmarking was conducted on a set of 3,671 FDA approved and experimental drugs rather than the Database of Useful Decoys (DUDE) so as to streamline downstream repurposing experiments. We further apply RepurposeVS to explore the overall potential drug repurposing space for currently approved drugs. RepurposeVS is not computationally intensive and increases performance accuracy, thus serving as an efficient and powerful in silico tool to predict drug-target associations in drug repurposing. PMID:26234515

  4. Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations

    PubMed Central

    Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver

    2014-01-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539

  5. Predict amine solution properties accurately

    SciTech Connect

    Cheng, S.; Meisen, A.; Chakma, A.

    1996-02-01

    Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.

  6. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  7. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  8. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  9. Predicting accurate probabilities with a ranking loss

    PubMed Central

    Menon, Aditya Krishna; Jiang, Xiaoqian J; Vembu, Shankar; Elkan, Charles; Ohno-Machado, Lucila

    2013-01-01

    In many real-world applications of machine learning classifiers, it is essential to predict the probability of an example belonging to a particular class. This paper proposes a simple technique for predicting probabilities based on optimizing a ranking loss, followed by isotonic regression. This semi-parametric technique offers both good ranking and regression performance, and models a richer set of probability distributions than statistical workhorses such as logistic regression. We provide experimental results that show the effectiveness of this technique on real-world applications of probability prediction. PMID:25285328

  10. You Can Accurately Predict Land Acquisition Costs.

    ERIC Educational Resources Information Center

    Garrigan, Richard

    1967-01-01

    Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…

  11. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    PubMed

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  12. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    PubMed Central

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  13. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  14. Mouse models of human AML accurately predict chemotherapy response.

    PubMed

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W

    2009-04-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  15. Prediction of drug clearance in children.

    PubMed

    Foissac, Frantz; Bouazza, Naïm; Valade, Elodie; De Sousa Mendes, Mailys; Fauchet, Floris; Benaboud, Sihem; Hirt, Déborah; Tréluyer, Jean-Marc; Urien, Saïk

    2015-07-01

    The pediatric population is often exposed to drugs without sufficient knowledge about pharmacokinetics. The prediction of accurate clearance values in children, especially in neonates and infants, will improve the rational in dosing decisions. Drug clearances from birth to adulthood were compiled after a systematic review of pharmacokinetic reports. The analysis was performed using NONMEM. Clearance predictions were then evaluated by external validation. Prediction errors were also compared with those obtained from weight-based allometric scaling and physiologically based clearance (PBCL) models. For the analysis, 17 and 15 drugs were used for model building and external validation, respectively. A model based on the adult drug clearance value and taking into account both weight and age was retained. Age-related maturation of clearance reached 90% of the adult value within 1.5 years of life. For children less than 2 years old, allometric scaling alone systematically overestimated clearances. Accounting for age improved the clearance prediction in the 6 months-2 years age group (prediction error < 25%). Predictions obtained from the PBCL approach were close to our results. This analysis established a single equation using the adult clearance value as well as individual age and weight to predict drug clearance in children older than 6 months. PMID:25721251

  16. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  17. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGESBeta

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  18. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  19. Predicting adverse drug events using pharmacological network models.

    PubMed

    Cami, Aurel; Arnold, Alana; Manzi, Shannon; Reis, Ben

    2011-12-21

    Early and accurate identification of adverse drug events (ADEs) is critically important for public health. We have developed a novel approach for predicting ADEs, called predictive pharmacosafety networks (PPNs). PPNs integrate the network structure formed by known drug-ADE relationships with information on specific drugs and adverse events to predict likely unknown ADEs. Rather than waiting for sufficient post-market evidence to accumulate for a given ADE, this predictive approach relies on leveraging existing, contextual drug safety information, thereby having the potential to identify certain ADEs earlier. We constructed a network representation of drug-ADE associations for 809 drugs and 852 ADEs on the basis of a snapshot of a widely used drug safety database from 2005 and supplemented these data with additional pharmacological information. We trained a logistic regression model to predict unknown drug-ADE associations that were not listed in the 2005 snapshot. We evaluated the model's performance by comparing these predictions with the new drug-ADE associations that appeared in a 2010 snapshot of the same drug safety database. The proposed model achieved an AUROC (area under the receiver operating characteristic curve) statistic of 0.87, with a sensitivity of 0.42 given a specificity of 0.95. These findings suggest that predictive network methods can be useful for predicting unknown ADEs. PMID:22190238

  20. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782

  1. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  2. A new generalized correlation for accurate vapor pressure prediction

    NASA Astrophysics Data System (ADS)

    An, Hui; Yang, Wenming

    2012-08-01

    An accurate knowledge of the vapor pressure of organic liquids is very important for the oil and gas processing operations. In combustion modeling, the accuracy of numerical predictions is also highly dependent on the fuel properties such as vapor pressure. In this Letter, a new generalized correlation is proposed based on the Lee-Kesler's method where a fuel dependent parameter 'A' is introduced. The proposed method only requires the input parameters of critical temperature, normal boiling temperature and the acentric factor of the fluid. With this method, vapor pressures have been calculated and compared with the data reported in data compilation for 42 organic liquids over 1366 data points, and the overall average absolute percentage deviation is only 1.95%.

  3. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  4. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter.

    PubMed

    Samsudin, Firdaus; Parker, Joanne L; Sansom, Mark S P; Newstead, Simon; Fowler, Philip W

    2016-02-18

    Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the ?-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  5. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  6. Accurate Prediction of Binding Thermodynamics for DNA on Surfaces

    PubMed Central

    Vainrub, Arnold; Pettitt, B. Montgomery

    2011-01-01

    For DNA mounted on surfaces for microarrays, microbeads and nanoparticles, the nature of the random attachment of oligonucleotide probes to an amorphous surface gives rise to a locally inhomogeneous probe density. These fluctuations of the probe surface density are inherent to all common surface or bead platforms, regardless if they exploit either an attachment of pre-synthesized probes or probes synthesized in situ on the surface. Here, we demonstrate for the first time the crucial role of the probe surface density fluctuations in performance of DNA arrays. We account for the density fluctuations with a disordered two-dimensional surface model and derive the corresponding array hybridization isotherm that includes a counter-ion screened electrostatic repulsion between the assayed DNA and probe array. The calculated melting curves are in excellent agreement with published experimental results for arrays with both pre-synthesized and in-situ synthesized oligonucleotide probes. The approach developed allows one to accurately predict the melting curves of DNA arrays using only the known sequence dependent hybridization enthalpy and entropy in solution and the experimental macroscopic surface density of probes. This opens the way to high precision theoretical design and optimization of probes and primers in widely used DNA array-based high-throughput technologies for gene expression, genotyping, next-generation sequencing, and surface polymerase extension. PMID:21972932

  7. Accurate indel prediction using paired-end short reads

    PubMed Central

    2013-01-01

    Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375

  8. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  9. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  10. GESSE: Predicting Drug Side Effects from Drug-Target Relationships.

    PubMed

    Pérez-Nueno, Violeta I; Souchet, Michel; Karaboga, Arnaud S; Ritchie, David W

    2015-09-28

    The in silico prediction of unwanted side effects (SEs) caused by the promiscuous behavior of drugs and their targets is highly relevant to the pharmaceutical industry. Considerable effort is now being put into computational and experimental screening of several suspected off-target proteins in the hope that SEs might be identified early, before the cost associated with developing a drug candidate rises steeply. Following this need, we present a new method called GESSE to predict potential SEs of drugs from their physicochemical properties (three-dimensional shape plus chemistry) and to target protein data extracted from predicted drug-target relationships. The GESSE approach uses a canonical correlation analysis of the full drug-target and drug-SE matrices, and it then calculates a probability that each drug in the resulting drug-target matrix will have a given SE using a Bayesian discriminant analysis (DA) technique. The performance of GESSE is quantified using retrospective (external database) analysis and literature examples by means of area under the ROC curve analysis, "top hit rates", misclassification rates, and a χ(2) independence test. Overall, the robust and very promising retrospective statistics obtained and the many SE predictions that have experimental corroboration demonstrate that GESSE can successfully predict potential drug-SE profiles of candidate drug compounds from their predicted drug-target relationships. PMID:26251970

  11. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  12. Optimal Drug Prediction from Personal Genomics Profiles

    PubMed Central

    Sheng, Jianting; Li, Fuhai; Wong, Stephen T.C.

    2015-01-01

    Cancer patients often show heterogeneous drug responses such that only a small subset of patients is sensitive to a given anti-cancer drug. With the availability of large-scale genomic profiling via next generation sequencing (NGS), it is now economically feasible to profile the whole transcriptome and genome of individual patients in order to identify their unique genetic mutations and differentially expressed genes, which are believed to be responsible for heterogeneous drug responses. Although subtyping analysis has identified patient subgroups sharing common biomarkers, there is no effective method to predict the drug response of individual patients precisely and reliably. Herein, we propose a novel computational algorithm to predict the drug response of individual patients based on personal genomic profiles, as well as pharmacogenomic and drug sensitivity data. Specifically, more than 600 cancer cell lines (viewed as individual patients) across over 50 types of cancers and their responses to 75 drugs were obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The drug-specific sensitivity signatures were determined from the changes in genomic profiles of individual cell lines in response to a specific drug. The optimal drugs for individual cell lines were predicted by integrating the votes from other cell lines. The experimental results show that the proposed drug prediction algorithm can be used to improve greatly the reliability of finding optimal drugs for individual patients and will thus form a key component in the precision medicine infrastructure for oncology care. PMID:25781964

  13. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.

    PubMed

    Geng, Hao; Jiang, Fan; Wu, Yun-Dong

    2016-05-19

    Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113

  14. Accurately Predicting Complex Reaction Kinetics from First Principles

    NASA Astrophysics Data System (ADS)

    Green, William

    Many important systems contain a multitude of reactive chemical species, some of which react on a timescale faster than collisional thermalization, i.e. they never achieve a Boltzmann energy distribution. Usually it is impossible to fully elucidate the processes by experiments alone. Here we report recent progress toward predicting the time-evolving composition of these systems a priori: how unexpected reactions can be discovered on the computer, how reaction rates are computed from first principles, and how the many individual reactions are efficiently combined into a predictive simulation for the whole system. Some experimental tests of the a priori predictions are also presented.

  15. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions. PMID:26594988

  16. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947

  17. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  18. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    PubMed Central

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  19. PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations

    PubMed Central

    Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri

    2014-01-01

    Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961

  20. QSAR Modeling and Prediction of Drug-Drug Interactions.

    PubMed

    Zakharov, Alexey V; Varlamova, Ekaterina V; Lagunin, Alexey A; Dmitriev, Alexander V; Muratov, Eugene N; Fourches, Denis; Kuz'min, Victor E; Poroikov, Vladimir V; Tropsha, Alexander; Nicklaus, Marc C

    2016-02-01

    Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year. As up to 30% of all ADRs are believed to be caused by drug-drug interactions (DDIs), typically mediated by cytochrome P450s, possibilities to predict DDIs from existing knowledge are important. We collected data from public sources on 1485, 2628, 4371, and 27,966 possible DDIs mediated by four cytochrome P450 isoforms 1A2, 2C9, 2D6, and 3A4 for 55, 73, 94, and 237 drugs, respectively. For each of these data sets, we developed and validated QSAR models for the prediction of DDIs. As a unique feature of our approach, the interacting drug pairs were represented as binary chemical mixtures in a 1:1 ratio. We used two types of chemical descriptors: quantitative neighborhoods of atoms (QNA) and simplex descriptors. Radial basis functions with self-consistent regression (RBF-SCR) and random forest (RF) were utilized to build QSAR models predicting the likelihood of DDIs for any pair of drug molecules. Our models showed balanced accuracy of 72-79% for the external test sets with a coverage of 81.36-100% when a conservative threshold for the model's applicability domain was applied. We generated virtually all possible binary combinations of marketed drugs and employed our models to identify drug pairs predicted to be instances of DDI. More than 4500 of these predicted DDIs that were not found in our training sets were confirmed by data from the DrugBank database. PMID:26669717

  1. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  2. Metabolic Network Prediction of Drug Side Effects.

    PubMed

    Shaked, Itay; Oberhardt, Matthew A; Atias, Nir; Sharan, Roded; Ruppin, Eytan

    2016-03-23

    Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially predictive (AUC > 0.7) for >70 drug side effects, including very serious ones such as interstitial nephritis and extrapyramidal disorders. We evaluate AMPP's predictive signal through cross-validation, comparison across multiple versions of a side effects database, and co-occurrence analysis of drug side effect associations in scientific abstracts (hypergeometric p value = 2.2e-40). AMPP outperforms a previous biochemical structure-based method in predicting metabolically based side effects (aggregate AUC = 0.65 versus 0.59). Importantly, AMPP enables the identification of key metabolic reactions and biomarkers that are predictive of specific side effects. Taken together, this work lays a foundation for future detection of metabolically grounded side effects during early stages of drug development. PMID:27135366

  3. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting

    PubMed Central

    Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.

    2016-01-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  4. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.

    PubMed

    Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T

    2016-03-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  5. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  6. Change in BMI Accurately Predicted by Social Exposure to Acquaintances

    PubMed Central

    Oloritun, Rahman O.; Ouarda, Taha B. M. J.; Moturu, Sai; Madan, Anmol; Pentland, Alex (Sandy); Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R2. This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends. PMID

  7. Automatic construction of a large-scale and accurate drug-side-effect association knowledge base from biomedical literature.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2014-10-01

    Systems approaches to studying drug-side-effect (drug-SE) associations are emerging as an active research area for drug target discovery, drug repositioning, and drug toxicity prediction. However, currently available drug-SE association databases are far from being complete. Herein, in an effort to increase the data completeness of current drug-SE relationship resources, we present an automatic learning approach to accurately extract drug-SE pairs from the vast amount of published biomedical literature, a rich knowledge source of side effect information for commercial, experimental, and even failed drugs. For the text corpus, we used 119,085,682 MEDLINE sentences and their parse trees. We used known drug-SE associations derived from US Food and Drug Administration (FDA) drug labels as prior knowledge to find relevant sentences and parse trees. We extracted syntactic patterns associated with drug-SE pairs from the resulting set of parse trees. We developed pattern-ranking algorithms to prioritize drug-SE-specific patterns. We then selected a set of patterns with both high precisions and recalls in order to extract drug-SE pairs from the entire MEDLINE. In total, we extracted 38,871 drug-SE pairs from MEDLINE using the learned patterns, the majority of which have not been captured in FDA drug labels to date. On average, our knowledge-driven pattern-learning approach in extracting drug-SE pairs from MEDLINE has achieved a precision of 0.833, a recall of 0.407, and an F1 of 0.545. We compared our approach to a support vector machine (SVM)-based machine learning and a co-occurrence statistics-based approach. We show that the pattern-learning approach is largely complementary to the SVM- and co-occurrence-based approaches with significantly higher precision and F1 but lower recall. We demonstrated by correlation analysis that the extracted drug side effects correlate positively with both drug targets, metabolism, and indications. PMID:24928448

  8. Accurate models for P-gp drug recognition induced from a cancer cell line cytotoxicity screen.

    PubMed

    Levatić, Jurica; Ćurak, Jasna; Kralj, Marijeta; Šmuc, Tomislav; Osmak, Maja; Supek, Fran

    2013-07-25

    P-glycoprotein (P-gp, MDR1) is a promiscuous drug efflux pump of substantial pharmacological importance. Taking advantage of large-scale cytotoxicity screening data involving 60 cancer cell lines, we correlated the differential biological activities of ∼13,000 compounds against cellular P-gp levels. We created a large set of 934 high-confidence P-gp substrates or nonsubstrates by enforcing agreement with an orthogonal criterion involving P-gp overexpressing ADR-RES cells. A support vector machine (SVM) was 86.7% accurate in discriminating P-gp substrates on independent test data, exceeding previous models. Two molecular features had an overarching influence: nearly all P-gp substrates were large (>35 atoms including H) and dense (specific volume of <7.3 Å(3)/atom) molecules. Seven other descriptors and 24 molecular fragments ("effluxophores") were found enriched in the (non)substrates and incorporated into interpretable rule-based models. Biological experiments on an independent P-gp overexpressing cell line, the vincristine-resistant VK2, allowed us to reclassify six compounds previously annotated as substrates, validating our method's predictive ability. Models are freely available at http://pgp.biozyne.com . PMID:23772653

  9. PREDICT: a method for inferring novel drug indications with application to personalized medicine

    PubMed Central

    Gottlieb, Assaf; Stein, Gideon Y; Ruppin, Eytan; Sharan, Roded

    2011-01-01

    Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large-scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross-validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue-specific expression information on the drug targets. We further show that disease-specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease-specific signatures. PMID:21654673

  10. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. PMID:26199424

  11. INTEGRATING COMPUTATIONAL PROTEIN FUNCTION PREDICTION INTO DRUG DISCOVERY INITIATIVES

    PubMed Central

    Grant, Marianne A.

    2014-01-01

    Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes. PMID:25530654

  12. Prediction of Drug Penetration in Tuberculosis Lesions.

    PubMed

    Sarathy, Jansy P; Zuccotto, Fabio; Hsinpin, Ho; Sandberg, Lars; Via, Laura E; Marriner, Gwendolyn A; Masquelin, Thierry; Wyatt, Paul; Ray, Peter; Dartois, Véronique

    2016-08-12

    The penetration of antibiotics in necrotic tuberculosis lesions is heterogeneous and drug-specific, but the factors underlying such differential partitioning are unknown. We hypothesized that drug binding to macromolecules in necrotic foci (or caseum) prevents passive drug diffusion through avascular caseum, a critical site of infection. Using a caseum binding assay and MALDI mass spectrometry imaging of tuberculosis drugs, we showed that binding to caseum inversely correlates with passive diffusion into the necrotic core. We developed a high-throughput assay relying on rapid equilibrium dialysis and a caseum surrogate designed to mimic the composition of native caseum. A set of 279 compounds was profiled in this assay to generate a large data set and explore the physicochemical drivers of free diffusion into caseum. Principle component analysis and modeling of the data set delivered an in silico signature predictive of caseum binding, combining 69 molecular descriptors. Among the major positive drivers of binding were high lipophilicity and poor solubility. Determinants of molecular shape such as the number of rings, particularly aromatic rings, number of sp(2) carbon counts, and volume-to-surface ratio negatively correlated with the free fraction, indicating that low-molecular-weight nonflat compounds are more likely to exhibit low caseum binding properties and diffuse effectively through caseum. To provide simple guidance in the property-based design of new compounds, a rule of thumb was derived whereby the sum of the hydrophobicity (clogP) and aromatic ring count is proportional to caseum binding. These tools can be used to ensure desirable lesion partitioning and guide the selection of optimal regimens against tuberculosis. PMID:27626295

  13. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  14. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  15. Accurate rotor loads prediction using the FLAP (Force and Loads Analysis Program) dynamics code

    SciTech Connect

    Wright, A.D.; Thresher, R.W.

    1987-10-01

    Accurately predicting wind turbine blade loads and response is very important in predicting the fatigue life of wind turbines. There is a clear need in the wind turbine community for validated and user-friendly structural dynamics codes for predicting blade loads and response. At the Solar Energy Research Institute (SERI), a Force and Loads Analysis Program (FLAP) has been refined and validated and is ready for general use. Currently, FLAP is operational on an IBM-PC compatible computer and can be used to analyze both rigid- and teetering-hub configurations. The results of this paper show that FLAP can be used to accurately predict the deterministic loads for rigid-hub rotors. This paper compares analytical predictions to field test measurements for a three-bladed, upwind turbine with a rigid-hub configuration. The deterministic loads predicted by FLAP are compared with 10-min azimuth averages of blade root flapwise bending moments for different wind speeds. 6 refs., 12 figs., 3 tabs.

  16. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method

    PubMed Central

    Burger, Lukas; van Nimwegen, Erik

    2008-01-01

    Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381

  17. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  18. [Research advance in the drug target prediction based on chemoinformatics].

    PubMed

    Fang, Jian-song; Liu, Ai-lin; Du, Guan-hua

    2014-10-01

    The emerging of network pharmacology and polypharmacology forces the scientists to recognize and explore new mechanisms of existing drugs. The drug target prediction can play a key significance on the elucidation of the molecular mechanism of drugs and drug reposition. In this paper, we systematically review the existing approaches to the prediction of biological targets of small molecule based on chemoinformatics, including ligand-based prediction, receptor-based prediction and data mining-based prediction. We also depict the strength of these methods as well as their applications, and put forward their developing direction. PMID:25577863

  19. A Single Linear Prediction Filter that Accurately Predicts the AL Index

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Chu, X.

    2015-12-01

    The AL index is a measure of the strength of the westward electrojet flowing along the auroral oval. It has two components: one from the global DP-2 current system and a second from the DP-1 current that is more localized near midnight. It is generally believed that the index a very poor measure of these currents because of its dependence on the distance of stations from the source of the two currents. In fact over season and solar cycle the coupling strength defined as the steady state ratio of the output AL to the input coupling function varies by a factor of four. There are four factors that lead to this variation. First is the equinoctial effect that modulates coupling strength with peaks (strongest coupling) at the equinoxes. Second is the saturation of the polar cap potential which decreases coupling strength as the strength of the driver increases. Since saturation occurs more frequently at solar maximum we obtain the result that maximum coupling strength occurs at equinox at solar minimum. A third factor is ionospheric conductivity with stronger coupling at summer solstice as compared to winter. The fourth factor is the definition of a solar wind coupling function appropriate to a given index. We have developed an optimum coupling function depending on solar wind speed, density, transverse magnetic field, and IMF clock angle which is better than previous functions. Using this we have determined the seasonal variation of coupling strength and developed an inverse function that modulates the optimum coupling function so that all seasonal variation is removed. In a similar manner we have determined the dependence of coupling strength on solar wind driver strength. The inverse of this function is used to scale a linear prediction filter thus eliminating the dependence on driver strength. Our result is a single linear filter that is adjusted in a nonlinear manner by driver strength and an optimum coupling function that is seasonal modulated. Together this

  20. A review of the kinetic detail required for accurate predictions of normal shock waves

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Erwin, Daniel A.; Pham-Van-diep, Gerald C.

    1991-01-01

    Several aspects of the kinetic models used in the collision phase of Monte Carlo direct simulations have been studied. Accurate molecular velocity distribution function predictions require a significantly increased number of computational cells in one maximum slope shock thickness, compared to predictions of macroscopic properties. The shape of the highly repulsive portion of the interatomic potential for argon is not well modeled by conventional interatomic potentials; this portion of the potential controls high Mach number shock thickness predictions, indicating that the specification of the energetic repulsive portion of interatomic or intermolecular potentials must be chosen with care for correct modeling of nonequilibrium flows at high temperatures. It has been shown for inverse power potentials that the assumption of variable hard sphere scattering provides accurate predictions of the macroscopic properties in shock waves, by comparison with simulations in which differential scattering is employed in the collision phase. On the other hand, velocity distribution functions are not well predicted by the variable hard sphere scattering model for softer potentials at higher Mach numbers.

  1. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  2. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707

  3. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.

    PubMed

    Berlow, Noah; Haider, Saad; Wan, Qian; Geltzeiler, Mathew; Davis, Lara E; Keller, Charles; Pal, Ranadip

    2014-01-01

    A framework for design of personalized cancer therapy requires the ability to predict the sensitivity of a tumor to anticancer drugs. The predictive modeling of tumor sensitivity to anti-cancer drugs has primarily focused on generating functions that map gene expressions and genetic mutation profiles to drug sensitivity. In this paper, we present a new approach for drug sensitivity prediction and combination therapy design based on integrated functional and genomic characterizations. The modeling approach when applied to data from the Cancer Cell Line Encyclopedia shows a significant gain in prediction accuracy as compared to elastic net and random forest techniques based on genomic characterizations. Utilizing a Mouse Embryonal Rhabdomyosarcoma cell culture and a drug screen of 60 targeted drugs, we show that predictive modeling based on functional data alone can also produce high accuracy predictions. The framework also allows us to generate personalized tumor proliferation circuits to gain further insights on the individualized biological pathway. PMID:26357038

  4. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  5. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism

    PubMed Central

    Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389

  6. Accurate similarity index based on activity and connectivity of node for link prediction

    NASA Astrophysics Data System (ADS)

    Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun

    2015-05-01

    Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.

  7. Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals.

    PubMed

    Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N

    2016-06-01

    In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record PMID:27100309

  8. Prediction of Accurate Thermochemistry of Medium and Large Sized Radicals Using Connectivity-Based Hierarchy (CBH).

    PubMed

    Sengupta, Arkajyoti; Raghavachari, Krishnan

    2014-10-14

    Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known. PMID:26588131

  9. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure.

    PubMed

    Kieslich, Chris A; Smadbeck, James; Khoury, George A; Floudas, Christodoulos A

    2016-03-28

    Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/ . PMID:26928531

  10. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction

    PubMed Central

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-01-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches. PMID:26872142

  11. Does a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?

    PubMed Central

    2014-01-01

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein–ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein–ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data. PMID:24528282

  12. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  13. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  14. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  15. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGESBeta

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  16. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  17. Predicting drug-target interactions using restricted Boltzmann machines

    PubMed Central

    Wang, Yuhao; Zeng, Jianyang

    2013-01-01

    Motivation: In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. Results: We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Availability: Software and datasets are available

  18. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  19. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  20. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  1. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  2. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  3. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  4. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGESBeta

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  5. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  6. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  7. Multitask learning improves prediction of cancer drug sensitivity

    PubMed Central

    Yuan, Han; Paskov, Ivan; Paskov, Hristo; González, Alvaro J.; Leslie, Christina S.

    2016-01-01

    Precision oncology seeks to predict the best therapeutic option for individual patients based on the molecular characteristics of their tumors. To assess the preclinical feasibility of drug sensitivity prediction, several studies have measured drug responses for cytotoxic and targeted therapies across large collections of genomically and transcriptomically characterized cancer cell lines and trained predictive models using standard methods like elastic net regression. Here we use existing drug response data sets to demonstrate that multitask learning across drugs strongly improves the accuracy and interpretability of drug prediction models. Our method uses trace norm regularization with a highly efficient ADMM (alternating direction method of multipliers) optimization algorithm that readily scales to large data sets. We anticipate that our approach will enhance efforts to exploit growing drug response compendia in order to advance personalized therapy. PMID:27550087

  8. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.

    PubMed

    Kanji, Rakesh; Sharma, Abhinav; Bagler, Ganesh

    2015-11-01

    Despite technological progresses and improved understanding of biological systems, discovery of novel drugs is an inefficient, arduous and expensive process. Research and development cost of drugs is unreasonably high, largely attributed to the high attrition rate of candidate drugs due to adverse drug reactions. Computational methods for accurate prediction of drug side effects, rooted in empirical data of drugs, have the potential to enhance the efficacy of the drug discovery process. Identification of features critical for specifying side effects would facilitate efficient computational procedures for their prediction. We devised a generalized ordinary canonical correlation model for prediction of drug side effects based on their chemical properties as well as their target profiles. While the former is based on 2D and 3D chemical features, the latter enumerates a systems-level property of drugs. We find that the model incorporating chemical features outperforms that incorporating target profiles. Furthermore we identified the 2D and 3D chemical properties that yield best results, thereby implying their relevance in specifying adverse drug reactions. PMID:26252576

  9. High Order Schemes in Bats-R-US for Faster and More Accurate Predictions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Gombosi, T. I.

    2014-12-01

    BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.

  10. Accurate prediction of helix interactions and residue contacts in membrane proteins.

    PubMed

    Hönigschmid, Peter; Frishman, Dmitrij

    2016-04-01

    Accurate prediction of intra-molecular interactions from amino acid sequence is an important pre-requisite for obtaining high-quality protein models. Over the recent years, remarkable progress in this area has been achieved through the application of novel co-variation algorithms, which eliminate transitive evolutionary connections between residues. In this work we present a new contact prediction method for α-helical transmembrane proteins, MemConP, in which evolutionary couplings are combined with a machine learning approach. MemConP achieves a substantially improved accuracy (precision: 56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either machine learning or co-evolution methods alone. The method also achieves 91.4% precision, 42.1% recall and a MCC of 0.490 in predicting helix-helix interactions based on predicted contacts. The approach was trained and rigorously benchmarked by cross-validation and independent testing on up-to-date non-redundant datasets of 90 and 30 experimental three dimensional structures, respectively. MemConP is a standalone tool that can be downloaded together with the associated training data from http://webclu.bio.wzw.tum.de/MemConP. PMID:26851352

  11. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo

    PubMed Central

    Xu, Tianlei; Li, Ben; Zhao, Meng; Szulwach, Keith E.; Street, R. Craig; Lin, Li; Yao, Bing; Zhang, Feiran; Jin, Peng; Wu, Hao; Qin, Zhaohui S.

    2015-01-01

    Detecting in vivo transcription factor (TF) binding is important for understanding gene regulatory circuitries. ChIP-seq is a powerful technique to empirically define TF binding in vivo. However, the multitude of distinct TFs makes genome-wide profiling for them all labor-intensive and costly. Algorithms for in silico prediction of TF binding have been developed, based mostly on histone modification or DNase I hypersensitivity data in conjunction with DNA motif and other genomic features. However, technical limitations of these methods prevent them from being applied broadly, especially in clinical settings. We conducted a comprehensive survey involving multiple cell lines, TFs, and methylation types and found that there are intimate relationships between TF binding and methylation level changes around the binding sites. Exploiting the connection between DNA methylation and TF binding, we proposed a novel supervised learning approach to predict TF–DNA interaction using data from base-resolution whole-genome methylation sequencing experiments. We devised beta-binomial models to characterize methylation data around TF binding sites and the background. Along with other static genomic features, we adopted a random forest framework to predict TF–DNA interaction. After conducting comprehensive tests, we saw that the proposed method accurately predicts TF binding and performs favorably versus competing methods. PMID:25722376

  12. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  13. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  14. Improving the prediction of the brain disposition for orally administered drugs using BDDCS

    PubMed Central

    Broccatelli, Fabio; Larregieu, Caroline A.; Cruciani, Gabriele; Oprea, Tudor I.; Benet, Leslie Z.

    2012-01-01

    In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists. PMID:22261306

  15. Scoring multiple features to predict drug disease associations using information fusion and aggregation.

    PubMed

    Moghadam, H; Rahgozar, M; Gharaghani, S

    2016-08-01

    Prediction of drug-disease associations is one of the current fields in drug repositioning that has turned into a challenging topic in pharmaceutical science. Several available computational methods use network-based and machine learning approaches to reposition old drugs for new indications. However, they often ignore features of drugs and diseases as well as the priority and importance of each feature, relation, or interactions between features and the degree of uncertainty. When predicting unknown drug-disease interactions there are diverse data sources and multiple features available that can provide more accurate and reliable results. This information can be collectively mined using data fusion methods and aggregation operators. Therefore, we can use the feature fusion method to make high-level features. We have proposed a computational method named scored mean kernel fusion (SMKF), which uses a new method to score the average aggregation operator called scored mean. To predict novel drug indications, this method systematically combines multiple features related to drugs or diseases at two levels: the drug-drug level and the drug-disease level. The purpose of this study was to investigate the effect of drug and disease features as well as data fusion to predict drug-disease interactions. The method was validated against a well-established drug-disease gold-standard dataset. When compared with the available methods, our proposed method outperformed them and competed well in performance with area under cover (AUC) of 0.91, F-measure of 84.9% and Matthews correlation coefficient of 70.31%. PMID:27455069

  16. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals. PMID:18940251

  17. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  18. Prediction of human drug clearance from two species: a comparison of several allometric methods.

    PubMed

    Goteti, Kosalaram; Garner, C Edwin; Mahmood, Iftekhar

    2010-03-01

    The objective of the study was to assess the degree of accuracy in human drug clearance prediction from two species using four different allometric approaches: simple allometry (SA), multiexponential allometry (ME), rule of exponents (ROE), and fixed exponents (FE) as suggested by Tang et al. There were 45 compounds in this analysis and the two species used were either rat-dog or rat-monkey. In addition, > or = 3 species scaling was also performed to evaluate the comparative accuracy in the prediction of human drug clearance between two or more than two-species scaling. The results of the study indicated that the two-species scaling with different methods provided different degrees of accuracy in the prediction of clearance. Prediction by a particular method was also species dependent. For example, a given drug with rat-dog scaling provided a reasonably accurate prediction of clearance whereas with rat-monkey scaling the prediction of clearance was highly erratic or vice versa. The results of the study indicated that the two-species scaling can be useful for prediction purposes but the prediction of clearance from > or = 3 species was far more accurate than two-species scaling. PMID:19827101

  19. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

    PubMed

    Shvab, I; Sadus, Richard J

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K. PMID:24320337

  20. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2013-11-01

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  1. Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.

    2015-12-01

    Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.

  2. Towards first-principles based prediction of highly accurate electrochemical Pourbiax diagrams

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenhua; Chan, Maria; Greeley, Jeff

    2015-03-01

    Electrochemical Pourbaix diagrams lie at the heart of aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such Pourbaix diagrams, inherent errors in the description of strongly-correlated transition metal (hydr)oxides, together with neglect of weak van der Waals (vdW) interactions, has limited the reliability of the predictions for even the simplest bulk systems; corresponding predictions for more complex alloy or surface structures are even more challenging . Through introduction of a Hubbard U correction, employment of a state-of-the-art van der Waals functional, and use of pure water as a reference state for the calculations, these errors are systematically corrected. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxide, oxyhydroxide, binary and ternary oxides where the corresponding thermodynamics of oxidation and reduction can be accurately described with standard errors of less than 0.04 eV in comparison with experiment.

  3. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  4. Network-assisted prediction of potential drugs for addiction.

    PubMed

    Sun, Jingchun; Huang, Liang-Chin; Xu, Hua; Zhao, Zhongming

    2014-01-01

    Drug addiction is a chronic and complex brain disease, adding much burden on the community. Though numerous efforts have been made to identify the effective treatment, it is necessary to find more novel therapeutics for this complex disease. As network pharmacology has become a promising approach for drug repurposing, we proposed to apply the approach to drug addiction, which might provide new clues for the development of effective addiction treatment drugs. We first extracted 44 addictive drugs from the NIDA and their targets from DrugBank. Then, we constructed two networks: an addictive drug-target network and an expanded addictive drug-target network by adding other drugs that have at least one common target with these addictive drugs. By performing network analyses, we found that those addictive drugs with similar actions tended to cluster together. Additionally, we predicted 94 nonaddictive drugs with potential pharmacological functions to the addictive drugs. By examining the PubMed data, 51 drugs significantly cooccurred with addictive keywords than expected. Thus, the network analyses provide a list of candidate drugs for further investigation of their potential in addiction treatment or risk. PMID:24689033

  5. Direct Pressure Monitoring Accurately Predicts Pulmonary Vein Occlusion During Cryoballoon Ablation

    PubMed Central

    Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan

    2013-01-01

    Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956

  6. Direct pressure monitoring accurately predicts pulmonary vein occlusion during cryoballoon ablation.

    PubMed

    Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan

    2013-01-01

    Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956

  7. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  8. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.

    2015-09-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  9. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  10. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  11. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.

    PubMed

    Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  12. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  13. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  14. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  15. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics.

    PubMed

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  16. A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines.

    PubMed

    Dal Moro, F; Abate, A; Lanckriet, G R G; Arandjelovic, G; Gasparella, P; Bassi, P; Mancini, M; Pagano, F

    2006-01-01

    The objective of this study was to optimally predict the spontaneous passage of ureteral stones in patients with renal colic by applying for the first time support vector machines (SVM), an instance of kernel methods, for classification. After reviewing the results found in the literature, we compared the performances obtained with logistic regression (LR) and accurately trained artificial neural networks (ANN) to those obtained with SVM, that is, the standard SVM, and the linear programming SVM (LP-SVM); the latter techniques show an improved performance. Moreover, we rank the prediction factors according to their importance using Fisher scores and the LP-SVM feature weights. A data set of 1163 patients affected by renal colic has been analyzed and restricted to single out a statistically coherent subset of 402 patients. Nine clinical factors are used as inputs for the classification algorithms, to predict one binary output. The algorithms are cross-validated by training and testing on randomly selected train- and test-set partitions of the data and reporting the average performance on the test sets. The SVM-based approaches obtained a sensitivity of 84.5% and a specificity of 86.9%. The feature ranking based on LP-SVM gives the highest importance to stone size, stone position and symptom duration before check-up. We propose a statistically correct way of employing LR, ANN and SVM for the prediction of spontaneous passage of ureteral stones in patients with renal colic. SVM outperformed ANN, as well as LR. This study will soon be translated into a practical software toolbox for actual clinical usage. PMID:16374437

  17. Prediction and Prevention of Drug Abuse.

    ERIC Educational Resources Information Center

    Webb, R. A. J.; And Others

    1978-01-01

    This paper uses the infectious disease model as an approach to the prevention of narcotic or poly drug abuse. It lists and discusses productive and counterproductive educational techniques on the basis of research findings and international reports on the outcomes of effective and counterproductive programs. (Author)

  18. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  19. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  20. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  1. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?

    PubMed

    Edwards, G E; Baker, N R

    1993-08-01

    Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ([Formula: see text]) in maize over a wide range of conditions. The[Formula: see text] ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize. PMID:24317706

  2. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  3. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment☆

    PubMed Central

    Young, Jonathan; Modat, Marc; Cardoso, Manuel J.; Mendelson, Alex; Cash, Dave; Ourselin, Sebastien

    2013-01-01

    Accurately identifying the patients that have mild cognitive impairment (MCI) who will go on to develop Alzheimer's disease (AD) will become essential as new treatments will require identification of AD patients at earlier stages in the disease process. Most previous work in this area has centred around the same automated techniques used to diagnose AD patients from healthy controls, by coupling high dimensional brain image data or other relevant biomarker data to modern machine learning techniques. Such studies can now distinguish between AD patients and controls as accurately as an experienced clinician. Models trained on patients with AD and control subjects can also distinguish between MCI patients that will convert to AD within a given timeframe (MCI-c) and those that remain stable (MCI-s), although differences between these groups are smaller and thus, the corresponding accuracy is lower. The most common type of classifier used in these studies is the support vector machine, which gives categorical class decisions. In this paper, we introduce Gaussian process (GP) classification to the problem. This fully Bayesian method produces naturally probabilistic predictions, which we show correlate well with the actual chances of converting to AD within 3 years in a population of 96 MCI-s and 47 MCI-c subjects. Furthermore, we show that GPs can integrate multimodal data (in this study volumetric MRI, FDG-PET, cerebrospinal fluid, and APOE genotype with the classification process through the use of a mixed kernel). The GP approach aids combination of different data sources by learning parameters automatically from training data via type-II maximum likelihood, which we compare to a more conventional method based on cross validation and an SVM classifier. When the resulting probabilities from the GP are dichotomised to produce a binary classification, the results for predicting MCI conversion based on the combination of all three types of data show a balanced accuracy

  4. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  5. Image-based prediction of drug target in yeast.

    PubMed

    Ohnuki, Shinsuke; Okada, Hiroki; Ohya, Yoshikazu

    2015-01-01

    Discovering the intracellular target of drugs is a fundamental challenge in biomedical research. We developed an image-based technique with which we were able to identify intracellular target of the compounds in the yeast Saccharomyces cerevisiae. Here, we describe the rationale of the technique, staining of yeast cells, image acquisition, data processing, and statistical analysis required for prediction of drug targets. PMID:25618355

  6. Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning

    PubMed Central

    Abraham, Gad; Tye-Din, Jason A.; Bhalala, Oneil G.; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2014-01-01

    Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite differences in ethnicity. The models explained 30–35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases. PMID:24550740

  7. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2016-03-01

    Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)). PMID:26679617

  8. In silico prediction of drug targets in Vibrio cholerae.

    PubMed

    Katara, Pramod; Grover, Atul; Kuntal, Himani; Sharma, Vinay

    2011-10-01

    Identification of potential drug targets is the first step in the process of modern drug discovery, subjected to their validation and drug development. Whole genome sequences of a number of organisms allow prediction of potential drug targets using sequence comparison approaches. Here, we present a subtractive approach exploiting the knowledge of global gene expression along with sequence comparisons to predict the potential drug targets more efficiently. Based on the knowledge of 155 known virulence and their coexpressed genes mined from microarray database in the public domain, 357 coexpressed probable virulence genes for Vibrio cholerae were predicted. Based on screening of Database of Essential Genes using blastn, a total of 102 genes out of these 357 were enlisted as vitally essential genes, and hence good putative drug targets. As the effective drug target is a protein which is only present in the pathogen, similarity search of these 102 essential genes against human genome sequence led to subtraction of 66 genes, thus leaving behind a subset of 36 genes whose products have been called as potential drug targets. The gene ontology analysis using Blast2GO of these 36 genes revealed their roles in important metabolic pathways of V. cholerae or on the surface of the pathogen. Thus, we propose that the products of these genes be evaluated as target sites of drugs against V. cholerae in future investigations. PMID:21174131

  9. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  10. New consensus definition for acute kidney injury accurately predicts 30-day mortality in cirrhosis with infection

    PubMed Central

    Wong, Florence; O’Leary, Jacqueline G; Reddy, K Rajender; Patton, Heather; Kamath, Patrick S; Fallon, Michael B; Garcia-Tsao, Guadalupe; Subramanian, Ram M.; Malik, Raza; Maliakkal, Benedict; Thacker, Leroy R; Bajaj, Jasmohan S

    2015-01-01

    Background & Aims A consensus conference proposed that cirrhosis-associated acute kidney injury (AKI) be defined as an increase in serum creatinine by >50% from the stable baseline value in <6 months or by ≥0.3mg/dL in <48 hrs. We prospectively evaluated the ability of these criteria to predict mortality within 30 days among hospitalized patients with cirrhosis and infection. Methods 337 patients with cirrhosis admitted with or developed an infection in hospital (56% men; 56±10 y old; model for end-stage liver disease score, 20±8) were followed. We compared data on 30-day mortality, hospital length-of-stay, and organ failure between patients with and without AKI. Results 166 (49%) developed AKI during hospitalization, based on the consensus criteria. Patients who developed AKI had higher admission Child-Pugh (11.0±2.1 vs 9.6±2.1; P<.0001), and MELD scores (23±8 vs17±7; P<.0001), and lower mean arterial pressure (81±16mmHg vs 85±15mmHg; P<.01) than those who did not. Also higher amongst patients with AKI were mortality in ≤30 days (34% vs 7%), intensive care unit transfer (46% vs 20%), ventilation requirement (27% vs 6%), and shock (31% vs 8%); AKI patients also had longer hospital stays (17.8±19.8 days vs 13.3±31.8 days) (all P<.001). 56% of AKI episodes were transient, 28% persistent, and 16% resulted in dialysis. Mortality was 80% among those without renal recovery, higher compared to partial (40%) or complete recovery (15%), or AKI-free patients (7%; P<.0001). Conclusions 30-day mortality is 10-fold higher among infected hospitalized cirrhotic patients with irreversible AKI than those without AKI. The consensus definition of AKI accurately predicts 30-day mortality, length of hospital stay, and organ failure. PMID:23999172

  11. Translating Clinical Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver Injury Prediction System (DILIps)

    PubMed Central

    Liu, Zhichao; Shi, Qiang; Ding, Don; Kelly, Reagan; Fang, Hong; Tong, Weida

    2011-01-01

    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the “Rule of Three” was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity. PMID:22194678

  12. Can drug-drug interactions be predicted from in vitro studies?

    PubMed

    Kremers, Pierre

    2002-03-19

    Potential drug-drug interactions as well as drug-xenobiotic interactions are a major source of clinical problems, sometimes with dramatic consequences. Investigation of drug-drug interactions during drug development is a major concern for the drug companies while developing new drugs. Our knowledge of the drug-metabolising enzymes, their mechanism of action, and their regulation has made considerable progress during the last decades. Various efficient in vitro approaches have been developed during recent years and powerful computer-based data handling is becoming widely available. All these tools allow us to initiate, early in the development of new chemical entities, large-scale studies on the interactions of drugs with selective cytochrome P-450 (CYP) isozymes, drug receptors, and other cellular entities. Standardisation and validation of these methodological approaches significantly improve the quality of the data generated and the reliability of their interpretation. The simplicity and the low costs associated with the use of in vitro techniques have made them a method of choice to investigate drug-drug interactions. Promising successes have been achieved in the extrapolation of in vitro data to the in vivo situation and in the prediction of drug-drug interaction. Nevertheless, linking in vitro and in vivo studies still remains fraught with difficulties and should be made with great caution. PMID:12806001

  13. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.

  14. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  15. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979

  16. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  17. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  18. BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes

    PubMed Central

    2015-01-01

    Background Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing protein-ligand complexes to predict binding affinity. Results We assess the scoring accuracies of two new ensemble NN SFs based on bagging (BgN-Score) and boosting (BsN-Score), as well as those of conventional SFs in the context of the 2007 PDBbind benchmark that encompasses a diverse set of high-quality protein families. We find that BgN-Score and BsN-Score have more than 25% better Pearson's correlation coefficient (0.804 and 0.816 vs. 0.644) between predicted and measured binding affinities compared to that achieved by a state-of-the-art conventional SF. In addition, these ensemble NN SFs are also at least 19% more accurate (0.804 and 0.816 vs. 0.675) than SFs based on a single neural network that has been traditionally used in drug discovery applications. We further find that ensemble models based on NNs surpass SFs based on the decision-tree ensemble technique Random Forests. Conclusions Ensemble neural networks SFs, BgN-Score and BsN-Score, are the most accurate in predicting binding affinity of protein-ligand complexes among the considered SFs. Moreover, their accuracies are even higher

  19. A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)

    PubMed Central

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585

  20. Prediction of Cancer Drugs by Chemical-Chemical Interactions

    PubMed Central

    Li, Hai-Peng; Feng, Kai-Yan; Chen, Lei; Zheng, Ming-Yue; Cai, Yu-Dong

    2014-01-01

    Cancer, which is a leading cause of death worldwide, places a big burden on health-care system. In this study, an order-prediction model was built to predict a series of cancer drug indications based on chemical-chemical interactions. According to the confidence scores of their interactions, the order from the most likely cancer to the least one was obtained for each query drug. The 1st order prediction accuracy of the training dataset was 55.93%, evaluated by Jackknife test, while it was 55.56% and 59.09% on a validation test dataset and an independent test dataset, respectively. The proposed method outperformed a popular method based on molecular descriptors. Moreover, it was verified that some drugs were effective to the ‘wrong’ predicted indications, indicating that some ‘wrong’ drug indications were actually correct indications. Encouraged by the promising results, the method may become a useful tool to the prediction of drugs indications. PMID:24498372

  1. Maximum entropy principle for predicting response to multiple-drug exposure in bacteria and human cancer cells

    NASA Astrophysics Data System (ADS)

    Wood, Kevin; Nishida, Satoshi; Sontag, Eduardo; Cluzel, Philippe

    2012-02-01

    Drugs are commonly used in combinations larger than two for treating infectious disease. However, it is generally impossible to infer the net effect of a multi-drug combination on cell growth directly from the effects of individual drugs. We combined experiments with maximum entropy methods to develop a mechanism-independent framework for calculating the response of both bacteria and human cancer cells to a large variety of drug combinations comprised of anti-microbial or anti-cancer drugs. We experimentally show that the cellular responses to drug pairs are sufficient to infer the effects of larger drug combinations in gram negative bacteria, Escherichia coli, gram positive bacteria, Staphylococcus aureus, and also human breast cancer and melanoma cell lines. Remarkably, the accurate predictions of this framework suggest that the multi-drug response obeys statistical rather than chemical laws for combinations larger than two. Consequently, these findings offer a new strategy for the rational design of therapies using large drug combinations.

  2. Computing with evidence Part II: An evidential approach to predicting metabolic drug-drug interactions.

    PubMed

    Boyce, Richard; Collins, Carol; Horn, John; Kalet, Ira

    2009-12-01

    We describe a novel experiment that we conducted with the Drug Interaction Knowledge-base (DIKB) to determine which combinations of evidence enable a rule-based theory of metabolic drug-drug interactions to make the most optimal set of predictions. The focus of the experiment was a group of 16 drugs including six members of the HMG-CoA-reductase inhibitor family (statins). The experiment helped identify evidence-use strategies that enabled the DIKB to predict significantly more interactions present in a validation set than the most rigorous strategy developed by drug experts with no loss of accuracy. The best-performing strategies included evidence types that would normally be of lesser predictive value but that are often more accessible than more rigorous types. Our experimental methods represent a new approach to leveraging the available scientific evidence within a domain where important evidence is often missing or of questionable value for supporting important assertions. PMID:19539050

  3. Unilateral Prostate Cancer Cannot be Accurately Predicted in Low-Risk Patients

    SciTech Connect

    Isbarn, Hendrik; Karakiewicz, Pierre I.; Vogel, Susanne

    2010-07-01

    Purpose: Hemiablative therapy (HAT) is increasing in popularity for treatment of patients with low-risk prostate cancer (PCa). The validity of this therapeutic modality, which exclusively treats PCa within a single prostate lobe, rests on accurate staging. We tested the accuracy of unilaterally unremarkable biopsy findings in cases of low-risk PCa patients who are potential candidates for HAT. Methods and Materials: The study population consisted of 243 men with clinical stage {<=}T2a, a prostate-specific antigen (PSA) concentration of <10 ng/ml, a biopsy-proven Gleason sum of {<=}6, and a maximum of 2 ipsilateral positive biopsy results out of 10 or more cores. All men underwent a radical prostatectomy, and pathology stage was used as the gold standard. Univariable and multivariable logistic regression models were tested for significant predictors of unilateral, organ-confined PCa. These predictors consisted of PSA, %fPSA (defined as the quotient of free [uncomplexed] PSA divided by the total PSA), clinical stage (T2a vs. T1c), gland volume, and number of positive biopsy cores (2 vs. 1). Results: Despite unilateral stage at biopsy, bilateral or even non-organ-confined PCa was reported in 64% of all patients. In multivariable analyses, no variable could clearly and independently predict the presence of unilateral PCa. This was reflected in an overall accuracy of 58% (95% confidence interval, 50.6-65.8%). Conclusions: Two-thirds of patients with unilateral low-risk PCa, confirmed by clinical stage and biopsy findings, have bilateral or non-organ-confined PCa at radical prostatectomy. This alarming finding questions the safety and validity of HAT.

  4. Creating and evaluating genetic tests predictive of drug response

    PubMed Central

    Weiss, Scott T.; McLeod, Howard L.; Flockhart, David A.; Dolan, M. Eileen; Benowitz, Neal L.; Johnson, Julie A.; Ratain, Mark J.; Giacomini, Kathleen M.

    2009-01-01

    A key goal of pharmacogenetics — the use of genetic variation to elucidate inter-individual variation in drug treatment response — is to aid the development of predictive genetic tests that could maximize drug efficacy and minimize drug toxicity. The completion of the Human Genome Project and the associated HapMap Project, together with advances in technologies for investigating genetic variation, have greatly advanced the potential to develop such tests; however, many challenges remain. With the aim of helping to address some of these challenges, this article discusses the steps that are involved in the development of predictive tests for drug treatment response based on genetic variation, and factors that influence the development and performance of these tests. PMID:18587383

  5. Prediction of drug-target interactions and drug repositioning via network-based inference.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  6. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    PubMed Central

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  7. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    PubMed Central

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. Conclusion The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. PMID:25081370

  8. DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue

    PubMed Central

    Wang, QuanQiu; Xu, Rong

    2015-01-01

    Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue. PMID:26958268

  9. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  10. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  11. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance

    PubMed Central

    Yu, Xiaxia; Weber, Irene T.; Harrison, Robert W.

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  12. Prediction of risk for drug use in high school students.

    PubMed

    Climent, C E; de Aragon, L V; Plutchik, R

    1990-05-01

    On the basis of questionnaires administered to almost 2,000 high school students in Cali, Colombia, a subset of items was selected that deal primarily with parent--child relationships. This 53-item set, referred to as the Drug Risk Scale (DRS), was administered to two new cross-validation samples, one consisting of high school students and the other consisting of drug addicts attending drug rehabilitation centers. Significant differences in parent--child relations were found between these new groups. The DRS was also found to have reasonably high sensitivity and specificity. Its potential value as a risk-prediction instrument is discussed. PMID:2258260

  13. Prediction of risk for drug use in high school students.

    PubMed

    Climent, C E; de Aragón, L V; Plutchik, R

    1989-11-01

    On the basis of questionnaires administered to almost 2,000 high school students in Cali, Colombia, a subset of items was selected that deal primarily with parent-child relationships. This 53 item set, referred to as the Drug Risk Scale (DRS), was administered to two new cross-validation samples, one consisting of high school students and the other consisting of drug addicts attending drug rehabilitation centers. Significant differences in parent-child relations were found between these new groups. The DRS was also found to have reasonably high sensitivity and specificity. Its potential value as a risk-prediction instrument is discussed. PMID:2628355

  14. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction.

    PubMed

    Nishimura, Toshihiko; Nishimura, Toshiko; Hu, Yajing; Wu, Manhong; Pham, Edward; Suemizu, Hiroshi; Elazar, Menashe; Liu, Michael; Idilman, Ramazan; Yurdaydin, Cihan; Angus, Peter; Stedman, Catherine; Murphy, Brian; Glenn, Jeffrey; Nakamura, Masato; Nomura, Tatsuji; Chen, Yuan; Zheng, Ming; Fitch, William L; Peltz, Gary

    2013-02-01

    Interspecies differences in drug metabolism have made it difficult to use preclinical animal testing data to predict the drug metabolites or potential drug-drug interactions (DDIs) that will occur in humans. Although chimeric mice with humanized livers can produce known human metabolites for test substrates, we do not know whether chimeric mice can be used to prospectively predict human drug metabolism or a possible DDI. Therefore, we investigated whether they could provide a more predictive assessment for clemizole, a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Our results demonstrate, for the first time, that analyses performed in chimeric mice can correctly identify the predominant human drug metabolite before human testing. The differences in the rodent and human pathways for clemizole metabolism were of importance, because the predominant human metabolite was found to have synergistic anti-HCV activity. Moreover, studies in chimeric mice also correctly predicted that a DDI would occur in humans when clemizole was coadministered with a CYP3A4 inhibitor. These results demonstrate that using chimeric mice can improve the quality of preclinical drug assessment. PMID:23143674

  15. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?

    PubMed Central

    Filizola, Marta

    2009-01-01

    For years conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor-receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor-receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions. PMID:19465029

  16. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    SciTech Connect

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-15

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  17. Predicting Heavy Drug Use. Results of a Longitudinal Study, Youth Characteristics Describing and Predicting Heavy Drug Use by Adults

    ERIC Educational Resources Information Center

    Schildhaus, Sam; Shaw-Taylor, Yoku; Pedlow, Steven; Pergamit, Michael R.

    2004-01-01

    The primary aim of this study was to describe the movement of adolescents and young adults into and out of drug use and to predict heavy drug use. The data source is the Department of Labor's National Longitudinal Survey of Youth, which began in 1979 with a sample of 12,686 adolescents aged 14-21. After 17 rounds and 19 years, the response rate in…

  18. Quantitative evaluation of drug-drug interaction potentials by in vivo information- guided prediction approach.

    PubMed

    Chen, Feng; Hu, Zhe-Yi; Jia, Wei-Wei; Lu, Jing-Tao; Zhao, Yuan-Sheng

    2014-01-01

    Drug-drug interaction (DDI) is one important topic in drug discovery, drug development and clinical practice. Recently, a novel approach, in vivo information-guided prediction (IVIP), was introduced for predicting the magnitude of pharmacokinetic DDIs which are caused by changes in cytochrome P450 (CYP) activity. This approach utilizes two parameters, i.e. CR (the apparent contribution of the target metabolizing enzyme to the clearance of the substrate drug) and IX (the apparent effect of a perpetrator on the target CYP) to describe the magnitude of DDI between a perpetrator and a victim drug. The essential concept of this method assumes that at a given dose level, the IX for a given perpetrator remains constant whatever the victim drug is. Usually, this IVIP method is only based on information from clinical studies and does not need in vitro information. In this review, basic concept, application and extension, as well as pros and cons of the IVIP method were presented. How to apply this approach was also discussed. Thus far, this method displayed good performance in predicting DDIs associated with CYPs, and can be used to forecast the magnitude of a large number of possible DDIs, of which only a small portion have been investigated in clinical studies. The key concept of this static approach could even be implemented in dynamic modeling to assess risks of DDIs involving drug transporters. PMID:25705907

  19. Implicit prejudice toward injecting drug users predicts intentions to change jobs among drug and alcohol nurses.

    PubMed

    von Hippel, William; Brener, Loren; von Hippel, Courtney

    2008-01-01

    The meaning and importance of implicit prejudice is a source of considerable debate. One way to advance this debate is to assess whether implicit prejudice can predict independent variance, beyond that predicted by explicit prejudice, in meaningful and unambiguous behaviors or behavioral intentions. In the current research, drug and alcohol nurses reported their level of stress working with injecting drug users, their job satisfaction, their explicit prejudice toward injecting drug users, and their intentions to leave drug and alcohol nursing. The nurses also completed the Single Category Implicit Association Test, which measured their implicit prejudice toward injecting drug users. Analyses revealed that implicit prejudice was a significant mediator, beyond explicit prejudice and job satisfaction, of the relation between job stress and intention to change jobs. PMID:18181783

  20. Robust model predictive control for optimal continuous drug administration.

    PubMed

    Sopasakis, Pantelis; Patrinos, Panagiotis; Sarimveis, Haralambos

    2014-10-01

    In this paper the model predictive control (MPC) technology is used for tackling the optimal drug administration problem. The important advantage of MPC compared to other control technologies is that it explicitly takes into account the constraints of the system. In particular, for drug treatments of living organisms, MPC can guarantee satisfaction of the minimum toxic concentration (MTC) constraints. A whole-body physiologically-based pharmacokinetic (PBPK) model serves as the dynamic prediction model of the system after it is formulated as a discrete-time state-space model. Only plasma measurements are assumed to be measured on-line. The rest of the states (drug concentrations in other organs and tissues) are estimated in real time by designing an artificial observer. The complete system (observer and MPC controller) is able to drive the drug concentration to the desired levels at the organs of interest, while satisfying the imposed constraints, even in the presence of modelling errors, disturbances and noise. A case study on a PBPK model with 7 compartments, constraints on 5 tissues and a variable drug concentration set-point illustrates the efficiency of the methodology in drug dosing control applications. The proposed methodology is also tested in an uncertain setting and proves successful in presence of modelling errors and inaccurate measurements. PMID:24986530

  1. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    ERIC Educational Resources Information Center

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales Behavior/Externalizing…

  2. Psychophysiological prediction of choice: relevance to insight and drug addiction

    PubMed Central

    Moeller, Scott J.; Hajcak, Greg; Parvaz, Muhammad A.; Dunning, Jonathan P.; Volkow, Nora D.

    2012-01-01

    An important goal of addiction research and treatment is to predict behavioural responses to drug-related stimuli. This goal is especially important for patients with impaired insight, which can interfere with therapeutic interventions and potentially invalidate self-report questionnaires. This research tested (i) whether event-related potentials, specifically the late positive potential, predict choice to view cocaine images in cocaine addiction; and (ii) whether such behaviour prediction differs by insight (operationalized in this study as self-awareness of image choice). Fifty-nine cocaine abusers and 32 healthy controls provided data for the following laboratory components that were completed in a fixed-sequence (to establish prediction): (i) event-related potential recordings while passively viewing pleasant, unpleasant, neutral and cocaine images, during which early (400–1000 ms) and late (1000–2000 ms) window late positive potentials were collected; (ii) self-reported arousal ratings for each picture; and (iii) two previously validated tasks: one to assess choice for viewing these same images, and the other to group cocaine abusers by insight. Results showed that pleasant-related late positive potentials and arousal ratings predicted pleasant choice (the choice to view pleasant pictures) in all subjects, validating the method. In the cocaine abusers, the predictive ability of the late positive potentials and arousal ratings depended on insight. Cocaine-related late positive potentials better predicted cocaine image choice in cocaine abusers with impaired insight. Another emotion-relevant event-related potential component (the early posterior negativity) did not show these results, indicating specificity of the late positive potential. In contrast, arousal ratings better predicted respective cocaine image choice (and actual cocaine use severity) in cocaine abusers with intact insight. Taken together, the late positive potential could serve as a biomarker

  3. Application of Hansen Solubility Parameters to predict drug-nail interactions, which can assist the design of nail medicines.

    PubMed

    Hossin, B; Rizi, K; Murdan, S

    2016-05-01

    We hypothesised that Hansen Solubility Parameters (HSPs) can be used to predict drug-nail affinities. Our aims were to: (i) determine the HSPs (δD, δP, δH) of the nail plate, the hoof membrane (a model for the nail plate), and of the drugs terbinafine HCl, amorolfine HCl, ciclopirox olamine and efinaconazole, by measuring their swelling/solubility in organic liquids, (ii) predict nail-drug interactions by comparing drug and nail HSPs, and (iii) evaluate the accuracy of these predictions using literature reports of experimentally-determined affinities of these drugs for keratin, the main constituent of the nail plate and hoof. Many solvents caused no change in the mass of nail plates, a few solvents deswelled the nail, while others swelled the nail to varying extents. Fingernail and toenail HSPs were almost the same, while hoof HSPs were similar, except for a slightly lower δP. High nail-terbinafine HCl, nail-amorolfine HCl and nail-ciclopirox olamine affinities, and low nail-efinaconazole affinities were then predicted, and found to accurately match experimental reports of these drugs' affinities to keratin. We therefore propose that drug and nail Hansen Solubility Parameters may be used to predict drug-nail interactions, and that these results can assist in the design of drugs for the treatment of nail diseases, such as onychomycosis and psoriasis. To our knowledge, this is the first report of the application of HSPs in ungual research. PMID:26924329

  4. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations

    PubMed Central

    Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  5. Accurate prediction model of bead geometry in crimping butt of the laser brazing using generalized regression neural network

    NASA Astrophysics Data System (ADS)

    Rong, Y. M.; Chang, Y.; Huang, Y.; Zhang, G. J.; Shao, X. Y.

    2015-12-01

    There are few researches that concentrate on the prediction of the bead geometry for laser brazing with crimping butt. This paper addressed the accurate prediction of the bead profile by developing a generalized regression neural network (GRNN) algorithm. Firstly GRNN model was developed and trained to decrease the prediction error that may be influenced by the sample size. Then the prediction accuracy was demonstrated by comparing with other articles and back propagation artificial neural network (BPNN) algorithm. Eventually the reliability and stability of GRNN model were discussed from the points of average relative error (ARE), mean square error (MSE) and root mean square error (RMSE), while the maximum ARE and MSE were 6.94% and 0.0303 that were clearly less than those (14.28% and 0.0832) predicted by BPNN. Obviously, it was proved that the prediction accuracy was improved at least 2 times, and the stability was also increased much more.

  6. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    PubMed

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect. PMID:27067239

  7. Concordance and predictive value of two adverse drug event data sets

    PubMed Central

    2014-01-01

    Background Accurate prediction of adverse drug events (ADEs) is an important means of controlling and reducing drug-related morbidity and mortality. Since no single “gold standard” ADE data set exists, a range of different drug safety data sets are currently used for developing ADE prediction models. There is a critical need to assess the degree of concordance between these various ADE data sets and to validate ADE prediction models against multiple reference standards. Methods We systematically evaluated the concordance of two widely used ADE data sets – Lexi-comp from 2010 and SIDER from 2012. The strength of the association between ADE (drug) counts in Lexi-comp and SIDER was assessed using Spearman rank correlation, while the differences between the two data sets were characterized in terms of drug categories, ADE categories and ADE frequencies. We also performed a comparative validation of the Predictive Pharmacosafety Networks (PPN) model using both ADE data sets. The predictive power of PPN using each of the two validation sets was assessed using the area under Receiver Operating Characteristic curve (AUROC). Results The correlations between the counts of ADEs and drugs in the two data sets were 0.84 (95% CI: 0.82-0.86) and 0.92 (95% CI: 0.91-0.93), respectively. Relative to an earlier snapshot of Lexi-comp from 2005, Lexi-comp 2010 and SIDER 2012 introduced a mean of 1,973 and 4,810 new drug-ADE associations per year, respectively. The difference between these two data sets was most pronounced for Nervous System and Anti-infective drugs, Gastrointestinal and Nervous System ADEs, and postmarketing ADEs. A minor difference of 1.1% was found in the AUROC of PPN when SIDER 2012 was used for validation instead of Lexi-comp 2010. Conclusions In conclusion, the ADE and drug counts in Lexi-comp and SIDER data sets were highly correlated and the choice of validation set did not greatly affect the overall prediction performance of PPN. Our results also suggest

  8. Prediction of resistance development against drug combinations by collateral responses to component drugs

    PubMed Central

    Munck, Christian; Gumpert, Heidi K.; Nilsson Wallin, Annika I.; Wang, Harris H.; Sommer, Morten O. A.

    2015-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  9. Prediction of resistance development against drug combinations by collateral responses to component drugs.

    PubMed

    Munck, Christian; Gumpert, Heidi K; Wallin, Annika I Nilsson; Wang, Harris H; Sommer, Morten O A

    2014-11-12

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  10. Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions

    PubMed Central

    Brantley, Scott J.; Argikar, Aneesh A.; Lin, Yvonne S.; Nagar, Swati

    2014-01-01

    Supported by a usage history that predates written records and the perception that “natural” ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb–drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb–drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb–drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb–drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens. PMID:24335390

  11. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  12. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines.

    PubMed

    Pardeike, Jana; Strohmeier, Daniela M; Schrödl, Nina; Voura, Christine; Gruber, Michael; Khinast, Johannes G; Zimmer, Andreas

    2011-11-25

    Folic acid was used as a model drug to demonstrate the advantages of formulating poorly soluble drugs as nanosuspensions and their use in an inkjet-type printing technique to produce personalized medicines. 10% folic acid nanosuspensions stabilized with Tween 20, a stabilizer showing the best wetting potential for folic acid, were prepared via high pressure homogenization. The particle size of the folic acid nanosuspension was well below 5 μm being a prerequisite for inkjet type printing technique. A good reproducibility of the particle size of folic acid nanosuspension prepared via high pressure homogenization was found. As indicated by the zeta potential the formulation showed a good storage stability. High pressure homogenization had no influence on the crystalline state of folic acid. An increase in the saturation solubility by 53.7% was found reducing the particle size from the micrometer range to the nanometer range. The dissolution velocity of the folic acid nanosuspension was significantly enhanced compared to a folic acid suspension, i.e. after 5 min 78.6% of the folic acid was dissolved from the nanosuspension and only 6.2% from the suspension. Moreover, the printing of 10% folic acid nanosuspension could be successfully demonstrated. PMID:21889582

  13. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction

    PubMed Central

    Braun, Tatjana; Koehler Leman, Julia; Lange, Oliver F.

    2015-01-01

    Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs. PMID:26713437

  14. Accurate microRNA target prediction correlates with protein repression levels

    PubMed Central

    Maragkakis, Manolis; Alexiou, Panagiotis; Papadopoulos, Giorgio L; Reczko, Martin; Dalamagas, Theodore; Giannopoulos, George; Goumas, George; Koukis, Evangelos; Kourtis, Kornilios; Simossis, Victor A; Sethupathy, Praveen; Vergoulis, Thanasis; Koziris, Nectarios; Sellis, Timos; Tsanakas, Panagiotis; Hatzigeorgiou, Artemis G

    2009-01-01

    Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at PMID:19765283

  15. In silico modeling predicts drug sensitivity of patient-derived cancer cells

    PubMed Central

    2014-01-01

    Background Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling (“omics”) data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. Methods Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. Results Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. Conclusions These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer. PMID:24884660

  16. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  17. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors.

    PubMed

    Carlson, Joel N K; Park, Jong Min; Park, So-Yeon; Park, Jong In; Choi, Yunseok; Ye, Sung-Joon

    2016-03-21

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  18. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837

  19. PREDICTING DRUG DISPOSITION, ABSORPTION / ELIMINATION / TRANSPORTER INTERPLAY AND THE ROLE OF FOOD ON DRUG ABSORPTION

    PubMed Central

    Custodio, Joseph M.; Wu, Chi-Yuan; Benet, Leslie Z.

    2008-01-01

    The ability to predict drug disposition involves concurrent consideration of many chemical and physiological variables and the effect of food on the rate and extent of availability adds further complexity due to postprandial changes in the gastrointestinal (GI) tract. A system that allows for the assessment of the multivariate interplay occurring following administration of an oral dose, in the presence or absence of meal, would greatly benefit the early stages of drug development. This is particularly true in an era when the majority of new molecular entities are highly permeable, poorly soluble, extensively metabolized compounds (BDDCS Class 2), which present the most complicated relationship in defining the impact of transporters due to the marked effects of transporter-enzyme interplay. This review evaluates the GI luminal environment by taking into account the absorption / transport / elimination interplay and evaluates the physiochemical property issues by taking into account the importance of solubility, permeability and metabolism. We concentrate on the BDDCS and its utility in predicting drug disposition. Furthermore, we focus on the effect of food on the extent of drug availability (F), which appears to follow closely what might be expected if a significant effect of high fat meals is inhibition of transporters. That is, high fat meals and lipidic excipients would be expected to have little effect on F for Class 1 drugs; they would increase F of Class 2 drugs, while decreasing F for Class 3 drugs. PMID:18199522

  20. Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory

    PubMed Central

    Li, Jiaming; Luo, Suhuai; Jin, Jesse S.

    2010-01-01

    Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent. PMID:22163414

  1. Expression genomics and drug development: towards predictive pharmacology.

    PubMed

    Liu, Edison T

    2005-02-01

    Expression genomics can be defined as the study of the dynamic transciptome and its regulatory elements. Technologies are available that can assess transcripts on a genome-wide scale over time and across many samples. This comprehensive and dynamic database is being used to decipher signalling pathways and to identify new biomarkers and targets. Biomarkers emerging from these studies have prognostic potential and can be used to predict therapeutic outcome. The multiplex nature of this approach not only telescopes the time to discovery, but also allows for detection of complex interactions. Taken together, these capabilities, if carefully used, can speed drug development, enhance the identification of potent drug combinations and identify patient populations that will benefit from these new drugs. PMID:15814022

  2. Positive urgency predicts illegal drug use and risky sexual behavior.

    PubMed

    Zapolski, Tamika C B; Cyders, Melissa A; Smith, Gregory T

    2009-06-01

    There are several different personality traits that dispose individuals to engage in rash action. One such trait is positive urgency: the tendency to act rashly when experiencing extremely positive affect. This trait may be relevant for college student risky behavior, because it appears that a great deal of college student risky behavior is undertaken during periods of intensely positive mood states. To test this possibility, the authors conducted a longitudinal study designed to predict increases in risky sexual behavior and illegal drug use over the course of the first year of college (n=407). In a well-fitting structural model, positive urgency predicted increases in illegal drug use and risky sexual behavior, even after controlling for time 1 (T1) involvement in both risky behaviors, biological sex, and T1 scores on four other personality dispositions to rash action. The authors discuss the theoretical and practical implications of this finding. PMID:19586152

  3. Similarity-based modeling in large-scale prediction of drug-drug interactions.

    PubMed

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2014-09-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients' quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. The method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. The method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. The time frame to implement this protocol is 5-7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented. PMID:25122524

  4. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces

    PubMed Central

    Tjong, Harianto; Zhou, Huan-Xiang

    2007-01-01

    Structural and physical properties of DNA provide important constraints on the binding sites formed on surfaces of DNA-targeting proteins. Characteristics of such binding sites may form the basis for predicting DNA-binding sites from the structures of proteins alone. Such an approach has been successfully developed for predicting protein–protein interface. Here this approach is adapted for predicting DNA-binding sites. We used a representative set of 264 protein–DNA complexes from the Protein Data Bank to analyze characteristics and to train and test a neural network predictor of DNA-binding sites. The input to the predictor consisted of PSI-blast sequence profiles and solvent accessibilities of each surface residue and 14 of its closest neighboring residues. Predicted DNA-contacting residues cover 60% of actual DNA-contacting residues and have an accuracy of 76%. This method significantly outperforms previous attempts of DNA-binding site predictions. Its application to the prion protein yielded a DNA-binding site that is consistent with recent NMR chemical shift perturbation data, suggesting that it can complement experimental techniques in characterizing protein–DNA interfaces. PMID:17284455

  5. Using complete genome comparisons to identify sequences whose presence accurately predicts clinically important phenotypes.

    PubMed

    Hall, Barry G; Cardenas, Heliodoro; Barlow, Miriam

    2013-01-01

    In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive. Here we propose a simple, rapid, and inexpensive method of predicting pathogenic phenotypes on the basis of the presence or absence of short homologous DNA segments in an isolate. Our method compares completely sequenced genomes without the necessity of genome alignments in order to identify the presence or absence of the segments to produce an automatic alignment of the binary string that describes each genome. Analysis of the segment alignment allows identification of those segments whose presence strongly predicts a phenotype. Clinical application of the method requires nothing more that PCR amplification of each of the set of predictive segments. Here we apply the method to identifying EHEC strains of E. coli and to distinguishing E. coli from Shigella. We show in silico that with as few as 8 predictive sequences, if even three of those predictive sequences are amplified the probability of being EHEC or Shigella is >0.99. The method is thus very robust to the occasional amplification failure for spurious reasons. Experimentally, we apply the method to screening a set of 98 isolates to distinguishing E. coli from Shigella, and EHEC from non-EHEC E. coli strains and show that all isolates are correctly identified. PMID:23935901

  6. Predicting risk of adverse drug reactions in older adults.

    PubMed

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-02-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  7. Predicting risk of adverse drug reactions in older adults

    PubMed Central

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-01-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  8. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  9. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF

    PubMed Central

    Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.

    2016-01-01

    The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113

  10. Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution.

    PubMed

    Ge, Xiaochuan; Timrov, Iurii; Binnie, Simon; Biancardi, Alessandro; Calzolari, Arrigo; Baroni, Stefano

    2015-04-23

    The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluated by combining ab initio Car-Parrinello molecular dynamics and time-dependent density functional theory calculations. The inclusion of hybrid exchange-correlation functionals, necessary for the prediction of the correct transition frequencies, prevents one from using these techniques for the simulation of the optical properties of large realistic systems. Here we present an alternative approach for the prediction of the color of natural dyes in solution with a low computational cost. We applied this approach to representative anthocyanin dyes: the excellent agreement between the simulated and the experimental colors makes this method a straightforward and inexpensive tool for the high-throughput prediction of colors of molecules in liquid solvents. PMID:25830823

  11. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  12. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  13. An Accurate, Clinically Feasible Multi-Gene Expression Assay for Predicting Metastasis in Uveal Melanoma

    PubMed Central

    Onken, Michael D.; Worley, Lori A.; Tuscan, Meghan D.; Harbour, J. William

    2010-01-01

    Uveal (ocular) melanoma is an aggressive cancer that often forms undetectable micrometastases before diagnosis of the primary tumor. These micrometastases later multiply to generate metastatic tumors that are resistant to therapy and are uniformly fatal. We have previously identified a gene expression profile derived from the primary tumor that is extremely accurate for identifying patients at high risk of metastatic disease. Development of a practical clinically feasible platform for analyzing this expression profile would benefit high-risk patients through intensified metastatic surveillance, earlier intervention for metastasis, and stratification for entry into clinical trials of adjuvant therapy. Here, we migrate the expression profile from a hybridization-based microarray platform to a robust, clinically practical, PCR-based 15-gene assay comprising 12 discriminating genes and three endogenous control genes. We analyze the technical performance of the assay in a prospective study of 609 tumor samples, including 421 samples sent from distant locations. We show that the assay can be performed accurately on fine needle aspirate biopsy samples, even when the quantity of RNA is below detectable limits. Preliminary outcome data from the prospective study affirm the prognostic accuracy of the assay. This prognostic assay provides an important addition to the armamentarium for managing patients with uveal melanoma, and it provides a proof of principle for the development of similar assays for other cancers. PMID:20413675

  14. Accurate Prediction of Transposon-Derived piRNAs by Integrating Various Sequential and Physicochemical Features

    PubMed Central

    Luo, Longqiang; Li, Dingfang; Zhang, Wen; Tu, Shikui; Zhu, Xiaopeng; Tian, Gang

    2016-01-01

    Background Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as well as help to further understand generation mechanism of gamete. Methods In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their sequential and physicochemical features by using machine learning methods. We explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-sequence triplet elements, and systematically evaluate their performances for transposon-derived piRNA prediction. Finally, we consider two approaches: direct combination and ensemble learning to integrate useful features and achieve high-accuracy prediction models. Results We construct three datasets, covering three species: Human, Mouse and Drosophila, and evaluate the performances of prediction models by 10-fold cross validation. In the computational experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on Human, Mouse and Drosophila, respectively; ensemble learning models achieve AUC of 0.922, 0.926 and 0.994 on the three datasets. Conclusions Compared with other state-of-the-art methods, our methods can lead to better performances. In conclusion, the proposed methods are promising for the transposon-derived piRNA prediction. The source codes and datasets are available in S1 File. PMID:27074043

  15. In Vitro Drug Sensitivity Tests to Predict Molecular Target Drug Responses in Surgically Resected Lung Cancer

    PubMed Central

    Miyazaki, Ryohei; Anayama, Takashi; Hirohashi, Kentaro; Okada, Hironobu; Kume, Motohiko; Orihashi, Kazumasa

    2016-01-01

    Background Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI) test and collagen gel droplet embedded culture drug sensitivity test (CD-DST) are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs. Methods The growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status. Results HCC827 (Exon19: E746-A750 del) and H3122 (EML4-ALK) cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M) cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003). The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026) in CD-DST. Conclusions In vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically. PMID:27070423

  16. Mathematical model to predict skin concentration after topical application of drugs.

    PubMed

    Todo, Hiroaki; Oshizaka, Takeshi; Kadhum, Wesam R; Sugibayashi, Kenji

    2013-01-01

    Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill's equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of "3Rs" issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick's second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments. PMID:24351574

  17. Viewing men's faces does not lead to accurate predictions of trustworthiness

    PubMed Central

    Efferson, Charles; Vogt, Sonja

    2013-01-01

    The evolution of cooperation requires some mechanism that reduces the risk of exploitation for cooperative individuals. Recent studies have shown that men with wide faces are anti-social, and they are perceived that way by others. This suggests that people could use facial width to identify anti-social men and thus limit the risk of exploitation. To see if people can make accurate inferences like this, we conducted a two-part experiment. First, males played a sequential social dilemma, and we took photographs of their faces. Second, raters then viewed these photographs and guessed how second movers behaved. Raters achieved significant accuracy by guessing that second movers exhibited reciprocal behaviour. Raters were not able to use the photographs to further improve accuracy. Indeed, some raters used the photographs to their detriment; they could have potentially achieved greater accuracy and earned more money by ignoring the photographs and assuming all second movers reciprocate. PMID:23308340

  18. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  19. Accurate, conformation-dependent predictions of solvent effects on protein ionization constants

    PubMed Central

    Barth, P.; Alber, T.; Harbury, P. B.

    2007-01-01

    Predicting how aqueous solvent modulates the conformational transitions and influences the pKa values that regulate the biological functions of biomolecules remains an unsolved challenge. To address this problem, we developed FDPB_MF, a rotamer repacking method that exhaustively samples side chain conformational space and rigorously calculates multibody protein–solvent interactions. FDPB_MF predicts the effects on pKa values of various solvent exposures, large ionic strength variations, strong energetic couplings, structural reorganizations and sequence mutations. The method achieves high accuracy, with root mean square deviations within 0.3 pH unit of the experimental values measured for turkey ovomucoid third domain, hen lysozyme, Bacillus circulans xylanase, and human and Escherichia coli thioredoxins. FDPB_MF provides a faithful, quantitative assessment of electrostatic interactions in biological macromolecules. PMID:17360348

  20. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  1. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues

    PubMed Central

    EL-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  2. Accurate Fault Prediction of BlueGene/P RAS Logs Via Geometric Reduction

    SciTech Connect

    Jones, Terry R; Kirby, Michael; Ladd, Joshua S; Dreisigmeyer, David; Thompson, Joshua

    2010-01-01

    The authors are building two algorithms for fault prediction using raw system-log data. This work is preliminary, and has only been applied to a limited dataset, however the results seem promising. The conclusions are that: (1) obtaining useful data from RAS-logs is challenging; (2) extracting concentrated information improves efficiency and accuracy; and (3) function evaluation algorithms are fast and lend well to scaling.

  3. Accurate single-sequence prediction of solvent accessible surface area using local and global features

    PubMed Central

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-01-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  4. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  5. Accurate single-sequence prediction of solvent accessible surface area using local and global features.

    PubMed

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-11-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  6. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  7. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512

  8. More accurate predictions with transonic Navier-Stokes methods through improved turbulence modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A.

    1989-01-01

    Significant improvements in predictive accuracies for off-design conditions are achievable through better turbulence modeling; and, without necessarily adding any significant complication to the numerics. One well established fact about turbulence is it is slow to respond to changes in the mean strain field. With the 'equilibrium' algebraic turbulence models no attempt is made to model this characteristic and as a consequence these turbulence models exaggerate the turbulent boundary layer's ability to produce turbulent Reynolds shear stresses in regions of adverse pressure gradient. As a consequence, too little momentum loss within the boundary layer is predicted in the region of the shock wave and along the aft part of the airfoil where the surface pressure undergoes further increases. Recently, a 'nonequilibrium' algebraic turbulence model was formulated which attempts to capture this important characteristic of turbulence. This 'nonequilibrium' algebraic model employs an ordinary differential equation to model the slow response of the turbulence to changes in local flow conditions. In its original form, there was some question as to whether this 'nonequilibrium' model performed as well as the 'equilibrium' models for weak interaction cases. However, this turbulence model has since been further improved wherein it now appears that this turbulence model performs at least as well as the 'equilibrium' models for weak interaction cases and for strong interaction cases represents a very significant improvement. The performance of this turbulence model relative to popular 'equilibrium' models is illustrated for three airfoil test cases of the 1987 AIAA Viscous Transonic Airfoil Workshop, Reno, Nevada. A form of this 'nonequilibrium' turbulence model is currently being applied to wing flows for which similar improvements in predictive accuracy are being realized.

  9. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  10. Neonatal hair analysis contribution to establishing a gestational drug exposure profile and predicting a withdrawal syndrome.

    PubMed

    Vinner, Elisabeth; Vignau, Jean; Thibault, Denise; Codaccioni, Xavier; Brassart, Claudie; Humbert, Luc; Lhermitte, Michel

    2003-08-01

    Recently, interest in hair analysis in such fields as drug abuse, driving, or for clinical purposes (determination of drug-exposed neonates especially) has grown because of the highly sensitive method of detection (GC-MS) that can now be applied. Neonates born to drug-addicted mothers can suffer from neonatal withdrawal syndrome (NWS), which requires morphine treatment in its severe forms. To assess and measure toxicologic factors predicting the appearance and the severity of this syndrome, matrices such as urine, meconium, and hair are necessary. Cannabinoids, opiates, cocaine (and its metabolites), and methadone in particular were determined in the various matrices collected in 17 mother/neonate pairs. An immunologic screening method was used, and quantification was achieved with GC-MS. In spite of some bias (color, length, race) that might hinder an accurate interpretation, the results of hair analysis makes it possible to confirm a fetal drug exposure and to reinforce the diagnosis of the NWS observed, particularly when results obtained in other matrices are negative. Hair analysis contributes to our ability to predict a NWS. PMID:12883224

  11. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions.

    PubMed

    Feng, Bo; Varma, Manthena V

    2016-07-01

    With numerous drugs cleared renally, inhibition of uptake transporters localized on the basolateral membrane of renal proximal tubule cells, eg, organic anion transporters (OATs) and organic cation transporters (OCTs), may lead to clinically meaningful drug-drug interactions (DDIs). Additionally, clinical evidence for the possible involvement of efflux transporters, such as P-glycoprotein (P-gp) and multidrug and toxin extrusion protein 1/2-K (MATE1/2-K), in the renal DDIs is emerging. Herein, we review recent progress regarding mechanistic understanding of transporter-mediated renal DDIs as well as the quantitative predictability of renal DDIs using static and physiologically based pharmacokinetic (PBPK) models. Generally, clinical DDI data suggest that the magnitude of plasma exposure changes attributable to renal DDIs is less than 2-fold, unlike the DDIs associated with inhibition of cytochrome P-450s and/or hepatic uptake transporters. It is concluded that although there is a need for risk assessment early in drug development, current available data imply that safety concerns related to the renal DDIs are generally low. Nevertheless, consideration must be given to the therapeutic index of the victim drug and potential risk in a specific patient population (eg, renal impairment). Finally, in vitro transporter data and clinical pharmacokinetic parameters obtained from the first-in-human studies have proven useful in support of quantitative prediction of DDIs associated with inhibition of renal secretory transporters, OATs or OCTs. PMID:27385169

  12. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  13. Drug Predictive Cues Activate Aversion-Sensitive Striatal Neurons That Encode Drug Seeking

    PubMed Central

    Wheeler, Daniel S.; Robble, Mykel A.; Hebron, Emily M.; Dupont, Matthew J.; Ebben, Amanda L.

    2015-01-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking. PMID:25948270

  14. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking.

    PubMed

    Wheeler, Daniel S; Robble, Mykel A; Hebron, Emily M; Dupont, Matthew J; Ebben, Amanda L; Wheeler, Robert A

    2015-05-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking. PMID:25948270

  15. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  16. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  17. Accurate predictions of dielectrophoretic force and torque on particles with strong mutual field, particle, and wall interactions

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Reifsnider, Kenneth

    2012-11-01

    The basis of dielectrophoresis (DEP) is the prediction of the force and torque on particles. The classical approach to the prediction is based on the effective moment method, which, however, is an approximate approach, assumes infinitesimal particles. Therefore, it is well-known that for finite-sized particles, the DEP approximation is inaccurate as the mutual field, particle, wall interactions become strong, a situation presently attracting extensive research for practical significant applications. In the present talk, we provide accurate calculations of the force and torque on the particles from first principles, by directly resolving the local geometry and properties and accurately accounting for the mutual interactions for finite-sized particles with both dielectric polarization and conduction in a sinusoidally steady-state electric field. Since the approach has a significant advantage, compared to other numerical methods, to efficiently simulate many closely packed particles, it provides an important, unique, and accurate technique to investigate complex DEP phenomena, for example heterogeneous mixtures containing particle chains, nanoparticle assembly, biological cells, non-spherical effects, etc. This study was supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.

  18. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons.

    PubMed

    Oyeyemi, Victor B; Krisiloff, David B; Keith, John A; Libisch, Florian; Pavone, Michele; Carter, Emily A

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs. PMID:25669533

  19. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  20. PSI: a comprehensive and integrative approach for accurate plant subcellular localization prediction.

    PubMed

    Liu, Lili; Zhang, Zijun; Mei, Qian; Chen, Ming

    2013-01-01

    Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ~10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/. PMID:24194827

  1. Guide to drug porphyrogenicity prediction and drug prescription in the acute porphyrias

    PubMed Central

    Thunell, Stig; Pomp, Erik; Brun, Atle

    2007-01-01

    What is already known about this subject Many drug safety lists for acute porphyrias, largely based on anecdotal evidence, are put forward, but no methods or rationale for the risk estimates are given. Many unexplained discrepancies between the lists exist. What this study adds A standardized method for assessment of the risk that a certain drug may activate these diseases has been developed. It also allows risk assessments for drugs lacking porphyria related clinical experience. About one thousand therapeutic drugs have been classified with regard to porphyrogenicity by the proposed method, which is most valuable for the care of porphyria patients. Aims This paper addresses two common problems in the care of carriers of acute porphyria: the choice of safe drugs for pharmacotherapy and the strategy to apply when potentially unsafe drugs cannot be avoided. Methods and results A technique is presented for prediction of risk that a certain drug may activate the disease in a gene carrier for acute porphyria. It is based on a model explaining the clinical manifestations as a result of the acute overloading of a deficient enzyme within the hepatic heme biosynthetic chain. The capacity of the drug for induction of the rate-limiting enzyme in heme biosynthesis, e.g. housekeeping 5-aminolevulinate synthase (ALAS1), is assessed by critical appraisal of reports of the outcomes of clinical use of the drug, and by theoretical criteria. The assessment occurs within the frame of a flow-scheme employing variables of increasing specificity, i.e. endocrine properties of the drug, structure and metabolism pointing to affinity to cytochrome P450, hepatic load in therapeutic use, recognized affinity to major CYP species, capacity for CYP-induction or irreversible inhibition, and capacity to activate or modulate the transduction mechanisms of nuclear receptors affecting ALAS1-gene transcription. It is proposed that in the absence of a safer alternative, an urgently needed drug not

  2. The Compensatory Reserve For Early and Accurate Prediction Of Hemodynamic Compromise: A Review of the Underlying Physiology.

    PubMed

    Convertino, Victor A; Wirt, Michael D; Glenn, John F; Lein, Brian C

    2016-06-01

    Shock is deadly and unpredictable if it is not recognized and treated in early stages of hemorrhage. Unfortunately, measurements of standard vital signs that are displayed on current medical monitors fail to provide accurate or early indicators of shock because of physiological mechanisms that effectively compensate for blood loss. As a result of new insights provided by the latest research on the physiology of shock using human experimental models of controlled hemorrhage, it is now recognized that measurement of the body's reserve to compensate for reduced circulating blood volume is the single most important indicator for early and accurate assessment of shock. We have called this function the "compensatory reserve," which can be accurately assessed by real-time measurements of changes in the features of the arterial waveform. In this paper, the physiology underlying the development and evaluation of a new noninvasive technology that allows for real-time measurement of the compensatory reserve will be reviewed, with its clinical implications for earlier and more accurate prediction of shock. PMID:26950588

  3. The role of metabolites in predicting drug-drug interactions: Focus on irreversible P450 inhibition

    PubMed Central

    VandenBrink, Brooke M.; Isoherranen, Nina

    2010-01-01

    Irreversible inhibition of cytochrome P450 enzymes can cause significant drug-drug interactions (DDIs). Formation of metabolites is fundamental for the inactivation of P450 enzymes. Of the 19 inactivators with a known mechanism of inactivation, 10 have circulating metabolites that are known to be on path to inactive P450. The fact that inactivation usually requires multiple metabolic steps implies that predicting in vivo interactions may require complex models, and in vitro data generated from each metabolite. The data reviewed here suggest that circulating metabolites are much more important in in vivo P450 inhibition than is currently acknowledged. PMID:20047147

  4. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

    PubMed

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  5. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

    PubMed Central

    Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  6. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  7. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  8. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  9. Sequence features accurately predict genome-wide MeCP2 binding in vivo.

    PubMed

    Rube, H Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H; Hess, John F; LaSalle, Janine M; Song, Jun S; Gong, Qizhi

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915

  10. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  11. Sequence features accurately predict genome-wide MeCP2 binding in vivo

    PubMed Central

    Rube, H. Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H.; Hess, John F.; LaSalle, Janine M.; Song, Jun S.; Gong, Qizhi

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915

  12. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. PMID:26708965

  13. An accurate and efficient method for prediction of the long-term evolution of space debris in the geosynchronous region

    NASA Astrophysics Data System (ADS)

    McNamara, Roger P.; Eagle, C. D.

    1992-08-01

    Planetary Observer High Accuracy Orbit Prediction Program (POHOP), an existing numerical integrator, was modified with the solar and lunar formulae developed by T.C. Van Flandern and K.F. Pulkkinen to provide the accuracy required to evaluate long-term orbit characteristics of objects on the geosynchronous region. The orbit of a 1000 kg class spacecraft is numerically integrated over 50 years using both the original and the more accurate solar and lunar ephemerides methods. Results of this study demonstrate that, over the long term, for an object located in the geosynchronous region, the more accurate solar and lunar ephemerides effects on the objects's position are significantly different than using the current POHOP ephemeris.

  14. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  15. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    PubMed Central

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  16. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes.

    PubMed

    Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G; Qin, Jun; Chen, Rui

    2016-05-01

    Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414

  17. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  18. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  19. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    PubMed

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin. PMID:19054059

  20. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  1. Quantitative prediction of intestinal glucuronidation of drugs in rats using in vitro metabolic clearance data.

    PubMed

    Furukawa, Takako; Nakamori, Fumihiro; Tetsuka, Kazuhiro; Naritomi, Yoichi; Moriguchi, Hiroyuki; Yamano, Katsuhiro; Terashita, Shigeyuki; Teramura, Toshio

    2012-01-01

    UDP-glucuronosyltransferase (UGT) is highly expressed in the small intestine and catalyzes the glucuronidation of small molecules, which may affect the oral bioavailability of drugs. However, no method of predicting the in vivo observed fraction of absorbed drug (F(a)F(g)) affected by UGT has yet been established. Here, we investigated the relationship between F(a)F(g) and in vitro clearance of nine UGT substrates (ketoprofen, tolcapone, telmisartan, raloxifene, entacapone, resveratrol, buprenorphine, quercetin, and ezetimibe) via UGT in intestinal microsomes (CL(int, UGT)) in rats. F(a)F(g) was calculated from pharmacokinetic parameters after intravenous and oral administration or using the portal-systemic concentration difference method, with values ranging from 0.027 (ezetimibe) to 1 (tolcapone). Glucuronides of model compounds were observed in the portal plasma after oral administration, with CL(int, UGT) values ranging from 57.8 (tolcapone) to 19,200 µL/min/mg (resveratrol). An inverse correlation between F(a)F(g) and CL(int, UGT) was observed for most compounds and was described using a simplified intestinal availability model reported previously. This model gave accurate predictions of F(a)F(g) values for three in-house compounds. Our results show that F(a)F(g) in rats is affected by UGT and can be predicted using CL(int, UGT). This work should hasten the development of a method to predict F(a)F(g) in humans. PMID:21970858

  2. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  3. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  4. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  5. MinION: A Novel Tool for Predicting Drug Hypersensitivity?

    PubMed Central

    Chua, Eng Wee; Ng, Pei Yuen

    2016-01-01

    The launch of the MinION Access Program has caused much activity within the scientific community. MinION represents a keenly anticipated, novel addition to the current melange of commercial sequencers. Driven by the nanopore sequencing mechanism that requires minimal sample manipulation, the device is capable of generating long sequence reads in sizes (up to or exceeding 50 kb) that surpass those of all other platforms. One notable advantage of this feature is that long-range haplotypes can be more accurately resolved; such advantage is particularly pertinent to the genotyping of complex loci such as genes encoding the human leukocyte antigens, which are pivotal determinants of drug hypersensitivity. With this timely, albeit brief, review, we set out to examine the applications on which MinION has been tested thus far, the bioinformatics workflow tailored to the unique characteristics of its extended sequence reads, the device’s potential utility in the detection of genetic markers for drug hypersensitivity, and how it may eventually evolve to become fit for diagnostic purposes in the clinical setting. PMID:27378921

  6. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model.

    PubMed

    Almond, Lisa M; Mukadam, Sophie; Gardner, Iain; Okialda, Krystle; Wong, Susan; Hatley, Oliver; Tay, Suzanne; Rowland-Yeo, Karen; Jamei, Masoud; Rostami-Hodjegan, Amin; Kenny, Jane R

    2016-06-01

    Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach. PMID:27026679

  7. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model

    PubMed Central

    Mukadam, Sophie; Gardner, Iain; Okialda, Krystle; Wong, Susan; Hatley, Oliver; Tay, Suzanne; Rowland-Yeo, Karen; Jamei, Masoud; Rostami-Hodjegan, Amin; Kenny, Jane R.

    2016-01-01

    Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach. PMID:27026679

  8. Accurate prediction of interference minima in linear molecular harmonic spectra by a modified two-center model

    NASA Astrophysics Data System (ADS)

    Xin, Cui; Di-Yu, Zhang; Gao, Chen; Ji-Gen, Chen; Si-Liang, Zeng; Fu-Ming, Guo; Yu-Jun, Yang

    2016-03-01

    We demonstrate that the interference minima in the linear molecular harmonic spectra can be accurately predicted by a modified two-center model. Based on systematically investigating the interference minima in the linear molecular harmonic spectra by the strong-field approximation (SFA), it is found that the locations of the harmonic minima are related not only to the nuclear distance between the two main atoms contributing to the harmonic generation, but also to the symmetry of the molecular orbital. Therefore, we modify the initial phase difference between the double wave sources in the two-center model, and predict the harmonic minimum positions consistent with those simulated by SFA. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11274001, 11274141, 11304116, 11247024, and 11034003), and the Jilin Provincial Research Foundation for Basic Research, China (Grant Nos. 20130101012JC and 20140101168JC).

  9. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  10. Evaluating Mesoscale Numerical Weather Predictions and Spatially Distributed Meteorologic Forcing Data for Developing Accurate SWE Forecasts over Large Mountain Basins

    NASA Astrophysics Data System (ADS)

    Hedrick, A. R.; Marks, D. G.; Winstral, A. H.; Marshall, H. P.

    2014-12-01

    The ability to forecast snow water equivalent, or SWE, in mountain catchments would benefit many different communities ranging from avalanche hazard mitigation to water resource management. Historical model runs of Isnobal, the physically based energy balance snow model, have been produced over the 2150 km2 Boise River Basin for water years 2012 - 2014 at 100-meter resolution. Spatially distributed forcing parameters such as precipitation, wind, and relative humidity are generated from automated weather stations located throughout the watershed, and are supplied to Isnobal at hourly timesteps. Similarly, the Weather Research & Forecasting (WRF) Model provides hourly predictions of the same forcing parameters from an atmospheric physics perspective. This work aims to quantitatively compare WRF model output to the spatial meteorologic fields developed to force Isnobal, with the hopes of eventually using WRF predictions to create accurate hourly forecasts of SWE over a large mountainous basin.

  11. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

    PubMed

    Gao, Hui; Korn, Joshua M; Ferretti, Stéphane; Monahan, John E; Wang, Youzhen; Singh, Mallika; Zhang, Chao; Schnell, Christian; Yang, Guizhi; Zhang, Yun; Balbin, O Alejandro; Barbe, Stéphanie; Cai, Hongbo; Casey, Fergal; Chatterjee, Susmita; Chiang, Derek Y; Chuai, Shannon; Cogan, Shawn M; Collins, Scott D; Dammassa, Ernesta; Ebel, Nicolas; Embry, Millicent; Green, John; Kauffmann, Audrey; Kowal, Colleen; Leary, Rebecca J; Lehar, Joseph; Liang, Ying; Loo, Alice; Lorenzana, Edward; Robert McDonald, E; McLaughlin, Margaret E; Merkin, Jason; Meyer, Ronald; Naylor, Tara L; Patawaran, Montesa; Reddy, Anupama; Röelli, Claudia; Ruddy, David A; Salangsang, Fernando; Santacroce, Francesca; Singh, Angad P; Tang, Yan; Tinetto, Walter; Tobler, Sonja; Velazquez, Roberto; Venkatesan, Kavitha; Von Arx, Fabian; Wang, Hui Qin; Wang, Zongyao; Wiesmann, Marion; Wyss, Daniel; Xu, Fiona; Bitter, Hans; Atadja, Peter; Lees, Emma; Hofmann, Francesco; Li, En; Keen, Nicholas; Cozens, Robert; Jensen, Michael Rugaard; Pryer, Nancy K; Williams, Juliet A; Sellers, William R

    2015-11-01

    Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses. PMID:26479923

  12. Modeling and predicting drug resistance rate and strength.

    PubMed

    Fullybright, R; Dwivedi, A; Mallawaarachchi, I; Sinsin, B

    2016-08-01

    Drug resistance has been worsening in human infectious diseases medicine over the past several decades. Our ability to successfully control resistance depends to a large extent on our understanding of the features characterizing the process. Part of that understanding includes the rate at which new resistance has been emerging in pathogens. Along that line, resistance data covering 90 infectious diseases, 118 pathogens, and 337 molecules, from 1921 through 2007, are modeled using various statistical tools to generate regression models for the rate of new resistance emergence and for cumulative resistance build-up in pathogens. Thereafter, the strength of the association between the number of molecules put on the market and the number of resulting cases of resistance is statistically tested. Predictive models are presented for the rate at which new resistance has been emerging in infectious diseases medicine, along with predictive models for the rate of cumulative resistance build-up in the aggregate of 118 pathogens as well as in ten individual pathogens. The models are expressed as a function of time and/or as a function of the number of molecules put on the market by the pharmaceutical industry. It is found that molecules significantly induce resistance in pathogens and that new or cumulative drug resistance across infectious diseases medicine has been arising at exponential rates. PMID:27209288

  13. Computerized techniques pave the way for drug-drug interaction prediction and interpretation

    PubMed Central

    Safdari, Reza; Ferdousi, Reza; Aziziheris, Kamal; Niakan-Kalhori, Sharareh R.; Omidi, Yadollah

    2016-01-01

    Introduction: Health care industry also patients penalized by medical errors that are inevitable but highly preventable. Vast majority of medical errors are related to adverse drug reactions, while drug-drug interactions (DDIs) are the main cause of adverse drug reactions (ADRs). DDIs and ADRs have mainly been reported by haphazard case studies. Experimental in vivo and in vitro researches also reveals DDI pairs. Laboratory and experimental researches are valuable but also expensive and in some cases researchers may suffer from limitations. Methods: In the current investigation, the latest published works were studied to analyze the trend and pattern of the DDI modelling and the impacts of machine learning methods. Applications of computerized techniques were also investigated for the prediction and interpretation of DDIs. Results: Computerized data-mining in pharmaceutical sciences and related databases provide new key transformative paradigms that can revolutionize the treatment of diseases and hence medical care. Given that various aspects of drug discovery and pharmacotherapy are closely related to the clinical and molecular/biological information, the scientifically sound databases (e.g., DDIs, ADRs) can be of importance for the success of pharmacotherapy modalities. Conclusion: A better understanding of DDIs not only provides a robust means for designing more effective medicines but also grantees patient safety. PMID:27525223

  14. Accurate First-Principles Spectra Predictions for Ethylene and its Isotopologues from Full 12D AB Initio Surfaces

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Rey, Michael; Tyuterev, Vladimir; Nikitin, Andrei V.; Szalay, Peter

    2015-06-01

    Hydrocarbons such as ethylene (C_2H_4) and methane (CH_4) are of considerable interest for the modeling of planetary atmospheres and other astrophysical applications. Knowledge of rovibrational transitions of hydrocarbons is of primary importance in many fields but remains a formidable challenge for the theory and spectral analysis. Essentially two theoretical approaches for the computation and prediction of spectra exist. The first one is based on empirically-fitted effective spectroscopic models. Several databases aim at collecting the corresponding data but the information about C_2H_4 spectrum present in these databases remains limited, only some spectral ranges around 1000, 3000 and 6000 cm-1 being available. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. Although they do not yet reach the spectroscopic accuracy, they could provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on two necessary ingredients: (i) accurate intramolecular potential energy surface and dipole moment surface components and (ii) efficient computational methods to achieve a good numerical convergence. We report predictions of vibrational and rovibrational energy levels of C_2H_4 using our new ground state potential energy surface obtained from extended ab initio calculations. Additionally we will introduce line positions and line intensities predictions based on a new dipole moment surface for ethylene. These results will be compared with previous works on ethylene and its isotopologues.

  15. Accurate calculation of the absolute free energy of binding for drug molecules† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02678d Click here for additional data file.

    PubMed Central

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J.; Knapp, Stefan

    2016-01-01

    Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol–1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol–1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets. PMID:26798447

  16. Predicting myelosuppression of drugs from in silico models.

    PubMed

    Crivori, Patrizia; Pennella, Giulia; Magistrelli, Miriam; Grossi, Pietro; Giusti, Anna Maria

    2011-02-28

    Anticancer agents targeting proliferating cell populations in tumor as well as in normal tissues can lead to a number of side effects including hematotoxicity, a common dose-limiting toxicity associated with oncology drugs. Myelosuppression, regarded as unacceptable for other therapeutic indications, is considered a clinical risk also for new targeted anticancer drugs acting specifically on tumor cells. Thus, it becomes important not only to evaluate the potential toxicity of such new therapeutics to human hematopoietic tissue during preclinical development but also to anticipate this liability in early drug discovery. This could be achieved by using in silico models to guide the design of new lead compounds and the selection of analogs with reduced myelosuppressive potential. Hence, the purpose of this study was to develop computational models able to predict the potential myelotoxicity of drugs from their chemical structure. The data set analyzed included 38 drugs. The structural diversity and the drug-like space covered by these molecules were investigated using the ChemGPS methodology. Two sets of potentially relevant descriptors for modeling myelotoxicity (i.e., 3D Volsurf+ and 2D structural and electrotopological E-states descriptors) were selected and a Principal Component Analysis was carried out on the entire set of data. The first two PCs were able to discriminate the highest from the least myelotoxic compounds with a total accuracy of 95%. Then, a quantitative PLS model was developed by correlating a selected subset of in vitro hematotoxicity data with Volsurf+ descriptors. After variable selection, the PLS analysis resulted in a one-latent-variable model with r(2) of 0.79 and q(2) of 0.72. The inclusion of 2D descriptors in the PLS analysis improved only slightly the robustness and quality of the model that predicted the pIC(50) values of 21 drugs not included in the model with a RMSEP of 0.67 and a squared correlation coefficient (r(0)(2)) of 0

  17. A hyperspectral imaging system for an accurate prediction of the above-ground biomass of individual rice plants.

    PubMed

    Feng, Hui; Jiang, Ni; Huang, Chenglong; Fang, Wei; Yang, Wanneng; Chen, Guoxing; Xiong, Lizhong; Liu, Qian

    2013-09-01

    Biomass is an important component of the plant phenomics, and the existing methods for biomass estimation for individual plants are either destructive or lack accuracy. In this study, a hyperspectral imaging system was developed for the accurate prediction of the above-ground biomass of individual rice plants in the visible and near-infrared spectral region. First, the structure of the system and the influence of various parameters on the camera acquisition speed were established. Then the system was used to image 152 rice plants, which selected from the rice mini-core collection, in two stages, the tillering to elongation (T-E) stage and the booting to heading (B-H) stage. Several variables were extracted from the images. Following, linear stepwise regression analysis and 5-fold cross-validation were used to select effective variables for model construction and test the stability of the model, respectively. For the T-E stage, the R(2) value was 0.940 for the fresh weight (FW) and 0.935 for the dry weight (DW). For the B-H stage, the R(2) value was 0.891 for the FW and 0.783 for the DW. Moreover, estimations of the biomass using visible light images were also calculated. These comparisons showed that hyperspectral imaging performed better than the visible light imaging. Therefore, this study provides not only a stable hyperspectral imaging platform but also an accurate and nondestructive method for the prediction of biomass for individual rice plants. PMID:24089866

  18. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  19. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning.

    PubMed

    Chen, Xing; Ren, Biao; Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-07-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801

  20. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning

    PubMed Central

    Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-01-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801

  1. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling.

    PubMed

    Posada, Maria M; Bacon, James A; Schneck, Karen B; Tirona, Rommel G; Kim, Richard B; Higgins, J William; Pak, Y Anne; Hall, Stephen D; Hillgren, Kathleen M

    2015-03-01

    Pemetrexed, an anionic anticancer drug with a narrow therapeutic index, is eliminated mainly by active renal tubular secretion. The in vitro to in vivo extrapolation approach used in this work was developed to predict possible drug-drug interactions (DDIs) that may occur after coadministration of pemetrexed and nonsteroidal anti-inflammatory drugs (NSAIDs), and it included in vitro assays, risk assessment models, and physiologically based pharmacokinetic (PBPK) models. The pemetrexed transport and its inhibition parameters by several NSAIDs were quantified using HEK-PEAK cells expressing organic anion transporter (OAT) 3 or OAT4. The NSAIDs were ranked according to their DDI index, calculated as the ratio of their maximum unbound concentration in plasma over the concentration inhibiting 50% (IC50) of active pemetrexed transport. A PBPK model for ibuprofen, the NSAID with the highest DDI index, was built incorporating active renal secretion in Simcyp Simulator. The bottom-up model for pemetrexed underpredicted the clearance by 2-fold. The model we built using a scaling factor of 5.3 for the maximal uptake rate (Vmax) of OAT3, which estimated using plasma concentration profiles from patients given a 10-minute infusion of 500 mg/m(2) of pemetrexed supplemented with folic acid and vitamin B12, recovered the clinical data adequately. The observed/predicted increases in Cmax and the area under the plasma-concentration time curve (AUC0-inf) of pemetrexed when ibuprofen was coadministered were 1.1 and 1.0, respectively. The coadministration of all other NSAIDs was predicted to have no significant impact on the AUC0-inf based on their DDI indexes. The PBPK model reasonably reproduced pemetrexed concentration time profiles in cancer patients and its interaction with ibuprofen. PMID:25504564

  2. Improvement of the Prediction of Drugs Demand Using Spatial Data Mining Tools.

    PubMed

    Ramos, M Isabel; Cubillas, Juan José; Feito, Francisco R

    2016-01-01

    The continued availability of products at any store is the major issue in order to provide good customer service. If the store is a drugstore this matter reaches a greater importance, as out of stock of a drug when there is high demand causes problems and tensions in the healthcare system. There are numerous studies of the impact this issue has on patients. The lack of any drug in a pharmacy in certain seasons is very common, especially when some external factors proliferate favoring the occurrence of certain diseases. This study focuses on a particular drug consumed in the city of Jaen, southern Andalucia, Spain. Our goal is to determine in advance the Salbutamol demand. Advanced data mining techniques have been used with spatial variables. These last have a key role to generate an effective model. In this research we have used the attributes that are associated with Salbutamol demand and it has been generated a very accurate prediction model of 5.78% of mean absolute error. This is a very encouraging data considering that the consumption of this drug in Jaen varies 500% from one period to another. PMID:26573643

  3. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption.

    PubMed

    Augustijns, Patrick; Wuyts, Benjamin; Hens, Bart; Annaert, Pieter; Butler, James; Brouwers, Joachim

    2014-06-16

    The purpose of this paper is to collate all recently published solubility data of orally administered drugs in human intestinal fluids (HIF) that were aspirated from the upper small intestine (duodenum and jejunum). The data set comprises in total 102 solubility values in fasted state HIF and 37 solubility values in fed state HIF, covering 59 different drugs. Despite differences in the protocol for HIF sampling and subsequent handling, this summary of HIF solubilities provides a critical reference data set to judge the value of simulated media for intestinal solubility estimation. In this regard, the review includes correlations between the reported solubilizing capacity of HIF and fasted or fed state simulated intestinal fluid (FaSSIF/FeSSIF). Correlating with HIF solubilities enables the optimal use of solubility measurements in simulated biorelevant media to obtain accurate estimates of intestinal solubility during drug development. Considering the fraction of poorly soluble new molecular entities in contemporary drug discovery, adequate prediction of intestinal solubility is critical for efficient lead optimization, early candidate profiling, and further development. PMID:23994640

  4. Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique

    NASA Astrophysics Data System (ADS)

    Bozinoski, Radoslav

    Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions

  5. Clinical Prediction Rule of Drug Resistant Epilepsy in Children

    PubMed Central

    Boonluksiri, Pairoj; Visuthibhan, Anannit; Katanyuwong, Kamornwan

    2015-01-01

    Background and Purpose: Clinical prediction rules (CPR) are clinical decision-making tools containing variables such as history, physical examination, diagnostic tests by developing scoring model from potential risk factors. This study is to establish clinical prediction scoring of drug-resistant epilepsy (DRE) in children using clinical manifestationa and only basic electroencephalography (EEG). Methods: Retrospective cohort study was conducted. A total of 308 children with diagnosed epilepsy were recruited. Primary outcome was the incidence of DRE. Independent determinants were patient characteristics, clinical manifestations and electroencephalography. CPR was performed based on multiple logistic regression. Results: The incidence of DRE was 42%. Risk factors were age onset, prior neurological deficits, and abnormal EEG. CPR can be established and stratified the prediction using scores into 3 levels such as low risk (score<6), moderate risk (score 6–12) and high risk (score>12) with positive likelihood ratio of 0.5, 1.8 and 12.5 respectively. Conclusions: CPR with scoring risks were stratified into 3 levels. The strongest risk is prior global neurological deficits. PMID:26819940

  6. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers.

    PubMed

    Hubatsch, Ina; Ragnarsson, Eva G E; Artursson, Per

    2007-01-01

    Permeability coefficients across monolayers of the human colon carcinoma cell line Caco-2, cultured on permeable supports, are commonly used to predict the absorption of orally administered drugs and other xenobiotics. This protocol describes our method for the cultivation, characterization and determination of permeability coefficients of xenobiotics (which are, typically, drug-like compounds) in the Caco-2 model. A few modifications that have been introduced over the years are incorporated in the protocol. The method can be used to trace the permeability of a test compound in two directions, from the apical to the basolateral side or vice versa, and both passive and active transport processes can be studied. The permeability assay can be completed within one working day, provided that the Caco-2 monolayers have been cultured and differentiated on the permeable supports 3 weeks in advance. PMID:17853866

  7. Predicting the Drug Safety for Traditional Chinese Medicine through a Comparative Analysis of Withdrawn Drugs Using Pharmacological Network

    PubMed Central

    Xue, Mengzhu; Zhang, Shoude; Cai, Chaoqian; Yu, Xiaojuan; Liu, Xiaofeng; Zhang, Weidong; Li, Honglin

    2013-01-01

    As the major issue to limit the use of drugs, drug safety leads to the attrition or failure in clinical trials of drugs. Therefore, it would be more efficient to minimize therapeutic risks if it could be predicted before large-scale clinical trials. Here, we integrated a network topology analysis with cheminformatics measurements on drug information from the DrugBank database to detect the discrepancies between approved drugs and withdrawn drugs and give drug safety indications. Thus, 47 approved drugs were unfolded with higher similarity measurements to withdrawn ones by the same target and confirmed to be already withdrawn or discontinued in certain countries or regions in subsequent investigations. Accordingly, with the 2D chemical fingerprint similarity calculation as a medium, the method was applied to predict pharmacovigilance for natural products from an in-house traditional Chinese medicine (TCM) database. Among them, Silibinin was highlighted for the high similarity to the withdrawn drug Plicamycin although it was regarded as a promising drug candidate with a lower toxicity in existing reports. In summary, the network approach integrated with cheminformatics could provide drug safety indications effectively, especially for compounds with unknown targets or mechanisms like natural products. It would be helpful for drug safety surveillance in all phases of drug development. PMID:23737823

  8. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). PMID:24274986

  9. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding.

    PubMed

    Nissley, Daniel A; Sharma, Ajeet K; Ahmed, Nabeel; Friedrich, Ulrike A; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  10. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  11. A simple yet accurate correction for winner's curse can predict signals discovered in much larger genome scans

    PubMed Central

    Bigdeli, T. Bernard; Lee, Donghyung; Webb, Bradley Todd; Riley, Brien P.; Vladimirov, Vladimir I.; Fanous, Ayman H.; Kendler, Kenneth S.; Bacanu, Silviu-Alin

    2016-01-01

    Motivation: For genetic studies, statistically significant variants explain far less trait variance than ‘sub-threshold’ association signals. To dimension follow-up studies, researchers need to accurately estimate ‘true’ effect sizes at each SNP, e.g. the true mean of odds ratios (ORs)/regression coefficients (RRs) or Z-score noncentralities. Naïve estimates of effect sizes incur winner’s curse biases, which are reduced only by laborious winner’s curse adjustments (WCAs). Given that Z-scores estimates can be theoretically translated on other scales, we propose a simple method to compute WCA for Z-scores, i.e. their true means/noncentralities. Results:WCA of Z-scores shrinks these towards zero while, on P-value scale, multiple testing adjustment (MTA) shrinks P-values toward one, which corresponds to the zero Z-score value. Thus, WCA on Z-scores scale is a proxy for MTA on P-value scale. Therefore, to estimate Z-score noncentralities for all SNPs in genome scans, we propose FDR Inverse Quantile Transformation (FIQT). It (i) performs the simpler MTA of P-values using FDR and (ii) obtains noncentralities by back-transforming MTA P-values on Z-score scale. When compared to competitors, realistic simulations suggest that FIQT is more (i) accurate and (ii) computationally efficient by orders of magnitude. Practical application of FIQT to Psychiatric Genetic Consortium schizophrenia cohort predicts a non-trivial fraction of sub-threshold signals which become significant in much larger supersamples. Conclusions: FIQT is a simple, yet accurate, WCA method for Z-scores (and ORs/RRs, via simple transformations). Availability and Implementation: A 10 lines R function implementation is available at https://github.com/bacanusa/FIQT. Contact: sabacanu@vcu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27187203

  12. Using PBPK guided “Body-on-a-Chip” Systems to Predict Mammalian Response to Drug and Chemical Exposure

    PubMed Central

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T.; Bernabini, Catia; Shuler, Michael L.; Hickman, James J.

    2014-01-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a “Body-on-a-Chip.”, and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  13. Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales

    PubMed Central

    Steele, Mark A.; Forrester, Graham E.

    2005-01-01

    Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721

  14. Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales.

    PubMed

    Steele, Mark A; Forrester, Graham E

    2005-09-20

    Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721

  15. Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2015-05-01

    Hemodynamics altered by stent implantation is well-known to be closely related to in-stent restenosis. Computational fluid dynamics (CFD) method has been used to investigate the hemodynamics in stented arteries in detail and help to analyze the performances of stents. In this study, blood models with Newtonian or non-Newtonian properties were numerically investigated for the hemodynamics at steady or pulsatile inlet conditions respectively employing CFD based on the finite volume method. The results showed that the blood model with non-Newtonian property decreased the area of low wall shear stress (WSS) compared with the blood model with Newtonian property and the magnitude of WSS varied with the magnitude and waveform of the inlet velocity. The study indicates that the inlet conditions and blood models are all important for accurately predicting the hemodynamics. This will be beneficial to estimate the performances of stents and also help clinicians to select the proper stents for the patients.

  16. Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction

    PubMed Central

    Youdim, Kuresh A; Zayed, Aref; Dickins, Maurice; Phipps, Alex; Griffiths, Michelle; Darekar, Amanda; Hyland, Ruth; Fahmi, Odette; Hurst, Susan; Plowchalk, David R; Cook, Jack; Guo, Feng; Obach, R Scott

    2008-01-01

    AIMS The aim of this study was to explore and optimize the in vitro and in silico approaches used for predicting clinical DDIs. A data set containing clinical information on the interaction of 20 Pfizer compounds with ketoconazole was used to assess the success of the techniques. METHODS The study calculated the fraction and the rate of metabolism of 20 Pfizer compounds via each cytochrome P450. Two approaches were used to determine fraction metabolized (fm); 1) by measuring substrate loss in human liver microsomes (HLM) in the presence and absence of specific chemical inhibitors and 2) by measuring substrate loss in individual cDNA expressed P450s (also referred to as recombinant P450s (rhCYP)) The fractions metabolized via each CYP were used to predict the drug–drug interaction due to CYP3A4 inhibition by ketoconazole using the modelling and simulation software SIMCYP®. RESULTS When in vitro data were generated using Gentest supersomes, 85% of predictions were within two-fold of the observed clinical interaction. Using PanVera baculosomes, 70% of predictions were predicted within two-fold. In contrast using chemical inhibitors the accuracy was lower, predicting only 37% of compounds within two-fold of the clinical value. Poorly predicted compounds were found to either be metabolically stable and/or have high microsomal protein binding. The use of equilibrium dialysis to generate accurate protein binding measurements was especially important for highly bound drugs. CONCLUSIONS The current study demonstrated that the use of rhCYPs with SIMCYP® provides a robust in vitro system for predicting the likelihood and magnitude of changes in clinical exposure of compounds as a consequence of CYP3A4 inhibition by a concomitantly administered drug. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Numerous retrospective analyses have shown the utility of in vitro systems for predicting potential drug–drug interactions (DDIs). Prediction of DDIs from in vitro data is commonly

  17. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids.

    PubMed

    Sprenger, K G; Jaeger, Vance W; Pfaendtner, Jim

    2015-05-01

    We have applied molecular dynamics to calculate thermodynamic and transport properties of a set of 19 room-temperature ionic liquids. Since accurately simulating the thermophysical properties of solvents strongly depends upon the force field of choice, we tested the accuracy of the general AMBER force field, without refinement, for the case of ionic liquids. Electrostatic point charges were developed using ab initio calculations and a charge scaling factor of 0.8 to more accurately predict dynamic properties. The density, heat capacity, molar enthalpy of vaporization, self-diffusivity, and shear viscosity of the ionic liquids were computed and compared to experimentally available data, and good agreement across a wide range of cation and anion types was observed. Results show that, for a wide range of ionic liquids, the general AMBER force field, with no tuning of parameters, can reproduce a variety of thermodynamic and transport properties with similar accuracy to that of other published, often IL-specific, force fields. PMID:25853313

  18. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients

    PubMed Central

    Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.

    2016-01-01

    BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218

  19. Prediction of in vivo drug performance using in vitro dissolution coupled with STELLA: a study with selected drug products.

    PubMed

    Chakraborty, Sumon; Yadav, Lokesh; Aggarwal, Deepika

    2015-01-01

    Prediction of the in vivo performance of the drug product from the in vitro studies is the major challenging job for the pharmaceutical industries. From the current regulatory perspective, biorelevant dissolution media should now be considered as quality control media in order to avoid the risk associated. Physiological based pharmacokinetic models (PBPK) coupled with biorelevant dissolution medium is widely used in simulation and prediction of the plasma drug concentration and in vivo drug performance. The present investigation deals with the evaluation of biorelevant dissolution media as well as in vivo drug performance by PBPK modelling using STELLA® simulation software. The PBPK model was developed using STELLA® using dissolution kinetics, solubility, standard gastrointestinal parameters and post-absorptive disposition parameters. The drug product selected for the present study includes Linezolid film-coated immediate-release tablets (Zyvox), Tacrolimus prolonged-release capsules (Advagraf), Valganciclovir tablets (Valcyte) and Mesalamine controlled-release capsules (Pentasa) each belonging to different biopharmaceutics classification system (BCS). The simulated plasma drug concentration was analyzed and pharmacokinetic parameters were calculated and compared with the reported values. The result from the present investigation indicates that STELLA® when coupled with biorelevant dissolution media can predict the in vivo performance of the drug product with prediction error less than 20% irrespective of the dosage form (immediate release versus modified release) and BCS Classification. Thus, STELLA® can be used for in vivo drug prediction which will be helpful in generic drug development. PMID:25494535

  20. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.

    PubMed

    Fromer, Menachem; Yanover, Chen

    2009-05-15

    precisely. Examination of the predicted ensembles indicates that, for each structure, the amino acid identity at a majority of positions must be chosen extremely selectively so as to not incur significant energetic penalties. We investigate this high degree of similarity and demonstrate how more diverse near-optimal sequences can be predicted in order to systematically overcome this bottleneck for computational design. Finally, we exploit this in-depth analysis of a collection of the lowest energy sequences to suggest an explanation for previously observed experimental design results. The novel methodologies introduced here accurately portray the sequence space compatible with a protein structure and further supply a scheme to yield heterogeneous low-energy sequences, thus providing a powerful instrument for future work on protein design. PMID:19003998

  1. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    PubMed

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling. PMID:26674605

  2. Predicting adverse drug events from personal health messages.

    PubMed

    Chee, Brant W; Berlin, Richard; Schatz, Bruce

    2011-01-01

    Adverse drug events (ADEs) remain a large problem in the United States, being the fourth leading cause of death, despite post market drug surveillance. Much post consumer drug surveillance relies on self-reported "spontaneous" patient data. Previous work has performed datamining over the FDA's Adverse Event Reporting System (AERS) and other spontaneous reporting systems to identify drug interactions and drugs correlated with high rates of serious adverse events. However, safety problems have resulted from the lack of post marketing surveillance information about drugs, with underreporting rates of up to 98% within such systems. We explore the use of online health forums as a source of data to identify drugs for further FDA scrutiny. In this work we aggregate individuals' opinions and review of drugs similar to crowd intelligence3. We use natural language processing to group drugs discussed in similar ways and are able to successfully identify drugs withdrawn from the market based on messages discussing them before their removal. PMID:22195073

  3. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations.

    PubMed

    Harb, Moussab

    2015-10-14

    Using accurate first-principles quantum calculations based on DFT (including the DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we can predict the essential fundamental properties (such as bandgap, optical absorption co-efficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit a relatively high absorption efficiency in the visible range, high dielectric constant, high charge carrier mobility and much lower exciton binding energy than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties were found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices such as Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications. PMID:26351755

  4. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.

    PubMed

    Grebner, Christoph; Iegre, Jessica; Ulander, Johan; Edman, Karl; Hogner, Anders; Tyrchan, Christian

    2016-04-25

    Computer-aided drug design plays an important role in medicinal chemistry to obtain insights into molecular mechanisms and to prioritize design strategies. Although significant improvement has been made in structure based design, it still remains a key challenge to accurately model and predict induced fit mechanisms. Most of the current available techniques either do not provide sufficient protein conformational sampling or are too computationally demanding to fit an industrial setting. The current study presents a systematic and exhaustive investigation of predicting binding modes for a range of systems using PELE (Protein Energy Landscape Exploration), an efficient and fast protein-ligand sampling algorithm. The systems analyzed (cytochrome P, kinase, protease, and nuclear hormone receptor) exhibit different complexities of ligand induced fit mechanisms and protein dynamics. The results are compared with results from classical molecular dynamics simulations and (induced fit) docking. This study shows that ligand induced side chain rearrangements and smaller to medium backbone movements are captured well in PELE. Large secondary structure rearrangements, however, remain challenging for all employed techniques. Relevant binding modes (ligand heavy atom RMSD < 1.0 Å) can be obtained by the PELE method within a few hours of simulation, positioning PELE as a tool applicable for rapid drug design cycles. PMID:26974351

  5. Accurate electrical prediction of memory array through SEM-based edge-contour extraction using SPICE simulation

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya

    2009-03-01

    The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.

  6. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  7. Can Humanized Mice Predict Drug "Behavior" in Humans?

    PubMed

    Xu, Dan; Peltz, Gary

    2016-01-01

    Most of what we know about a drug prior to human clinical studies is derived from animal testing. Because animals and humans have substantial differences in their physiology and in their drug metabolism pathways, we do not know very much about the pharmacokinetic and pharmacodynamic behavior of a drug in humans until after it is administered to many people. Hence, drug-induced liver injury has become a significant public health problem, and we have a very inefficient drug development process with a high failure rate. Because the human liver is at the heart of these problems, chimeric mice with humanized livers could be used to address these issues. We examine recent evidence indicating that drug testing in chimeric mice could provide better information about a drug's metabolism, disposition, and toxicity (i.e., its "behavior") in humans and could aid in developing personalized medicine strategies, which would improve drug efficacy and safety. PMID:26514208

  8. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  9. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  10. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties

    PubMed Central

    Cheng, Feixiong; Zhao, Zhongming

    2014-01-01

    Objective Drug–drug interactions (DDIs) are an important consideration in both drug development and clinical application, especially for co-administered medications. While it is necessary to identify all possible DDIs during clinical trials, DDIs are frequently reported after the drugs are approved for clinical use, and they are a common cause of adverse drug reactions (ADR) and increasing healthcare costs. Computational prediction may assist in identifying potential DDIs during clinical trials. Methods Here we propose a heterogeneous network-assisted inference (HNAI) framework to assist with the prediction of DDIs. First, we constructed a comprehensive DDI network that contained 6946 unique DDI pairs connecting 721 approved drugs based on DrugBank data. Next, we calculated drug–drug pair similarities using four features: phenotypic similarity based on a comprehensive drug–ADR network, therapeutic similarity based on the drug Anatomical Therapeutic Chemical classification system, chemical structural similarity from SMILES data, and genomic similarity based on a large drug–target interaction network built using the DrugBank and Therapeutic Target Database. Finally, we applied five predictive models in the HNAI framework: naive Bayes, decision tree, k-nearest neighbor, logistic regression, and support vector machine, respectively. Results The area under the receiver operating characteristic curve of the HNAI models is 0.67 as evaluated using fivefold cross-validation. Using antipsychotic drugs as an example, several HNAI-predicted DDIs that involve weight gain and cytochrome P450 inhibition were supported by literature resources. Conclusions Through machine learning-based integration of drug phenotypic, therapeutic, structural, and genomic similarities, we demonstrated that HNAI is promising for uncovering DDIs in drug development and postmarketing surveillance. PMID:24644270

  11. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    PubMed Central

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P.; Tice, Raymond R.; Huang, Ruili

    2012-01-01

    The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs. PMID:23459712

  12. Mathematical models for accurate prediction of atmospheric visibility with particular reference to the seasonal and environmental patterns in Hong Kong.

    PubMed

    Mui, K W; Wong, L T; Chung, L Y

    2009-11-01

    Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region. PMID:18951139

  13. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  14. Effect of source variation on drug release from HPMC tablets: linear regression modeling for prediction of drug release.

    PubMed

    Piriyaprasarth, Suchada; Sriamornsak, Pornsak

    2011-06-15

    The aim of this study was to investigate the effect of source variation of hydroxypropyl methylcellulose (HPMC) raw material on prediction of drug release from HPMC matrix tablets. To achieve this objective, the flow ability (i.e., angle of repose and Carr's compressibility index) and apparent viscosity of HPMC from 3 sources was investigated to differentiate HPMC source variation. The physicochemical properties of drug and manufacturing process were also incorporated to develop the linear regression model for prediction of drug release. Specifically, the in vitro release of 18 formulations was determined according to a 2 × 3 × 3 full factorial design. Further regression analysis provided a quantitative relationship between the response and the studied independent variables. It was found that either apparent viscosity or Carr's compressibility index of HPMC powders combining with solubility and molecular weight of drug had significant impact on the release behavior of drug. The increased drug release was observed when a greater in drug solubility and a decrease in the molecular weight of drug were applied. Most importantly, this study has shown that the HPMC having low viscosity or high compressibility index resulted in an increase of drug release, especially in the case of poorly soluble drugs. PMID:21420475

  15. Fecal Calprotectin is an Accurate Tool and Correlated to Seo Index in Prediction of Relapse in Iranian Patients With Ulcerative Colitis

    PubMed Central

    Hosseini, Seyed Vahid; Jafari, Peyman; Taghavi, Seyed Alireza; Safarpour, Ali Reza; Rezaianzadeh, Abbas; Moini, Maryam; Mehrabi, Manoosh

    2015-01-01

    Background: The natural clinical course of Ulcerative Colitis (UC) is characterized by episodes of relapse and remission. Fecal Calprotectin (FC) is a relatively new marker of intestinal inflammation and is an available, non-expensive tool for predicting relapse of quiescent UC. The Seo colitis activity index is a clinical index for assessment of the severity of UC. Objectives: The present study aimed to evaluate the accuracy of FC and the Seo colitis activity index and their correlation in prediction of UC exacerbation. Patients and Methods: In this prospective cohort study, 157 patients with clinical and endoscopic diagnosis of UC selected randomly from 1273 registered patients in Fars province’s IBD registry center in Shiraz, Iran, were followed from October 2012 to October 2013 for 12 months or shorter, if they had a relapse. Two patients left the study before completion and one patient had relapse because of discontinuation of drugs. The participants' clinical and serum factors were evaluated every three months. Furthermore, stool samples were collected at the beginning of study and every three months and FC concentration (commercially available enzyme linked immunoassay) and the Seo Index were assessed. Then univariate analysis, multiple variable logistic regression, Receiver Operating Characteristics (ROC) curve analysis, and Pearson’s correlation test (r) were used for statistical analysis of data. Results: According to the results, 74 patients (48.1%) relapsed during the follow-up (33 men and 41 women). Mean ± SD of FC was 862.82 ± 655.97 μg/g and 163.19 ± 215.85 μg/g in relapsing and non-relapsing patients, respectively (P < 0.001). Multiple logistic regression analysis revealed that age, number of previous relapses, FC and the Seo index were significant predictors of relapse. ROC curve analysis of FC level and Seo activity index for prediction of relapse demonstrated area under the curve of 0.882 (P < 0.001) and 0.92 1(P < 0.001), respectively

  16. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

    PubMed

    Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong

    2016-06-01

    Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. PMID:26980050

  17. Elucidating Hyperconjugation from Electronegativity to Predict Drug Conformational Energy in a High Throughput Manner.

    PubMed

    Liu, Zhaomin; Pottel, Joshua; Shahamat, Moeed; Tomberg, Anna; Labute, Paul; Moitessier, Nicolas

    2016-04-25

    Computational chemists use structure-based drug design and molecular dynamics of drug/protein complexes which require an accurate description of the conformational space of drugs. Organic chemists use qualitative chemical principles such as the effect of electronegativity on hyperconjugation, the impact of steric clashes on stereochemical outcome of reactions, and the consequence of resonance on the shape of molecules to rationalize experimental observations. While computational chemists speak about electron densities and molecular orbitals, organic chemists speak about partial charges and localized molecular orbitals. Attempts to reconcile these two parallel approaches such as programs for natural bond orbitals and intrinsic atomic orbitals computing Lewis structures-like orbitals and reaction mechanism have appeared. In the past, we have shown that encoding and quantifying chemistry knowledge and qualitative principles can lead to predictive methods. In the same vein, we thought to understand the conformational behaviors of molecules and to encode this knowledge back into a molecular mechanics tool computing conformational potential energy and to develop an alternative to atom types and training of force fields on large sets of molecules. Herein, we describe a conceptually new approach to model torsion energies based on fundamental chemistry principles. To demonstrate our approach, torsional energy parameters were derived on-the-fly from atomic properties. When the torsional energy terms implemented in GAFF, Parm@Frosst, and MMFF94 were substituted by our method, the accuracy of these force fields to reproduce MP2-derived torsional energy profiles and their transferability to a variety of functional groups and drug fragments were overall improved. In addition, our method did not rely on atom types and consequently did not suffer from poor automated atom type assignments. PMID:27028941

  18. Predicting Adverse Drug Events from Personal Health Messages

    PubMed Central

    Chee, Brant W.; Berlin, Richard; Schatz, Bruce

    2011-01-01

    Adverse drug events (ADEs) remain a large problem in the United States, being the fourth leading cause of death, despite post market drug surveillance. Much post consumer drug surveillance relies on self-reported “spontaneous” patient data. Previous work has performed datamining over the FDA’s Adverse Event Reporting System (AERS) and other spontaneous reporting systems to identify drug interactions and drugs correlated with high rates of serious adverse events. However, safety problems have resulted from the lack of post marketing surveillance information about drugs, with underreporting rates of up to 98% within such systems1,2. We explore the use of online health forums as a source of data to identify drugs for further FDA scrutiny. In this work we aggregate individuals’ opinions and review of drugs similar to crowd intelligence3. We use natural language processing to group drugs discussed in similar ways and are able to successfully identify drugs withdrawn from the market based on messages discussing them before their removal. PMID:22195073

  19. Drug side-effect prediction based on the integration of chemical and biological spaces.

    PubMed

    Yamanishi, Yoshihiro; Pauwels, Edouard; Kotera, Masaaki

    2012-12-21

    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process. PMID:23157436

  20. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs. PMID:25869840

  1. Rapid screening for 67 drugs and metabolites in serum or plasma by accurate-mass LC-TOF-MS.

    PubMed

    Marin, Stephanie J; Hughes, John M; Lawlor, Bryan G; Clark, Chantry J; McMillin, Gwendolyn A

    2012-09-01

    Sixty-seven drugs and metabolites were detected in serum or plasma using a fast (7.5 min) liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) method. This method was developed as a blood drug screen, with emphasis on the detection of common drugs of abuse and drugs used to manage chronic pain. Qualitative drug detection may identify a drug exposure, assure patient adherence with prescribed therapy and document abstinence from non-prescribed medications. Compound identification is based on chromatographic retention time, mass, isotope spacing and isotope abundance. Data analysis software (Agilent) generates a compound score based on how well these observed criteria matched theoretical and empirical values. The method was validated using fortified samples and 299 residual patient specimens (920 positive results). All results were confirmed by gas chromatography-MS or LC-tandem MS. The accuracy of positive results (samples meeting all qualitative criteria for retention time, mass and compound score) was >90% for drugs and/or metabolites, except for two benzodiazepines. There were 35 false positive results (seven compounds, 3.8%) that could be distinguished by retention time and/or absence of metabolites. The most frequent was 6-acetylmorphine in the absence of morphine. The LC-TOF-MS targeted screening method presented represents a sensitive and specific technology for drug screening of serum or plasma. PMID:22802572

  2. Predicting Adolescent Drug Abuse: A Review of Issues, Methods and Correlates. Research Issues 11.

    ERIC Educational Resources Information Center

    Lettieri, Dan J., Ed.

    Presented are 18 papers on predicting adolescent drug abuse. The papers have the following titles: "Current Issues in the Epidemiology of Drug Abuse as Related to Psychosocial Studies of Adolescent Drug Use"; "The Quest for Interpersonal Predictors of Marihuana Abuse in Adolescents"; "Assessing the Interpersonal Determinants of Adolescent Drug…

  3. Drug target prediction using adverse event report systems: a pharmacogenomic approach

    PubMed Central

    Takarabe, Masataka; Kotera, Masaaki; Nishimura, Yosuke; Goto, Susumu; Yamanishi, Yoshihiro

    2012-01-01

    Motivation: Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. Results: We defined pharmacological similarity for all possible drugs using the US Food and Drug Administration's (FDA's) adverse event reporting system (AERS) and developed a new method to predict unknown drug–target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug–target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug–target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Availability: Softwares are available upon request. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/. PMID:22962489

  4. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.

    PubMed

    Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L

    2015-07-15

    Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. PMID:25957673

  5. A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?

    PubMed Central

    Harris, Adam; Harries, Priscilla

    2016-01-01

    overall accuracy being reported. Data were extracted using a standardised tool, by one reviewer, which could have introduced bias. Devising search terms for prognostic studies is challenging. Every attempt was made to devise search terms that were sufficiently sensitive to detect all prognostic studies; however, it remains possible that some studies were not identified. Conclusion Studies of prognostic accuracy in palliative care are heterogeneous, but the evidence suggests that clinicians’ predictions are frequently inaccurate. No sub-group of clinicians was consistently shown to be more accurate than any other. Implications of Key Findings Further research is needed to understand how clinical predictions are formulated and how their accuracy can be improved. PMID:27560380

  6. Drug-target interaction prediction: databases, web servers and computational models.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data. PMID:26283676

  7. Predicting drug metabolism--an evaluation of the expert system METEOR.

    PubMed

    Testa, Bernard; Balmat, Anne-Loyse; Long, Anthony; Judson, Philip

    2005-07-01

    The paper begins with a discussion of the goals of metabolic predictions in early drug research, and some difficulties toward this objective, mainly the various substrate and product selectivities characteristic of drug metabolism. The major in silico approaches to predict drug metabolism are then classified and summarized. A discrimination is, thus, made between 'local' and 'global' systems. In its second part, an evaluation of METEOR, a rule-based expert system used to predict the metabolism of drugs and other xenobiotics, is reported. The published metabolic data of ten substrates were used in this evaluation, the overall results being discussed in terms of correct vs. disputable (i.e., false-positive and false-negative) predictions. The predictions for four representative substrates are presented in detail (Figs. 1-4), illustrating the interest of such an evaluation in identifying where and how predictive rules can be improved. PMID:17193178

  8. Prediction of drug indications based on chemical interactions and chemical similarities.

    PubMed

    Huang, Guohua; Lu, Yin; Lu, Changhong; Zheng, Mingyue; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  9. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities

    PubMed Central

    Huang, Guohua; Lu, Yin; Lu, Changhong; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  10. Matrix Factorization-Based Prediction of Novel Drug Indications by Integrating Genomic Space

    PubMed Central

    Dai, Wen; Liu, Xi; Gao, Yibo; Chen, Lin; Gao, Kuo; Jiang, Yongshi; Yang, Yiping; Chen, Jianxin

    2015-01-01

    There has been rising interest in the discovery of novel drug indications because of high costs in introducing new drugs. Many computational techniques have been proposed to detect potential drug-disease associations based on the creation of explicit profiles of drugs and diseases, while seldom research takes advantage of the immense accumulation of interaction data. In this work, we propose a matrix factorization model based on known drug-disease associations to predict novel drug indications. In addition, genomic space is also integrated into our framework. The introduction of genomic space, which includes drug-gene interactions, disease-gene interactions, and gene-gene interactions, is aimed at providing molecular biological information for prediction of drug-disease associations. The rationality lies in our belief that association between drug and disease has its evidence in the interactome network of genes. Experiments show that the integration of genomic space is indeed effective. Drugs, diseases, and genes are described with feature vectors of the same dimension, which are retrieved from the interaction data. Then a matrix factorization model is set up to quantify the association between drugs and diseases. Finally, we use the matrix factorization model to predict novel indications for drugs. PMID:26078775

  11. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel.

    PubMed

    Fernández-Colino, A; Bermudez, J M; Arias, F J; Quinteros, D; Gonzo, E

    2016-04-01

    Transversality between mathematical modeling, pharmacology, and materials science is essential in order to achieve controlled-release systems with advanced properties. In this regard, the area of biomaterials provides a platform for the development of depots that are able to achieve controlled release of a drug, whereas pharmacology strives to find new therapeutic molecules and mathematical models have a connecting function, providing a rational understanding by modeling the parameters that influence the release observed. Herein we present a mechanism which, based on reasonable assumptions, explains the experimental data obtained very well. In addition, we have developed a simple and accurate “lumped” kinetics model to correctly fit the experimentally observed drug-release behavior. This lumped model allows us to have simple analytic solutions for the mass and rate of drug release as a function of time without limitations of time or mass of drug released, which represents an important step-forward in the area of in vitro drug delivery when compared to the current state of the art in mathematical modeling. As an example, we applied the mechanism and model to the release data for acetazolamide from a recombinant polymer. Both materials were selected because of a need to develop a suitable ophthalmic formulation for the treatment of glaucoma. The in vitro release model proposed herein provides a valuable predictive tool for ensuring product performance and batch-to-batch reproducibility, thus paving the way for the development of further pharmaceutical devices. PMID:26838852

  12. Predicting Non-Response to Juvenile Drug Court Interventions

    PubMed Central

    Halliday-Boykins, Colleen A.; Schaeffer, Cindy M.; Henggeler, Scott W.; Chapman, Jason E.; Cunningham, Phillippe B.; Randall, Jeff; Shapiro, Steven B.

    2010-01-01

    Using data from a recent randomized clinical trial involving juvenile drug court (JDC), youth marijuana use trajectories and the predictors of treatment non-response were examined. Participants were 118 juvenile offenders meeting diagnostic criteria for substance use disorders assigned to JDC and their families. Urine drug screen results were gathered from weekly court visits for 6 months, and youth reported their marijuana use over 12 months. Semiparametric mixture modeling jointly estimated and classified trajectories of both marijuana use indices. Youth were classified into responder versus non-responder trajectory groups based on both outcomes. Regression analyses examined pretreatment individual, family, and extrafamilial predictors of non-response. Results indicated that youth whose caregivers reported illegal drug use pretreatment were almost 10 times as likely to be classified into the non-responder trajectory group. No other variable significantly distinguished drug use trajectory groups. Findings have implications for the design of interventions to improve JDC outcomes. PMID:20826076

  13. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment. PMID:23889048

  14. The Potential for Accurately Measuring Behavioral and Economic Dimensions of Consumption, Prices, and Markets for Illegal Drugs

    PubMed Central

    Johnson, Bruce D.; Golub, Andrew

    2007-01-01

    There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users’ interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis—by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed. PMID:16978801

  15. How to Choose In Vitro Systems to Predict In Vivo Drug Clearance: A System Pharmacology Perspective

    PubMed Central

    Wang, Lei; Chiang, ChienWei; Liang, Hong; Wu, Hengyi; Feng, Weixing; Quinney, Sara K.; Li, Jin; Li, Lang

    2015-01-01

    The use of in vitro metabolism data to predict human clearance has become more significant in the current prediction of large scale drug clearance for all the drugs. The relevant information (in vitro metabolism data and in vivo human clearance values) of thirty-five drugs that satisfied the entry criteria of probe drugs was collated from the literature. Then the performance of different in vitro systems including Escherichia coli system, yeast system, lymphoblastoid system and baculovirus system is compared after in vitro-in vivo extrapolation. Baculovirus system, which can provide most of the data, has almost equal accuracy as the other systems in predicting clearance. And in most cases, baculovirus system has the smaller CV in scaling factors. Therefore, the baculovirus system can be recognized as the suitable system for the large scale drug clearance prediction. PMID:26539530

  16. Systematic prediction of drug combinations based on clinical side-effects.

    PubMed

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A; Sanseau, Philippe; Yang, Lun

    2014-01-01

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures. PMID:25418113

  17. Systematic prediction of drug combinations based on clinical side-effects

    PubMed Central

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A.; Sanseau, Philippe; Yang, Lun

    2014-01-01

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures. PMID:25418113

  18. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.

    PubMed

    Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong

    2014-04-01

    In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs. PMID:24492783

  19. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.

    PubMed

    Khatti, Zahra; Hashemianzadeh, Seyed Majid

    2016-06-10

    Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. PMID:27084121

  20. A new methodology for predicting human pharmacokinetics for inhaled drugs from oratracheal pharmacokinetic data in rats.

    PubMed

    Jones, Rhys M; Harrison, Anthony

    2012-01-01

    Prediction of pharmacokinetic (PK) profile for inhaled drugs in humans provides valuable information to aid toxicology safety assessment, evaluate the potential for systemic accumulation on multiple dosing and enable an estimate for the clinical plasma assay requirements. The accuracy in prediction of inhaled human PK profiles for seven inhaled drugs or drug candidates (salmeterol, salbutamol, formoterol, fluticasone propionate, budesonide, CP-325366 and UK-432097) was assessed using rat oratracheal solution and dry powder PK data. The prediction methodology incorporates allometric scaling and mean residence time (MRT) principles with a two compartmental PK approach. Across the range of compounds tested, the prediction of human inhaled maximum concentration (C(max)) and MRT was within 2-fold for 5 of the 7 compounds, providing an accuracy of prediction similar to the current methodologies used to predict human oral C(max) from preclinical data ( De Buck et al. 2007 ). Administering as a dry powder formulation slowed the rat lung absorption rate of the least soluble compound (fluticasone propionate), impacting the prediction of C(max) and MRT. This flags the potential for preclinical studies with dry powder formulations to positively influence predictive accuracy, although further studies with low solubility inhaled drugs are required to confirm this. This study illustrates the value of preclinical assessment of PKs following administration to the lung, and provides a viable means of predicting the human PK profile for inhaled drugs. PMID:22077102

  1. Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach

    PubMed Central

    Dong, Xinran; Li, Ying; Yang, Bo; Tian, Weidong; Wang, Xiaoqin

    2016-01-01

    Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines. PMID:26910401

  2. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks

    PubMed Central

    Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon

    2015-01-01

    As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw. PMID:26469276

  3. Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model

    PubMed Central

    Cao, D-S; Xiao, N; Li, Y-J; Zeng, W-B; Liang, Y-Z; Lu, A-P; Xu, Q-S; Chen, AF

    2015-01-01

    Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity, substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for complementary hypothesis generation and rapid analysis of potential drug–ADR interactions. PMID:26451329

  4. DISIS: Prediction of Drug Response through an Iterative Sure Independence Screening

    PubMed Central

    Zhang, Naiqian; Wang, Jun; Wang, Haiyun; Zheng, Xiaoqi

    2015-01-01

    Prediction of drug response based on genomic alterations is an important task in the research of personalized medicine. Current elastic net model utilized a sure independence screening to select relevant genomic features with drug response, but it may neglect the combination effect of some marginally weak features. In this work, we applied an iterative sure independence screening scheme to select drug response relevant features from the Cancer Cell Line Encyclopedia (CCLE) dataset. For each drug in CCLE, we selected up to 40 features including gene expressions, mutation and copy number alterations of cancer-related genes, and some of them are significantly strong features but showing weak marginal correlation with drug response vector. Lasso regression based on the selected features showed that our prediction accuracies are higher than those by elastic net regression for most drugs. PMID:25794193

  5. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models.

    PubMed

    Peters, Sheila Annie; Jones, Christopher R; Ungell, Anna-Lena; Hatley, Oliver J D

    2016-06-01

    Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future. PMID:26895020

  6. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  7. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy

    PubMed Central

    Montero, Joan; Sarosiek, Kristopher A.; DeAngelo, Joseph D.; Maertens, Ophélia; Ryan, Jeremy; Ercan, Dalia; Piao, Huiying; Horowitz, Neil S.; Berkowitz, Ross S.; Matulonis, Ursula; Jänne, Pasi A.; Amrein, Philip C.; Cichowski, Karen; Drapkin, Ronny; Letai, Anthony

    2015-01-01

    SUMMARY There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient’s living cancer cell with the drug(s) in question. To satisfy this unmet need we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion (‘priming’) induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo. PMID:25723171

  8. Outcome Prediction of Treatment of Graves' Hyperthyroidism with Antithyroid Drugs.

    PubMed

    Piantanida, E; Lai, A; Sassi, L; Gallo, D; Spreafico, E; Tanda, M L; Bartalena, L

    2015-09-01

    Graves' disease is the most common cause of hyperthyroidism in iodine-replete areas and is ultimately due to antibodies interacting with the TSH receptor on thyroid follicular cells [TSH-receptor antibody (TRAb)]. Antithyroid drugs (ATDs) belonging to the family of thionamides are the first-line treatment in Europe. ATD treatment is commonly continued for 18-24 months. Its major limitation is the high rate of relapses after drug withdrawal. Factors particularly bound to subsequent relapses are the large thyroid volume, smoking habit, persistence of TRAb in the circulation at the end of treatment, and the post-partum period. Under these conditions, consideration should be given to a definitive therapy for hyperthyroidism (radioiodine treatment, thyroidectomy), particularly if the patient is at risk of cardiovascular complications that might be exacerbated by persistence or recurrence of hyperthyroidism. PMID:26197855

  9. Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine.

    PubMed

    Rodríguez, David; Ranganathan, Anirudh; Carlsson, Jens

    2014-07-28

    The recent increase in the number of atomic-resolution structures of G protein-coupled receptors (GPCRs) has contributed to a deeper understanding of ligand binding to several important drug targets. However, reliable modeling of GPCR-ligand complexes for the vast majority of receptors with unknown structure remains to be one of the most challenging goals for computer-aided drug design. The GPCR Dock 2013 assessment, in which researchers were challenged to predict the crystallographic structures of serotonin 5-HT(1B) and 5-HT(2B) receptors bound to ergotamine, provided an excellent opportunity to benchmark the current state of this field. Our contributions to GPCR Dock 2013 accurately predicted the binding mode of ergotamine with RMSDs below 1.8 Å for both receptors, which included the best submissions for the 5-HT(1B) complex. Our models also had the most accurate description of the binding sites and receptor-ligand contacts. These results were obtained using a ligand-guided homology modeling approach, which combines extensive molecular docking screening with incorporation of information from multiple crystal structures and experimentally derived restraints. In this work, we retrospectively analyzed thousands of structures that were generated during the assessment to evaluate our modeling strategies. Major contributors to accuracy were found to be improved modeling of extracellular loop two in combination with the use of molecular docking to optimize the binding site for ligand recognition. Our results suggest that modeling of GPCR-drug complexes has reached a level of accuracy at which structure-based drug design could be applied to a large number of pharmaceutically relevant targets. PMID:25030302

  10. Literature Based Drug Interaction Prediction with Clinical Assessment Using Electronic Medical Records: Novel Myopathy Associated Drug Interactions

    PubMed Central

    Subhadarshini, Abhinita; Karnik, Shreyas D.; Li, Xiaochun; Hall, Stephen D.; Jin, Yan; Callaghan, J. Thomas; Overhage, Marcus J.; Flockhart, David A.; Strother, R. Matthew; Quinney, Sara K.; Li, Lang

    2012-01-01

    Drug-drug interactions (DDIs) are a common cause of adverse drug events. In this paper, we combined a literature discovery approach with analysis of a large electronic medical record database method to predict and evaluate novel DDIs. We predicted an initial set of 13197 potential DDIs based on substrates and inhibitors of cytochrome P450 (CYP) metabolism enzymes identified from published in vitro pharmacology experiments. Using a clinical repository of over 800,000 patients, we narrowed this theoretical set of DDIs to 3670 drug pairs actually taken by patients. Finally, we sought to identify novel combinations that synergistically increased the risk of myopathy. Five pairs were identified with their p-values less than 1E-06: loratadine and simvastatin (relative risk or RR = 1.69); loratadine and alprazolam (RR = 1.86); loratadine and duloxetine (RR = 1.94); loratadine and ropinirole (RR = 3.21); and promethazine and tegaserod (RR = 3.00). When taken together, each drug pair showed a significantly increased risk of myopathy when compared to the expected additive myopathy risk from taking either of the drugs alone. Based on additional literature data on in vitro drug metabolism and inhibition potency, loratadine and simvastatin and tegaserod and promethazine were predicted to have a strong DDI through the CYP3A4 and CYP2D6 enzymes, respectively. This new translational biomedical informatics approach supports not only detection of new clinically significant DDI signals, but also evaluation of their potential molecular mechanisms. PMID:22912565

  11. A community effort to assess and improve drug sensitivity prediction algorithms

    PubMed Central

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2015-01-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods. PMID:24880487

  12. Prediction of drug disposition on the basis of its chemical structure.

    PubMed

    Stepensky, David

    2013-06-01

    The chemical structure of any drug determines its pharmacokinetics and pharmacodynamics. Detailed understanding of relationships between the drug chemical structure and individual disposition pathways (i.e., distribution and elimination) is required for efficient use of existing drugs and effective development of new drugs. Different approaches have been developed for this purpose, ranging from statistics-based quantitative structure-property (or structure-pharmacokinetic) relationships (QSPR) analysis to physiologically based pharmacokinetic (PBPK) models. This review critically analyzes currently available approaches for analysis and prediction of drug disposition on the basis of chemical structure. Models that can be used to predict different aspects of disposition are presented, including: (a) value of the individual pharmacokinetic parameter (e.g., clearance or volume of distribution), (b) efficiency of the specific disposition pathway (e.g., biliary drug excretion or cytochrome P450 3A4 metabolism), (c) accumulation in a specific organ or tissue (e.g., permeability of the placenta or accumulation in the brain), and (d) the whole-body disposition in the individual patients. Examples of presented pharmacological agents include "classical" low-molecular-weight compounds, biopharmaceuticals, and drugs encapsulated in specialized drug-delivery systems. The clinical efficiency of agents from all these groups can be suboptimal, because of inefficient permeability of the drug to the site of action and/or excessive accumulation in other organs and tissues. Therefore, robust and reliable approaches for chemical structure-based prediction of drug disposition are required to overcome these limitations. PBPK models are increasingly being used for prediction of drug disposition. These models can reflect the complex interplay of factors that determine drug disposition in a mechanistically correct fashion and can be combined with other approaches, for example QSPR

  13. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information

    PubMed Central

    Pollastri, Gianluca; Martin, Alberto JM; Mooney, Catherine; Vullo, Alessandro

    2007-01-01

    Background Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion The predictive system are publicly available at the address . PMID:17570843

  14. Cocrystal Solubilization in Biorelevant Media and its Prediction from Drug Solubilization.

    PubMed

    Lipert, Maya P; Roy, Lilly; Childs, Scott L; RodrÍguez-Hornedo, NaÍr

    2015-12-01

    This work examines cocrystal solubility in biorelevant media (FeSSIF, fed-state simulated intestinal fluid), and develops a theoretical framework that allows for the simple and quantitative prediction of cocrystal solubilization from drug solubilization. The solubilities of four hydrophobic drugs and seven cocrystals containing these drugs were measured in FeSSIF and in acetate buffer at pH 5.00. In all cases, the cocrystal solubility (Scocrystal ) was higher than the drug solubility (Sdrug ) in both buffer and FeSSIF; however, the solubilization ratio of drug, SRdrug = (SFeSSIF /Sbuffer )drug , was not the same as the solubilization ratio of cocrystal, SRcocrystal = (SFeSSIF /Sbuffer )cocrystal , meaning drug and cocrystal were not solubilized to the same extent in FeSSIF. This highlights the potential risk of anticipating cocrystal behavior in biorelevant media based on solubility studies in water. Predictions of SRcocrystal from simple equations based only on SRdrug were in excellent agreement with measured values. For 1:1 cocrystals, the cocrystal solubilization ratio (SR) can be obtained from the square root of the drug SR. For 2:1 cocrystals, SRcocrystal is found from (SRdrug )(2/3) . The findings in FeSSIF can be generalized to describe cocrystal behavior in other systems involving preferential solubilization of a drug such as surfactants, lipids, and other drug solubilizing media. PMID:26390213

  15. PREDICTING ABUSE POTENTIAL OF STIMULANTS AND OTHER DOPAMINERGIC DRUGS: OVERVIEW AND RECOMMENDATIONS

    PubMed Central

    Huskinson, Sally L.; Naylor, Jennifer E.; Rowlett, James K.; Freeman, Kevin B.

    2014-01-01

    Examination of a drug’s abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. PMID:24662599

  16. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components.

    PubMed

    Hou, Tingjun; Zhang, Wei; Wang, Jian; Wang, Wei

    2009-03-01

    Drug resistance significantly impairs the efficacy of AIDS therapy. Therefore, precise prediction of resistant viral mutants is particularly useful for developing effective drugs and designing therapeutic regimen. In this study, we applied a structure-based computational approach to predict mutants of the HIV-1 protease resistant to the seven FDA approved drugs. We analyzed the energetic pattern of the protease-drug interaction by calculating the molecular interaction energy components (MIECs) between the drug and the protease residues. Support vector machines (SVMs) were trained on MIECs to classify protease mutants into resistant and nonresistant categories. The high prediction accuracies for the test sets of cross-validations suggested that the MIECs successfully characterized the interaction interface between drugs and the HIV-1 protease. We conducted a proof-of-concept study on a newly approved drug, darunavir (TMC114), on which no drug resistance data were available in the public domain. Compared with amprenavir, our analysis suggested that darunavir might be more potent to combat drug resistance. To quantitatively estimate binding affinities of drugs and study the contributions of protease residues to causing resistance, linear regression models were trained on MIECs using partial least squares (PLS). The MIEC-PLS models also achieved satisfactory prediction accuracy. Analysis of the fitting coefficients of MIECs in the regression model revealed the important resistance mutations and shed light into understanding the mechanisms of these mutations to cause resistance. Our study demonstrated the advantages of characterizing the protease-drug interaction using MIECs. We believe that MIEC-SVM and MIEC-PLS can help design new agents or combination of therapeutic regimens to counter HIV-1 protease resistant strains. PMID:18704937

  17. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  18. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  19. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

    PubMed Central

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-01-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  20. Barriers to Employment among Unemployed Drug Users: Age Predicts Severity

    PubMed Central

    Sigurdsson, Sigurdur Oli; Ring, Brandon M.; O’Reilly, Kristen; Silverman, Kenneth

    2014-01-01

    Background Drug users in treatment or exiting treatment face many barriers to employment when entering the job market, such as low levels of education and technical skills, and low levels of interpersonal skills. As a result of these and other barriers, employment rates in these groups are generally low. Objective This article examines the existence and possible predictors of specific barriers to employment related to interpersonal and technical skills in a sample of participants enrolled in a therapeutic workplace intervention for substance abuse. Methods In Study I (N = 77), we characterized and examined predictors of participant scores on a staff-rated scale of interpersonal skills (Work Behavior Inventory). In Study II (N = 29), we examined whether participants had lower levels of computer knowledge than job seekers in the general population, and investigated possible predictors of computer knowledge in the sample. Results In general, participants in Study I displayed low levels of interpersonal skills, and participants in Study II scored lower on the computer knowledge test than job seekers in the general population. Older participants tended to have lower levels of interpersonal skills and lower levels of computer knowledge. Conclusions and Scientific Significance These results suggest that providers of workforce development services for drug users in treatment or exiting treatment should attend to these specific barriers to employment, which may also be more pronounced among older clients. PMID:22242680

  1. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines.

    PubMed

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient's tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  2. Inhibitory effects of psychotropic drugs on mexiletine metabolism in human liver microsomes: prediction of in vivo drug interactions.

    PubMed

    Hara, Y; Nakajima, M; Miyamoto, K-I; Yokoi, T

    2005-06-01

    Mexiletine, an anti-arrhythmic agent, is used for the control of ventricular arrhythmias and for neuropathic pain from cancer or diabetes mellitus. It is sometimes used together with psychotropic drugs in patients with depression, schizophrenia or sleep disorder. It is metabolized mainly by cytochrome P450 (CYP) 2 D 6 and, to a minor extent, by CYP1A2. To predict possible drug interactions between mexiletine and psychotropic drugs, the inhibitory effects of 14 psychotropic drugs (phenytoin, carbamazepine, fluvoxamine, paroxetine, fluoxetine, citalopram, sertraline, imipramine, desipramine, haloperidol, thioridazine, olanzapine, etizolam, and quazepam) on mexiletine metabolism in human liver microsomes were determined. Fluoxetine (Ki=0.6+/- 0.1 microM), sertraline (Ki=7.6+/- 0.8 microM) and desipramine (Ki=3.2+/- 0.5 microM) competitively inhibited the mexiletine p-hydroxylation in human liver microsomes. Thioridazine (Kis=0.5+/- 0.2 microM; Kii =3.6+/-1.6 microM) and paroxetine (Kis=1.7+/- 0.7 microM; Kii=3.6+/- 0.9 microM) exhibited a mixed-type inhibition (competitive and non-competitive) toward mexiletine p-hydroxylation in human liver microsomes. The changes of the in vivo clearance of mexiletine by the psychotropic drugs were predicted by 1+(I/Ki) using the in vitro Ki and unbound inhibitor concentrations in liver. The values were calculated as 2.4 for paroxetine, 5.5 for fluoxetine, 1.1 for sertraline, 2.8 for desipramine and 2.2 for thioridazine. In addition, paroxetine exhibited a mechanism-based inactivation with Ki=0.7 microM and Kinact=0.15 min(-1). The present study predicted the possibility of drug interactions between mexiletine and paroxetine, fluoxetine, desipramine, and thioridazine in clinical use. PMID:16192107

  3. Predicting Adolescent Drug Abuse Treatment Outcome with the Personal Experience Inventory (PEI)

    ERIC Educational Resources Information Center

    Stinchfield, Randy; Winters, Ken C.

    2004-01-01

    The purposes of this study were to examine the clinical utility of the Personal Experience Inventory (PEI) Psychosocial scales to predict adolescent drug abuse treatment outcome. The role of psychosocial risk factors in predicting treatment outcome also has theoretical interest given that such factors have been associated with the development of…

  4. Predicting relapse of Graves' disease following treatment with antithyroid drugs

    PubMed Central

    LIU, LIN; LU, HONGWEN; LIU, YANG; LIU, CHANGSHAN; XUN, CHU

    2016-01-01

    The aim of the present study was to monitor long term antithyroid drug treatments and to identify prognostic factors for Graves' disease (GD). A total of 306 patients with GD who were referred to the Endocrinology Clinic at Weifang People's Hospital (Weifang, China) between August 2005 and June 2009 and treated with methimazole were included in the present study. Following treatment, patients were divided into non-remission, including recurrence and constant treatment subgroups, and remission groups. Various prognosis factors were analyzed and compared, including: Patient age, gender, size of thyroid prior to and following treatment, thyroid hormone levels, disease relapse, hypothyroidism and drug side-effects, and states of thyrotropin suppression were observed at 3, 6 and 12 months post-treatment. Sixty-five patients (21.2%) were male, and 241 patients (78.8%) were female. The mean age was 42±11 years, and the follow-up was 31.5±6.8 months. Following long-term treatment, 141 patients (46%) demonstrated remission of hyperthyroidism with a mean duration of 18.7±1.9 months. The average age at diagnosis was 45.6±10.3 years in the remission group, as compared with 36.4±8.8 years in the non-remission group (t=3.152; P=0.002). Free thyroxine (FT)3 levels were demonstrated to be 25.2±8.9 and 18.7±9.4 pmol/l in the non-remission and remission groups, respectively (t=3.326, P=0.001). The FT3/FT4 ratio and thyrotrophin receptor antibody (TRAb) levels were both significantly higher in the non-remission group (t=3.331, 3.389, P=0.001), as compared with the remission group. Logistic regression analysis demonstrated that elevated thyroid size, FT3/FT4 ratio and TRAb at diagnosis were associated with poor outcomes. The ratio of continued thyrotropin suppression in the recurrent subgroup was significantly increased, as compared with the remission group (P=0.001), as thyroid function reached euthyroid state at 3, 6 and 12 months post-treatment. Patients with GD exhibiting

  5. The current status of time dependent CYP inhibition assay and in silico drug-drug interaction predictions.

    PubMed

    Yan, Zhengyin; Caldwell, Gary W

    2012-01-01

    Various CYP time-dependent inhibition (TDI) assays have been widely implemented in drug discovery and development which has led to great success in positively identifying compounds with mechanism-base inhibition liability. However, drug-drug interaction (DDI) predictions by various in-silico models utilizing kinetic parameters obtained from TDI assays have met with significant challenges including questionable kinetic data, over-simplified in-vitro models and unreliable mathematic algorithms. Although significant efforts have been made to standardize the TDI assay and refine mathematical models, recent evaluation studies have revealed that the kinetic parameters of TDI, the most important in-vitro data required by all DDI prediction models, are significantly impacted by a variety of experimental variables including microsomal protein concentration, metabolic stability, CYP-specific probes, and post-incubation time. This review attempts to provide medicinal chemists a brief overview on the current status of TDI assays, determination of kinetic parameters and in silico DDI predictions with emphasis on the complexity of the TDI kinetics and limitations of current in-vitro models and DDI prediction methodologies. PMID:22571791

  6. Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer

    PubMed Central

    2012-01-01

    Background In the field of drug discovery, assessing the potential of multidrug therapies is a difficult task because of the combinatorial complexity (both theoretical and experimental) and because of the requirements on the selectivity of the therapy. To cope with this problem, we have developed a novel method for the systematic in silico investigation of synergistic effects of currently available drugs on genome-scale metabolic networks. Results The algorithm finds the optimal combination of drugs which guarantees the inhibition of an objective function, while minimizing the side effect on the other cellular processes. Two different applications are considered: finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding antitumoral drug combinations with minimal side effect on the normal human cell. The results we obtain are consistent with some of the available therapeutic indications and predict new multiple drug treatments. A cluster analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic targets for the approved drugs. Conclusion The in silico prediction of drug synergisms can represent an important tool for the repurposing of drugs in a realistic perspective which considers also the selectivity of the therapy. Moreover, for a more profitable exploitation of drug-drug interactions, we have shown that also experimental drugs which have a different mechanism of action can be reconsider as potential ingredients of new multicompound therapeutic indications. Needless to say the clues provided by a computational study like ours need in any case to be thoroughly evaluated experimentally. PMID:22932283

  7. Reactive metabolites in early drug development: predictive in vitro tools.

    PubMed

    Pelkonen, Olavi; Pasanen, Markku; Tolonen, Ari; Koskinen, Mikko; Hakkola, Jukka; Abass, Khaled; Laine, Jaana; Hakkinen, Merja; Juvonen, Risto; Auriola, Seppo; Storvik, Markus; Huuskonen, Pasi; Rousu, Timo; Rahikkala, Maiju

    2015-01-01

    Drug metabolism can result in the formation of highly reactive metabolites that are known to play a role in toxicity resulting in a significant proportion of attrition during drug development and clinical use. Thus, the earlier such reactivity was detected, the better. This review summarizes our multi-year project, together with pertinent literature, to examine a battery of in vitro tests capable of detecting the formation of reactive metabolites. Principal prerequisites for such tests were delineated: chemicals known/not known to cause tissue injury and produce reactive metabolites, activation system (mainly human-derived), small- and large-molecular targets (small-molecular trappers, peptides, proteins), analytical techniques (mass spectrometry), and cellular toxicity biomarkers. The current status of in vitro tools to detect reactive intermediates is the following: 1. Small-molecular trapping agents such glutathione or cyanide detect the production of reactive species with high sensitivity by proper MS technique. However, it seems that also putative "negatives" give rise to corresponding adducts. 2. Results from peptide and dG (DNA targeting) trapper studies are generally in line with those of small-molecular trappers, although also important differences exist. These two trapping platforms do not overlap. 3. It is anticipated that the in vitro adduct studies could be fully interpreted only in conjunction with toxicity biomarker (such as the Nrf2 pathway) information from whole cells or tissues. However, while there are tools to characterize the chemical liability and there are correlation between individual/integrated endpoints and toxicity, there are still severe gaps in understanding the mechanisms behind the link between reactive metabolites and adverse effects. PMID:25312212

  8. Physiologically Based In vitro Models to Predict the Oral Dissolution and Absorption of a Solid Drug Delivery System.

    PubMed

    Li, Ziqiang; He, Xin

    2015-01-01

    To understand the sophisticated dynamic behaviors of drug elution and permeation in the gastrointestinal tract (GIT), researchers have tried to reemerge it by employing various in vitro experimental models. However, official in vitro apparatuses routinely used for quality control purposes, employ simple, non-physiologic buffers, and hydrodynamics conditions, and can not accurately perform continuous, dynamic in vivo pharmacokinetics (PK) behaviors. Therefore, different angles of GI physiology information are incorporate into novel models to forecast the dissolution and permeation of drug solid dosage forms. This review, in general, discusses some related studies of physiologically-based mechanical models to predict human absorption following oral administration in four sections. First the GIT, taken out of a complex physiological environment, where the drug is absorbed, distributed, metabolized and excreted (ADME) in the human body, is considered as the physiological basis for active pharmaceutics ingredients (API) dissolved and permeated through the epithelial cell. The second part embodies the theoretical foundation of in vitro models to predict human absorption and the corresponding in vitro.in vivo correlations (IVIVC). The third section summarizes physiologically based dissolution models developed recently, ranging from dynamic compartmental dissolution models, to biorelevant dissolution models based on certain physiological factors, to biphasic dissolution models. The last part is devoted to combined dissolution and absorption models that can be employed to simulate the continuous, dynamic behavior of oral drug delivery being dissolved and subsequently permeated across the GIT. Along with physiologically-based mechanically models spring up, pharmaceutical researchers will harvest better level A IVIVC for oral drug delivery systems, especially for sustained and controlled release preparations. On the other way hand, it will successively promote more effective

  9. A New Drug Combinatory Effect Prediction Algorithm on the Cancer Cell Based on Gene Expression and Dose–Response Curve

    PubMed Central

    Goswami, C Pankaj; Cheng, L; Alexander, PS; Singal, A; Li, L

    2015-01-01

    Gene expression data before and after treatment with an individual drug and the IC20 of dose–response data were utilized to predict two drugs' interaction effects on a diffuse large B-cell lymphoma (DLBCL) cancer cell. A novel drug interaction scoring algorithm was developed to account for either synergistic or antagonistic effects between drug combinations. Different core gene selection schemes were investigated, which included the whole gene set, the drug-sensitive gene set, the drug-sensitive minus drug-resistant gene set, and the known drug target gene set. The prediction scores were compared with the observed drug interaction data at 6, 12, and 24 hours with a probability concordance (PC) index. The test result shows the concordance between observed and predicted drug interaction ranking reaches a PC index of 0.605. The scoring reliability and efficiency was further confirmed in five drug interaction studies published in the GEO database. PMID:26225234

  10. Conformations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane: are ab initio quantum chemistry predictions accurate?

    NASA Astrophysics Data System (ADS)

    Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.

    1998-06-01

    High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.

  11. Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interactions.

    PubMed

    Hu, Miao; Fan, Lan; Zhou, Hong-Hao; Tomlinson, Brian

    2012-11-01

    Herbal medicines including traditional Chinese medicine are becoming increasingly more popular worldwide. However, there is considerable potential for interaction between herbal components and drugs, as all herbal medicines contain a combination of potentially biologically active compounds possessing various inherent pharmacological activities, and the components of herbal products consumed are eliminated from the body by the same mechanisms that remove drugs. Indeed, many so-called conventional drugs are derived from plant sources. This article provides an update on the mechanisms and evidence of drug-herb interactions (DHIs) and genetic influences on DHIs. The rational prediction of clinically important DHIs is also discussed. Individualized and targeted drug therapy could be achieved by identifying the population most likely to be helped or harmed by drug-herb coadministration. PMID:23249200

  12. Survival outcomes scores (SOFT, BAR, and Pedi-SOFT) are accurate in predicting post-liver transplant survival in adolescents.

    PubMed

    Conjeevaram Selvakumar, Praveen Kumar; Maksimak, Brian; Hanouneh, Ibrahim; Youssef, Dalia H; Lopez, Rocio; Alkhouri, Naim

    2016-09-01

    SOFT and BAR scores utilize recipient, donor, and graft factors to predict the 3-month survival after LT in adults (≥18 years). Recently, Pedi-SOFT score was developed to predict 3-month survival after LT in young children (≤12 years). These scoring systems have not been studied in adolescent patients (13-17 years). We evaluated the accuracy of these scoring systems in predicting the 3-month post-LT survival in adolescents through a retrospective analysis of data from UNOS of patients aged 13-17 years who received LT between 03/01/2002 and 12/31/2012. Recipients of combined organ transplants, donation after cardiac death, or living donor graft were excluded. A total of 711 adolescent LT recipients were included with a mean age of 15.2±1.4 years. A total of 100 patients died post-LT including 33 within 3 months. SOFT, BAR, and Pedi-SOFT scores were all found to be good predictors of 3-month post-transplant survival outcome with areas under the ROC curve of 0.81, 0.80, and 0.81, respectively. All three scores provided good accuracy for predicting 3-month survival post-LT in adolescents and may help clinical decision making to optimize survival rate and organ utilization. PMID:27478012

  13. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    PubMed

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease. PMID:25938675

  14. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  15. BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    PubMed Central

    2011-01-01

    Background The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have important clinical characteristics of interest. Results BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450 enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%). Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task. Conclusions BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation. PMID:21510898

  16. A Hadoop-Based Method to Predict Potential Effective Drug Combination

    PubMed Central

    Xiong, Yi; Xu, Qian; Wei, Dongqing

    2014-01-01

    Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request. PMID:25147789

  17. A hadoop-based method to predict potential effective drug combination.

    PubMed

    Sun, Yifan; Xiong, Yi; Xu, Qian; Wei, Dongqing

    2014-01-01

    Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request. PMID:25147789

  18. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  19. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687

  20. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  1. Predicting human drug toxicity and safety via animal tests: can any one species predict drug toxicity in any other, and do monkeys help?

    PubMed

    Bailey, Jarrod; Thew, Michelle; Balls, Michael

    2015-12-01

    Animals are still widely used in drug development and safety tests, despite evidence for their lack of predictive value. In this regard, we recently showed, by producing Likelihood Ratios (LRs) for an extensive data set of over 3,000 drugs with both animal and human data, that the absence of toxicity in animals provides little or virtually no evidential weight that adverse drug reactions will also be absent in humans. While our analyses suggest that the presence of toxicity in one species may sometimes add evidential weight for risk of toxicity in another, the LRs are extremely inconsistent, varying substantially for different classes of drugs. Here, we present further data from analyses of other species pairs, including non-human primates (NHPs), which support our previous conclusions, and also show in particular that test results inferring an absence of toxicity in one species provide no evidential weight with regard to toxicity in any other species, even when data from NHPs and humans are compared. Our results for species including humans, NHPs, dogs, mice, rabbits, and rats, have major implications for the value of animal tests in predicting human toxicity, and demand that human-focused alternative methods are adopted in their place as a matter of urgency. PMID:26753942

  2. Can the Gibbs free energy of adsorption be predicted efficiently and accurately: an M05-2X DFT study.

    PubMed

    Michalkova, A; Gorb, L; Hill, F; Leszczynski, J

    2011-03-24

    This study presents new insight into the prediction of partitioning of organic compounds between a carbon surface (soot) and water, and it also sheds light on the sluggish desorption of interacting molecules from activated and nonactivated carbon surfaces. This paper provides details about the structure and interactions of benzene, polycyclic aromatic hydrocarbons, and aromatic nitrocompounds with a carbon surface modeled by coronene using a density functional theory approach along with the M05-2X functional. The adsorption was studied in vacuum and from water solution. The molecules studied are physisorbed on the carbon surface. While the intermolecular interactions of benzene and hydrocarbons are governed by dispersion forces, nitrocompounds are adsorbed also due to quite strong electrostatic interactions with all types of carbon surfaces. On the basis of these results, we conclude that the method of prediction presented in this study allows one to approach the experimental level of accuracy in predicting thermodynamic parameters of adsorption on a carbon surface from the gas phase. The empirical modification of the polarized continuum model leads also to a quantitative agreement with the experimental data for the Gibbs free energy values of the adsorption from water solution. PMID:21361266

  3. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets. PMID:26460680

  4. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  5. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  6. Comparative study of exchange-correlation functionals for accurate predictions of structural and magnetic properties of multiferroic oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-05-01

    We systematically compare predictions of various exchange correlation functionals for the structural and magnetic properties of perovskite Sr1 -xBaxMnO3 (0 ≤x ≤1 )—a representative class of multiferroic oxides. The local spin density approximation (LSDA) and spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization (sPBE) make substantial different predictions for ferroelectric atomic distortions, tetragonality, and ground state magnetic ordering. Neither approximation quantitatively reproduces all the measured structural and magnetic properties of perovskite Sr0.5Ba0.5MnO3 . The spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof revised for solids parametrization (sPBEsol) and the charge-only Perdew-Burke-Ernzerhof parametrized generalized gradient approximation with Hubbard U and Hund's J extensions both provide overall better agreement with measured structural and magnetic properties of Sr0.5Ba0.5MnO3 , compared to LSDA and sPBE. Using these two methods, we find that different from previous predictions, perovskite BaMnO3 has large Mn off-center displacements and is close to a ferromagnetic-to-antiferromagnetic phase boundary, making it a promising candidate to induce effective giant magnetoelectric effects and to achieve cross-field control of polarization and magnetism.

  7. Accurate Prediction of Advanced Liver Fibrosis Using the Decision Tree Learning Algorithm in Chronic Hepatitis C Egyptian Patients

    PubMed Central

    Hashem, Somaya; Esmat, Gamal; Elakel, Wafaa; Habashy, Shahira; Abdel Raouf, Safaa; Darweesh, Samar; Soliman, Mohamad; Elhefnawi, Mohamed; El-Adawy, Mohamed; ElHefnawi, Mahmoud

    2016-01-01

    Background/Aim. Respectively with the prevalence of chronic hepatitis C in the world, using noninvasive methods as an alternative method in staging chronic liver diseases for avoiding the drawbacks of biopsy is significantly increasing. The aim of this study is to combine the serum biomarkers and clinical information to develop a classification model that can predict advanced liver fibrosis. Methods. 39,567 patients with chronic hepatitis C were included and randomly divided into two separate sets. Liver fibrosis was assessed via METAVIR score; patients were categorized as mild to moderate (F0–F2) or advanced (F3-F4) fibrosis stages. Two models were developed using alternating decision tree algorithm. Model 1 uses six parameters, while model 2 uses four, which are similar to FIB-4 features except alpha-fetoprotein instead of alanine aminotransferase. Sensitivity and receiver operating characteristic curve were performed to evaluate the performance of the proposed models. Results. The best model achieved 86.2% negative predictive value and 0.78 ROC with 84.8% accuracy which is better than FIB-4. Conclusions. The risk of advanced liver fibrosis, due to chronic hepatitis C, could be predicted with high accuracy using decision tree learning algorithm that could be used to reduce the need to assess the liver biopsy. PMID:26880886

  8. Accurate Prediction of Advanced Liver Fibrosis Using the Decision Tree Learning Algorithm in Chronic Hepatitis C Egyptian Patients.

    PubMed

    Hashem, Somaya; Esmat, Gamal; Elakel, Wafaa; Habashy, Shahira; Abdel Raouf, Safaa; Darweesh, Samar; Soliman, Mohamad; Elhefnawi, Mohamed; El-Adawy, Mohamed; ElHefnawi, Mahmoud

    2016-01-01

    Background/Aim. Respectively with the prevalence of chronic hepatitis C in the world, using noninvasive methods as an alternative method in staging chronic liver diseases for avoiding the drawbacks of biopsy is significantly increasing. The aim of this study is to combine the serum biomarkers and clinical information to develop a classification model that can predict advanced liver fibrosis. Methods. 39,567 patients with chronic hepatitis C were included and randomly divided into two separate sets. Liver fibrosis was assessed via METAVIR score; patients were categorized as mild to moderate (F0-F2) or advanced (F3-F4) fibrosis stages. Two models were developed using alternating decision tree algorithm. Model 1 uses six parameters, while model 2 uses four, which are similar to FIB-4 features except alpha-fetoprotein instead of alanine aminotransferase. Sensitivity and receiver operating characteristic curve were performed to evaluate the performance of the proposed models. Results. The best model achieved 86.2% negative predictive value and 0.78 ROC with 84.8% accuracy which is better than FIB-4. Conclusions. The risk of advanced liver fibrosis, due to chronic hepatitis C, could be predicted with high accuracy using decision tree learning algorithm that could be used to reduce the need to assess the liver biopsy. PMID:26880886

  9. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.

    PubMed

    Kong, Liang; Zhang, Lichao; Lv, Jinfeng

    2014-03-01

    Extracting good representation from protein sequence is fundamental for protein structural classes prediction tasks. In this paper, we propose a novel and powerful method to predict protein structural classes based on the predicted secondary structure information. At the feature extraction stage, a 13-dimensional feature vector is extracted to characterize general contents and spatial arrangements of the secondary structural elements of a given protein sequence. Specially, four segment-level features are designed to elevate discriminative ability for proteins from the α/β and α+β classes. After the features are extracted, a multi-class non-linear support vector machine classifier is used to implement protein structural classes prediction. We report extensive experiments comparing the proposed method to the state-of-the-art in protein structural classes prediction on three widely used low-similarity benchmark datasets: FC699, 1189 and 640. Our method achieves competitive performance on prediction accuracies, especially for the overall prediction accuracies which have exceeded the best reported results on all of the three datasets. PMID:24316044

  10. Genetic Prediction of Antidepressant Drug Response and Nonresponse in Korean Patients

    PubMed Central

    Myung, Woojae; Kim, Seonwoo; Kim, Ka-Kyung; Carroll, Bernard J.; Kim, Jong-Won; Kim, Doh Kwan

    2014-01-01

    Genetic polymorphism contributes to variation in response to drug treatment of depression. We conducted three independent 6-week treatment studies in outpatients with major depressive disorder (MDD) to develop a pharmacogenomic model predicting response and nonresponse. We screened candidate genomic markers for association with response to selective serotonin reuptake inhibitors (SSRIs). No patients had received any antidepressant drug treatment in the current episode of depression. Outcome evaluation was blinded to drug and genotype data. The prediction model derived from a development sample of 239 completer cases treated with SSRIs comprised haplotypes and polymorphisms related to serotonin synthesis, serotonin transport, glutamate receptors, and GABA synthesis. The model was evaluated prospectively for prediction of outcome in a validation sample of 176 new SSRI-treated completer cases. The model gave a prediction in 60% of these cases. Predictive values were 85% for predicted responders and 86% for predicted nonresponders, compared to prior probabilities of 66% for observed response and 34% for observed nonresponse in those cases (both P<0.001). Convergent cross-validation was obtained through failure of the model to predict outcomes in a third independent sample of 189 completer cases who received non-SSRI antidepressants. We suggest proof of principle for genetic guidance to use or avoid SSRIs in a majority of Korean depressed patients. PMID:25226239

  11. Genetic prediction of antidepressant drug response and nonresponse in Korean patients.

    PubMed

    Lim, Shinn-Won; Won, Hong-Hee; Kim, Hyeran; Myung, Woojae; Kim, Seonwoo; Kim, Ka-Kyung; Carroll, Bernard J; Kim, Jong-Won; Kim, Doh Kwan

    2014-01-01

    Genetic polymorphism contributes to variation in response to drug treatment of depression. We conducted three independent 6-week treatment studies in outpatients with major depressive disorder (MDD) to develop a pharmacogenomic model predicting response and nonresponse. We screened candidate genomic markers for association with response to selective serotonin reuptake inhibitors (SSRIs). No patients had received any antidepressant drug treatment in the current episode of depression. Outcome evaluation was blinded to drug and genotype data. The prediction model derived from a development sample of 239 completer cases treated with SSRIs comprised haplotypes and polymorphisms related to serotonin synthesis, serotonin transport, glutamate receptors, and GABA synthesis. The model was evaluated prospectively for prediction of outcome in a validation sample of 176 new SSRI-treated completer cases. The model gave a prediction in 60% of these cases. Predictive values were 85% for predicted responders and 86% for predicted nonresponders, compared to prior probabilities of 66% for observed response and 34% for observed nonresponse in those cases (both P<0.001). Convergent cross-validation was obtained through failure of the model to predict outcomes in a third independent sample of 189 completer cases who received non-SSRI antidepressants. We suggest proof of principle for genetic guidance to use or avoid SSRIs in a majority of Korean depressed patients. PMID:25226239

  12. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility.

    PubMed

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei; Olesen, Niels Erik; Jones, David S; Kozyra, Agnieszka; Löbmann, Korbinian; Paluch, Krzysztof; Brennan, Claire Marie; Holm, René; Healy, Anne Marie; Andrews, Gavin P; Rades, Thomas

    2015-09-01

    In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility. PMID:26214347

  13. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  14. Large-Scale Predictive Drug Safety: From Structural Alerts to Biological Mechanisms.

    PubMed

    Garcia-Serna, Ricard; Vidal, David; Remez, Nikita; Mestres, Jordi

    2015-10-19

    The recent explosion of data linking drugs, proteins, and pathways with safety events has promoted the development of integrative systems approaches to large-scale predictive drug safety. The added value of such approaches is that, beyond the traditional identification of potentially labile chemical fragments for selected toxicity end points, they have the potential to provide mechanistic insights for a much larger and diverse set of safety events in a statistically sound nonsupervised manner, based on the similarity to drug classes, the interaction with secondary targets, and the interference with biological pathways. The combined identification of chemical and biological hazards enhances our ability to assess the safety risk of bioactive small molecules with higher confidence than that using structural alerts only. We are still a very long way from reliably predicting drug safety, but advances toward gaining a better understanding of the mechanisms leading to adverse outcomes represent a step forward in this direction. PMID:26360911

  15. Drug inhibition profile prediction for NFκB pathway in multiple myeloma.

    PubMed

    Peng, Huiming; Wen, Jianguo; Li, Hongwei; Chang, Jeff; Zhou, Xiaobo

    2011-01-01

    Nuclear factor κB (NFκB) activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling during tumor necrosis factor (TNFα) stimulation in Multiple Myeloma (MM). Although several drugs have been found effective for the treatment of MM by mainly inhibiting NFκB pathway, there are not any quantitative or qualitative results of comparison assessment on inhibition effect between different drugs either used alone or in combinations. Computational modeling is becoming increasingly indispensable for applied biological research mainly because it can provide strong quantitative predicting power. In this study, a novel computational pathway modeling approach is employed to comparably assess the inhibition effects of specific drugs used alone or in combinations on the NFκB pathway in MM and to predict the potential synergistic drug combinations. PMID:21408099

  16. Computational analysis of image-based drug profiling predicts synergistic drug combinations: applications in triple-negative breast cancer.

    PubMed

    Brandl, Miriam B; Pasquier, Eddy; Li, Fuhai; Beck, Dominik; Zhang, Sufang; Zhao, Hong; Kavallaris, Maria; Wong, Stephen T C

    2014-12-01

    An imaged-based profiling and analysis system was developed to predict clinically effective synergistic drug combinations that could accelerate the identification of effective multi-drug therapies for the treatment of triple-negative breast cancer and other challenging malignancies. The identification of effective drug combinations for the treatment of triple-negative breast cancer (TNBC) was achieved by integrating high-content screening, computational analysis, and experimental biology. The approach was based on altered cellular phenotypes induced by 55 FDA-approved drugs and biologically active compounds, acquired using fluorescence microscopy and retained in multivariate compound profiles. Dissimilarities between compound profiles guided the identification of 5 combinations, which were assessed for qualitative interaction on TNBC cell growth. The combination of the microtubule-targeting drug vinblastine with KSP/Eg5 motor protein inhibitors monastrol or ispinesib showed potent synergism in 3 independent TNBC cell lines, which was not substantiated in normal fibroblasts. The synergistic interaction was mediated by an increase in mitotic arrest with cells demonstrating typical ispinesib-induced monopolar mitotic spindles, which translated into enhanced apoptosis induction. The antitumour activity of the combination vinblastine/ispinesib was confirmed in an orthotopic mouse model of TNBC. Compared to single drug treatment, combination treatment significantly reduced tumour growth without causing increased toxicity. Image-based profiling and analysis led to the rapid discovery of a drug combination effective against TNBC in vitro and in vivo, and has the potential to lead to the development of new therapeutic options in other hard-to-treat cancers. PMID:24997502

  17. Stratified neutrophil-to-lymphocyte ratio accurately predict mortality risk in hepatocellular carcinoma patients following curative liver resection

    PubMed Central

    Huang, Gui-Qian; Zhu, Gui-Qi; Liu, Yan-Long; Wang, Li-Ren; Braddock, Martin; Zheng, Ming-Hua; Zhou, Meng-Tao

    2016-01-01

    Objectives Neutrophil lymphocyte ratio (NLR) has been shown to predict prognosis of cancers in several studies. This study was designed to evaluate the impact of stratified NLR in patients who have received curative liver resection (CLR) for hepatocellular carcinoma (HCC). Methods A total of 1659 patients who underwent CLR for suspected HCC between 2007 and 2014 were reviewed. The preoperative NLR was categorized into quartiles based on the quantity of the study population and the distribution of NLR. Hazard ratios (HRs) and 95% confidence intervals (CIs) were significantly associated with overall survival (OS) and derived by Cox proportional hazard regression analyses. Univariate and multivariate Cox proportional hazard regression analyses were evaluated for association of all independent parameters with disease prognosis. Results Multivariable Cox proportional hazards models showed that the level of NLR (HR = 1.031, 95%CI: 1.002-1.060, P = 0.033), number of nodules (HR = 1.679, 95%CI: 1.285-2.194, P<0.001), portal vein thrombosis (HR = 4.329, 95%CI: 1.968-9.521, P<0.001), microvascular invasion (HR = 2.527, 95%CI: 1.726-3.700, P<0.001) and CTP score (HR = 1.675, 95%CI: 1.153-2.433, P = 0.007) were significant predictors of mortality. From the Kaplan-Meier analysis of overall survival (OS), each NLR quartile showed a progressively worse OS and apparent separation (log-rank P=0.008). The highest 5-year OS rate following CLR (60%) in HCC patients was observed in quartile 1. In contrast, the lowest 5-year OS rate (27%) was obtained in quartile 4. Conclusions Stratified NLR may predict significantly improved outcomes and strengthen the predictive power for patient responses to therapeutic intervention. PMID:26716411

  18. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    PubMed

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    dissolution of BCS class IIb drugs, dasatinib as a model drug, including the different gastric condition. The maximum dissolution of dasatinib with USP dissolution apparatus II was less than 1% in pH 6.5 SIF, while the one with mGIS (pH 1.2 SGF/pH 6.5 SIF) reached almost 100%. The supersaturation and precipitation of dasatinib were observed in the in vitro dissolution studies with mGIS but not with USP apparatus II. Additionally, dasatinib dissolution with mGIS was reduced to less than 10% when the gastric pH was elevated, suggesting the co-administration of acid reducing agents will decrease the oral bioavailability of dasatinib. Accurate prediction of in vivo drug dissolution would be beneficial for assuring product safety and efficacy for patients. To this end, we have created a new in vitro dissolution system, mGIS, to predict the in vivo dissolution phenomena of a weak base drug, dasatinib. The experimental results when combined with in silico simulation suggest that the mGIS predicted the in vivo dissolution well due to the elevation of gastric pH. Thus, mGIS might be suitable to predict in vivo dissolution of weak basic drugs. This mGIS methodology is expected to significantly advance the prediction of in vivo drug dissolution. It is also expected to assist in optimizing product development and drug formulation design in support of Quality by Design (QbD) initiatives. PMID:25978875

  19. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events.

    PubMed

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The [Formula: see text] class contains tandem [Formula: see text]-type motif sequences, and the [Formula: see text] class contains alternating [Formula: see text], [Formula: see text] and [Formula: see text] type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a [Formula: see text]-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the [Formula: see text] class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for [Formula: see text]-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  20. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Astrophysics Data System (ADS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  1. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events

    PubMed Central

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  2. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.

    PubMed

    Jamali, Ali Akbar; Ferdousi, Reza; Razzaghi, Saeed; Li, Jiuyong; Safdari, Reza; Ebrahimie, Esmaeil

    2016-05-01

    Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org. PMID:26821132

  3. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.

    PubMed

    Zhang, Chen; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2016-04-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure in the US and less severe liver injury worldwide. It is also one of the major reasons of drug withdrawal from the market. Thus, DILI has become one of the most important concerns of drugs, and should be predicted in very early stage of drug discovery process. In this study, a comprehensive data set containing 1317 diverse compounds was collected from publications. Then, high accuracy classification models were built using five machine learning methods based on MACCS and FP4 fingerprints after evaluating by substructure pattern recognition method. The best model was built using SVM method together with FP4 fingerprint at the IG value threshold of 0.0005. Its overall predictive accuracies were 79.7 % and 64.5 % for the training and test sets, separately, which yielded overall accuracy of 75.0 % for the external validation dataset, consisting of 88 compounds collected from a benchmark DILI database - the Liver Toxicity Knowledge Base. This model could be used for drug-induced liver toxicity prediction. Moreover, some key substructure patterns correlated with drug-induced liver toxicity were also identified as structural alerts. PMID:27491923

  4. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols.

    PubMed

    Langer, M; Höltje, M; Urbanetz, N A; Brandt, B; Höltje, H-D; Lippold, B C

    2003-02-18

    A prerequisite for the formation of glassy solid solutions prepared by the melting method is the miscibility of the respective drug and the carrier in the molten state. As could be shown experimentally, all investigated drug/sugar alcohol combinations miscible in the molten state form to some extent glassy solid solutions, dependent on their tendency to recrystallize during preparation. Therefore, the present study focuses on the evaluation of factors that govern the miscibility of molten drugs and sugar alcohols as carriers. In this context, solubility parameters are discussed as a means of predicting miscibility in comparison to a new approach, using calculated interaction parameters derived from molecular dynamics (MD) studies. There is evidence that a Coulomb interaction term C(SR), comprising short-range electrostatic interactions and hydrogen bonding energy is essential for the miscibility of drug and carrier in the molten state. To relate C(SR) to the molecular volume, a non-dimensional parameter P(i) is defined. For this parameter, a limiting value for miscibility exists. Contrary, calculated solubility parameter differences between drug and sugar alcohol in the range of 8-15 MPa(1/2) are not suitable for a prediction of miscibility or immiscibility, since the mixtures deviate from regular solution behavior. In irregular mixtures of drugs and sugar alcohols, an excess entropy and the formation of hydrogen bonds between unlike molecules favor miscibility, that cannot be predicted by regular solution theory. PMID:12550792

  5. Similarity-based machine learning methods for predicting drug-target interactions: a brief review.

    PubMed

    Ding, Hao; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2014-09-01

    Computationally predicting drug-target interactions is useful to select possible drug (or target) candidates for further biochemical verification. We focus on machine learning-based approaches, particularly similarity-based methods that use drug and target similarities, which show relationships among drugs and those among targets, respectively. These two similarities represent two emerging concepts, the chemical space and the genomic space. Typically, the methods combine these two types of similarities to generate models for predicting new drug-target interactions. This process is also closely related to a lot of work in pharmacogenomics or chemical biology that attempt to understand the relationships between the chemical and genomic spaces. This background makes the similarity-based approaches attractive and promising. This article reviews the similarity-based machine learning methods for predicting drug-target interactions, which are state-of-the-art and have aroused great interest in bioinformatics. We describe each of these methods briefly, and empirically compare these methods under a uniform experimental setting to explore their advantages and limitations. PMID:23933754

  6. Prediction of glucuronidated drug clearance in pediatrics (≤5 years): An allometric approach.

    PubMed

    Mahmood, Iftekhar

    2015-03-01

    Children are not small adults. The differences between children of different age groups and adults are not merely due to body weight, but also due to physiological and biochemical differences resulting in different rates of drug metabolism or renal clearance. Glucuronidation is an important pathway of drug metabolism. Therefore, the objective of this study is to evaluate the predictive performance of several allometric exponents in children of ≤5 years for the total clearance of drugs which are mainly metabolized by glucuronidation. Four exponents (0.75, 1.0, 1.2, or 1.4) on the body weights and an allometric model developed from adults were evaluated. The four exponents and the allometric model were examined to determine the suitability of the method(s) to predict the clearances of drugs which are glucuronidated in children ≤5 years of age. Based on the analysis of ten drugs, it was noted that the combination of two allometric exponents 1.2 (for children ≤3 months) and 1.0 (for children ≥3 months ≤5 years) can be used to predict mean clearances of drugs which are mainly metabolized by glucuronidation. The suggested approach may be used to estimate a first-in-pediatric dose to initiate a pediatric clinical trial. PMID:24519316

  7. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV. PMID:25450741

  8. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes.

    PubMed

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-10-30

    Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD(50) with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure-toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model. PMID:22959133

  9. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  10. Choice to view cocaine images predicts concurrent and prospective drug use in cocaine addiction*

    PubMed Central

    Moeller, Scott J.; Beebe-Wang, Nicasia; Woicik, Patricia A.; Konova, Anna B.; Maloney, Thomas; Goldstein, Rita Z.

    2012-01-01

    Background Identifying variables that predict drug use in treatment-seeking drug addicted individuals is a crucial research and therapeutic goal. This study tested the hypothesis that choice to view cocaine images is associated with concurrent and prospective drug use in cocaine addiction. Methods To establish choice-concurrent drug use associations, 71 cocaine addicted subjects (43 current users and 28 treatment seekers) provided data on (A) choice to view cocaine images and affectively pleasant, unpleasant, and neutral images [collected under explicit contingencies (when choice was made between two fully visible side-by-side images) and under more probabilistic contingencies (when choice was made between pictures hidden under flipped-over cards)]; and (B) past-month cocaine and other drug use. To establish choice-prospective drug use associations, 20 of these treatment-seeking subjects were followed over the next six months. Results Baseline cocaine-related picture choice as measured by both tasks positively correlated with subjects’ concurrent cocaine and other drug use as driven by the actively-using subjects. In a subsequent multiple regression analysis, choice to view cocaine images as compared with affectively pleasant images (under probabilistic contingencies) was the only predictor that continued to be significantly associated with drug use. Importantly, this same baseline cocaine>pleasant probabilistic choice also predicted the number of days drugs were used (cocaine, alcohol, and marijuana) over the next six months. Conclusions Simulated cocaine choice – especially when probabilistic and when compared with other positive reinforcers – may provide a valid laboratory marker of current and future drug use in cocaine addiction. PMID:23218913

  11. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    PubMed

    Zhu, Zhengxi

    2014-03-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  12. Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

    PubMed Central

    2015-01-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼12, nanoparticles have good stability; with ∼2 < ACDLogP < ∼9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  13. Enhancing the Enrichment of Pharmacophore-Based Target Prediction for the Polypharmacological Profiles of Drugs.

    PubMed

    Wang, Xia; Pan, Chenxu; Gong, Jiayu; Liu, Xiaofeng; Li, Honglin

    2016-06-27

    PharmMapper is a web server for drug target identification by reversed pharmacophore matching the query compound against an annotated pharmacophore model database, which provides a computational polypharmacology prediction approach for drug repurposing and side effect risk evaluation. But due to the inherent nondiscriminative feature of the simple fit scores used for prediction results ranking, the signal/noise ratio of the prediction results is high, posing a challenge for predictive reliability. In this paper, we improved the predictive accuracy of PharmMapper by generating a ligand-target pairwise fit score matrix from profiling all the annotated pharmacophore models against corresponding ligands in the original complex structures that were used to extract these pharmacophore models. The matrix reflects the noise baseline of fit score distribution of the background database, thus enabling estimation of the probability of finding a given target randomly with the calculated ligand-pharmacophore fit score. Two retrospective tests were performed which confirmed that the probability-based ranking score outperformed the simple fit score in terms of identification of both known drug targets and adverse drug reaction related off-targets. PMID:27187084

  14. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.

    PubMed

    Cao, Ran; Wang, Yanli

    2016-06-20

    The computational prediction of molecular targets for small-molecule drugs remains a great challenge. Herein we describe a ligand-based interaction fingerprint (LIFt) approach for target prediction. Together with physics-based docking and sampling methods, we assessed the performance systematically by modeling the polypharmacology of 12 kinase inhibitors in three stages. First, we examined the capacity of this approach to differentiate true targets from false targets with the promiscuous binder staurosporine, based on native complex structures. Second, we performed large-scale profiling of kinase selectivity on the clinical drug sunitinib by means of computational simulation. Third, we extended the study beyond kinases by modeling the cross-inhibition of bromodomain-containing protein 4 (BRD4) for 10 well-established kinase inhibitors. On this basis, we made prospective predictions by exploring new kinase targets for the anticancer drug candidate TN-16, originally known as a colchicine site binder and microtubule disruptor. As a result, p38α was highlighted from a panel of 187 different kinases. Encouragingly, our prediction was validated by an in vitro kinase assay, which showed TN-16 as a low-micromolar p38α inhibitor. Collectively, our results suggest the promise of the LIFt approach in predicting potential targets for small-molecule drugs. PMID:26222196

  15. A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction

    PubMed Central

    Haider, Saad; Rahman, Raziur; Ghosh, Souparno; Pal, Ranadip

    2015-01-01

    Modeling sensitivity to drugs based on genetic characterizations is a significant challenge in the area of systems medicine. Ensemble based approaches such as Random Forests have been shown to perform well in both individual sensitivity prediction studies and team science based prediction challenges. However, Random Forests generate a deterministic predictive model for each drug based on the genetic characterization of the cell lines and ignores the relationship between different drug sensitivities during model generation. This application motivates the need for generation of multivariate ensemble learning techniques that can increase prediction accuracy and improve variable importance ranking by incorporating the relationships between different output responses. In this article, we propose a novel cost criterion that captures the dissimilarity in the output response structure between the training data and node samples as the difference in the two empirical copulas. We illustrate that copulas are suitable for capturing the multivariate structure of output responses independent of the marginal distributions and the copula based multivariate random forest framework can provide higher accuracy prediction and improved variable selection. The proposed framework has been validated on genomics of drug sensitivity for cancer and cancer cell line encyclopedia database. PMID:26658256

  16. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug-drug interactions.

    PubMed

    McGinnity, Dermot F; Waters, Nigel J; Tucker, James; Riley, Robert J

    2008-06-01

    Unbound IC(50) (IC(50,u)) values of 15 drugs were determined in eight recombinantly expressed human cytochromes P450 (P450s) and human hepatocytes, and the data were used to simulate clinical area under the plasma concentration-time curve changes (deltaAUC) on coadministration with prototypic CYP2D6 substrates. Significant differences in IC(50,u) values between enzyme sources were observed for quinidine (0.02 microM in recombinant CYP2D6 versus 0.5 microM in hepatocytes) and propafenone (0.02 versus 4.1 microM). The relative contribution of individual P450s toward the oxidative metabolism of clinical probes desipramine, imipramine, tolterodine, propranolol, and metoprolol was estimated via determinations of intrinsic clearance using recombinant P450s (rP450s). Simulated deltaAUC were compared with those observed in vivo via the ratios of unbound inhibitor concentration at the entrance to the liver to inhibition constants determined against rP450s ([I](in,u)/K(i)) and incorporating parallel substrate elimination pathways. For this dataset, there were 20% false negatives (observed deltaAUC >or= 2, predicted deltaAUC < 2), 77% correct predictions, and 3% false positives. Thus, the [I](in,u)/K(i) approach appears relatively successful at estimating the degree of clinical interactions and can be incorporated into drug discovery strategies. Using a Simcyp ADME (absorption, metabolism, distribution, elimination) simulator (Simcyp Ltd., Sheffield, UK), there were 3% false negatives, 94% correct simulations, and 3% false positives. False-negative predictions were rationalized as a result of mechanism-based inhibition, production of inhibitory metabolites, and/or hepatic uptake. Integrating inhibition and reaction phenotyping data from automated rP450 screens have shown applicability to predict the occurrence and degree of in vivo drug-drug interactions, and such data may identify the clinical consequences for candidate drugs as both "perpetrators" and "victims" of P450

  17. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity

    PubMed Central

    Amadoz, Alicia; Sebastian-Leon, Patricia; Vidal, Enrique; Salavert, Francisco; Dopazo, Joaquin

    2015-01-01

    Many complex traits, as drug response, are associated with changes in biological pathways rather than being caused by single gene alterations. Here, a predictive framework is presented in which gene expression data are recoded into activity statuses of signal transduction circuits (sub-pathways within signaling pathways that connect receptor proteins to final effector proteins that trigger cell actions). Such activity values are used as features by a prediction algorithm which can efficiently predict a continuous variable such as the IC50 value. The main advantage of this prediction method is that the features selected by the predictor, the signaling circuits, are themselves rich-informative, mechanism-based biomarkers which provide insight into or drug molecular mechanisms of action (MoA). PMID:26678097

  18. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    ERIC Educational Resources Information Center

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  19. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells.

    PubMed

    Noor, Fozia; Niklas, Jens; Müller-Vieira, Ursula; Heinzle, Elmar

    2009-06-01

    Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicity is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC(50) values 100 microM or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity. PMID:19332084

  20. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells

    SciTech Connect

    Noor, Fozia Niklas, Jens Mueller-Vieira, Ursula Heinzle, Elmar

    2009-06-01

    Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicty is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC{sub 50} values 100 {mu}M or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.

  1. Predicting Antimicrobial Resistance Prevalence and Incidence from Indicators of Antimicrobial Use: What Is the Most Accurate Indicator for Surveillance in Intensive Care Units?

    PubMed Central

    Fortin, Élise; Platt, Robert W.; Fontela, Patricia S.; Buckeridge, David L.; Quach, Caroline

    2015-01-01

    Objective The optimal way to measure antimicrobial use in hospital populations, as a complement to surveillance of resistance is still unclear. Using respiratory isolates and antimicrobial prescriptions of nine intensive care units (ICUs), this study aimed to identify the indicator of antimicrobial use that predicted prevalence and incidence rates of resistance with the best accuracy. Methods Retrospective cohort study including all patients admitted to three neonatal (NICU), two pediatric (PICU) and four adult ICUs between April 2006 and March 2010. Ten different resistance / antimicrobial use combinations were studied. After adjustment for ICU type, indicators of antimicrobial use were successively tested in regression models, to predict resistance prevalence and incidence rates, per 4-week time period, per ICU. Binomial regression and Poisson regression were used to model prevalence and incidence rates, respectively. Multiplicative and additive models were tested, as well as no time lag and a one 4-week-period time lag. For each model, the mean absolute error (MAE) in prediction of resistance was computed. The most accurate indicator was compared to other indicators using t-tests. Results Results for all indicators were equivalent, except for 1/20 scenarios studied. In this scenario, where prevalence of carbapenem-resistant Pseudomonas sp. was predicted with carbapenem use, recommended daily doses per 100 admissions were less accurate than courses per 100 patient-days (p = 0.0006). Conclusions A single best indicator to predict antimicrobial resistance might not exist. Feasibility considerations such as ease of computation or potential external comparisons could be decisive in the choice of an indicator for surveillance of healthcare antimicrobial use. PMID:26710322

  2. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    PubMed

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  3. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  4. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  5. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    SciTech Connect

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan

    2010-12-15

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such a way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.

  6. An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking.

    PubMed

    Shaikh, Naeem; Sharma, Mahesh; Garg, Prabha

    2016-02-23

    Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are being successfully employed for the prediction of drug-target interactions (DTI). However, unavailability of non-interacting dataset and determining the applicability domain (AD) of model are a main concern in PCM modeling. In the present study, traditional PCM modeling was improved by devising novel methodologies for reliable negative dataset generation and fingerprint based AD analysis. In addition, various types of descriptors and classifiers were evaluated for their performance. The Random Forest and Support Vector Machine models outperformed the other classifiers (accuracies >98% and >89% for 10-fold cross validation and external validation, respectively). The type of protein descriptors had negligible effect on the developed models, encouraging the use of sequence-based descriptors over the structure-based descriptors. To establish the practical utility of built models, targets were predicted for approved anticancer drugs of natural origin. The molecular recognition interactions between the predicted drug-target pair were quantified with the help of a reverse molecular docking approach. The majority of predicted targets are known for anticancer therapy. These results thus correlate well with anticancer potential of the selected drugs. Interestingly, out of all predicted DTIs, thirty were found to be reported in the ChEMBL database, further validating the adopted methodology. The outcome of this study suggests that the proposed approach, involving use of the improved PCM methodology and molecular docking, can be successfully employed to elucidate the intricate mode of action for drug molecules as well as repositioning them for new therapeutic applications. PMID:26822863

  7. Computer-aided design of liposomal drugs: in silico prediction and experimental validation of drug candidates for liposomal remote loading

    PubMed Central

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-01

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343

  8. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    PubMed

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com . PMID:27167132

  9. Drug-resistant tuberculosis can be predicted by Mycobacterial interspersed repetitive unit locus

    PubMed Central

    Yu-feng, Wen; Chao, Jiang; Xian-feng, Cheng

    2015-01-01

    It is unknown whether MIRU-VNTR (Mycobacterial Interspersed Repetitive Unit-Variable Number of Tandem Repeat) is associated with drug resistance of Mycobacterium tuberculosis. The purpose of this study was to explore the ability of 24 MIRU loci to predict the drug resistance of Isoniazid (INH), Rifampicin (RFP), Streptomycin (SM), Ethambutol (EMB) and Pyrazinamide (PZA). We collected the drug resistance and MIRU loci information of 109 strains of M. tuberculosis from an open database. The results of multivariate logistic regression showed that the VNTR polymorphism of MTUB04 was related to INH resistance [odds ratio (OR) = 2.82, P = 0.00], RFP resistance (OR = 1.91, P = 0.02), SM resistance (OR = 1.98, P = 0.01) and EMB resistance (OR = 1.95, P = 0.03). MIRU40 was associated with INH resistance (OR = 2.22, P = 0.00). MTUB21 was connected with INH resistance (OR = 1.63, P = 0.02) and SM resistance (OR = 1.69, P = 0.01). MIRU26 was correlated with SM resistance (OR = 1.52, P = 0.04). MIRU39 was associated with EMB resistance (OR = 4.07, P = 0.02). The prediction power of MIRU loci were 0.84, 0.70, 0.85, and 0.74 respectively for INH (predicted by MTUB04, MIRU20, and MTUB21), RFP (predicted by MTUB04), SM (predicted by MTUB21 and MIRU26) and EMB (MTUB04 and MIRU39) through ROC analysis. Our results showed that MIRU loci were related to anti-tuberculosis drug and could predict the drug resistance of tuberculosis. PMID:25759689

  10. IMPROVING THE PREDICTION OF PHARMACOGENES USING TEXT-DERIVED DRUG-GENE RELATIONSHIPS

    PubMed Central

    GARTEN, YAEL; TATONETTI, NICHOLAS P; ALTMAN, RUSS B

    2011-01-01

    A critical goal of pharmacogenomics research is to identify genes that can explain variation in drug response. We have previously reported a method that creates a genome-scale ranking of genes likely to interact with a drug. The algorithm uses information about drug structure and indications of use to rank the genes. Although the algorithm has good performance, its performance depends on a curated set of drug-gene relationships that is expensive to create and difficult to maintain. In this work, we assess the utility of text mining in extracting a network of drug-gene relationships automatically. This provides a valuable aggregate source of knowledge, subsequently used as input into the algorithm that ranks potential pharmacogenes. Using a drug-gene network created from sentence-level co-occurrence in the full text of scientific articles, we compared the performance to that of a network created by manual curation of those articles. Under a wide range of conditions, we show that a knowledge base derived from text-mining the literature performs as well as, and sometimes better than, a high-quality, manually curated knowledge base. We conclude that we can use relationships mined automatically from the literature as a knowledgebase for pharmacogenomics relationships. Additionally, when relationships are missed by text mining, our system can accurately extrapolate new relationships with 77.4% precision. PMID:19908383

  11. Predicting New Indications for Approved Drugs Using a Proteo-Chemometric Method

    PubMed Central

    Dakshanamurthy, Sivanesan; Issa, Naiem T; Assefnia, Shahin; Seshasayee, Ashwini; Peters, Oakland J; Madhavan, Subha; Uren, Aykut; Brown, Milton L; Byers, Stephen W

    2012-01-01

    The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching or simple in silico ligand docking. We now describe a novel rapid computational proteo-chemometric method called “Train, Match, Fit, Streamline” (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3,671 FDA approved drugs across 2,335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84% and 91% for agents ranked in the top 10, 20, 30 and 40, respectively, out of all 3,671 drugs. Drugs ranked in the top 1–40, that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an anti-parasitic with recently discovered and unexpected anti-cancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity as well as angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS

  12. Gut Wall Metabolism. Application of Pre-Clinical Models for the Prediction of Human Drug Absorption and First-Pass Elimination.

    PubMed

    Jones, Christopher R; Hatley, Oliver J D; Ungell, Anna-Lena; Hilgendorf, Constanze; Peters, Sheila Annie; Rostami-Hodjegan, Amin

    2016-05-01

    Quantifying the multiple processes which control and modulate the extent of oral bioavailability for drug candidates is critical to accurate projection of human pharmacokinetics (PK). Understanding how gut wall metabolism and hepatic elimination factor into first-pass clearance of drugs has improved enormously. Typically, the cytochrome P450s, uridine 5'-diphosphate-glucuronosyltransferases and sulfotransferases, are the main enzyme classes responsible for drug metabolism. Knowledge of the isoforms functionally expressed within organs of first-pass clearance, their anatomical topology (e.g. zonal distribution), protein homology and relative abundances and how these differ across species is important for building models of human metabolic extraction. The focus of this manuscript is to explore the parameters influencing bioavailability and to consider how well these are predicted in human from animal models or from in vitro to in vivo extrapolation. A unique retrospective analysis of three AstraZeneca molecules progressed to first in human PK studies is used to highlight the impact that species differences in gut wall metabolism can have on predicted human PK. Compared to the liver, pharmaceutical research has further to go in terms of adopting a common approach for characterisation and quantitative prediction of intestinal metabolism. A broad strategy is needed to integrate assessment of intestinal metabolism in the context of typical DMPK activities ongoing within drug discovery programmes up until candidate drug nomination. PMID:26964996

  13. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data

    PubMed Central

    Ito, Kiyomi; Brown, Hayley S; Houston, J Brian

    2004-01-01

    Aims In theory, the magnitude of an in vivo drug–drug interaction arising from the inhibition of metabolic clearance can be predicted using the ratio of inhibitor concentration ([I]) to inhibition constant (Ki). The aim of this study was to construct a database for the prediction of drug–drug interactions from in vitro data and to evaluate the use of the various estimates for the inhibitor concentrations in the term [I]/Ki. Methods One hundred and ninety-three in vivo drug–drug interaction studies involving inhibition of CYP3A4, CYP2D6 or CYP2C9 were collated from the literature together with in vitro Ki values and pharmacokinetic parameters for inhibitors, to allow calculation of average/maximum systemic plasma concentration during the dosing interval and maximum hepatic input plasma concentration (both total and unbound concentration). The observed increase in AUC (decreased clearance) was plotted against the estimated [I]/Ki ratio for qualitative zoning of the predictions. Results The incidence of false negative predictions (AUC ratio > 2, [I]/Ki < 1) was largest using the average unbound plasma concentration and smallest using the hepatic input total plasma concentration of inhibitor for each of the CYP enzymes. Excluding mechanism-based inhibition, the use of total hepatic input concentration resulted in essentially no false negative predictions, though several false positive predictions (AUC ratio < 2, [I]/Ki > 1) were found. The incidence of true positive predictions (AUC ratio > 2, [I]/Ki > 1) was also highest using the total hepatic input concentration. Conclusions The use of the total hepatic input concentration of inhibitor together with in vitro Ki values was the most successful method for the categorization of putative CYP inhibitors and for identifying negative drug–drug interactions. However this approach should be considered as an initial discriminating screen, as it is empirical and requires subsequent mechanistic studies to provide a

  14. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium.

    PubMed

    Ryan, Natalia; Chorley, Brian; Tice, Raymond R; Judson, Richard; Corton, J Christopher

    2016-05-01

    Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669

  15. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans

    PubMed Central

    Green, AR; King, MV; Shortall, SE; Fone, KCF

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity. LINKED ARTICLES This article is commented on by Parrott, pp. 1518–1520 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01941.x and to view the the

  16. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions.

    PubMed

    Iorio, Francesco; Shrestha, Roshan L; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J; Saez-Rodriguez, Julio; Draviam, Viji M

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells-consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  17. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling

    PubMed Central

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-01-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients. PMID:26317215

  18. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions

    PubMed Central

    Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  19. Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.

    PubMed

    Bienkowska, Jadwiga R; Dalgin, Gul S; Batliwalla, Franak; Allaire, Normand; Roubenoff, Ronenn; Gregersen, Peter K; Carulli, John P

    2009-12-01

    Biomarker development for prediction of patient response to therapy is one of the goals of molecular profiling of human tissues. Due to the large number of transcripts, relatively limited number of samples, and high variability of data, identification of predictive biomarkers is a challenge for data analysis. Furthermore, many genes may be responsible for drug response differences, but often only a few are sufficient for accurate prediction. Here we present an analysis approach, the Convergent Random Forest (CRF) method, for the identification of highly predictive biomarkers. The aim is to select from genome-wide expression data a small number of non-redundant biomarkers that could be developed into a simple and robust diagnostic tool. Our method combines the Random Forest classifier and gene expression clustering to rank and select a small number of predictive genes. We evaluated the CRF approach by analyzing four different data sets. The first set contains transcript profiles of whole blood from rheumatoid arthritis patients, collected before anti-TNF treatment, and their subsequent response to the therapy. In this set, CRF identified 8 transcripts predicting response to therapy with 89% accuracy. We also applied the CRF to the analysis of three previously published expression data sets. For all sets, we have compared the CRF and recursive support vector machines (RSVM) approaches to feature selection and classification. In all cases the CRF selects much smaller number of features, five to eight genes, while achieving similar or better performance on both training and independent testing sets of data. For both methods performance estimates using cross-validation is similar to performance on independent samples. The method has been implemented in R and is available from the authors upon request: Jadwiga.Bienkowska@biogenidec.com. PMID:19699293

  20. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database

    PubMed Central

    2013-01-01

    Background Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. Method Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. Result BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. Conclusions The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates. Website: The web based application is developed and can be access through the following link http://compgenomics.utsa.edu/BRCAMoNet/ PMID:24564956

  1. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  2. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  3. Physiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

    PubMed Central

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions. PMID:24670388

  4. Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction.

    PubMed

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014. PMID:24670388

  5. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    PubMed Central

    2010-01-01

    Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development. PMID:20807400

  6. Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets

    PubMed Central

    Volpato, Viola; Alshomrani, Badr; Pollastri, Gianluca

    2015-01-01

    Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segments, improvements over the the years have been slow, and accurate methods are needed that are capable of accommodating the ever-increasing amount of structurally-determined protein sequences to try to boost predictive performances. In this paper, we propose a predictor for short disordered regions based on bidirectional recurrent neural networks and tested by rigorous five-fold cross-validation on a large, non-redundant dataset collected from MobiDB, a new comprehensive source of protein disorder annotations. The system exploits sequence and structural information in the forms of frequency profiles, predicted secondary structure and solvent accessibility and direct disorder annotations from homologous protein structures (templates) deposited in the Protein Data Bank. The contributions of sequence, structure and homology information result in large improvements in predictive accuracy. Additionally, the large scale of the training set leads to low false positive rates, making our systems a robust and efficient way to address high-throughput disorder prediction. PMID:26307973

  7. In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia

    PubMed Central

    Yang, Pei‐Chi; Moreno, Jonathan D.; Miyake, Christina Y.; Vaughn‐Behrens, Steven B.; Jeng, Mao‐Tsuen; Grandi, Eleonora; Wehrens, Xander H. T.; Noskov, Sergei Y.

    2015-01-01

    Key points The mechanism of therapeutic efficacy of flecainide for catecholaminergic polymorphic ventricular tachycardia (CPVT) is unclear.Model predictions suggest that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT.This study represents a first step toward predicting therapeutic mechanisms of drug efficacy in the setting of CPVT and then using these mechanisms to guide modelling and simulation to predict alternative drug therapies. Abstract Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by fatal ventricular arrhythmias in structurally normal hearts during β‐adrenergic stimulation. Current treatment strategies include β‐blockade, flecainide and ICD implementation – none of which is fully effective and each comes with associated risk. Recently, flecainide has gained considerable interest in CPVT treatment, but its mechanism of action for therapeutic efficacy is unclear. In this study, we performed in silico mutagenesis to construct a CPVT model and then used a computational modelling and simulation approach to make predictions of drug mechanisms and efficacy in the setting of CPVT. Experiments were carried out to validate model results. Our simulations revealed that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT. The pure Na+ channel blocker lidocaine and the antianginal ranolazine were additionally tested and also found to be ineffective. When we tested lower dose combination therapy with flecainide, β‐blockade and CaMKII inhibition, our model predicted superior therapeutic efficacy than with flecainide monotherapy. Simulations indicate a polytherapeutic approach may mitigate side‐effects and proarrhythmic potential plaguing CPVT pharmacological management today. Importantly, our prediction of a novel polytherapy for CPVT was confirmed experimentally. Our simulations suggest that flecainide therapeutic efficacy in CPVT is unlikely

  8. Applicability Domain ANalysis (ADAN): a robust method for assessing the reliability of drug property predictions.

    PubMed

    Carrió, Pau; Pinto, Marta; Ecker, Gerhard; Sanz, Ferran; Pastor, Manuel

    2014-05-27

    We report a novel method called ADAN (Applicability Domain ANalysis) for assessing the reliability of drug property predictions obtained by in silico methods. The assessment provided by ADAN is based on the comparison of the query compound with the training set, using six diverse similarity criteria. For every criterion, the query compound is considered out of range when the similarity value obtained is larger than the 95th percentile of the values obtained for the training set. The final outcome is a number in the range of 0-6 that expresses the number of unmet similarity criteria and allows classifying the query compound within seven reliability categories. Such categories can be further exploited to assign simpler reliability classes using a traffic light schema, to assign approximate confidence intervals or to mark the predictions as unreliable. The entire methodology has been validated simulating realistic conditions, where query compounds are structurally diverse from those in the training set. The validation exercise involved the construction of more than 1000 models. These models were built using a combination of training set, molecular descriptors, and modeling methods representative of the real predictive tasks performed in the eTOX project (a project whose objective is to predict in vivo toxicological end points in drug development). Validation results confirm the robustness of the proposed assessment methodology, which compares favorably with other classical methods based solely on the structural similarity of the compounds. ADAN characteristics make the method well-suited for estimate the quality of drug predictions obtained in extremely unfavorable conditions, like the prediction of drug toxicity end points. PMID:24821140

  9. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept.

    PubMed

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  10. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept

    PubMed Central

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  11. Early noninvasive measurement of the indocyanine green plasma disappearance rate accurately predicts early graft dysfunction and mortality after deceased donor liver transplantation.

    PubMed

    Olmedilla, Luis; Pérez-Peña, José María; Ripoll, Cristina; Garutti, Ignacio; de Diego, Roberto; Salcedo, Magdalena; Jiménez, Consuelo; Bañares, Rafael

    2009-10-01

    Early diagnosis of graft dysfunction in liver transplantation is essential for taking appropriate action. Indocyanine green clearance is closely related to liver function and can be measured noninvasively by spectrophotometry. The objectives of this study were to prospectively analyze the relationship between the indocyanine green plasma disappearance rate (ICGPDR) and early graft function after liver transplantation and to evaluate the role of ICGPDR in the prediction of severe graft dysfunction (SGD). One hundred seventy-two liver transplants from deceased donors were analyzed. Ten patients had SGD: 6 were retransplanted, and 4 died while waiting for a new graft. The plasma disappearance rate was measured 1 hour (PDRr60) and within the first 24 hours (PDR1) after reperfusion, and it was significantly lower in the SGD group. PDRr60 and PDR1 were excellent predictors of SGD. A threshold PDRr60 value of 10.8%/minute and a PDR1 value of 10%/minute accurately predicted SGD with areas under the receiver operating curve of 0.94 (95% confidence interval, 0.89-0.97) and 0.96 (95% confidence interval, 0.92-0.98), respectively. In addition, survival was significantly lower in patients with PDRr60 values below 10.8%/minute (53%, 47%, and 47% versus 95%, 94%, and 90% at 3, 6, and 12 months, respectively) and with PDR1 values below 10%/minute (62%, 62%, and 62% versus 94%, 92%, and 88%). In conclusion, very early noninvasive measurement of ICGPDR can accurately predict early severe graft dysfunction and mortality after liver transplantation. PMID:19790138

  12. Integrated Analysis of Drug-Induced Gene Expression Profiles Predicts Novel hERG Inhibitors

    PubMed Central

    Babcock, Joseph J.; Du, Fang; Xu, Kaiping; Wheelan, Sarah J.; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays. PMID:23936032

  13. From molecular signatures to predictive biomarkers: modeling disease pathophysiology and drug mechanism of action

    PubMed Central

    Heinzel, Andreas; Perco, Paul; Mayer, Gert; Oberbauer, Rainer; Lukas, Arno; Mayer, Bernd

    2014-01-01

    Omics profiling significantly expanded the molecular landscape describing clinical phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker signatures entering clinical utility. However, utilizing Omics for deepening our understanding of disease pathophysiology, and further including specific interference with drug mechanism of action on a molecular process level still sees limited added value in the clinical setting. We exemplify a computational workflow for expanding from statistics-based association analysis toward deriving molecular pathway and process models for characterizing phenotypes and drug mechanism of action. Interference analysis on the molecular model level allows identification of predictive biomarker candidates for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a complex clinical phenotype triggered by diabetes and presenting with renal as well as cardiovascular endpoints. A molecular pathway map indicates involvement of multiple molecular mechanisms, and selected biomarker candidates reported as associated with disease progression are identified for specific molecular processes. Selective interference of drug mechanism of action and disease-associated processes is identified for drug classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive biomarkers. PMID:25364744

  14. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer

    PubMed Central

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  15. Predicting and detecting adverse drug reactions in old age: challenges and opportunities.

    PubMed

    Mangoni, Arduino A

    2012-05-01

    Increased, often inappropriate, drug exposure, pharmacokinetic and pharmacodynamic changes, reduced homeostatic reserve and frailty increase the risk of adverse drug reactions (ADRs) in the older population, thereby imposing a significant public health burden. Predicting and diagnosing ADRs in old age presents significant challenges for the clinician, even when specific risk scoring systems are available. The picture is further compounded by the potential adverse impact of several drugs on more 'global' health indicators, for example, physical function and independence, and the fragmentation of care (e.g., increased number of treating doctors and care transitions) experienced by older patients during their clinical journey. The current knowledge of drug safety in old age is also curtailed by the lack of efficacy and safety data from pre-marketing studies. Moreover, little consideration is given to individual patients' experiences and reporting of specific ADRs, particularly in the presence of cognitive impairment. Pending additional data on these issues, the close review and monitoring of individual patients' drug prescribing, clinical status and biochemical parameters remain essential to predict and detect ADRs in old age. Recently developed strategies, for example, medication reconciliation and trigger tool methodology, have the potential for ADRs risk mitigation in this population. However, more information is required on their efficacy and applicability in different healthcare settings. PMID:22512705

  16. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.

    PubMed

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  17. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique.

    PubMed

    Hao, Ming; Wang, Yanli; Bryant, Stephen H

    2016-02-25

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision-recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. PMID:26851083

  18. DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank

    PubMed Central

    Yuan, Qingjun; Gao, Junning; Wu, Dongliang; Zhang, Shihua; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Motivation: Identifying drug–target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug–target interactions of new candidate drugs or targets. Methods: Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning. Results: The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs. Availability: http://datamining-iip.fudan.edu.cn/service/DrugE-Rank Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307615

  19. Models to predict unbound intracellular drug concentrations in the presence of transporters.

    PubMed

    Korzekwa, Ken R; Nagar, Swati; Tucker, Jalia; Weiskircher, Erica A; Bhoopathy, Siddhartha; Hidalgo, Ismael J

    2012-05-01

    Knowledge of free drug intracellular concentration is necessary to predict the impacts of drugs on intracellular targets. The goal of this study was to develop models to predict free intracellular drug concentrations in the presence of apical efflux transporters. The apical efflux transporter P-glycoprotein (P-gp), encoded by human gene multidrug resistance 1 (MDR1), was studied. Apparent permeabilities for 10 compounds in Madin-Darby canine kidney (MDCK) and MDR1-MDCK cell monolayers were obtained experimentally. Six of these compounds were evaluated additionally in the presence of the P-gp inhibitor cyclosporine A. A three-compartment model was developed, and passive and apical efflux clearances (CL(d) and CL(ae), respectively) were estimated. Endogenous canine transporters also were delineated. The three-compartment model was unable to simulate experimentally observed lag times and exhibited systematic bias across the simulations. Next, a five-compartment model with explicit membrane compartments was developed. This model resulted in lower systematic errors and simulated the lag time observed experimentally. Apical efflux was modeled out of the cell or out of the membrane. The five-compartment model with apical efflux out of the membrane predicted marked differences in unbound intracellular concentrations between the apical-to-basolateral and the basolateral-to-apical directions. Upon apical drug addition, large decreases in intracellular concentrations were observed with the efflux transporter. No such difference was predicted upon basolateral drug addition. This is consistent with experimental differences in the impact of P-gp on hepatic and brain distribution and supports the hypothesis that apical efflux occurs out of the apical membrane. PMID:22279052

  20. Predictive modeling of structured electronic health records for adverse drug event detection

    PubMed Central

    2015-01-01

    Background The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activities such as pharmacovigilance, wherein the safety of drugs is monitored to inform regulatory decisions about sustained use. To that end, electronic health records have emerged as a potentially valuable data source, providing access to longitudinal observations of patient treatment and drug use. A nascent line of research concerns predictive modeling of healthcare data for the automatic detection of adverse drug events, which presents its own set of challenges: it is not yet clear how to represent the heterogeneous data types in a manner conducive to learning high-performing machine learning models. Methods Datasets from an electronic health record database are used for learning predictive models with the purpose of detecting adverse drug events. The use and representation of two data types, as well as their combination, are studied: clinical codes, describing prescribed drugs and assigned diagnoses, and measurements. Feature selection is conducted on the various types of data to reduce dimensionality and sparsity, while allowing for an in-depth feature analysis of the usefulness of each data type and representation. Results Within each data type, combining multiple representations yields better predictive performance compared to using any single representation. The use of clinical codes for adverse drug event detection significantly outperforms the use of measurements; however, there is no significant difference over datasets between using only clinical codes and their combination with measurements. For certain adverse drug events, the combination does, however, outperform using only clinical codes. Feature selection leads to increased predictive performance for both

  1. Prediction of Drug Clearance in Premature and Mature Neonates, Infants, and Children ≤2 Years of Age: A Comparison of the Predictive Performance of 4 Allometric Models.

    PubMed

    Mahmood, Iftekhar

    2016-06-01

    The objective of this study was to evaluate the predictive performance of 4 allometric models to predict clearance in pediatric ages ranging from premature neonates to children ≤2 years of age. Four allometric models were used to predict clearances of 28 drugs in children from preterm neonates to 2 years of age (n = 564). The 4 models are (1) basal metabolic rate-dependent model; (2) age-dependent exponent model; (3) an allometric model based on kidney and liver weights as well as kidney and liver blood flow; and (4) an allometric model based on a fixed exponent of 0.75. The predictive performance of these models was evaluated by comparing the predicted clearance of the studied drugs with the observed clearance in an individual child. The results of the study indicated that the 3 new proposed models predicted the mean clearance of the drugs with reasonable accuracy (≤50% prediction error). On the other hand, the exponent of 0.75 produced substantial prediction error. Predicted individual clearance values were ≥50% in approximately 30% of the children by the proposed 3 methods and 73% by exponent 0.75. The 3 new proposed allometric models can predict mean clearances of drugs in children from premature neonates to ≤2 years of age with reasonable accuracy and are of practical value during pediatric drug development. PMID:26437918

  2. Novel in vitro systems for prediction of veterinary drug residues in ovine milk and dairy products.

    PubMed

    González-Lobato, L; Real, R; Herrero, D; de la Fuente, A; Prieto, J G; Marqués, M M; Alvarez, A I; Merino, G

    2014-01-01

    A new in vitro tool was developed for the identification of veterinary substrates of the main drug transporter in the mammary gland. These drugs have a much higher chance of being concentrated into ovine milk and thus should be detectable in dairy products. Complementarily, a cell model for the identification of compounds that can inhibit the secretion of drugs into ovine milk, and thus reduce milk residues, was also generated. The ATP-binding cassette transporter G2 (ABCG2) is responsible for the concentration of its substrates into milk. The need to predict potential drug residues in ruminant milk has prompted the development of in vitro cell models over-expressing ABCG2 for these species to detect veterinary drugs that interact with this transporter. Using these models, several substrates for bovine and caprine ABCG2 have been found, and differences in activity between species have been reported. However, despite being of great toxicological relevance, no suitable in vitro model to predict substrates of ovine ABCG2 was available. New MDCKII and MEF3.8 cell models over-expressing ovine ABCG2 were generated for the identification of substrates and inhibitors of ovine ABCG2. Five widely used veterinary antibiotics (marbofloxacin, orbifloxacin, sarafloxacin, danofloxacin and difloxacin) were discovered as new substrates of ovine ABCG2. These results were confirmed for the bovine transporter and its Y581S variant using previously generated cell models. In addition, the avermectin doramectin was described as a new inhibitor of ruminant ABCG2. This new rapid assay to identify veterinary drugs that can be concentrated into ovine milk will potentially improve detection and monitoring of veterinary drug residues in ovine milk and dairy products. PMID:24679113

  3. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China

    PubMed Central

    Cheng, Xian-feng; Jiang, Chao; Zhang, Min; Xia, Dan; Chu, Li-li; Wen, Yu-feng; Zhu, Ming; Jiang, Yue-gen

    2016-01-01

    Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration. PMID:27047485

  4. Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.

    PubMed

    Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild

    2013-08-01

    This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies. PMID:23343036

  5. Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Mirnezhad, M.; Sahmani, S.

    2015-04-01

    Molecular mechanics theory has been widely used to investigate the mechanical properties of nanostructures analytically. However, there is a limited number of research in which molecular mechanics model is utilized to predict the elastic properties of boron nitride nanotubes (BNNTs). In the current study, the mechanical properties of chiral single-walled BNNTs are predicted analytically based on an accurate molecular mechanics model. For this purpose, based upon the density functional theory (DFT) within the framework of the generalized gradient approximation (GGA), the exchange correlation of Perdew-Burke-Ernzerhof is adopted to evaluate force constants used in the molecular mechanics model. Afterwards, based on the principle of molecular mechanics, explicit expressions are given to calculate surface Young's modulus and Poisson's ratio of the single-walled BNNTs for different values of tube diameter and types of chirality. Moreover, the values of surface Young's modulus, Poisson's ratio and bending stiffness of boron nitride sheets are obtained via the DFT as byproducts. The results predicted by the present model are in reasonable agreement with those reported by other models in the literature.

  6. The Application of Physiologically Based Pharmacokinetic Modeling to Predict the Role of Drug Transporters: Scientific and Regulatory Perspectives.

    PubMed

    Pan, Yuzhuo; Hsu, Vicky; Grimstein, Manuela; Zhang, Lei; Arya, Vikram; Sinha, Vikram; Grillo, Joseph A; Zhao, Ping

    2016-07-01

    Transporters play an important role in drug absorption, disposition, and drug action. The evaluation of drug transporters requires a comprehensive understanding of transporter biology and pharmacology. Physiologically based pharmacokinetic (PBPK) models may offer an integrative platform to quantitatively evaluate the role of drug transporters and its interplay with other drug disposition processes such as passive drug diffusion and elimination by metabolizing enzymes. To date, PBPK modeling and simulations integrating drug transporters lag behind that for drug-metabolizing enzymes. In addition, predictive performance of PBPK has not been well established for predicting the role of drug transporters in the pharmacokinetics of a drug. To enhance overall predictive performance of transporter-based PBPK models, it is necessary to have a detailed understanding of transporter biology for proper representation in the models and to have a quantitative understanding of the contribution of transporters in the absorption and metabolism of a drug. This article summarizes PBPK-based submissions evaluating the role of drug transporters to the Office of Clinical Pharmacology of the US Food and Drug Administration. PMID:27385170

  7. Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets

    PubMed Central

    Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M.; Novelli, Jacopo F.; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K. S.

    2007-01-01

    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression. PMID:18000556

  8. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    SciTech Connect

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  9. An LD50 model for predicting psychotropic drug toxicity using biopartitioning micellar chromatography.

    PubMed

    Quiñones-Torrelo, C; Sagrado-Vives, S; Villanueva-Camañas, R M; Medina-Hernández, M