Science.gov

Sample records for accurately predict drug

  1. Accurate prediction of human drug toxicity: a major challenge in drug development.

    PubMed

    Li, Albert P

    2004-11-01

    Over the past decades, a number of drugs have been withdrawn or have required special labeling due to adverse effects observed post-marketing. Species differences in drug toxicity in preclinical safety tests and the lack of sensitive biomarkers and nonrepresentative patient population in clinical trials are probable reasons for the failures in predicting human drug toxicity. It is proposed that toxicology should evolve from an empirical practice to an investigative discipline. Accurate prediction of human drug toxicity requires resources and time to be spent in clearly defining key toxic pathways and corresponding risk factors, which hopefully, will be compensated by the benefits of a lower percentage of clinical failure due to toxicity and a decreased frequency of market withdrawal due to unacceptable adverse drug effects.

  2. IDSite: An accurate approach to predict P450-mediated drug metabolism

    PubMed Central

    Li, Jianing; Schneebeli, Severin T.; Bylund, Joseph; Farid, Ramy; Friesner, Richard A.

    2011-01-01

    Accurate prediction of drug metabolism is crucial for drug design. Since a large majority of drugs metabolism involves P450 enzymes, we herein describe a computational approach, IDSite, to predict P450-mediated drug metabolism. To model induced-fit effects, IDSite samples the conformational space with flexible docking in Glide followed by two refinement stages using the Protein Local Optimization Program (PLOP). Sites of metabolism (SOMs) are predicted according to a physical-based score that evaluates the potential of atoms to react with the catalytic iron center. As a preliminary test, we present in this paper the prediction of hydroxylation and O-dealkylation sites mediated by CYP2D6 using two different models: a physical-based simulation model, and a modification of this model in which a small number of parameters are fit to a training set. Without fitting any parameters to experimental data, the Physical IDSite scoring recovers 83% of the experimental observations for 56 compounds with a very low false positive rate. With only 4 fitted parameters, the Fitted IDSite was trained with the subset of 36 compounds and successfully applied to the other 20 compounds, recovering 94% of the experimental observations with high sensitivity and specificity for both sets. PMID:22247702

  3. Accurate prediction of drug-induced liver injury using stem cell-derived populations.

    PubMed

    Szkolnicka, Dagmara; Farnworth, Sarah L; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P; Flint, Oliver; Hay, David C

    2014-02-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies.

  4. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  5. Interspecies scaling of urinary excretory amounts of nine drugs belonging to different therapeutic areas with diverse chemical structures - accurate prediction of the human urinary excretory amounts.

    PubMed

    Bhamidipati, Ravi Kanth; Mullangi, Ramesh; Srinivas, Nuggehally R

    2017-02-01

    1. The human urinary excretory amounts of total drug (parent + metabolites) were predicted for nine drugs with diverse chemical structures using simple allometry. The drugs used for scaling were cephapirin, olanzapine, labetolol, carisbamate, voriconazole, tofacitinib, nevirapine, ropinirole, and cyclindole. 2. The traditional allometric scaling was attempted using Y = aW(b) relationship. The corresponding predicted urinary amounts were converted into % recovery by using appropriate human dose. Appropriate statistical tests comprising of fold-difference (predicted/observed values) and error calculations (MAE and RMSE) were performed. 3. The interspecies scaling of all nine drugs tested showed excellent correlation (r > 0.9672). The predictions for eight out of nine drugs (exception was cephaphirin) were contained within 0.80-1.25 fold-differences. The MAE and RMSE were within ± 18% and 14.64%, respectively. 4. The present work supported the potential application of prospective allometry scaling to predict the urinary excretory amounts of the total drug and gauge any issues for the renal handling of the total drug.

  6. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  7. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.

    PubMed

    Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert

    2017-01-10

    The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.

  8. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  9. You Can Accurately Predict Land Acquisition Costs.

    ERIC Educational Resources Information Center

    Garrigan, Richard

    1967-01-01

    Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…

  10. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  11. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    PubMed Central

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  12. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    PubMed

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  13. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  14. Mouse models of human AML accurately predict chemotherapy response.

    PubMed

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W

    2009-04-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.

  15. Drug Response Prediction as a Link Prediction Problem

    PubMed Central

    Stanfield, Zachary; Coşkun, Mustafa; Koyutürk, Mehmet

    2017-01-01

    Drug response prediction is a well-studied problem in which the molecular profile of a given sample is used to predict the effect of a given drug on that sample. Effective solutions to this problem hold the key for precision medicine. In cancer research, genomic data from cell lines are often utilized as features to develop machine learning models predictive of drug response. Molecular networks provide a functional context for the integration of genomic features, thereby resulting in robust and reproducible predictive models. However, inclusion of network data increases dimensionality and poses additional challenges for common machine learning tasks. To overcome these challenges, we here formulate drug response prediction as a link prediction problem. For this purpose, we represent drug response data for a large cohort of cell lines as a heterogeneous network. Using this network, we compute “network profiles” for cell lines and drugs. We then use the associations between these profiles to predict links between drugs and cell lines. Through leave-one-out cross validation and cross-classification on independent datasets, we show that this approach leads to accurate and reproducible classification of sensitive and resistant cell line-drug pairs, with 85% accuracy. We also examine the biological relevance of the network profiles. PMID:28067293

  16. A predictable and accurate technique with elastomeric impression materials.

    PubMed

    Barghi, N; Ontiveros, J C

    1999-08-01

    A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.

  17. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  18. Prediction of drug clearance in children.

    PubMed

    Foissac, Frantz; Bouazza, Naïm; Valade, Elodie; De Sousa Mendes, Mailys; Fauchet, Floris; Benaboud, Sihem; Hirt, Déborah; Tréluyer, Jean-Marc; Urien, Saïk

    2015-07-01

    The pediatric population is often exposed to drugs without sufficient knowledge about pharmacokinetics. The prediction of accurate clearance values in children, especially in neonates and infants, will improve the rational in dosing decisions. Drug clearances from birth to adulthood were compiled after a systematic review of pharmacokinetic reports. The analysis was performed using NONMEM. Clearance predictions were then evaluated by external validation. Prediction errors were also compared with those obtained from weight-based allometric scaling and physiologically based clearance (PBCL) models. For the analysis, 17 and 15 drugs were used for model building and external validation, respectively. A model based on the adult drug clearance value and taking into account both weight and age was retained. Age-related maturation of clearance reached 90% of the adult value within 1.5 years of life. For children less than 2 years old, allometric scaling alone systematically overestimated clearances. Accounting for age improved the clearance prediction in the 6 months-2 years age group (prediction error < 25%). Predictions obtained from the PBCL approach were close to our results. This analysis established a single equation using the adult clearance value as well as individual age and weight to predict drug clearance in children older than 6 months.

  19. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  20. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  1. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  2. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  3. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  4. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    PubMed Central

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel C.; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-01-01

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. PMID:23499924

  5. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises.

  6. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  7. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  8. Prediction of Drug Clearance and Drug-Drug Interactions in Microscale Cultures of Human Hepatocytes.

    PubMed

    Lin, Christine; Shi, Julianne; Moore, Amanda; Khetani, Salman R

    2016-01-01

    Accurate prediction of in vivo hepatic drug clearance using in vitro assays is important to properly estimate clinical dosing regimens. Clearance of low-turnover compounds is especially difficult to predict using short-lived suspensions of unpooled primary human hepatocytes (PHHs) and functionally declining PHH monolayers. Micropatterned cocultures (MPCCs) of PHHs and 3T3-J2 fibroblasts have been shown previously to display major liver functions for several weeks in vitro. In this study, we first characterized long-term activities of major cytochrome P450 enzymes in MPCCs created from unpooled cryopreserved PHH donors. MPCCs were then used to predict the clearance of 26 drugs that exhibit a wide range of turnover rates in vivo (0.05-19.5 ml/min per kilogram). MPCCs predicted 73, 92, and 96% of drug clearance values for all tested drugs within 2-fold, 3-fold, and 4-fold of in vivo values, respectively. There was good correlation (R(2) = 0.94, slope = 1.05) of predictions between the two PHH donors. On the other hand, suspension hepatocytes and conventional monolayers created from the same donor had significantly reduced predictive capacity (i.e., 30-50% clearance values within 4-fold of in vivo), and were not able to metabolize several drugs. Finally, we modulated drug clearance in MPCCs by inducing or inhibiting P450s. Rifampin-mediated CYP3A4 induction increased midazolam clearance by 73%, while CYP3A4 inhibition with ritonavir decreased midazolam clearance by 79%. Similarly, quinidine-mediated CYP2D6 inhibition reduced clearance of dextromethorphan and desipramine by 71 and 22%, respectively. In conclusion, MPCCs created using cryopreserved unpooled PHHs can be used for drug clearance predictions and to model drug-drug interactions.

  9. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  10. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  11. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-07

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  12. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  13. Towards a Consistent and Scientifically Accurate Drug Ontology.

    PubMed

    Hogan, William R; Hanna, Josh; Joseph, Eric; Brochhausen, Mathias

    2013-01-01

    Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.

  14. Deep-Learning-Based Drug-Target Interaction Prediction.

    PubMed

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  15. Prediction of Preoperative Anxiety in Children: Who is Most Accurate?

    PubMed Central

    MacLaren, Jill E.; Thompson, Caitlin; Weinberg, Megan; Fortier, Michelle A.; Morrison, Debra E.; Perret, Danielle; Kain, Zeev N.

    2009-01-01

    Background In this investigation, we sought to assess the ability of pediatric attending anesthesiologists, resident anesthesiologists and mothers to predict anxiety during induction of anesthesia in 2 to 16-year-old children (n=125). Methods Anesthesiologists and mothers provided predictions using a visual analog scale and children's anxiety was assessed using a valid behavior observation tool the Modified Yale Preoperative Anxiety Scale (mYPAS). All mothers were present during anesthetic induction and no child received sedative premedication. Correlational analyses were conducted. Results A total of 125 children aged 2 to 16 years, their mothers, and their attending pediatric anesthesiologists and resident anesthesiologists were studied. Correlational analyses revealed significant associations between attending predictions and child anxiety at induction (rs= 0.38, p<0.001). Resident anesthesiologist and mother predictions were not significantly related to children's anxiety during induction (rs = 0.01 and 0.001, respectively). In terms of accuracy of prediction, 47.2% of predictions made by attending anesthesiologists were within one standard deviation of the observed anxiety exhibited by the child, and 70.4% of predictions were within 2 standard deviations. Conclusions We conclude that attending anesthesiologists who practice in pediatric settings are better than mothers in predicting the anxiety of children during induction of anesthesia. While this finding has significant clinical implications, it is unclear if it can be extended to attending anesthesiologists whose practice is not mostly pediatric anesthesia. PMID:19448201

  16. Systems pharmacology to predict drug safety in drug development.

    PubMed

    Trame, Mirjam N; Biliouris, Konstantinos; Lesko, Lawrence J; Mettetal, Jerome T

    2016-10-30

    Ensuring that drugs are safe and effective is a very high priority for drug development and the US Food and Drug Administration review process. This is especially true today because of faster approval times and smaller clinical trials, especially in oncology and rare diseases. In light of these trends, systems pharmacology is seen as an essential strategy to understand and predict adverse drug events during drug development by analyzing interactions between drugs and multiple targets rather than the traditional "one-drug-one-target" approach. This commentary offers an overview of the current trends and challenges of using systems pharmacology to reduce the risks of unintended adverse events.

  17. Overcoming drug resistance through in silico prediction.

    PubMed

    Carbonell, Pablo; Trosset, Jean-Yves

    2014-03-01

    Prediction tools are commonly used in pre-clinical research to assist target selection, to optimize drug potency or to predict the pharmacological profile of drug candidates. In silico prediction and overcoming drug resistance is a new opportunity that creates a high interest in pharmaceutical research. This review presents two main in silico strategies to meet this challenge: a structure-based approach to study the influence of mutations on the drug-target interaction and a system-biology approach to identify resistance pathways for a given drug. In silico screening of synergies between therapeutic and resistant pathways through biological network analysis is an example of technique to escape drug resistance. Structure-based drug design and in silico system biology are complementary approaches to reach few objectives at once: increase efficiency, reduce toxicity and overcoming drug resistance.

  18. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  19. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease?

    PubMed Central

    Visser, P; Scheltens, P; Verhey, F

    2005-01-01

    Background: Drugs effective in Alzheimer-type dementia have been tested in subjects with mild cognitive impairment (MCI) because these are supposed to have Alzheimer's disease in the predementia stage. Objectives: To investigate whether MCI criteria used in these drug trials can accurately diagnose subjects with predementia Alzheimer's disease. Methods: MCI criteria of the Gal-Int 11 study, InDDEx study, ADCS memory impairment study, ampakine CX 516 study, piracetam study, and Merck rofecoxib study were applied retrospectively in a cohort of 150 non-demented subjects from a memory clinic. Forty two had progressed to Alzheimer type dementia during a five year follow up period and were considered to have predementia Alzheimer's disease at baseline. Outcome measures were the odds ratio, sensitivity, specificity, and positive and negative predictive value. Results: The odds ratio of the MCI criteria for predementia Alzheimer's disease varied between 0.84 and 11. Sensitivity varied between 0.46 and 0.83 and positive predictive value between 0.43 and 0.76. None of the criteria combined a high sensitivity with a high positive predictive value. Exclusion criteria for depression led to an increase in positive predictive value and specificity at the cost of sensitivity. In subjects older than 65 years the positive predictive value was higher than in younger subjects. Conclusions: The diagnostic accuracy of MCI criteria used in trials for predementia Alzheimer's disease is low to moderate. Their use may lead to inclusion of many patients who do not have predementia Alzheimer's disease or to exclusion of many who do. Subjects with moderately severe depression should not be excluded from trials in order not to reduce the sensitivity. PMID:16170074

  20. Fast and accurate automatic structure prediction with HHpred.

    PubMed

    Hildebrand, Andrea; Remmert, Michael; Biegert, Andreas; Söding, Johannes

    2009-01-01

    Automated protein structure prediction is becoming a mainstream tool for biological research. This has been fueled by steady improvements of publicly available automated servers over the last decade, in particular their ability to build good homology models for an increasing number of targets by reliably detecting and aligning more and more remotely homologous templates. Here, we describe the three fully automated versions of the HHpred server that participated in the community-wide blind protein structure prediction competition CASP8. What makes HHpred unique is the combination of usability, short response times (typically under 15 min) and a model accuracy that is competitive with those of the best servers in CASP8.

  1. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration.

  2. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  3. Accurate Theoretical Prediction of the Properties of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    calculations (e.g. Cheetah ). 8. Sensitivity. The structure prediction and lattice potential work will serve as a platform to examine impact/shock...nitromethane molecules. (In an extension of the present work, we will freeze the internal coordinates of the molecules and assess the extent to which the

  4. Learning regulatory programs that accurately predict differential expression with MEDUSA.

    PubMed

    Kundaje, Anshul; Lianoglou, Steve; Li, Xuejing; Quigley, David; Arias, Marta; Wiggins, Chris H; Zhang, Li; Leslie, Christina

    2007-12-01

    Inferring gene regulatory networks from high-throughput genomic data is one of the central problems in computational biology. In this paper, we describe a predictive modeling approach for studying regulatory networks, based on a machine learning algorithm called MEDUSA. MEDUSA integrates promoter sequence, mRNA expression, and transcription factor occupancy data to learn gene regulatory programs that predict the differential expression of target genes. Instead of using clustering or correlation of expression profiles to infer regulatory relationships, MEDUSA determines condition-specific regulators and discovers regulatory motifs that mediate the regulation of target genes. In this way, MEDUSA meaningfully models biological mechanisms of transcriptional regulation. MEDUSA solves the problem of predicting the differential (up/down) expression of target genes by using boosting, a technique from statistical learning, which helps to avoid overfitting as the algorithm searches through the high-dimensional space of potential regulators and sequence motifs. Experimental results demonstrate that MEDUSA achieves high prediction accuracy on held-out experiments (test data), that is, data not seen in training. We also present context-specific analysis of MEDUSA regulatory programs for DNA damage and hypoxia, demonstrating that MEDUSA identifies key regulators and motifs in these processes. A central challenge in the field is the difficulty of validating reverse-engineered networks in the absence of a gold standard. Our approach of learning regulatory programs provides at least a partial solution for the problem: MEDUSA's prediction accuracy on held-out data gives a concrete and statistically sound way to validate how well the algorithm performs. With MEDUSA, statistical validation becomes a prerequisite for hypothesis generation and network building rather than a secondary consideration.

  5. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    PubMed Central

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  6. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  7. Predictive rendering for accurate material perception: modeling and rendering fabrics

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2012-03-01

    In computer graphics, rendering algorithms are used to simulate the appearance of objects and materials in a wide range of applications. Designers and manufacturers rely entirely on these rendered images to previsualize scenes and products before manufacturing them. They need to differentiate between different types of fabrics, paint finishes, plastics, and metals, often with subtle differences, for example, between silk and nylon, formaica and wood. Thus, these applications need predictive algorithms that can produce high-fidelity images that enable such subtle material discrimination.

  8. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing

    PubMed Central

    2013-01-01

    Background A large-scale, highly accurate, machine-understandable drug-disease treatment relationship knowledge base is important for computational approaches to drug repurposing. The large body of published biomedical research articles and clinical case reports available on MEDLINE is a rich source of FDA-approved drug-disease indication as well as drug-repurposing knowledge that is crucial for applying FDA-approved drugs for new diseases. However, much of this information is buried in free text and not captured in any existing databases. The goal of this study is to extract a large number of accurate drug-disease treatment pairs from published literature. Results In this study, we developed a simple but highly accurate pattern-learning approach to extract treatment-specific drug-disease pairs from 20 million biomedical abstracts available on MEDLINE. We extracted a total of 34,305 unique drug-disease treatment pairs, the majority of which are not included in existing structured databases. Our algorithm achieved a precision of 0.904 and a recall of 0.131 in extracting all pairs, and a precision of 0.904 and a recall of 0.842 in extracting frequent pairs. In addition, we have shown that the extracted pairs strongly correlate with both drug target genes and therapeutic classes, therefore may have high potential in drug discovery. Conclusions We demonstrated that our simple pattern-learning relationship extraction algorithm is able to accurately extract many drug-disease pairs from the free text of biomedical literature that are not captured in structured databases. The large-scale, accurate, machine-understandable drug-disease treatment knowledge base that is resultant of our study, in combination with pairs from structured databases, will have high potential in computational drug repurposing tasks. PMID:23742147

  9. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  10. Objective criteria accurately predict amputation following lower extremity trauma.

    PubMed

    Johansen, K; Daines, M; Howey, T; Helfet, D; Hansen, S T

    1990-05-01

    MESS (Mangled Extremity Severity Score) is a simple rating scale for lower extremity trauma, based on skeletal/soft-tissue damage, limb ischemia, shock, and age. Retrospective analysis of severe lower extremity injuries in 25 trauma victims demonstrated a significant difference between MESS values for 17 limbs ultimately salvaged (mean, 4.88 +/- 0.27) and nine requiring amputation (mean, 9.11 +/- 0.51) (p less than 0.01). A prospective trial of MESS in lower extremity injuries managed at two trauma centers again demonstrated a significant difference between MESS values of 14 salvaged (mean, 4.00 +/- 0.28) and 12 doomed (mean, 8.83 +/- 0.53) limbs (p less than 0.01). In both the retrospective survey and the prospective trial, a MESS value greater than or equal to 7 predicted amputation with 100% accuracy. MESS may be useful in selecting trauma victims whose irretrievably injured lower extremities warrant primary amputation.

  11. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...incorporate extremely fast but accurate light calculations into coupled physical-biological-optical ocean ecosystem models as used for operational three...dimensional ecosystem predictions. Improvements in light calculations lead to improvements in predictions of chlorophyll concentrations and other

  12. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    PubMed Central

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-01-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination. PMID:28304378

  13. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  14. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    NASA Astrophysics Data System (ADS)

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-03-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

  15. Change in BMI Accurately Predicted by Social Exposure to Acquaintances

    PubMed Central

    Oloritun, Rahman O.; Ouarda, Taha B. M. J.; Moturu, Sai; Madan, Anmol; Pentland, Alex (Sandy); Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R2. This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends. PMID

  16. Drug permeability prediction using PMF method.

    PubMed

    Meng, Fancui; Xu, Weiren

    2013-03-01

    Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.

  17. Prediction of multidimensional drug dose responses based on measurements of drug pairs

    PubMed Central

    Zimmer, Anat; Katzir, Itay; Dekel, Erez; Alon, Uri

    2016-01-01

    Finding potent multidrug combinations against cancer and infections is a pressing therapeutic challenge; however, screening all combinations is difficult because the number of experiments grows exponentially with the number of drugs and doses. To address this, we present a mathematical model that predicts the effects of three or more antibiotics or anticancer drugs at all doses based only on measurements of drug pairs at a few doses, without need for mechanistic information. The model provides accurate predictions on available data for antibiotic combinations, and on experiments presented here on the response matrix of three cancer drugs at eight doses per drug. This approach offers a way to search for effective multidrug combinations using a small number of experiments. PMID:27562164

  18. Prediction of multidimensional drug dose responses based on measurements of drug pairs.

    PubMed

    Zimmer, Anat; Katzir, Itay; Dekel, Erez; Mayo, Avraham E; Alon, Uri

    2016-09-13

    Finding potent multidrug combinations against cancer and infections is a pressing therapeutic challenge; however, screening all combinations is difficult because the number of experiments grows exponentially with the number of drugs and doses. To address this, we present a mathematical model that predicts the effects of three or more antibiotics or anticancer drugs at all doses based only on measurements of drug pairs at a few doses, without need for mechanistic information. The model provides accurate predictions on available data for antibiotic combinations, and on experiments presented here on the response matrix of three cancer drugs at eight doses per drug. This approach offers a way to search for effective multidrug combinations using a small number of experiments.

  19. Predicting when biliary excretion of parent drug is a major route of elimination in humans.

    PubMed

    Hosey, Chelsea M; Broccatelli, Fabio; Benet, Leslie Z

    2014-09-01

    Biliary excretion is an important route of elimination for many drugs, yet measuring the extent of biliary elimination is difficult, invasive, and variable. Biliary elimination has been quantified for few drugs with a limited number of subjects, who are often diseased patients. An accurate prediction of which drugs or new molecular entities are significantly eliminated in the bile may predict potential drug-drug interactions, pharmacokinetics, and toxicities. The Biopharmaceutics Drug Disposition Classification System (BDDCS) characterizes significant routes of drug elimination, identifies potential transporter effects, and is useful in understanding drug-drug interactions. Class 1 and 2 drugs are primarily eliminated in humans via metabolism and will not exhibit significant biliary excretion of parent compound. In contrast, class 3 and 4 drugs are primarily excreted unchanged in the urine or bile. Here, we characterize the significant elimination route of 105 orally administered class 3 and 4 drugs. We introduce and validate a novel model, predicting significant biliary elimination using a simple classification scheme. The model is accurate for 83% of 30 drugs collected after model development. The model corroborates the observation that biliarily eliminated drugs have high molecular weights, while demonstrating the necessity of considering route of administration and extent of metabolism when predicting biliary excretion. Interestingly, a predictor of potential metabolism significantly improves predictions of major elimination routes of poorly metabolized drugs. This model successfully predicts the major elimination route for poorly permeable/poorly metabolized drugs and may be applied prior to human dosing.

  20. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery

    PubMed Central

    Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.

    2012-01-01

    Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709

  1. Predicting new molecular targets for known drugs

    PubMed Central

    Keiser, Michael J.; Setola, Vincent; Irwin, John J.; Laggner, Christian; Abbas, Atheir; Hufeisen, Sandra J.; Jensen, Niels H.; Kuijer, Michael B.; Matos, Roberto C.; Tran, Thuy B.; Whaley, Ryan; Glennon, Richard A.; Hert, Jérôme; Thomas, Kelan L.H.; Edwards, Douglas D.; Shoichet, Brian K.; Roth, Bryan L.

    2009-01-01

    Whereas drugs are intended to be selective, at least some bind to several physiologic targets, explaining both side effects and efficacy. As many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here, we compared 3,665 FDA-approved and investigational drugs against hundreds of targets, defining each target by its ligands. Chemical similarities between drugs and ligand sets predicted thousands of unanticipated associations. Thirty were tested experimentally, including the antagonism of the β1 receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT transporter by the ion channel drug Vadilex, and antagonism of the histamine H4 receptor by the enzyme inhibitor Rescriptor. Overall, 23 new drug-target associations were confirmed, five of which were potent (< 100 nM). The physiological relevance of one such, the drug DMT on serotonergic receptors, was confirmed in a knock-out mouse. The chemical similarity approach is systematic and comprehensive, and may suggest side-effects and new indications for many drugs. PMID:19881490

  2. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method.

    PubMed

    Zhang, Hui; Li, Wei; Xie, Yang; Wang, Wen-Jing; Li, Lin-Li; Yang, Sheng-Yong

    2011-12-01

    Drug-induced seizures are a serious adverse effect and assessment of seizure risk usually takes place at the late stage of drug discovery process, which does not allow sufficient time to reduce the risk by chemical modification. Thus early identification of chemicals with seizure liability using rapid and cheaper approaches would be preferable. In this study, an optimal support vector machine (SVM) modeling method has been employed to develop a prediction model of seizure liability of chemicals. A set of 680 compounds were used to train the SVM model. The established SVM model was then validated by an independent test set comprising 175 compounds, which gave a prediction accuracy of 86.9%. Further, the SVM-based prediction model of seizure liability was compared with various preclinical seizure assays, including in vitro rat hippocampal brain slice, in vivo zebrafish larvae assay, mouse spontaneous seizure model, and mouse EEG model. In terms of predictability, the SVM model was ranked just behind the mouse EEG model, but better than the rat brain slice and zebrafish models. Nevertheless, the SVM model has considerable advantages compared with the preclinical seizure assays in speed and cost. In summary, the SVM-based prediction model of seizure liability established here offers potential as a cheaper, rapid and accurate assessment of seizure liability of drugs, which could be used in the seizure risk assessment at the early stage of drug discovery. The prediction model is freely available online at http://www.sklb.scu.edu.cn/lab/yangsy/download/ADMET/seizure_pred.tar.

  3. Computational prediction of human drug metabolism.

    PubMed

    Ekins, Sean; Andreyev, Sergey; Ryabov, Andy; Kirillov, Eugene; Rakhmatulin, Eugene A; Bugrim, Andrej; Nikolskaya, Tatiana

    2005-08-01

    There is an urgent requirement within the pharmaceutical and biotechnology industries, regulatory authorities and academia to improve the success of molecules that are selected for clinical trials. Although absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) properties are some of the many components that contribute to successful drug discovery and development, they represent factors for which we currently have in vitro and in vivo data that can be modelled computationally. Understanding the possible toxicity and the metabolic fate of xenobiotics in the human body is particularly important in early drug discovery. There is, therefore, a need for computational methodologies for uncovering the relationships between the structure and the biological activity of novel molecules. The convergence of numerous technologies, including high-throughput techniques, databases, ADME/Tox modelling and systems biology modelling, is leading to the foundation of systems-ADME/Tox. Results from experiments can be integrated with predictions to globally simulate and understand the likely complete effects of a molecule in humans. The development and early application of major components of MetaDrug (GeneGo, Inc.) software will be described, which includes rule-based metabolite prediction, quantitative structure-activity relationship models for major drug metabolising enzymes, and an extensive database of human protein-xenobiotic interactions. This represents a combined approach to predicting drug metabolism. MetaDrug can be readily used for visualising Phase I and II metabolic pathways, as well as interpreting high-throughput data derived from microarrays as networks of interacting objects. This will ultimately aid in hypothesis generation and the early triaging of molecules likely to have undesirable predicted properties or measured effects on key proteins and cellular functions.

  4. Shrinking the Psoriasis Assessment Gap: Early Gene-Expression Profiling Accurately Predicts Response to Long-Term Treatment.

    PubMed

    Correa da Rosa, Joel; Kim, Jaehwan; Tian, Suyan; Tomalin, Lewis E; Krueger, James G; Suárez-Fariñas, Mayte

    2017-02-01

    There is an "assessment gap" between the moment a patient's response to treatment is biologically determined and when a response can actually be determined clinically. Patients' biochemical profiles are a major determinant of clinical outcome for a given treatment. It is therefore feasible that molecular-level patient information could be used to decrease the assessment gap. Thanks to clinically accessible biopsy samples, high-quality molecular data for psoriasis patients are widely available. Psoriasis is therefore an excellent disease for testing the prospect of predicting treatment outcome from molecular data. Our study shows that gene-expression profiles of psoriasis skin lesions, taken in the first 4 weeks of treatment, can be used to accurately predict (>80% area under the receiver operating characteristic curve) the clinical endpoint at 12 weeks. This could decrease the psoriasis assessment gap by 2 months. We present two distinct prediction modes: a universal predictor, aimed at forecasting the efficacy of untested drugs, and specific predictors aimed at forecasting clinical response to treatment with four specific drugs: etanercept, ustekinumab, adalimumab, and methotrexate. We also develop two forms of prediction: one from detailed, platform-specific data and one from platform-independent, pathway-based data. We show that key biomarkers are associated with responses to drugs and doses and thus provide insight into the biology of pathogenesis reversion.

  5. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.

    PubMed

    Faraggi, Eshel; Kloczkowski, Andrzej

    2017-01-01

    Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a software package to predict secondary structure as well as accessible surface area and dihedral angles ϕ and ψ. For secondary structure SPINE-X achieves an accuracy of between 81 and 84 % depending on the dataset and choice of tests. The Pearson correlation coefficient for accessible surface area prediction is 0.75 and the mean absolute error from the ϕ and ψ dihedral angles are 20(∘) and 33(∘), respectively. The source code and a Linux executables for SPINE-X are available from Research and Information Systems at http://mamiris.com .

  6. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models.

  7. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  8. Accurately predicting copper interconnect topographies in foundry design for manufacturability flows

    NASA Astrophysics Data System (ADS)

    Lu, Daniel; Fan, Zhong; Tak, Ki Duk; Chang, Li-Fu; Zou, Elain; Jiang, Jenny; Yang, Josh; Zhuang, Linda; Chen, Kuang Han; Hurat, Philippe; Ding, Hua

    2011-04-01

    This paper presents a model-based Chemical Mechanical Polishing (CMP) Design for Manufacturability (DFM) () methodology that includes an accurate prediction of post-CMP copper interconnect topographies at the advanced process technology nodes. Using procedures of extensive model calibration and validation, the CMP process model accurately predicts post-CMP dimensions, such as erosion, dishing, and copper thickness with excellent correlation to silicon measurements. This methodology provides an efficient DFM flow to detect and fix physical manufacturing hotspots related to copper pooling and Depth of Focus (DOF) failures at both block- and full chip level designs. Moreover, the predicted thickness output is used in the CMP-aware RC extraction and Timing analysis flows for better understanding of performance yield and timing impact. In addition, the CMP model can be applied to the verification of model-based dummy fill flows.

  9. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  10. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  11. In silico prediction of drug properties.

    PubMed

    Hutter, M C

    2009-01-01

    Drug design has become inconceivable without the assistance of computer-aided methods. In this context in silico was chosen as designation to emphasize the relationship to in vitro and in vivo testing. Nowadays, virtual screening covers much more than estimation of solubility and oral bioavailability of compounds. Along with the challenge of parsing virtual compound libraries, the necessity to model more specific metabolic and toxicological aspects has emerged. Here, recent developments in prediction models are summarized, covering optimization problems in the fields of cytochrome P450 metabolism, blood-brain-barrier permeability, central nervous system activity, and blockade of the hERG-potassium channel. Aspects arising from the use of homology models and quantum chemical calculations are considered with respect to the biological functions. Furthermore, approaches to distinguish drug-like substances from nondrugs by the means of machine learning algorithms are compared in order to derive guidelines for the design of new agents with appropriate properties.

  12. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  13. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2017-04-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  14. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    NASA Astrophysics Data System (ADS)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2016-12-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  15. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  16. A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon.

    PubMed

    Gao, Yikun; Zhu, Wenquan; Liu, Jia; Di, Donghua; Chang, Di; Jiang, Tongying; Wang, Siling

    2015-05-15

    In this work, a simple and accurate geometric pore-adsorption model was established and experimentally validated for predicting the drug loading capacity in mesoporous carbon. The model was designed according to the shape of pore channels of mesoporous carbon and the arrangement of drug molecules loaded in the pores. Three different small molecule drugs (celecoxib, fenofibrate and carvedilol) were respectively loaded in mesoporous carbon with different pore sizes. In order to test the accuracy of the established model, nitrogen adsorption-desorption analysis was employed to confirm the pore structure of mesoporous carbon and to calculate the occupation volume of the adsorbed drugs. The adsorption isotherms of celecoxib were systematically investigated to describe the adsorption process. It was found that the experimental results of adsorption capacity were all in the range of the predicted values for all the tested drugs and mesoporous carbon. The occupation volumes calculated from the model also agreed well with the experimental data. These results demonstrated that the established model could accurately provide the range of drug loading capacity, which may provide a useful option for the prediction of the drug loading capacity of small molecule drugs in mesoporous materials.

  17. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients With Heart Failure

    PubMed Central

    Testani, Jeffrey M.; Hanberg, Jennifer S.; Cheng, Susan; Rao, Veena; Onyebeke, Chukwuma; Laur, Olga; Kula, Alexander; Chen, Michael; Wilson, F. Perry; Darlington, Andrew; Bellumkonda, Lavanya; Jacoby, Daniel; Tang, W. H. Wilson; Parikh, Chirag R.

    2015-01-01

    Background Removal of excess sodium and fluid is a primary therapeutic objective in acute decompensated heart failure (ADHF) and commonly monitored with fluid balance and weight loss. However, these parameters are frequently inaccurate or not collected and require a delay of several hours after diuretic administration before they are available. Accessible tools for rapid and accurate prediction of diuretic response are needed. Methods and Results Based on well-established renal physiologic principles an equation was derived to predict net sodium output using a spot urine sample obtained one or two hours following loop diuretic administration. This equation was then prospectively validated in 50 ADHF patients using meticulously obtained timed 6-hour urine collections to quantitate loop diuretic induced cumulative sodium output. Poor natriuretic response was defined as a cumulative sodium output of <50 mmol, a threshold that would result in a positive sodium balance with twice-daily diuretic dosing. Following a median dose of 3 mg (2–4 mg) of intravenous bumetanide, 40% of the population had a poor natriuretic response. The correlation between measured and predicted sodium output was excellent (r=0.91, p<0.0001). Poor natriuretic response could be accurately predicted with the sodium prediction equation (AUC=0.95, 95% CI 0.89–1.0, p<0.0001). Clinically recorded net fluid output had a weaker correlation (r=0.66, p<0.001) and lesser ability to predict poor natriuretic response (AUC=0.76, 95% CI 0.63–0.89, p=0.002). Conclusions In patients being treated for ADHF, poor natriuretic response can be predicted soon after diuretic administration with excellent accuracy using a spot urine sample. PMID:26721915

  18. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  19. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism.

    PubMed

    Kieslich, Chris A; Tamamis, Phanourios; Guzman, Yannis A; Onel, Melis; Floudas, Christodoulos A

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.

  20. Accurate similarity index based on activity and connectivity of node for link prediction

    NASA Astrophysics Data System (ADS)

    Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun

    2015-05-01

    Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.

  1. Biophysical principles predict fitness landscapes of drug resistance

    PubMed Central

    Bershtein, Shimon; Li, Annabel; Lozovsky, Elena R.; Hartl, Daniel L.; Shakhnovich, Eugene I.

    2016-01-01

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi. We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype–phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  2. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts.

    PubMed

    Stephanou, Pavlos S; Mavrantzas, Vlasis G

    2014-06-07

    We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data.

  3. Prediction of Accurate Thermochemistry of Medium and Large Sized Radicals Using Connectivity-Based Hierarchy (CBH).

    PubMed

    Sengupta, Arkajyoti; Raghavachari, Krishnan

    2014-10-14

    Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known.

  4. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  5. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    PubMed

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  6. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  7. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  8. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  9. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?

    PubMed

    Ballester, Pedro J; Schreyer, Adrian; Blundell, Tom L

    2014-03-24

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein-ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein-ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data.

  10. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  11. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  12. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  13. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  14. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  15. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    PubMed Central

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-01-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  16. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  17. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGES

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  18. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  19. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  20. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    SciTech Connect

    Jorgensen, S.

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  1. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals.

    PubMed

    Brian, Jayne V; Harris, Catherine A; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P

    2005-06-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration-response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk.

  2. Accurate Prediction of the Response of Freshwater Fish to a Mixture of Estrogenic Chemicals

    PubMed Central

    Brian, Jayne V.; Harris, Catherine A.; Scholze, Martin; Backhaus, Thomas; Booy, Petra; Lamoree, Marja; Pojana, Giulio; Jonkers, Niels; Runnalls, Tamsin; Bonfà, Angela; Marcomini, Antonio; Sumpter, John P.

    2005-01-01

    Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A. We determined concentration–response curves for each of the chemicals individually. The chemicals were then combined at equipotent concentrations and the mixture tested using fixed-ratio design. The effects of the mixture were compared with those predicted by the model of concentration addition using biomathematical methods, which revealed that there was no deviation between the observed and predicted effects of the mixture. These findings demonstrate that estrogenic chemicals have the capacity to act together in an additive manner and that their combined effects can be accurately predicted by concentration addition. We also explored the potential for mixture effects at low concentrations by exposing the fish to each chemical at one-fifth of its median effective concentration (EC50). Individually, the chemicals did not induce a significant response, although their combined effects were consistent with the predictions of concentration addition. This demonstrates the potential for estrogenic chemicals to act additively at environmentally relevant concentrations. These findings highlight the potential for existing environmental risk assessment procedures to underestimate the hazard posed by mixtures of chemicals that act via a similar mode of action, thereby leading to erroneous conclusions of absence of risk. PMID:15929895

  3. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  4. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  5. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  6. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  7. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  8. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2013-11-01

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  9. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

    PubMed

    Shvab, I; Sadus, Richard J

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  10. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  11. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  12. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.

    PubMed

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-02-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches.

  13. Predicting drug-target interactions using restricted Boltzmann machines

    PubMed Central

    Wang, Yuhao; Zeng, Jianyang

    2013-01-01

    Motivation: In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. Results: We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Availability: Software and datasets are available

  14. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  15. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  16. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  17. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  18. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  19. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats.

    PubMed

    Audet, Gerald N; Quinn, Carrie M; Leon, Lisa R

    2015-11-15

    Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.

  20. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    PubMed Central

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  1. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.

    PubMed

    Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L

    2015-06-30

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives.

  2. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  3. An eigenvalue transformation technique for predicting drug-target interaction.

    PubMed

    Kuang, Qifan; Xu, Xin; Li, Rong; Dong, Yongcheng; Li, Yan; Huang, Ziyan; Li, Yizhou; Li, Menglong

    2015-09-09

    The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propose an eigenvalue transformation technique and apply this technique to two representative algorithms, the Regularized Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP), that have been used to predict drug-target interaction. The results of computational experiments with these techniques show that algorithms including eigenvalue transformation achieved better performance on drug-target interaction prediction than did the original algorithms. These findings show that eigenvalue transformation is an efficient technique for improving the performance of methods for predicting drug-target interactions. We further show that, in theory, eigenvalue transformation can be viewed as a feature transformation on the kernel matrix. Accordingly, although we only apply this technique to two algorithms in the current study, eigenvalue transformation also has the potential to be applied to other algorithms based on kernels.

  4. Multitask learning improves prediction of cancer drug sensitivity

    PubMed Central

    Yuan, Han; Paskov, Ivan; Paskov, Hristo; González, Alvaro J.; Leslie, Christina S.

    2016-01-01

    Precision oncology seeks to predict the best therapeutic option for individual patients based on the molecular characteristics of their tumors. To assess the preclinical feasibility of drug sensitivity prediction, several studies have measured drug responses for cytotoxic and targeted therapies across large collections of genomically and transcriptomically characterized cancer cell lines and trained predictive models using standard methods like elastic net regression. Here we use existing drug response data sets to demonstrate that multitask learning across drugs strongly improves the accuracy and interpretability of drug prediction models. Our method uses trace norm regularization with a highly efficient ADMM (alternating direction method of multipliers) optimization algorithm that readily scales to large data sets. We anticipate that our approach will enhance efforts to exploit growing drug response compendia in order to advance personalized therapy. PMID:27550087

  5. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing

    PubMed Central

    Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei

    2016-01-01

    Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and

  6. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  7. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.

  8. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  9. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  10. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries.

    PubMed

    Schrauwen, Jelle T C; Koeze, Dion J; Wentzel, Jolanda J; van de Vosse, Frans N; van der Steen, Anton F W; Gijsen, Frank J H

    2015-01-01

    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

  11. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  12. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.

    PubMed

    Kanji, Rakesh; Sharma, Abhinav; Bagler, Ganesh

    2015-11-01

    Despite technological progresses and improved understanding of biological systems, discovery of novel drugs is an inefficient, arduous and expensive process. Research and development cost of drugs is unreasonably high, largely attributed to the high attrition rate of candidate drugs due to adverse drug reactions. Computational methods for accurate prediction of drug side effects, rooted in empirical data of drugs, have the potential to enhance the efficacy of the drug discovery process. Identification of features critical for specifying side effects would facilitate efficient computational procedures for their prediction. We devised a generalized ordinary canonical correlation model for prediction of drug side effects based on their chemical properties as well as their target profiles. While the former is based on 2D and 3D chemical features, the latter enumerates a systems-level property of drugs. We find that the model incorporating chemical features outperforms that incorporating target profiles. Furthermore we identified the 2D and 3D chemical properties that yield best results, thereby implying their relevance in specifying adverse drug reactions.

  13. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  14. Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning

    PubMed Central

    Abraham, Gad; Tye-Din, Jason A.; Bhalala, Oneil G.; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2014-01-01

    Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite differences in ethnicity. The models explained 30–35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases. PMID:24550740

  15. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2016-03-01

    Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)).

  16. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  17. Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA

    NASA Astrophysics Data System (ADS)

    Wolohan, Philippa R. N.; Clark, Robert D.

    2003-01-01

    We have developed a method that combines molecular interaction fields with soft independent modeling of class analogy (SIMCA) Wold:1977 to predict pharmacokinetic drug properties. Several additional considerations to those made in traditional QSAR are required in order to develop a successful QSPR strategy that is capable of accommodating the many complex factors that contribute to key pharmacokinetic properties such as ADME (absorption, distribution, metabolism, and excretion) and toxicology. An accurate prediction of oral bioavailability, for example, requires that absorption and first-pass hepatic elimination both be taken into consideration. To accomplish this, general properties of molecules must be related to their solubility and ability to penetrate biological membranes, and specific features must be related to their particular metabolic and toxicological profiles. Here we describe a method, which is applicable to structurally diverse data sets while utilizing as much detailed structural information as possible. We address the issue of the molecular alignment of a structurally diverse set of compounds using idiotropic field orientation (IFO), a generalization of inertial field orientation Clark:1998. We have developed a second flavor of this method, which directly incorporates electrostatics into the molecular alignment. Both variations of IFO produce a characteristic orientation for each structure and the corresponding molecular fields can then be analyzed using SIMCA. Models are presented for human intestinal absorption, blood-brain barrier penetration and bioavailability to demonstrate ways in which this tool can be used early in the drug development process to identify leads likely to exhibit poor pharmacokinetic behavior in pre-clinical studies, and we have explored the influence of conformation and molecular field type on the statistical properties of the models obtained.

  18. Improving the prediction of the brain disposition for orally administered drugs using BDDCS

    PubMed Central

    Broccatelli, Fabio; Larregieu, Caroline A.; Cruciani, Gabriele; Oprea, Tudor I.; Benet, Leslie Z.

    2012-01-01

    In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists. PMID:22261306

  19. Scoring multiple features to predict drug disease associations using information fusion and aggregation.

    PubMed

    Moghadam, H; Rahgozar, M; Gharaghani, S

    2016-08-01

    Prediction of drug-disease associations is one of the current fields in drug repositioning that has turned into a challenging topic in pharmaceutical science. Several available computational methods use network-based and machine learning approaches to reposition old drugs for new indications. However, they often ignore features of drugs and diseases as well as the priority and importance of each feature, relation, or interactions between features and the degree of uncertainty. When predicting unknown drug-disease interactions there are diverse data sources and multiple features available that can provide more accurate and reliable results. This information can be collectively mined using data fusion methods and aggregation operators. Therefore, we can use the feature fusion method to make high-level features. We have proposed a computational method named scored mean kernel fusion (SMKF), which uses a new method to score the average aggregation operator called scored mean. To predict novel drug indications, this method systematically combines multiple features related to drugs or diseases at two levels: the drug-drug level and the drug-disease level. The purpose of this study was to investigate the effect of drug and disease features as well as data fusion to predict drug-disease interactions. The method was validated against a well-established drug-disease gold-standard dataset. When compared with the available methods, our proposed method outperformed them and competed well in performance with area under cover (AUC) of 0.91, F-measure of 84.9% and Matthews correlation coefficient of 70.31%.

  20. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.

    PubMed

    Polzer, S; Gasser, T C; Novak, K; Man, V; Tichy, M; Skacel, P; Bursa, J

    2015-03-01

    Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical

  1. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  2. New consensus definition for acute kidney injury accurately predicts 30-day mortality in cirrhosis with infection

    PubMed Central

    Wong, Florence; O’Leary, Jacqueline G; Reddy, K Rajender; Patton, Heather; Kamath, Patrick S; Fallon, Michael B; Garcia-Tsao, Guadalupe; Subramanian, Ram M.; Malik, Raza; Maliakkal, Benedict; Thacker, Leroy R; Bajaj, Jasmohan S

    2015-01-01

    Background & Aims A consensus conference proposed that cirrhosis-associated acute kidney injury (AKI) be defined as an increase in serum creatinine by >50% from the stable baseline value in <6 months or by ≥0.3mg/dL in <48 hrs. We prospectively evaluated the ability of these criteria to predict mortality within 30 days among hospitalized patients with cirrhosis and infection. Methods 337 patients with cirrhosis admitted with or developed an infection in hospital (56% men; 56±10 y old; model for end-stage liver disease score, 20±8) were followed. We compared data on 30-day mortality, hospital length-of-stay, and organ failure between patients with and without AKI. Results 166 (49%) developed AKI during hospitalization, based on the consensus criteria. Patients who developed AKI had higher admission Child-Pugh (11.0±2.1 vs 9.6±2.1; P<.0001), and MELD scores (23±8 vs17±7; P<.0001), and lower mean arterial pressure (81±16mmHg vs 85±15mmHg; P<.01) than those who did not. Also higher amongst patients with AKI were mortality in ≤30 days (34% vs 7%), intensive care unit transfer (46% vs 20%), ventilation requirement (27% vs 6%), and shock (31% vs 8%); AKI patients also had longer hospital stays (17.8±19.8 days vs 13.3±31.8 days) (all P<.001). 56% of AKI episodes were transient, 28% persistent, and 16% resulted in dialysis. Mortality was 80% among those without renal recovery, higher compared to partial (40%) or complete recovery (15%), or AKI-free patients (7%; P<.0001). Conclusions 30-day mortality is 10-fold higher among infected hospitalized cirrhotic patients with irreversible AKI than those without AKI. The consensus definition of AKI accurately predicts 30-day mortality, length of hospital stay, and organ failure. PMID:23999172

  3. Predicting drug metabolism: experiment and/or computation?

    PubMed

    Kirchmair, Johannes; Göller, Andreas H; Lang, Dieter; Kunze, Jens; Testa, Bernard; Wilson, Ian D; Glen, Robert C; Schneider, Gisbert

    2015-06-01

    Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.

  4. Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity

    PubMed Central

    2015-01-01

    Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms. PMID:25026390

  5. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  6. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  7. Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function prediction

    NASA Astrophysics Data System (ADS)

    Cataneo, Matteo; Rapetti, David; Lombriser, Lucas; Li, Baojiu

    2016-12-01

    We refine the mass and environment dependent spherical collapse model of chameleon f(R) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N-body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f(R) halo abundance with respect to that of General Relativity (GR) within a precision of lesssim 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f(R) mass function on the condition that the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.

  8. Accurate prediction of band gaps and optical properties of HfO2

    NASA Astrophysics Data System (ADS)

    Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka

    2016-10-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.

  9. Improving Drug Sensitivity Prediction Using Different Types of Data

    PubMed Central

    Hejase, HA; Chan, C

    2015-01-01

    The algorithms and models used to address the two subchallenges that are part of the NCI-DREAM (Dialogue for Reverse Engineering Assessments and Methods) Drug Sensitivity Prediction Challenge (2012) are presented. In subchallenge 1, a bidirectional search algorithm is introduced and optimized using an ensemble scheme and a nonlinear support vector machine (SVM) is then applied to predict the effects of the drug compounds on breast cancer cell lines. In subchallenge 2, a weighted Euclidean distance method is introduced to predict and rank the drug combinations from the most to the least effective in reducing the viability of a diffuse large B-cell lymphoma (DLBCL) cell line. PMID:26225231

  10. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  11. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  12. Prediction and Prevention of Drug Abuse.

    ERIC Educational Resources Information Center

    Webb, R. A. J.; And Others

    1978-01-01

    This paper uses the infectious disease model as an approach to the prevention of narcotic or poly drug abuse. It lists and discusses productive and counterproductive educational techniques on the basis of research findings and international reports on the outcomes of effective and counterproductive programs. (Author)

  13. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning

    PubMed Central

    Gönen, Mehmet; Margolin, Adam A.

    2014-01-01

    Motivation: Human immunodeficiency virus (HIV) and cancer require personalized therapies owing to their inherent heterogeneous nature. For both diseases, large-scale pharmacogenomic screens of molecularly characterized samples have been generated with the hope of identifying genetic predictors of drug susceptibility. Thus, computational algorithms capable of inferring robust predictors of drug responses from genomic information are of great practical importance. Most of the existing computational studies that consider drug susceptibility prediction against a panel of drugs formulate a separate learning problem for each drug, which cannot make use of commonalities between subsets of drugs. Results: In this study, we propose to solve the problem of drug susceptibility prediction against a panel of drugs in a multitask learning framework by formulating a novel Bayesian algorithm that combines kernel-based non-linear dimensionality reduction and binary classification (or regression). The main novelty of our method is the joint Bayesian formulation of projecting data points into a shared subspace and learning predictive models for all drugs in this subspace, which helps us to eliminate off-target effects and drug-specific experimental noise. Another novelty of our method is the ability of handling missing phenotype values owing to experimental conditions and quality control reasons. We demonstrate the performance of our algorithm via cross-validation experiments on two benchmark drug susceptibility datasets of HIV and cancer. Our method obtains statistically significantly better predictive performance on most of the drugs compared with baseline single-task algorithms that learn drug-specific models. These results show that predicting drug susceptibility against a panel of drugs simultaneously within a multitask learning framework improves overall predictive performance over single-task learning approaches. Availability and implementation: Our Matlab implementations for

  14. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-03-31

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  15. Raoult’s law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

    PubMed Central

    Bowler, Michael G.

    2017-01-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111–114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult’s law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample. PMID:28381983

  16. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  17. Comparative modeling: the state of the art and protein drug target structure prediction.

    PubMed

    Liu, Tianyun; Tang, Grace W; Capriotti, Emidio

    2011-07-01

    The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In the last two decades, significant progress has been made on comparative modeling methods. Using the large number of protein structures deposited in the Protein Data Bank (~65,000), automatic prediction pipelines are generating a tremendous number of models (~1.9 million) for sequences whose structures have not been experimentally determined. Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families.

  18. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.

    PubMed

    Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert

    2015-07-21

    Drug-drug interaction (DDI) is an important topic for public health, and thus attracts attention from both academia and industry. Here we hypothesize that clinical side effects (SEs) provide a human phenotypic profile and can be translated into the development of computational models for predicting adverse DDIs. We propose an integrative label propagation framework to predict DDIs by integrating SEs extracted from package inserts of prescription drugs, SEs extracted from FDA Adverse Event Reporting System, and chemical structures from PubChem. Experimental results based on hold-out validation demonstrated the effectiveness of the proposed algorithm. In addition, the new algorithm also ranked drug information sources based on their contributions to the prediction, thus not only confirming that SEs are important features for DDI prediction but also paving the way for building more reliable DDI prediction models by prioritizing multiple data sources. By applying the proposed algorithm to 1,626 small-molecule drugs which have one or more SE profiles, we obtained 145,068 predicted DDIs. The predicted DDIs will help clinicians to avoid hazardous drug interactions in their prescriptions and will aid pharmaceutical companies to design large-scale clinical trial by assessing potentially hazardous drug combinations. All data sets and predicted DDIs are available at http://astro.temple.edu/~tua87106/ddi.html.

  19. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule

    PubMed Central

    2010-01-01

    Background Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19). Results All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%. Conclusions This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/. PMID:20637097

  20. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  1. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.

  2. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  3. Data-driven prediction of drug effects and interactions.

    PubMed

    Tatonetti, Nicholas P; Ye, Patrick P; Daneshjou, Roxana; Altman, Russ B

    2012-03-14

    Adverse drug events remain a leading cause of morbidity and mortality around the world. Many adverse events are not detected during clinical trials before a drug receives approval for use in the clinic. Fortunately, as part of postmarketing surveillance, regulatory agencies and other institutions maintain large collections of adverse event reports, and these databases present an opportunity to study drug effects from patient population data. However, confounding factors such as concomitant medications, patient demographics, patient medical histories, and reasons for prescribing a drug often are uncharacterized in spontaneous reporting systems, and these omissions can limit the use of quantitative signal detection methods used in the analysis of such data. Here, we present an adaptive data-driven approach for correcting these factors in cases for which the covariates are unknown or unmeasured and combine this approach with existing methods to improve analyses of drug effects using three test data sets. We also present a comprehensive database of drug effects (Offsides) and a database of drug-drug interaction side effects (Twosides). To demonstrate the biological use of these new resources, we used them to identify drug targets, predict drug indications, and discover drug class interactions. We then corroborated 47 (P < 0.0001) of the drug class interactions using an independent analysis of electronic medical records. Our analysis suggests that combined treatment with selective serotonin reuptake inhibitors and thiazides is associated with significantly increased incidence of prolonged QT intervals. We conclude that confounding effects from covariates in observational clinical data can be controlled in data analyses and thus improve the detection and prediction of adverse drug effects and interactions.

  4. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  5. A Review of Computational Methods for Predicting Drug Targets.

    PubMed

    Huang, Guohua; Yan, Fengxia; Tan, Duoduo

    2016-11-14

    Drug discovery and development is not only a time-consuming and labor-intensive process but also full of risk. Identifying targets of small molecules helps evaluate safety of drugs and find new therapeutic applications. The biotechnology measures a wide variety of properties related to drug and targets from different perspectives, thus generating a large body of data. This undoubtedly provides a solid foundation to explore relationships between drugs and targets. A large number of computational techniques have recently been developed for drug target prediction. In this paper, we summarize these computational methods and classify them into structure-based, molecular activity-based, side-effect-based and multi-omics-based predictions according to the used data for inference. The multi-omics-based methods are further grouped into two types: classifier-based and network-based predictions. Furthermore,the advantages and limitations of each type of methods are discussed. Finally, we point out the future directions of computational predictions for drug targets.

  6. Drug-drug interaction prediction: a Bayesian meta-analysis approach.

    PubMed

    Li, Lang; Yu, Menggang; Chin, Raymond; Lucksiri, Aroonrut; Flockhart, David A; Hall, Stephen D

    2007-09-10

    In drug-drug interaction (DDI) research, a two drug interaction is usually predicted by individual drug pharmacokinetics (PK). Although subject-specific drug concentration data from clinical PK studies on inhibitor/inducer or substrate's PK are not usually published, sample mean plasma drug concentrations and their standard deviations have been routinely reported. In this paper, an innovative DDI prediction method based on a three-level hierarchical Bayesian meta-analysis model is developed. The first level model is a study-specific sample mean model; the second level model is a random effect model connecting different PK studies; and all priors of PK parameters are specified in the third level model. A Monte Carlo Markov chain (MCMC) PK parameter estimation procedure is developed, and DDI prediction for a future study is conducted based on the PK models of two drugs and posterior distributions of the PK parameters. The performance of Bayesian meta-analysis in DDI prediction is demonstrated through a ketoconazole-midazolam example. The biases of DDI prediction are evaluated through statistical simulation studies. The DDI marker, ratio of area under the concentration curves, is predicted with little bias (less than 5 per cent), and its 90 per cent credible interval coverage rate is close to the nominal level. Sensitivity analysis is conducted to justify prior distribution selections.

  7. Predicting drug response and toxicity based on gene polymorphisms.

    PubMed

    Robert, Jacques; Morvan, Valérie Le; Smith, Denis; Pourquier, Philippe; Bonnet, Jacques

    2005-06-01

    The sequencing of the human genome has allowed the identification of thousands of gene polymorphisms, most often single nucleotide polymorphims (SNP), which may play an important role in the expression level and activity of the corresponding proteins. When these polymorphisms occur at the level of drug metabolising enzymes or transporters, the disposition of the drug may be altered and, consequently, its efficacy may be compromised or its toxicity enhanced. Polymorphisms can also occur at the level of proteins directly involved in drug action, either when the protein is the target of the drug or when the protein is involved in the repair of drug-induced lesions. There again, these polymorphisms may lead to alterations in drug efficacy and/or toxicity. The identification of functional polymorphisms in patients undergoing chemotherapy may help the clinician prescribe the optimal drug combination or schedule and predict with more accuracy the response to these prescriptions. We have recorded in this review the polymorphisms that have been identified up till now in genes involved in anticancer drug activity. Some of them appear especially important in predicting drug toxicity and should be determined in routine before drug administration; this is the case of the most common variations of thiopurine methyltransferase for 6-mercaptopurine and of dihydropyrimidine dehydrogenase for fluorouracil. Other appear determinant for drug response, such as the common SNPs found in glutathione S-transferase P1 or xereoderma pigmentosum group D enzyme for the activity of oxaliplatin. However, confusion factors may exist between the role of gene polymorphisms in cancer risk or overall prognosis and their role in drug response.

  8. Drug-target interaction prediction from PSSM based evolutionary information.

    PubMed

    Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-01-01

    The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling.

  9. Maximum entropy principle for predicting response to multiple-drug exposure in bacteria and human cancer cells

    NASA Astrophysics Data System (ADS)

    Wood, Kevin; Nishida, Satoshi; Sontag, Eduardo; Cluzel, Philippe

    2012-02-01

    Drugs are commonly used in combinations larger than two for treating infectious disease. However, it is generally impossible to infer the net effect of a multi-drug combination on cell growth directly from the effects of individual drugs. We combined experiments with maximum entropy methods to develop a mechanism-independent framework for calculating the response of both bacteria and human cancer cells to a large variety of drug combinations comprised of anti-microbial or anti-cancer drugs. We experimentally show that the cellular responses to drug pairs are sufficient to infer the effects of larger drug combinations in gram negative bacteria, Escherichia coli, gram positive bacteria, Staphylococcus aureus, and also human breast cancer and melanoma cell lines. Remarkably, the accurate predictions of this framework suggest that the multi-drug response obeys statistical rather than chemical laws for combinations larger than two. Consequently, these findings offer a new strategy for the rational design of therapies using large drug combinations.

  10. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  11. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    PubMed Central

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. Conclusion The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. PMID:25081370

  12. Predicting Intrinsic Clearance for Drugs and Drug Candidates Metabolized by Aldehyde Oxidase

    PubMed Central

    Jones, Jeffrey P.; Korzekwa, Kenneth R.

    2013-01-01

    Metabolism by aldehyde oxidase (AO) has been responsible for a number of drug failures in clinical trials. The main reason is the clearance values for drugs metabolized by AO are underestimated by allometric scaling from preclinical species. Furthermore, in vitro human data also underestimates clearance. We have developed the first in silico models to predict both in vitro and in vivo human intrinsic clearance for 8 drugs with just two chemical descriptors. These models explain a large amount of the variance in the data using two computational estimates of the electronic and steric features of the reaction. The in vivo computational models for human metabolism are better than in vitro preclinical animal testing at predicting human intrinsic clearance. Thus, it appears that AO is amenable to computational prediction of rates, which may be used to guide drug discovery, and predict pharmacokinetics for clinical trials. PMID:23363487

  13. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue.

    PubMed

    Linninger, Andreas A; Somayaji, Mahadevabharath R; Erickson, Terrianne; Guo, Xiaodong; Penn, Richard D

    2008-07-19

    Effective drug delivery for many neurodegenerative diseases or tumors of the central nervous system is challenging. Targeted invasive delivery of large macromolecules such as trophic factors to desired locations inside the brain is difficult due to anisotropy and heterogeneity of the brain tissue. Despite much experimental research, prediction of bio-transport phenomena inside the brain remains unreliable. This article proposes a rigorous computational approach for accurately predicting the fate of infused therapeutic agents inside the brain. Geometric and physiological properties of anisotropic and heterogeneous brain tissue affecting drug transport are accounted for by in-vivo diffusion tensor magnetic resonance imaging data. The three-dimensional brain anatomy is reconstructed accurately from subject-specific medical images. Tissue anisotropy and heterogeneity are quantified with the help of diffusion tensor imaging (DTI). Rigorous first principles physical transport phenomena are applied to predict the fate of a high molecular weight trophic factor infused into the midbrain. Computer prediction of drug distribution in humans accounting for heterogeneous and anisotropic brain tissue properties have not been adequately researched in open literature before.

  14. How accurate are continuum solvation models for drug-like molecules?

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Söderhjelm, Pär; Ryde, Ulf

    2009-07-01

    We have estimated the hydration free energy for 20 neutral drug-like molecules, as well as for three series of 6-11 inhibitors to avidin, factor Xa, and galectin-3 with four different continuum solvent approaches (the polarised continuum method the Langevin dipole method, the finite-difference solution of the Poisson equation, and the generalised Born method), and several variants of each, giving in total 24 different methods. All four types of methods have been thoroughly calibrated for a number of experimentally known small organic molecules with a mean absolute deviation (MAD) of 1-6 kJ/mol for neutral molecules and 4-30 kJ/mol for ions. However, for the drug-like molecules, the accuracy seems to be appreciably worse. The reason for this is that drug-like molecules are more polar than small organic molecules and that the uncertainty of the methods is proportional to the size of the solvation energy. Therefore, the accuracy of continuum solvation methods should be discussed in relative, rather than absolute, terms. In fact, the mean unsigned relative deviations of the best solvation methods, 0.09 for neutral and 0.05 for ionic molecules, correspond to 2-20 kJ/mol absolute error for the drug-like molecules in this investigation, or 2-3,000 in terms of binding constants. Fortunately, the accuracy of all methods can be improved if only relative energies within a series of inhibitors are considered, especially if all of them have the same net charge. Then, all except two methods give MADs of 2-5 kJ/mol (corresponding to an uncertainty of a factor of 2-7 in the binding constant). Interestingly, the generalised Born methods typically give better results than the Poison-Boltzmann methods.

  15. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice.

  16. Predicting drug-target interactions using probabilistic matrix factorization.

    PubMed

    Cobanoglu, Murat Can; Liu, Chang; Hu, Feizhuo; Oltvai, Zoltán N; Bahar, Ivet

    2013-12-23

    Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show phenotypic similarity even in the absence of 3D shape similarity. Benchmarking computations show that the method outperforms those recently introduced provided that the input data set of known interactions is sufficiently large--which is the case for enzymes and ion channels, but not for G-protein coupled receptors (GPCRs) and nuclear receptors. Runs performed on DrugBank after hiding 70% of known interactions show that, on average, 88 of the top 100 predictions hit the hidden interactions. De novo predictions permit us to identify new potential interactions. Drug-target pairs implicated in neurobiological disorders are overrepresented among de novo predictions.

  17. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  18. Tumorsphere assay provides more accurate prediction of in vivo responses to chemotherapeutics

    PubMed Central

    Kim, Soyoung; Alexander, Caroline M.

    2014-01-01

    Although the sphere culture system has been widely used in stem cell biology, its application for drug screening is limited due to lack of standardized, rapid analytical tools. To optimize sphere cultures for in vitro screening of drugs, we evaluated the properties of primary tumor cells growing as tumorspheres and compared their chemosensitivity to those of cells growing in monolayer. Most cells in tumorsphere cultures were quiescent whereas cells in monolayer culture had a high mitotic index. Moreover, doxorubicin showed better cytotoxicity than paclitaxel in the sphere cultures, but their efficacy was reversed in the monolayer cultures. Importantly, the response of cytotoxic outcomes for suspension cultures matched the in vivo response better than monolayer cultures, providing support for the use of short term suspension cultures of primary cells as a model for drug testing. PMID:24158677

  19. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.

  20. An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes.

    PubMed

    Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min

    2013-03-15

    Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research.

  1. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    SciTech Connect

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-15

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  2. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration.

    PubMed

    Fu, X C; Wang, G P; Liang, W Q; Chow, M S S

    2004-03-05

    A working equation to predict drug release from hydroxypropyl methylcellulose (HPMC) matrices was derived using a training set of HPMC matrices having different HPMC concentration (w/w, 16.5-55%) and different drugs (solubilities of 1.126-125.5 g/100 ml in water and molecular volumes of 0.1569-0.4996 nm(3)). The equation was log(M(t)/M( infinity ))=-0.6747+1.027 log t -0.1759 (log C(s)) log t +0.4027 (log V) log t -1.041C(H) +0.3213 (log C(s)) C(H) -0.4101 (log V) C(H) -0.3521 (log V) log C(s) (n=263, r=0.9831), where M(t) is the amount of drug released at time t, M( infinity ) the amount of drug released over a very long time, which corresponds in principle to the initial loading, t the release time (h), C(s) the drug solubility in water (g/100 ml), V the volume of drug molecule (nm(3)), and C(H) is HPMC concentration (w/w). The benefit of the novel model is to predict M(t)/M( infinity ) values of a drug from formulation and its physicochemical properties, so applicable to the HPMC matrices of different polymer levels and different drugs including soluble drugs and slightly soluble drugs.

  3. Sensor data fusion for accurate cloud presence prediction using Dempster-Shafer evidence theory.

    PubMed

    Li, Jiaming; Luo, Suhuai; Jin, Jesse S

    2010-01-01

    Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent.

  4. Predicting Heavy Drug Use. Results of a Longitudinal Study, Youth Characteristics Describing and Predicting Heavy Drug Use by Adults

    ERIC Educational Resources Information Center

    Schildhaus, Sam; Shaw-Taylor, Yoku; Pedlow, Steven; Pergamit, Michael R.

    2004-01-01

    The primary aim of this study was to describe the movement of adolescents and young adults into and out of drug use and to predict heavy drug use. The data source is the Department of Labor's National Longitudinal Survey of Youth, which began in 1979 with a sample of 12,686 adolescents aged 14-21. After 17 rounds and 19 years, the response rate in…

  5. Adverse drug events: database construction and in silico prediction.

    PubMed

    Cheng, Feixiong; Li, Weihua; Wang, Xichuan; Zhou, Yadi; Wu, Zengrui; Shen, Jie; Tang, Yun

    2013-04-22

    Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.

  6. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy.

  7. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    PubMed

    Kosugi, Shunichi; Yanagawa, Hiroshi; Terauchi, Ryohei; Tabata, Satoshi

    2014-09-01

    The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  8. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

    PubMed Central

    Kim, Minseung; Rai, Navneet; Zorraquino, Violeta; Tagkopoulos, Ilias

    2016-01-01

    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery. PMID:27713404

  9. Application of Hansen Solubility Parameters to predict drug-nail interactions, which can assist the design of nail medicines.

    PubMed

    Hossin, B; Rizi, K; Murdan, S

    2016-05-01

    We hypothesised that Hansen Solubility Parameters (HSPs) can be used to predict drug-nail affinities. Our aims were to: (i) determine the HSPs (δD, δP, δH) of the nail plate, the hoof membrane (a model for the nail plate), and of the drugs terbinafine HCl, amorolfine HCl, ciclopirox olamine and efinaconazole, by measuring their swelling/solubility in organic liquids, (ii) predict nail-drug interactions by comparing drug and nail HSPs, and (iii) evaluate the accuracy of these predictions using literature reports of experimentally-determined affinities of these drugs for keratin, the main constituent of the nail plate and hoof. Many solvents caused no change in the mass of nail plates, a few solvents deswelled the nail, while others swelled the nail to varying extents. Fingernail and toenail HSPs were almost the same, while hoof HSPs were similar, except for a slightly lower δP. High nail-terbinafine HCl, nail-amorolfine HCl and nail-ciclopirox olamine affinities, and low nail-efinaconazole affinities were then predicted, and found to accurately match experimental reports of these drugs' affinities to keratin. We therefore propose that drug and nail Hansen Solubility Parameters may be used to predict drug-nail interactions, and that these results can assist in the design of drugs for the treatment of nail diseases, such as onychomycosis and psoriasis. To our knowledge, this is the first report of the application of HSPs in ungual research.

  10. Applying mechanisms of chemical toxicity to predict drug safety.

    PubMed

    Guengerich, F Peter; MacDonald, James S

    2007-03-01

    Toxicology can no longer be used only as a science that reacts to problems but must be more proactive in predicting potential human safety issues with new drug candidates. Success in this area must be based on an understanding of the mechanisms of toxicity. This review summarizes and extends some of the concepts of an American Chemical Society ProSpectives meeting on the title subject held in June 2006. One important area is the discernment of the exact nature of the most common problems in drug toxicity. Knowledge of chemical structure alerts and relevant biological pathways are important. Biological activation to reactive products and off-target pharmacology are considered to be major contexts of drug toxicity, although defining exactly what the contributions are is not trivial. Some newer approaches to screening for both have been developed. A goal in predictive toxicology is the use of in vitro methods and database development to make predictions concerning potential modes of toxicity and to stratify drug candidates for further development. Such predictions are desirable for several economic and other reasons but are certainly not routine yet. However, progress has been made using several approaches. Some examples of the application of studies of wide-scale biological responses are now available, with incorporation into development paradigms.

  11. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    ERIC Educational Resources Information Center

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales…

  12. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  13. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF

    PubMed Central

    Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.

    2016-01-01

    The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113

  14. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  15. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics.

    PubMed

    Lin, Fan; Li, Zilin; Hua, Yunfen; Lim, Yoon Pin

    2016-01-01

    Most recently approved anti-cancer drugs by the US FDA are targeted therapeutic agents and this represents an important trend for future anticancer therapy. Unlike conventional chemotherapy that rarely considers individual differences, it is crucial for targeted therapies to identify the beneficial subgroup of patients for the treatment. Currently, genomics and transcriptomics are the major 'omic' analytics used in studies of drug response prediction. However, proteomic profiling excels both in its advantages of directly detecting an instantaneous dynamic of the whole proteome, which contains most current diagnostic markers and therapeutic targets. Moreover, proteomic profiling improves understanding of the mechanism for drug resistance and helps finding optimal combination therapy. This article reviews the recent success of applications of proteomic analytics in predicting the response to targeted anticancer therapeutics, and discusses the potential avenues and pitfalls of proteomic platforms and techniques used most in the field.

  16. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    PubMed

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect.

  17. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    DTIC Science & Technology

    2014-09-01

    SUBJECT TERMS EOARD, orbital debris , HAMR objects, multi-layered insulation, orbital dynamics, orbit predictions, orbital propagation 16. SECURITY...illustration are orbital debris [Souce: NASA...piece of space junk (a paint fleck) during the STS-7 mission (Photo: NASA Orbital Debris Program Office

  18. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression.

    PubMed

    Stempler, Shiri; Waldman, Yedael Y; Wolf, Lior; Ruppin, Eytan

    2012-09-01

    Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.

  19. Predicting repeat self-harm in children--how accurate can we expect to be?

    PubMed

    Chitsabesan, Prathiba; Harrington, Richard; Harrington, Valerie; Tomenson, Barbara

    2003-01-01

    The main objective of the study was to find which variables predict repetition of deliberate self-harm in children. The study is based on a group of children who took part in a randomized control trial investigating the effects of a home-based family intervention for children who had deliberately poisoned themselves. These children had a range of baseline and outcome measures collected on two occasions (two and six months follow-up). Outcome data were collected from 149 (92 %) of the initial 162 children over the six months. Twenty-three children made a further deliberate self-harm attempt within the follow-up period. A number of variables at baseline were found to be significantly associated with repeat self-harm. Parental mental health and a history of previous attempts were the strongest predictors. A model of prediction of further deliberate self-harm combining these significant individual variables produced a high positive predictive value (86 %) but had low sensitivity (28 %). Predicting repeat self-harm in children is difficult, even with a comprehensive series of assessments over multiple time points, and we need to adapt services with this in mind. We propose a model of service provision which takes these findings into account.

  20. Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions

    PubMed Central

    Brantley, Scott J.; Argikar, Aneesh A.; Lin, Yvonne S.; Nagar, Swati

    2014-01-01

    Supported by a usage history that predates written records and the perception that “natural” ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb–drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb–drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb–drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb–drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens. PMID:24335390

  1. The use of in vitro technologies coupled with high resolution accurate mass LC-MS for studying drug metabolism in equine drug surveillance.

    PubMed

    Scarth, James P; Spencer, Holly A; Timbers, Sarah E; Hudson, Simon C; Hillyer, Lynn L

    2010-01-01

    The detection of drug abuse in horseracing often requires knowledge of drug metabolism, especially if urine is the matrix of choice. In this study, equine liver/lung microsomes/S9 tissue fractions were used to study the phase I metabolism of eight drugs of relevance to equine drug surveillance (acepromazine, azaperone, celecoxib, fentanyl, fluphenazine, mepivacaine, methylphenidate and tripelennamine). In vitro samples were analyzed qualitatively alongside samples originating from in vivo administrations using LC-MS on a high resolution accurate mass Thermo Orbitrap Discovery instrument and by LC-MS/MS on an Applied Biosystems Sciex 5500 Q Trap.Using high resolution accurate mass full-scan analysis on the Orbitrap, the in vitro systems were found to generate at least the two most abundant phase I metabolites observed in vitro for all eight drugs studied. In the majority of cases, in vitro experiments were also able to generate the minor in vivo metabolites and sometimes metabolites that were only observed in vitro. More detailed analyses of fentanyl incubates using LC-MS/MS showed that it was possible to generate good quality spectra from the metabolites generated in vitro. These data support the suggestion of using in vitro incubates as metabolite reference material in place of in vivo post-administration samples in accordance with new qualitative identification guidelines in the 2009 International Laboratory Accreditation Cooperation-G7 (ILAC-G7) document.In summary, the in vitro and in vivo phase I metabolism results reported herein compare well and demonstrate the potential of in vitro studies to compliment, refine and reduce the existing equine in vivo paradigm.

  2. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.

    PubMed

    Hashmi, Muhammad Ali; Andreassend, Sarah K; Keyzers, Robert A; Lein, Matthias

    2016-09-21

    Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

  3. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  4. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  5. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-07

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  6. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  7. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine.

    PubMed

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-05-30

    The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL(-1) for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10-1000 ng mL(-1) and 21-1000 ng mL(-1), respectively.

  8. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  9. Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements

    PubMed Central

    Pascal, Jennifer; Bearer, Elaine L.; Wang, Zhihui; Koay, Eugene J.; Curley, Steven A.; Cristini, Vittorio

    2013-01-01

    Physical properties of the microenvironment influence penetration of drugs into tumors. Here, we develop a mathematical model to predict the outcome of chemotherapy based on the physical laws of diffusion. The most important parameters in the model are the volume fraction occupied by tumor blood vessels and their average diameter. Drug delivery to cells, and kill thereof, are mediated by these microenvironmental properties and affected by the diffusion penetration distance after extravasation. To calculate parameter values we fit the model to histopathology measurements of the fraction of tumor killed after chemotherapy in human patients with colorectal cancer metastatic to liver (coefficient of determination R2 = 0.94). To validate the model in a different tumor type, we input patient-specific model parameter values from glioblastoma; the model successfully predicts extent of tumor kill after chemotherapy (R2 = 0.7–0.91). Toward prospective clinical translation, we calculate blood volume fraction parameter values from in vivo contrast-enhanced computed tomography imaging from a separate cohort of patients with colorectal cancer metastatic to liver, and demonstrate accurate model predictions of individual patient responses (average relative error = 15%). Here, patient-specific data from either in vivo imaging or histopathology drives output of the model’s formulas. Values obtained from standard clinical diagnostic measurements for each individual are entered into the model, producing accurate predictions of tumor kill after chemotherapy. Clinical translation will enable the rational design of individualized treatment strategies such as amount, frequency, and delivery platform of drug and the need for ancillary non–drug-based treatment. PMID:23940372

  10. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    SciTech Connect

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-11-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water.

  11. Does preoperative cross-sectional imaging accurately predict main duct involvement in intraductal papillary mucinous neoplasm?

    PubMed

    Barron, M R; Roch, A M; Waters, J A; Parikh, J A; DeWitt, J M; Al-Haddad, M A; Ceppa, E P; House, M G; Zyromski, N J; Nakeeb, A; Pitt, H A; Schmidt, C Max

    2014-03-01

    Main pancreatic duct (MPD) involvement is a well-demonstrated risk factor for malignancy in intraductal papillary mucinous neoplasm (IPMN). Preoperative radiographic determination of IPMN type is heavily relied upon in oncologic risk stratification. We hypothesized that radiographic assessment of MPD involvement in IPMN is an accurate predictor of pathological MPD involvement. Data regarding all patients undergoing resection for IPMN at a single academic institution between 1992 and 2012 were gathered prospectively. Retrospective analysis of imaging and pathologic data was undertaken. Preoperative classification of IPMN type was based on cross-sectional imaging (MRI/magnetic resonance cholangiopancreatography (MRCP) and/or CT). Three hundred sixty-two patients underwent resection for IPMN. Of these, 334 had complete data for analysis. Of 164 suspected branch duct (BD) IPMN, 34 (20.7%) demonstrated MPD involvement on final pathology. Of 170 patients with suspicion of MPD involvement, 50 (29.4%) demonstrated no MPD involvement. Of 34 patients with suspected BD-IPMN who were found to have MPD involvement on pathology, 10 (29.4%) had invasive carcinoma. Alternatively, 2/50 (4%) of the patients with suspected MPD involvement who ultimately had isolated BD-IPMN demonstrated invasive carcinoma. Preoperative radiographic IPMN type did not correlate with final pathology in 25% of the patients. In addition, risk of invasive carcinoma correlates with pathologic presence of MPD involvement.

  12. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  13. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  14. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  15. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.

    PubMed

    Krokhotin, Andrey; Dokholyan, Nikolay V

    2015-01-01

    Computational methods can provide significant insights into RNA structure and dynamics, bridging the gap in our understanding of the relationship between structure and biological function. Simulations enrich and enhance our understanding of data derived on the bench, as well as provide feasible alternatives to costly or technically challenging experiments. Coarse-grained computational models of RNA are especially important in this regard, as they allow analysis of events occurring in timescales relevant to RNA biological function, which are inaccessible through experimental methods alone. We have developed a three-bead coarse-grained model of RNA for discrete molecular dynamics simulations. This model is efficient in de novo prediction of short RNA tertiary structure, starting from RNA primary sequences of less than 50 nucleotides. To complement this model, we have incorporated additional base-pairing constraints and have developed a bias potential reliant on data obtained from hydroxyl probing experiments that guide RNA folding to its correct state. By introducing experimentally derived constraints to our computer simulations, we are able to make reliable predictions of RNA tertiary structures up to a few hundred nucleotides. Our refined model exemplifies a valuable benefit achieved through integration of computation and experimental methods.

  16. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods.

  17. Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e

    PubMed Central

    Cilia, Elisa; Vuister, Geerten W.; Lenaerts, Tom

    2012-01-01

    Experimental NMR relaxation studies have shown that peptide binding induces dynamical changes at the side-chain level throughout the second PDZ domain of PTP1e, identifying as such the collection of residues involved in long-range communication. Even though different computational approaches have identified subsets of residues that were qualitatively comparable, no quantitative analysis of the accuracy of these predictions was thus far determined. Here, we show that our information theoretical method produces quantitatively better results with respect to the experimental data than some of these earlier methods. Moreover, it provides a global network perspective on the effect experienced by the different residues involved in the process. We also show that these predictions are consistent within both the human and mouse variants of this domain. Together, these results improve the understanding of intra-protein communication and allostery in PDZ domains, underlining at the same time the necessity of producing similar data sets for further validation of thses kinds of methods. PMID:23209399

  18. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6.

    PubMed

    Tod, M; Goutelle, S; Gagnieu, M C

    2011-10-01

    We propose a framework to enable quantitative prediction of the impact of CYP2D6 polymorphisms on drug exposure. It relies mostly on in vivo data and uses two characteristic parameters: one for the drug and the other for the genotype. The metric of interest is the ratio of drug area under the curve (AUC) in patients with mutant genotype to the AUC in patients with wild-type genotype. Any combination of alleles, as well as duplications, may be accommodated in the framework. Estimates of the characteristic parameters were obtained by orthogonal regression for 40 drugs and five classes of genotypes, respectively, including poor, intermediate, and ultrarapid metabolizers (PMs, IMs, and UMs). The mean prediction error of AUC ratios was -0.05, and the mean prediction absolute error was 0.20. An external validation was also carried out. The model may be used to predict the variations in exposure induced by all drug-genotype combinations. An application of this model to a rare combination of alleles (*4*10) is described.

  19. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  20. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  1. How Accurate Is the Prediction of Maximal Oxygen Uptake with Treadmill Testing?

    PubMed Central

    Wicks, John R.; Oldridge, Neil B.

    2016-01-01

    Background Cardiorespiratory fitness measured by treadmill testing has prognostic significance in determining mortality with cardiovascular and other chronic disease states. The accuracy of a recently developed method for estimating maximal oxygen uptake (VO2peak), the heart rate index (HRI), is dependent only on heart rate (HR) and was tested against oxygen uptake (VO2), either measured or predicted from conventional treadmill parameters (speed, incline, protocol time). Methods The HRI equation, METs = 6 x HRI– 5, where HRI = maximal HR/resting HR, provides a surrogate measure of VO2peak. Forty large scale treadmill studies were identified through a systematic search using MEDLINE, Google Scholar and Web of Science in which VO2peak was either measured (TM-VO2meas; n = 20) or predicted (TM-VO2pred; n = 20) based on treadmill parameters. All studies were required to have reported group mean data of both resting and maximal HRs for determination of HR index-derived oxygen uptake (HRI-VO2). Results The 20 studies with measured VO2 (TM-VO2meas), involved 11,477 participants (median 337) with a total of 105,044 participants (median 3,736) in the 20 studies with predicted VO2 (TM-VO2pred). A difference of only 0.4% was seen between mean (±SD) VO2peak for TM- VO2meas and HRI-VO2 (6.51±2.25 METs and 6.54±2.28, respectively; p = 0.84). In contrast, there was a highly significant 21.1% difference between mean (±SD) TM-VO2pred and HRI-VO2 (8.12±1.85 METs and 6.71±1.92, respectively; p<0.001). Conclusion Although mean TM-VO2meas and HRI-VO2 were almost identical, mean TM-VO2pred was more than 20% greater than mean HRI-VO2. PMID:27875547

  2. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  3. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile.

    PubMed

    Faraggi, Eshel; Kouza, Maksim; Zhou, Yaoqi; Kloczkowski, Andrzej

    2017-01-01

    A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation profiles generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for ASAquick are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org .

  4. Sequence features accurately predict genome-wide MeCP2 binding in vivo

    PubMed Central

    Rube, H. Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H.; Hess, John F.; LaSalle, Janine M.; Song, Jun S.; Gong, Qizhi

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915

  5. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  6. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    NASA Astrophysics Data System (ADS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-02-01

    A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by Dpb. Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the Dpb of base pairs in DNA along C-H and N-H bonds are obtained for the first time. All results show that C7-H of A-T and C8-H of G-C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate Dpb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules.

  7. Fast and accurate prediction for aerodynamic forces and moments acting on satellites flying in Low-Earth Orbit

    NASA Astrophysics Data System (ADS)

    Jin, Xuhon; Huang, Fei; Hu, Pengju; Cheng, Xiaoli

    2016-11-01

    A fundamental prerequisite for satellites operating in a Low Earth Orbit (LEO) is the availability of fast and accurate prediction of non-gravitational aerodynamic forces, which is characterised by the free molecular flow regime. However, conventional computational methods like the analytical integral method and direct simulation Monte Carlo (DSMC) technique are found failing to deal with flow shadowing and multiple reflections or computationally expensive. This work develops a general computer program for the accurate calculation of aerodynamic forces in the free molecular flow regime using the test particle Monte Carlo (TPMC) method, and non-gravitational aerodynamic forces actiong on the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is calculated for different freestream conditions and gas-surface interaction models by the computer program.

  8. Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention.

    PubMed

    Resnic, F S; Ohno-Machado, L; Selwyn, A; Simon, D I; Popma, J J

    2001-07-01

    The objectives of this analysis were to develop and validate simplified risk score models for predicting the risk of major in-hospital complications after percutaneous coronary intervention (PCI) in the era of widespread stenting and use of glycoprotein IIb/IIIa antagonists. We then sought to compare the performance of these simplified models with those of full logistic regression and neural network models. From January 1, 1997 to December 31, 1999, data were collected on 4,264 consecutive interventional procedures at a single center. Risk score models were derived from multiple logistic regression models using the first 2,804 cases and then validated on the final 1,460 cases. The area under the receiver operating characteristic (ROC) curve for the risk score model that predicted death was 0.86 compared with 0.85 for the multiple logistic model and 0.83 for the neural network model (validation set). For the combined end points of death, myocardial infarction, or bypass surgery, the corresponding areas under the ROC curves were 0.74, 0.78, and 0.81, respectively. Previously identified risk factors were confirmed in this analysis. The use of stents was associated with a decreased risk of in-hospital complications. Thus, risk score models can accurately predict the risk of major in-hospital complications after PCI. Their discriminatory power is comparable to those of logistic models and neural network models. Accurate bedside risk stratification may be achieved with these simple models.

  9. Positive Urgency Predicts Illegal Drug Use and Risky Sexual Behavior

    PubMed Central

    Zapolski, Tamika C. B.; Cyders, Melissa A.; Smith, Gregory T.

    2009-01-01

    There are several different personality traits that dispose individuals to engage in rash action. One such trait is positive urgency: the tendency to act rashly when experiencing extremely positive affect. This trait may be relevant for college student risky behavior, because it appears that a great deal of college student risky behavior is undertaken during periods of intensely positive mood states. To test this possibility, the authors conducted a longitudinal study designed to predict increases in risky sexual behavior and illegal drug use over the course of the first year of college (n = 407). In a well-fitting structural model, positive urgency predicted increases in illegal drug use and risky sexual behavior, even after controlling for time 1 (T1) involvement in both risky behaviors, biological sex, and T1 scores on four other personality dispositions to rash action. The authors discuss the theoretical and practical implications of this finding. PMID:19586152

  10. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2015-10-30

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs.

  11. Predicting drug court treatment completion using the MMPI-2-RF.

    PubMed

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-12-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales Behavior/Externalizing Dysfunction, Antisocial Behavior, Aberrant Experiences, Juvenile Conduct Problems, Aggression, and Disconstraint-Revised were associated with increased risk for failure to complete treatment. These results are consistent with previous findings (O'Reilly, 2007; Sellbom, Ben-Porath, Baum, Erez, & Gregory, 2008) regarding treatment completion. Gender was also found to be associated with treatment completion, with females being more likely to complete the Drug Court program than males. Zero-order correlations and relative risk analyses indicated that the MMPI-2-RF can provide useful information regarding risk factors for failure to complete Drug Court treatment. Limitations and future directions are discussed.

  12. Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction

    PubMed Central

    2016-01-01

    De novo experimental drug discovery is an expensive and time-consuming task. It requires the identification of drug-target interactions (DTIs) towards targets of biological interest, either to inhibit or enhance a specific molecular function. Dedicated computational models for protein simulation and DTI prediction are crucial for speed and to reduce the costs associated with DTI identification. In this paper we present a computational pipeline that enables the discovery of putative leads for drug repositioning that can be applied to any microbial proteome, as long as the interactome of interest is at least partially known. Network metrics calculated for the interactome of the bacterial organism of interest were used to identify putative drug-targets. Then, a random forest classification model for DTI prediction was constructed using known DTI data from publicly available databases, resulting in an area under the ROC curve of 0.91 for classification of out-of-sampling data. A drug-target network was created by combining 3,081 unique ligands and the expected ten best drug targets. This network was used to predict new DTIs and to calculate the probability of the positive class, allowing the scoring of the predicted instances. Molecular docking experiments were performed on the best scoring DTI pairs and the results were compared with those of the same ligands with their original targets. The results obtained suggest that the proposed pipeline can be used in the identification of new leads for drug repositioning. The proposed classification model is available at http://bioinformatics.ua.pt/software/dtipred/. PMID:27893735

  13. Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes

    PubMed Central

    Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T.; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G.; Qin, Jun; Chen, Rui

    2016-01-01

    Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414

  14. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  15. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    PubMed

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  16. Searching for Computational Strategies to Accurately Predict pKas of Large Phenolic Derivatives.

    PubMed

    Rebollar-Zepeda, Aida Mariana; Campos-Hernández, Tania; Ramírez-Silva, María Teresa; Rojas-Hernández, Alberto; Galano, Annia

    2011-08-09

    Twenty-two reaction schemes have been tested, within the cluster-continuum model including up to seven explicit water molecules. They have been used in conjunction with nine different methods, within the density functional theory and with second-order Møller-Plesset. The quality of the pKa predictions was found to be strongly dependent on the chosen scheme, while only moderately influenced by the method of calculation. We recommend the E1 reaction scheme [HA + OH(-) (3H2O) ↔ A(-) (H2O) + 3H2O], since it yields mean unsigned errors (MUE) lower than 1 unit of pKa for most of the tested functionals. The best pKa values obtained from this reaction scheme are those involving calculations with PBE0 (MUE = 0.77), TPSS (MUE = 0.82), BHandHLYP (MUE = 0.82), and B3LYP (MUE = 0.86) functionals. This scheme has the additional advantage, compared to the proton exchange method, which also gives very small values of MUE, of being experiment independent. It should be kept in mind, however, that these recommendations are valid within the cluster-continuum model, using the polarizable continuum model in conjunction with the united atom Hartree-Fock cavity and the strategy based on thermodynamic cycles. Changes in any of these aspects of the used methodology may lead to different outcomes.

  17. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  18. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  19. Predicting risk of adverse drug reactions in older adults

    PubMed Central

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-01-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  20. Prediction of antiepileptic drug treatment outcomes using machine learning

    NASA Astrophysics Data System (ADS)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  1. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed Central

    Tyson, G. H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J. P.; Whichard, J. M.; McDermott, P. F.

    2015-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2′)-If, aph(2″)-Ig, aph(2″)-Ih, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ie-aph(2″)-If, aac(6′)-Im, aadE, sat4, ant(6′), aad9, aph(3′)-Ic, and aph(3′)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  2. Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics" Technologies.

    PubMed

    Madonna, Rosalinda

    2017-02-25

    Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs.

  3. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  4. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    PubMed Central

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735

  5. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  6. Similarity-based modeling in large-scale prediction of drug-drug interactions

    PubMed Central

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2015-01-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients’ quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. the method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. the method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. the time frame to implement this protocol is 5–7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented. PMID:25122524

  7. Prediction and evaluation of protein farnesyltransferase inhibition by commercial drugs

    PubMed Central

    DeGraw, Amanda J.; Keiser, Michael J.; Ochocki, Joshua D.; Shoichet, Brian K.; Distefano, Mark D.

    2010-01-01

    The Similarity Ensemble Approach (SEAa) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone. SEA has previously revealed cross talk between drugs acting primarily on G-protein coupled receptors (GPCRs). Here we used SEA to look for potential off-target inhibition of the enzyme protein farnesyltransferase (PFTase) by commercially available drugs. The inhibition of PFTase has profound consequences for oncogenesis, as well as a number of other diseases. In the present study, two commercial drugs, Loratadine and Miconazole, were identified as potential ligands for PFTase and subsequently confirmed as such experimentally. These results point towards the applicability of SEA for the prediction of not only GPCR-GPCR drug cross talk, but also GPCR-enzyme and enzyme-enzyme drug cross talk. PMID:20180535

  8. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  9. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  10. Mathematical model to predict skin concentration after topical application of drugs.

    PubMed

    Todo, Hiroaki; Oshizaka, Takeshi; Kadhum, Wesam R; Sugibayashi, Kenji

    2013-12-16

    Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill's equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of "3Rs" issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick's second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.

  11. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.

    PubMed

    Staranowicz, Aaron N; Ray, Christopher; Mariottini, Gian-Luca

    2015-01-01

    Falls are the most-common causes of unintentional injury and death in older adults. Many clinics, hospitals, and health-care providers are urgently seeking accurate, low-cost, and easy-to-use technology to predict falls before they happen, e.g., by monitoring the human walking pattern (or "gait"). Despite the wide popularity of Microsoft's Kinect and the plethora of solutions for gait monitoring, no strategy has been proposed to date to allow non-expert users to calibrate the cameras, which is essential to accurately fuse the body motion observed by each camera in a single frame of reference. In this paper, we present a novel multi-Kinect calibration algorithm that has advanced features when compared to existing methods: 1) is easy to use, 2) it can be used in any generic Kinect arrangement, and 3) it provides accurate calibration. Extensive real-world experiments have been conducted to validate our algorithm and to compare its performance against other multi-Kinect calibration approaches, especially to show the improved estimate of gait parameters. Finally, a MATLAB Toolbox has been made publicly available for the entire research community.

  12. Combining classifiers for HIV-1 drug resistance prediction.

    PubMed

    Srisawat, Anantaporn; Kijsirikul, Boonserm

    2008-01-01

    This paper applies and studies the behavior of three learning algorithms, i.e. the Support Vector machine (SVM), the Radial Basis Function Network (the RBF network), and k-Nearest Neighbor (k-NN) for predicting HIV-1 drug resistance from genotype data. In addition, a new algorithm for classifier combination is proposed. The results of comparing the predictive performance of three learning algorithms show that, SVM yields the highest average accuracy, the RBF network gives the highest sensitivity, and k-NN yields the best in specificity. Finally, the comparison of the predictive performance of the composite classifier with three learning algorithms demonstrates that the proposed composite classifier provides the highest average accuracy.

  13. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race

    PubMed Central

    Hourihan, Kathleen L.; Benjamin, Aaron S.; Liu, Xiping

    2012-01-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness’s claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness. PMID:23162788

  14. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  15. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  16. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.

    PubMed

    Hughes, Tyler B; Swamidass, S Joshua

    2017-02-20

    Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .

  17. A combined model for predicting CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro.

    PubMed

    Fahmi, Odette A; Maurer, Tristan S; Kish, Mary; Cardenas, Edwin; Boldt, Sherri; Nettleton, David

    2008-08-01

    Although approaches to the prediction of drug-drug interactions (DDIs) arising via time-dependent inactivation have recently been developed, such approaches do not account for simple competitive inhibition or induction. Accordingly, these approaches do not provide accurate predictions of DDIs arising from simple competitive inhibition (e.g., ketoconazole) or induction of cytochromes P450 (e.g., phenytoin). In addition, methods that focus upon a single interaction mechanism are likely to yield misleading predictions in the face of mixed mechanisms (e.g., ritonavir). As such, we have developed a more comprehensive mathematical model that accounts for the simultaneous influences of competitive inhibition, time-dependent inactivation, and induction of CYP3A in both the liver and intestine to provide a net drug-drug interaction prediction in terms of area under the concentration-time curve ratio. This model provides a framework by which readily obtained in vitro values for competitive inhibition, time-dependent inactivation and induction for the precipitant compound as well as literature values for f(m) and F(G) for the object drug can be used to provide quantitative predictions of DDIs. Using this model, DDIs arising via inactivation (e.g., erythromycin) continue to be well predicted, whereas those arising via competitive inhibition (e.g., ketoconazole), induction (e.g., phenytoin), and mixed mechanisms (e.g., ritonavir) are also predicted within the ranges reported in the clinic. This comprehensive model quantitatively predicts clinical observations with reasonable accuracy and can be a valuable tool to evaluate candidate drugs and rationalize clinical DDIs.

  18. Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique

    NASA Astrophysics Data System (ADS)

    Bozinoski, Radoslav

    Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions

  19. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking.

    PubMed

    Wheeler, Daniel S; Robble, Mykel A; Hebron, Emily M; Dupont, Matthew J; Ebben, Amanda L; Wheeler, Robert A

    2015-05-06

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking.

  20. Drug Predictive Cues Activate Aversion-Sensitive Striatal Neurons That Encode Drug Seeking

    PubMed Central

    Wheeler, Daniel S.; Robble, Mykel A.; Hebron, Emily M.; Dupont, Matthew J.; Ebben, Amanda L.

    2015-01-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking. PMID:25948270

  1. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging

    NASA Astrophysics Data System (ADS)

    Hughes, Timothy J.; Kandathil, Shaun M.; Popelier, Paul L. A.

    2015-02-01

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G**, B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol-1, decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol-1.

  2. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1).

  3. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  4. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    PubMed Central

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  5. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  6. Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action

    PubMed Central

    Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano

    2014-01-01

    Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030

  7. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients

    PubMed Central

    Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.

    2016-01-01

    BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218

  8. The development of pharmacogenomic models to predict drug response.

    PubMed

    Adam, G I

    2001-05-01

    The potential of pharmacogenomic research to improve general healthcare, reduce morbidity and mortality resulting from treatment side effects, and to accelerate therapeutic compound discovery, design and development in the pharmaceutical industry, remains largely unfulfilled. Major contributory factors affecting progress in the field include: (i) the need for large clinical populations and control/placebo-treated cohorts to be studied; (ii) the difficulty in evaluating drug response in many instances with empirical or qualitative treatment response values often not available; (iii) interactions of underlying biochemical pathways are often not fully understood, both in terms of mode-of-action of a therapeutic compound itself and in the occurrence of side effects; (iv) population-specific frequency data for reported genetic variants and physically mapped genomic markers for evaluation in drug response studies are often not readily and/or publicly available; (v) accurate, high-throughput, cost-effective polymorphism detection and screening methods are required; and (vi) sophisticated biostatistical data analysis programs to perform the multi-parametric tests and permutation analyses necessary are still under development. With the recent human genome sequence draft release by both the public and commercial initiatives, in addition to the publication of locus and chromosome-specific polymorphism maps and TSC (The SNP Consortium) SNP map information expected in late-2001, it is hoped that at least some of the inherent difficulties in pharmacogenomics research will soon be alleviated.

  9. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    PubMed

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin; Brehm Christensen, Peer; Langeland, Nina; Buhl, Mads Rauning; Pedersen, Court; Mørch, Kristine; Wejstål, Rune; Norkrans, Gunnar; Lindh, Magnus; Färkkilä, Martti; Westin, Johan

    2014-01-01

    Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV) infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI) in the paper, was based on the model: Log-odds (predicting cirrhosis) = -12.17+ (age × 0.11) + (BMI (kg/m(2)) × 0.23) + (D7-lathosterol (μg/100 mg cholesterol)×(-0.013)) + (Platelet count (x10(9)/L) × (-0.018)) + (Prothrombin-INR × 3.69). The area under the ROC curve (AUROC) for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96). The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98). In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  10. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model

    PubMed Central

    Mukadam, Sophie; Gardner, Iain; Okialda, Krystle; Wong, Susan; Hatley, Oliver; Tay, Suzanne; Rowland-Yeo, Karen; Jamei, Masoud; Rostami-Hodjegan, Amin; Kenny, Jane R.

    2016-01-01

    Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach. PMID:27026679

  11. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  12. The application of artificial neural networks for phenotypic drug resistance prediction: evaluation and comparison with other interpretation systems.

    PubMed

    Pasomsub, Ekawat; Sukasem, Chonlaphat; Sungkanuparph, Somnuek; Kijsirikul, Boonserm; Chantratita, Wasun

    2010-03-01

    Although phenotypic resistance testing provides more direct measurement of antiretroviral drug resistance than genotypic testing, it is costly and time-consuming. However, genotypic resistance testing has the advantages of being simpler and more accessible, and it might be possible to use the data obtained for predicting quantitative drug susceptibility to interpret complex mutation combinations. This study applied the Artificial Neural Network (ANN) system to predict the HIV-1 resistance phenotype from the genotype. A total of 7,598 pairs of HIV-1 sequences, with their corresponding phenotypic fold change values for 14 antiretroviral drugs, were trained, validated, and tested in ANN modeling. The results were compared with the HIV-SEQ and Geno2pheno interpretation systems. The prediction performance of the ANN models was measured by 10-fold cross-validation. The results indicated that by using the ANN, with an associated set of amino acid positions known to influence drug resistance for individual antiretroviral drugs, drug resistance was accurately predicted and generalized for individual HIV-1 subtypes. Therefore, high correlation with the experimental phenotype may help physicians choose optimal therapeutic regimens that might be an option, or supporting system, of FDA-approved genotypic resistance testing in heavily treatment-experienced patients.

  13. Testing paradigm for prediction of development-limiting barriers and human drug toxicity.

    PubMed

    Sasseville, V G; Lane, J H; Kadambi, V J; Bouchard, P; Lee, F W; Balani, S K; Miwa, G T; Smith, P F; Alden, C L

    2004-11-01

    The financial investment grows exponentially as a new chemical entity advances through each stage of discovery and development. The opportunity exists for the modern toxicologist to significantly impact expenditures by the early prediction of potential toxicity/side effect barriers to development by aggressive evaluation of development-limiting liabilities early in drug discovery. Improved efficiency in pharmaceutical research and development lies both in leveraging "best in class" technology and integration with pharmacologic activities during hit-to-lead and early lead optimization stages. To meet this challenge, a discovery assay by stage (DABS) paradigm should be adopted. The DABS clearly delineates to discovery project teams the timing and type of assay required for advancement of compounds to each subsequent level of discovery and development. An integrative core pathology function unifying Drug Safety Evaluation, Molecular Technologies and Clinical Research groups that effectively spans all phases of drug discovery and development is encouraged to drive the DABS. The ultimate goal of such improved efficiency being the accurate prediction of toxicity and side effects that would occur in development before commitment of the large prerequisite resource. Good justification of this approach is that every reduction of development attrition by 10% results in an estimated increase in net present value by $100 million.

  14. Computerized techniques pave the way for drug-drug interaction prediction and interpretation

    PubMed Central

    Safdari, Reza; Ferdousi, Reza; Aziziheris, Kamal; Niakan-Kalhori, Sharareh R.; Omidi, Yadollah

    2016-01-01

    Introduction: Health care industry also patients penalized by medical errors that are inevitable but highly preventable. Vast majority of medical errors are related to adverse drug reactions, while drug-drug interactions (DDIs) are the main cause of adverse drug reactions (ADRs). DDIs and ADRs have mainly been reported by haphazard case studies. Experimental in vivo and in vitro researches also reveals DDI pairs. Laboratory and experimental researches are valuable but also expensive and in some cases researchers may suffer from limitations. Methods: In the current investigation, the latest published works were studied to analyze the trend and pattern of the DDI modelling and the impacts of machine learning methods. Applications of computerized techniques were also investigated for the prediction and interpretation of DDIs. Results: Computerized data-mining in pharmaceutical sciences and related databases provide new key transformative paradigms that can revolutionize the treatment of diseases and hence medical care. Given that various aspects of drug discovery and pharmacotherapy are closely related to the clinical and molecular/biological information, the scientifically sound databases (e.g., DDIs, ADRs) can be of importance for the success of pharmacotherapy modalities. Conclusion: A better understanding of DDIs not only provides a robust means for designing more effective medicines but also grantees patient safety. PMID:27525223

  15. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  16. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David

    2017-03-01

    Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  17. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning

    PubMed Central

    Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-01-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801

  18. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption.

    PubMed

    Augustijns, Patrick; Wuyts, Benjamin; Hens, Bart; Annaert, Pieter; Butler, James; Brouwers, Joachim

    2014-06-16

    The purpose of this paper is to collate all recently published solubility data of orally administered drugs in human intestinal fluids (HIF) that were aspirated from the upper small intestine (duodenum and jejunum). The data set comprises in total 102 solubility values in fasted state HIF and 37 solubility values in fed state HIF, covering 59 different drugs. Despite differences in the protocol for HIF sampling and subsequent handling, this summary of HIF solubilities provides a critical reference data set to judge the value of simulated media for intestinal solubility estimation. In this regard, the review includes correlations between the reported solubilizing capacity of HIF and fasted or fed state simulated intestinal fluid (FaSSIF/FeSSIF). Correlating with HIF solubilities enables the optimal use of solubility measurements in simulated biorelevant media to obtain accurate estimates of intestinal solubility during drug development. Considering the fraction of poorly soluble new molecular entities in contemporary drug discovery, adequate prediction of intestinal solubility is critical for efficient lead optimization, early candidate profiling, and further development.

  19. Improvement of the Prediction of Drugs Demand Using Spatial Data Mining Tools.

    PubMed

    Ramos, M Isabel; Cubillas, Juan José; Feito, Francisco R

    2016-01-01

    The continued availability of products at any store is the major issue in order to provide good customer service. If the store is a drugstore this matter reaches a greater importance, as out of stock of a drug when there is high demand causes problems and tensions in the healthcare system. There are numerous studies of the impact this issue has on patients. The lack of any drug in a pharmacy in certain seasons is very common, especially when some external factors proliferate favoring the occurrence of certain diseases. This study focuses on a particular drug consumed in the city of Jaen, southern Andalucia, Spain. Our goal is to determine in advance the Salbutamol demand. Advanced data mining techniques have been used with spatial variables. These last have a key role to generate an effective model. In this research we have used the attributes that are associated with Salbutamol demand and it has been generated a very accurate prediction model of 5.78% of mean absolute error. This is a very encouraging data considering that the consumption of this drug in Jaen varies 500% from one period to another.

  20. How good is "evidence" from clinical studies of drug effects and why might such evidence fail in the prediction of the clinical utility of drugs?

    PubMed

    Naci, Huseyin; Ioannidis, John P A

    2015-01-01

    Promising evidence from clinical studies of drug effects does not always translate to improvements in patient outcomes. In this review, we discuss why early evidence is often ill suited to the task of predicting the clinical utility of drugs. The current gap between initially described drug effects and their subsequent clinical utility results from deficits in the design, conduct, analysis, reporting, and synthesis of clinical studies-often creating conditions that generate favorable, but ultimately incorrect, conclusions regarding drug effects. There are potential solutions that could improve the relevance of clinical evidence in predicting the real-world effectiveness of drugs. What is needed is a new emphasis on clinical utility, with nonconflicted entities playing a greater role in the generation, synthesis, and interpretation of clinical evidence. Clinical studies should adopt strong design features, reflect clinical practice, and evaluate outcomes and comparisons that are meaningful to patients. Transformative changes to the research agenda may generate more meaningful and accurate evidence on drug effects to guide clinical decision making.

  1. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  2. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.

  3. Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction

    PubMed Central

    Youdim, Kuresh A; Zayed, Aref; Dickins, Maurice; Phipps, Alex; Griffiths, Michelle; Darekar, Amanda; Hyland, Ruth; Fahmi, Odette; Hurst, Susan; Plowchalk, David R; Cook, Jack; Guo, Feng; Obach, R Scott

    2008-01-01

    AIMS The aim of this study was to explore and optimize the in vitro and in silico approaches used for predicting clinical DDIs. A data set containing clinical information on the interaction of 20 Pfizer compounds with ketoconazole was used to assess the success of the techniques. METHODS The study calculated the fraction and the rate of metabolism of 20 Pfizer compounds via each cytochrome P450. Two approaches were used to determine fraction metabolized (fm); 1) by measuring substrate loss in human liver microsomes (HLM) in the presence and absence of specific chemical inhibitors and 2) by measuring substrate loss in individual cDNA expressed P450s (also referred to as recombinant P450s (rhCYP)) The fractions metabolized via each CYP were used to predict the drug–drug interaction due to CYP3A4 inhibition by ketoconazole using the modelling and simulation software SIMCYP®. RESULTS When in vitro data were generated using Gentest supersomes, 85% of predictions were within two-fold of the observed clinical interaction. Using PanVera baculosomes, 70% of predictions were predicted within two-fold. In contrast using chemical inhibitors the accuracy was lower, predicting only 37% of compounds within two-fold of the clinical value. Poorly predicted compounds were found to either be metabolically stable and/or have high microsomal protein binding. The use of equilibrium dialysis to generate accurate protein binding measurements was especially important for highly bound drugs. CONCLUSIONS The current study demonstrated that the use of rhCYPs with SIMCYP® provides a robust in vitro system for predicting the likelihood and magnitude of changes in clinical exposure of compounds as a consequence of CYP3A4 inhibition by a concomitantly administered drug. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Numerous retrospective analyses have shown the utility of in vitro systems for predicting potential drug–drug interactions (DDIs). Prediction of DDIs from in vitro data is commonly

  4. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals

    NASA Astrophysics Data System (ADS)

    Lau, K.-C.; Ng, C. Y.

    2006-01-01

    The ionization energies (IEs) for the 2-propyl (2-C3H7), phenyl (C6H5), and benzyl (C6H5CH2) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction have been also made in these calculations. Although a precise IE value for the 2-C3H7 radical has not been directly determined before due to the poor Franck-Condon factor for the photoionization transition at the ionization threshold, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. The comparison between the predicted value through the focal-point analysis and the highly precise experimental value for the IE(C6H5CH2) determined in the previous pulsed field ionization photoelectron (PFI-PE) study shows that the CCSD(T)/CBS method is capable of providing an accurate IE prediction for C6H5CH2, achieving an error limit of 35 meV. The benchmarking of the CCSD(T)/CBS IE(C6H5CH2) prediction suggests that the CCSD(T)/CBS IE(C6H5) prediction obtained here has a similar accuracy of 35 meV. Taking into account this error limit for the CCSD(T)/CBS prediction and the experimental uncertainty, the CCSD(T)/CBS IE(C6H5) value is also consistent with the IE(C6H5) reported in the previous HeI photoelectron measurement. Furthermore, the present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can be used to provide reliable IE predictions for C3-C7 hydrocarbon radicals with an uncertainty of +/-35 meV. Employing the atomization scheme, we have also computed the 0 K (298 K) heats of formation in kJ/mol at the CCSD(T)/CBS level for 2-C3H7

  5. Using PBPK guided “Body-on-a-Chip” Systems to Predict Mammalian Response to Drug and Chemical Exposure

    PubMed Central

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T.; Bernabini, Catia; Shuler, Michael L.; Hickman, James J.

    2014-01-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a “Body-on-a-Chip.”, and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  6. Combinative in vitro studies and computational model to predict 3D cell migration response to drug insult.

    PubMed

    Maffei, Joseph S; Srivastava, Jaya; Fallica, Brian; Zaman, Muhammad H

    2014-10-01

    The development of drugs to counter diseases related to cell migration has resulted in a multi-billion dollar endeavor. Unfortunately, few drugs have emerged from this effort highlighting the need for new methods to enhance assays to study, analyze and control cell migration. In response to this complex process, computational models have emerged as potent tools to describe migration providing a high throughput and low cost method. However, most models are unable to predict migration response to drug with direct application to in vitro experiments. In addition to this, no model to date has attempted to describe migration in response to drugs while incorporating simultaneously protein signaling, proteolytic activity, and 3D culture. In this paper, we describe an integrated computational approach, in conjunction with in vitro observations, to serve as a platform to accurately predict migration in 3D matrices incorporating the function of matrix metalloproteinases (MMPs) and their interaction with the Extracellular signal-related kinase (ERK) signaling pathway. Our results provide biological insight into how matrix density, MMP activity, integrin adhesions, and p-ERK expression all affect speed and persistence in 3D. Predictions from the model provide insight toward improving drug combinations to more effectively reduce both speed and persistence during migration and the role of integrin adhesions in motility. In this way our integrated platform provides future potential to streamline and improve throughput toward the testing and development of migration targeting drugs with tangible application to current in vitro assays.

  7. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  8. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  9. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    PubMed

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling.

  10. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2016-11-14

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drug-target interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-the-art Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development.

  11. The use of HepaRG and human hepatocyte data in predicting CYP induction drug-drug interactions via static equation and dynamic mechanistic modelling approaches.

    PubMed

    Grime, Ken; Ferguson, Douglas D; Riley, Robert J

    2010-12-01

    The method of predicting CYP induction drug-drug interactions (DDIs) from a relative induction score (RIS) calibration has been developed to provide a novel model facilitating predictions for any CYP-inducer substrate combination by inclusion of parameters such as the fraction of hepatic clearance mediated by a specific CYP and fraction of the dose escaping intestinal extraction. In vitro HepaRG CYP3A4 induction data were used as a basis for the approach and a large number of DDIs were well predicted. Primary human hepatocyte data were also used to make predictions, using the HepaRG calibration as a foundation. Similar predictive accuracy suggests that HepaRG and primary hepatocyte data can be used inter-changeably within the same laboratory. A comparison of this 'indirect' calibration method with a direct in vitro-in vivo scaling approach was made and investigations undertaken to define the most appropriate in vivo inducer concentration to use. Additionally, a reasonably effective prediction model based on F(2) (the concentration of inducer taken to increase the CYP mRNA 2-fold above background) was established. An accurate prediction for the CYP1A2-dependent omeprazole-caffeine interaction was also made, demonstrating that the methods are useful for the evaluation of DDIs from induction involving mechanisms other than PXR activation. Finally, a dynamic mechanistic model accounting for the simultaneous influence of CYP induction and reversible and irreversible CYP inhibition in both the liver and intestine was written to provide a prediction of the overall DDI when several interactions occur concurrently. The rationale for using the various models described, alongside commercially available prediction tools, at various stages of the drug discovery process is described.

  12. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

    PubMed

    Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong

    2016-06-01

    Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

  13. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection.

    PubMed

    Liu, Lili; Chen, Lei; Zhang, Yu-Hang; Wei, Lai; Cheng, Shiwen; Kong, Xiangyin; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2017-02-01

    Drug-drug interaction (DDI) defines a situation in which one drug affects the activity of another when both are administered together. DDI is a common cause of adverse drug reactions and sometimes also leads to improved therapeutic effects. Therefore, it is of great interest to discover novel DDIs according to their molecular properties and mechanisms in a robust and rigorous way. This paper attempts to predict effective DDIs using the following properties: (1) chemical interaction between drugs; (2) protein interactions between the targets of drugs; and (3) target enrichment of KEGG pathways. The data consisted of 7323 pairs of DDIs collected from the DrugBank and 36,615 pairs of drugs constructed by randomly combining two drugs. Each drug pair was represented by 465 features derived from the aforementioned three categories of properties. The random forest algorithm was adopted to train the prediction model. Some feature selection techniques, including minimum redundancy maximum relevance and incremental feature selection, were used to extract key features as the optimal input for the prediction model. The extracted key features may help to gain insights into the mechanisms of DDIs and provide some guidelines for the relevant clinical medication developments, and the prediction model can give new clues for identification of novel DDIs.

  14. Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans

    PubMed Central

    2013-01-01

    Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform. PMID:24565476

  15. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)

  16. Predicting adverse drug events from personal health messages.

    PubMed

    Chee, Brant W; Berlin, Richard; Schatz, Bruce

    2011-01-01

    Adverse drug events (ADEs) remain a large problem in the United States, being the fourth leading cause of death, despite post market drug surveillance. Much post consumer drug surveillance relies on self-reported "spontaneous" patient data. Previous work has performed datamining over the FDA's Adverse Event Reporting System (AERS) and other spontaneous reporting systems to identify drug interactions and drugs correlated with high rates of serious adverse events. However, safety problems have resulted from the lack of post marketing surveillance information about drugs, with underreporting rates of up to 98% within such systems. We explore the use of online health forums as a source of data to identify drugs for further FDA scrutiny. In this work we aggregate individuals' opinions and review of drugs similar to crowd intelligence3. We use natural language processing to group drugs discussed in similar ways and are able to successfully identify drugs withdrawn from the market based on messages discussing them before their removal.

  17. DIGRE: Drug-Induced Genomic Residual Effect Model for Successful Prediction of Multidrug Effects

    PubMed Central

    Yang, J; Tang, H; Li, Y; Zhong, R; Wang, T; Wong, STC; Xiao, G; Xie, Y

    2015-01-01

    Multidrug regimens are a promising strategy for improving therapeutic efficacy and reducing side effects, especially for complex disorders such as cancer. However, the use of multidrug therapies is very challenging, due to a lack of understanding of the mechanisms of drug interactions. We herein present a novel computational approach—Drug-Induced Genomic Residual Effect (DIGRE) Computational Model—to predict drug combination effects by explicitly modeling drug response curves and gene expression changes after drug treatments. The prediction performance of DIGRE was evaluated using two datasets: (i) OCI-LY3 B-lymphoma cells treated with 14 different drugs and (ii) MCF breast cancer cells treated with combinations of gefitinib and docetaxel at different doses. In both datasets, the predicted drug combination effects significantly correlated with the experimental results. The results indicated the model was useful in predicting drug combination effects, which may greatly facilitate the discovery of new, effective multidrug therapies. PMID:26225227

  18. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs.

  19. Predictions of cytochrome P450-mediated drug-drug interactions using cryopreserved human hepatocytes: comparison of plasma and protein-free media incubation conditions.

    PubMed

    Mao, Jialin; Mohutsky, Michael A; Harrelson, John P; Wrighton, Steven A; Hall, Stephen D

    2012-04-01

    Cryopreserved human hepatocytes suspended in human plasma (HHSHP) have previously provided accurate CYP3A drug-drug interaction (DDI) predictions from a single IC(50) that captures both reversible and time-dependent inhibition. The goal of this study was to compare the accuracy of DDI predictions by a protein-free human hepatocyte system combined with the fraction unbound in plasma for inhibitor(s) with those obtained with protein-containing incubations. Seventeen CYP3A, CYP2C9, or CYP2D6 inhibitors were incubated with hepatocytes in human plasma or hepatocyte maintenance medium (HMM) for 20 min over a range of concentrations after which midazolam 1'-hydroxylation, diclofenac 4'-hydroxylation or (R)-bufuralol 1'-hydroxylation were used to quantify the corresponding cytochrome P450 (P450) catalytic activities. Two methods were used to predict the human exposure ratio of the victim drug in the presence and absence of inhibitor. The HMM K(i, app) values were combined with the free average systemic plasma concentration ("free [I] with HMM K(i, app)") and the plasma K(i, app) values were combined with the total average systemic plasma concentration ("total [I] with plasma K(i, app)"). Of 63 clinical DDI studies, the total [I] with plasma K(i, app) method predicted 89% of cases within 2-fold of the reported interaction whereas the free [I] with HMM K(i, app) method predicted only 59%. There was a general underprediction by the free [I] with HMM K(i, app) method, which is consistent with an underestimation of in vitro inhibition potency in this system. In conclusion, the HHSHP system proved to be a simple, accurate predictor of DDIs for three major P450s and superior to the protein-free approach.

  20. Manipulating In-House Designed Drug Databases For The Prediction of pH-Dependent Aqueous Drug Solubility

    PubMed Central

    D’Souza, Malcolm J.; AlAbed, Ghada J.; Earley, Melissa; Roberts, Natalia; Gerges, Fady J.

    2014-01-01

    Chemical, pharmacokinetic, and pharmacodynamics properties are available in the package inserts of every Food and Drug Administration (FDA) approved prescription drug, including all available chemotherapy drugs. These inserts follow a specific format imposed by the FDA. Whether chemotherapy drugs are administered via the parenteral route or alimentary tract, a significant factor affecting their bioavailability, elimination and consequently the drug’s effectiveness and potency, is its state of aqueous solubility. Water solubility has always lent itself poorly to the different predictive and experimental measures employed in the determination of a useful quantitative assessment. In this project, we first built a chemical structure based searchable database for 85 FDA approved chemotherapy drugs and then used Bio-Rad’s KnowItAll® Informatics suite to focus on the drugs pH-dependent water solubility prediction. We compared the predicted values for water solubility to the available values reported in the drug inserts, testing the practical utility and the predictive ability of our model in reporting such a clinically relevant, underreported pharmacokinetic parameter. A relational cancer drug database (MySQL) was created to further facilitate analysis and/or prediction of a chemotherapy compound’s missing pharmacokinetic properties. PMID:24478935

  1. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  2. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs.

    PubMed

    Huh, Yeamin; Smith, David E; Feng, Meihau Rose

    2011-11-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis. Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally. The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW). Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs.

  3. Predicting Next Year's Resources--Short-Term Enrollment Forecasting for Accurate Budget Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Salley, Charles D.

    Accurate enrollment forecasts are a prerequisite for reliable budget projections. This is because tuition payments make up a significant portion of a university's revenue, and anticipated revenue is the immediate constraint on current operating expenditures. Accurate forecasts are even more critical to revenue projections when a university's…

  4. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    PubMed Central

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P.; Tice, Raymond R.; Huang, Ruili

    2012-01-01

    The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs. PMID:23459712

  5. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models.

    PubMed

    Stevenson, Jennifer M; Williams, Josceline L; Burnham, Thomas G; Prevost, A Toby; Schiff, Rebekah; Erskine, S David; Davies, J Graham

    2014-01-01

    Adverse drug reaction (ADR) risk-prediction models for use in older adults have been developed, but it is not clear if they are suitable for use in clinical practice. This systematic review aimed to identify and investigate the quality of validated ADR risk-prediction models for use in older adults. Standard computerized databases, the gray literature, bibliographies, and citations were searched (2012) to identify relevant peer-reviewed studies. Studies that developed and validated an ADR prediction model for use in patients over 65 years old, using a multivariable approach in the design and analysis, were included. Data were extracted and their quality assessed by independent reviewers using a standard approach. Of the 13,423 titles identified, only 549 were associated with adverse outcomes of medicines use. Four met the inclusion criteria. All were conducted in inpatient cohorts in Western Europe. None of the models satisfied the four key stages in the creation of a quality risk prediction model; development and validation were completed, but impact and implementation were not assessed. Model performance was modest; area under the receiver operator curve ranged from 0.623 to 0.73. Study quality was difficult to assess due to poor reporting, but inappropriate methods were apparent. Further work needs to be conducted concerning the existing models to enable the development of a robust ADR risk-prediction model that is externally validated, with practical design and good performance. Only then can implementation and impact be assessed with the aim of generating a model of high enough quality to be considered for use in clinical care to prioritize older people at high risk of suffering an ADR.

  6. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models

    PubMed Central

    Stevenson, Jennifer M; Williams, Josceline L; Burnham, Thomas G; Prevost, A Toby; Schiff, Rebekah; Erskine, S David; Davies, J Graham

    2014-01-01

    Adverse drug reaction (ADR) risk-prediction models for use in older adults have been developed, but it is not clear if they are suitable for use in clinical practice. This systematic review aimed to identify and investigate the quality of validated ADR risk-prediction models for use in older adults. Standard computerized databases, the gray literature, bibliographies, and citations were searched (2012) to identify relevant peer-reviewed studies. Studies that developed and validated an ADR prediction model for use in patients over 65 years old, using a multivariable approach in the design and analysis, were included. Data were extracted and their quality assessed by independent reviewers using a standard approach. Of the 13,423 titles identified, only 549 were associated with adverse outcomes of medicines use. Four met the inclusion criteria. All were conducted in inpatient cohorts in Western Europe. None of the models satisfied the four key stages in the creation of a quality risk prediction model; development and validation were completed, but impact and implementation were not assessed. Model performance was modest; area under the receiver operator curve ranged from 0.623 to 0.73. Study quality was difficult to assess due to poor reporting, but inappropriate methods were apparent. Further work needs to be conducted concerning the existing models to enable the development of a robust ADR risk-prediction model that is externally validated, with practical design and good performance. Only then can implementation and impact be assessed with the aim of generating a model of high enough quality to be considered for use in clinical care to prioritize older people at high risk of suffering an ADR. PMID:25278750

  7. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties

    PubMed Central

    Cheng, Feixiong; Zhao, Zhongming

    2014-01-01

    Objective Drug–drug interactions (DDIs) are an important consideration in both drug development and clinical application, especially for co-administered medications. While it is necessary to identify all possible DDIs during clinical trials, DDIs are frequently reported after the drugs are approved for clinical use, and they are a common cause of adverse drug reactions (ADR) and increasing healthcare costs. Computational prediction may assist in identifying potential DDIs during clinical trials. Methods Here we propose a heterogeneous network-assisted inference (HNAI) framework to assist with the prediction of DDIs. First, we constructed a comprehensive DDI network that contained 6946 unique DDI pairs connecting 721 approved drugs based on DrugBank data. Next, we calculated drug–drug pair similarities using four features: phenotypic similarity based on a comprehensive drug–ADR network, therapeutic similarity based on the drug Anatomical Therapeutic Chemical classification system, chemical structural similarity from SMILES data, and genomic similarity based on a large drug–target interaction network built using the DrugBank and Therapeutic Target Database. Finally, we applied five predictive models in the HNAI framework: naive Bayes, decision tree, k-nearest neighbor, logistic regression, and support vector machine, respectively. Results The area under the receiver operating characteristic curve of the HNAI models is 0.67 as evaluated using fivefold cross-validation. Using antipsychotic drugs as an example, several HNAI-predicted DDIs that involve weight gain and cytochrome P450 inhibition were supported by literature resources. Conclusions Through machine learning-based integration of drug phenotypic, therapeutic, structural, and genomic similarities, we demonstrated that HNAI is promising for uncovering DDIs in drug development and postmarketing surveillance. PMID:24644270

  8. Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization.

    PubMed

    Yang, Jihong; Li, Zheng; Fan, Xiaohui; Cheng, Yiyu

    2014-09-22

    The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and

  9. A novel approach to the prediction of drug-drug interactions in humans based on the serum incubation method.

    PubMed

    Shibata, Yoshihiro; Takahashi, Hiroyuki; Chiba, Masato; Ishii, Yasuyuki

    2008-01-01

    A novel method for the prediction of drug-drug interaction has been established based on the in vitro metabolic stability in the "serum incubation method" using cryopreserved human hepatocytes suspended in 100% human serum. As a novel approach, the inhibitory effect of inhibitors on the metabolism of substrates during the first-pass elimination process in the liver (hepatic availability) and in the elimination process from the systemic circulation (hepatic clearance) were separately predicted with the anticipated inhibitor/substrate concentrations during absorption and in the systemic circulation, respectively. Ketoconazole strongly inhibited CYP3A4-mediated terfenadine metabolism in vitro, and the method predicted 6- to 37-fold increase of terfenadine AUC by the concomitant dosing of ketoconazole, which reasonably well agreed with the observed 13- to 59-fold increase of AUC in clinical studies. The CYP3A4-mediated metabolism of indinavir was also subject to the inhibition by ketoconazole in vitro at the lower indinavir concentration (2 microM), whereas no substantial inhibition was observed at 12 microM due to the saturation of indinavir metabolism. Predicted no interaction between ketoconazole and indinavir was consistent with the minimal increase (1.3-fold increase) of indinavir AUC by ketoconazole observed in clinical study. In addition, the method was applied to the CYP2D6-mediated desipramine-quinidine interaction: the predicted 6.4-fold increase of desipramine AUC by quinidine was consistent with the observed 6.7-fold increase of AUC in the clinical drug-drug interaction study. On the other hand, desipramine metabolism was little affected by ketoconazole in vitro, and consequently, it predicted no drug-drug interaction between desipramine and ketoconazole in humans, which agreed with the negligible interaction observed in clinical study. The accuracy of predictions for drug-drug interaction by the serum incubation method was evaluated by comparing the

  10. Weighted feature value based Drug Target Protein prediction.

    PubMed

    Hyun, Bo-ra; Jung, Hwiesung; Jang, Woo-Hyuk; Jung, Suk Hoon; Han, Dong-Soo

    2008-01-01

    Drug discovery is a long process in which only a few successful new therapeutic discoveries are made and identification of drug target candidate proteins requires considerable time and efforts. However, the accumulation of information on drugs has made it possible to devise new computational methods for classifying drug target candidates. In this paper, we devise a Drug Target Protein (DT-P) classification method by the summation of weighted features which is extracted from known DT-P. The method is validated using Bayesian decision theory and SVM, and it was revealed to achieve high specificity of 89.5% with 88% accuracy.

  11. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

    PubMed Central

    García-Donas, Jesús; Beuselinck, Benoit; Inglada-Pérez, Lucía; Graña, Osvaldo; Schöffski, Patrick; Wozniak, Agnieszka; Bechter, Oliver; Apellániz-Ruiz, Maria; Leandro-García, Luis Javier; Esteban, Emilio; Castellano, Daniel E.; González del Alba, Aranzazu; Climent, Miguel Angel; Hernando, Susana; Arranz, José Angel; Morente, Manuel; Pisano, David G.; Robledo, Mercedes

    2016-01-01

    The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10–9 to 3 × 10–3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10–3, 6.5 × 10–3, and 3.4 × 10–2, respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10–4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10–8 and 7.8 × 10–7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment. PMID:27699216

  12. Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.

    2007-07-01

    We present a new set of model predictions for 16 Lick absorption line indices from Hδ through Fe5335 and UBV colors for single stellar populations with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from -1.3 to +0.3, and variable abundance ratios. The models are based on accurate stellar parameters for the Jones library stars and a new set of fitting functions describing the behavior of line indices as a function of effective temperature, surface gravity, and iron abundance. The abundances of several key elements in the library stars have been obtained from the literature in order to characterize the abundance pattern of the stellar library, thus allowing us to produce model predictions for any set of abundance ratios desired. We develop a method to estimate mean ages and abundances of iron, carbon, nitrogen, magnesium, and calcium that explores the sensitivity of the various indices modeled to those parameters. The models are compared to high-S/N data for Galactic clusters spanning the range of ages, metallicities, and abundance patterns of interest. Essentially all line indices are matched when the known cluster parameters are adopted as input. Comparing the models to high-quality data for galaxies in the nearby universe, we reproduce previous results regarding the enhancement of light elements and the spread in the mean luminosity-weighted ages of early-type galaxies. When the results from the analysis of blue and red indices are contrasted, we find good consistency in the [Fe/H] that is inferred from different Fe indices. Applying our method to estimate mean ages and abundances from stacked SDSS spectra of early-type galaxies brighter than L*, we find mean luminosity-weighed ages of the order of ~8 Gyr and iron abundances slightly below solar. Abundance ratios, [X/Fe], tend to be higher than solar and are positively correlated with galaxy luminosity. Of all elements, nitrogen is the more strongly correlated with galaxy luminosity, which seems to indicate

  13. Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MS(E) accurate-mass spectra.

    PubMed

    Bijlsma, Lubertus; Sancho, Juan V; Hernández, Félix; Niessen, Wilfried M A

    2011-09-01

    A study of the fragmentation pathways of several classes of drugs of abuse (cannabinoids, ketamine, amphetamine and amphetamine-type stimulants (ATS), cocaine and opiates) and their related substances has been made. The knowledge of the fragmentation is highly useful for specific fragment selection or for recognition of related compounds when developing MS-based analytical methods for the trace-level determination of these compounds in complex matrices. In this work, accurate-mass spectra of selected compounds were obtained using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, performing both MS/MS and MS(E) experiments. As regards fragmentation behavior, the mass spectra of both approaches were quite similar and were useful to study the fragmentation of the drugs investigated. Accurate-mass spectra of 37 drugs of abuse and related compounds, including metabolites and deuterated analogues, were studied in this work, and structures of fragment ions were proposed. The accurate-mass data obtained allowed to confirm structures and fragmentation pathways previously proposed based on nominal mass measurements, although new insights and structure proposals were achieved in some particular cases, especially for amphetamine and ATS, 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) and opiates.

  14. DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome.

    PubMed

    Luo, Heng; Zhang, Ping; Cao, Xi Hang; Du, Dizheng; Ye, Hao; Huang, Hui; Li, Can; Qin, Shengying; Wan, Chunling; Shi, Leming; He, Lin; Yang, Lun

    2016-11-02

    The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable return-on-investment, it is useful for drug discovery researchers in both industry and academia to identify all the possible indications for early pipeline molecules. For the first time, we propose the term computational "drug candidate positioning" or "drug positioning", to describe the above process. It is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/.

  15. DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome

    PubMed Central

    Luo, Heng; Zhang, Ping; Cao, Xi Hang; Du, Dizheng; Ye, Hao; Huang, Hui; Li, Can; Qin, Shengying; Wan, Chunling; Shi, Leming; He, Lin; Yang, Lun

    2016-01-01

    The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable return-on-investment, it is useful for drug discovery researchers in both industry and academia to identify all the possible indications for early pipeline molecules. For the first time, we propose the term computational “drug candidate positioning” or “drug positioning”, to describe the above process. It is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/. PMID:27805045

  16. The in silico prediction of human-specific metabolites from hepatotoxic drugs.

    PubMed

    Valerio, Luis G; Long, Anthony

    2010-09-01

    In this study we employed the use of the Meteor computational software program to perform predictions in silico on 17 hepatotoxic drugs for determining human-specific drug metabolites. Congruence of the in silico predictions from a qualitative standpoint of drug metabolite structures was established by comparison to human in vivo drug metabolic profiles characterized in publically available clinical studies. A total of 87 human-specific metabolites were identified from the 17 drugs. We found that Meteor's positive predictions included 4 out of the 9 reported major metabolites (detected in excreta at a level of >10% of the administered p.o. dose) and 10 out of the 15 major phase II metabolites giving a total of 14 correctly predicted drug metabolite structures out of 23 major metabolites. A significant level of unconfirmed positive predictions resulted and discussion on reasons for this is presented. An example is given whereby the in silico metabolism prediction succeeded to predict the putative toxic pathway of one of the drugs whilst conventional rodent liver microsomal assays failed to predict the pathway. Overall, we describe a reasonable simulation of human metabolic profiling using this in silico method with this data set of hepatotoxic drugs now withdrawn from the market. We provide an in-depth and objective discussion of this first of its kind validation test using clinical study data with interest in the prediction human-specific metabolism. Further research is discussed on what areas need to be investigated to improve upon the predictive data. The strong potential of this method to predict human-specific drug metabolites suggests the utility of this computational tool to help support not only the discovery development of therapeutics but also the safety assessment in identifying drug metabolites early to protect patients prior to initiating clinical studies.

  17. Do Skilled Elementary Teachers Hold Scientific Conceptions and Can They Accurately Predict the Type and Source of Students' Preconceptions of Electric Circuits?

    ERIC Educational Resources Information Center

    Lin, Jing-Wen

    2016-01-01

    Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…

  18. The Potential for Accurately Measuring Behavioral and Economic Dimensions of Consumption, Prices, and Markets for Illegal Drugs

    PubMed Central

    Johnson, Bruce D.; Golub, Andrew

    2007-01-01

    There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users’ interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis—by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed. PMID:16978801

  19. Drug target prediction using adverse event report systems: a pharmacogenomic approach

    PubMed Central

    Takarabe, Masataka; Kotera, Masaaki; Nishimura, Yosuke; Goto, Susumu; Yamanishi, Yoshihiro

    2012-01-01

    Motivation: Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. Results: We defined pharmacological similarity for all possible drugs using the US Food and Drug Administration's (FDA's) adverse event reporting system (AERS) and developed a new method to predict unknown drug–target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug–target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug–target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Availability: Softwares are available upon request. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/. PMID:22962489

  20. Prediction of Long-Term Alcohol Use, Drug Use, and Criminality among Inhalant Users.

    ERIC Educational Resources Information Center

    McBride, Anthony A.; And Others

    1991-01-01

    At 4-year followup on 110 Mexican-American adolescents in a drug abuse prevention program, association with deviant peers was strongly predictive of alcohol and drug use and criminality, whereas parental influences were minor predictors. Low school satisfaction was related to greater drug use, particularly for females. (Author/SV)

  1. Predicting Adolescent Drug Abuse: A Review of Issues, Methods and Correlates. Research Issues 11.

    ERIC Educational Resources Information Center

    Lettieri, Dan J., Ed.

    Presented are 18 papers on predicting adolescent drug abuse. The papers have the following titles: "Current Issues in the Epidemiology of Drug Abuse as Related to Psychosocial Studies of Adolescent Drug Use"; "The Quest for Interpersonal Predictors of Marihuana Abuse in Adolescents"; "Assessing the Interpersonal Determinants of Adolescent Drug…

  2. Prediction of Metabolism of Drugs using Artificial Intelligence: How far have we reached?

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2016-01-01

    Information about drug metabolism is an essential component of drug development. Modeling the drug metabolism requires identification of the involved enzymes, rate and extent of metabolism, the sites of metabolism etc. There has been continuous attempts in the prediction of metabolism of drugs using artificial intelligence in effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are number of predictive models available for metabolism using Support vector machines, Artificial neural networks, Bayesian classifiers etc. There is an urgent need to review their progress so far and address the existing challenges in prediction of metabolism. In this attempt, we are presenting the currently available literature models and some of the critical issues regarding prediction of drug metabolism.

  3. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover.

    PubMed

    Rowland Yeo, K; Walsky, R L; Jamei, M; Rostami-Hodjegan, A; Tucker, G T

    2011-06-14

    Predicting the magnitude of time-dependent metabolic drug-drug (mDDIs) interactions involving cytochrome P-450 3A4 (CYP3A4) from in vitro data requires accurate knowledge of the inactivation parameters of the inhibitor (K(I), k(inact)) and of the turnover of the enzyme (k(deg)) in both the gut and the liver. We have predicted the magnitude of mDDIs observed in 29 in vivo studies involving six CYP3A4 probe substrates and five mechanism based inhibitors of CYP3A4 of variable potency (azithromycin, clarithromycin, diltiazem, erythromycin and verapamil). Inactivation parameters determined anew in a single laboratory under standardised conditions together with data from substrate and inhibitor files within the Simcyp Simulator (Version 9.3) were used to determine a value of the hepatic k(deg) (0.0193 or 0.0077h(-1)) most appropriate for the prediction of mDDIs involving time-dependent inhibition of CYP3A4. The higher value resulted in decreased bias (geometric mean fold error - 1.05 versus 1.30) and increased precision (root mean squared error - 1.29 versus 2.30) of predictions of mean ratios of AUC in the absence and presence of inhibitor. Depending on the k(deg) value used (0.0193 versus 0.0077h(-1)), predicted mean ratios of AUC were within 2-fold of the observed values for all (100%) and 27 (93%) of the 29 studies, respectively and within 1.5-fold for 24 (83%) and 17 (59%) of the 29 studies, respectively. Comprehensive PBPK models were applied for accurate assessment of the potential for mDDIs involving time-dependent inhibition of CYP3A4 using a hepatic k(deg) value of 0.0193h(-1) in conjunction with inactivation parameters determined by the conventional experimental approach.

  4. Application of data mining and visualization techniques for the prediction of drug-induced nausea in man.

    PubMed

    Parkinson, Joanna; Muthas, Daniel; Clark, Matthew; Boyer, Scott; Valentin, Jean-Pierre; Ewart, Lorna

    2012-03-01

    The therapeutic value of many drugs can be limited by gastrointestinal (GI) adverse effects such as nausea and vomiting. Nausea is a subjective human sensation, hence little is known about preclinical biomarkers that may accurately and effectively predict its presence in man. The aim of this analysis was to use informatics and data-mining tools to identify plausible preclinical GI effects that may be associated with nausea and that could be of potential use in its prediction. A total of 86 marketed drugs were used in this analysis, and the main outcome was a confirmation that nausogenic and non-nausogenic drugs can be clearly separated based on their preclinical GI observations. Specifically, combinations of common preclinical GI effects (vomiting, diarrhea, and salivary hypersecretion) proved to be strong predictors. The model was subsequently validated with a subset of 20 blinded proprietary small molecules and successfully predicted clinical outcome in 90% of cases. This investigation demonstrated the feasibility of data-mining approaches to facilitate discovery of novel, plausible associations that can be used to understand drug-induced adverse effects.

  5. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.

    PubMed

    Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L

    2015-07-15

    Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html.

  6. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  7. Prediction of cis-regulatory elements for drug-activated transcription factors in the regulation of drug-metabolising enzymes and drug transporters.

    PubMed

    Podvinec, Michael; Meyer, Urs A

    2006-06-01

    The expression of drug-metabolising enzymes is affected by many endogenous and exogenous factors, including sex, age, diet and exposure to xenobiotics and drugs. To understand fully how the organism metabolises a drug, these alterations in gene expression must be taken into account. The central process, the definition of likely regulatory elements in the genes coding for enzymes and transporters involved in drug disposition, can be vastly accelerated using existing and emerging bioinformatics methods to unravel the regulatory networks causing drug-mediated induction of genes. Here, various approaches to predict transcription factor interactions with regulatory DNA elements are reviewed.

  8. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.

    PubMed

    Chen, Minjun; Hong, Huixiao; Fang, Hong; Kelly, Reagan; Zhou, Guangxu; Borlak, Jürgen; Tong, Weida

    2013-11-01

    Drug-induced liver injury (DILI) is one of the leading causes of the termination of drug development programs. Consequently, identifying the risk of DILI in humans for drug candidates during the early stages of the development process would greatly reduce the drug attrition rate in the pharmaceutical industry but would require the implementation of new research and development strategies. In this regard, several in silico models have been proposed as alternative means in prioritizing drug candidates. Because the accuracy and utility of a predictive model rests largely on how to annotate the potential of a drug to cause DILI in a reliable and consistent way, the Food and Drug Administration-approved drug labeling was given prominence. Out of 387 drugs annotated, 197 drugs were used to develop a quantitative structure-activity relationship (QSAR) model and the model was subsequently challenged by the left of drugs serving as an external validation set with an overall prediction accuracy of 68.9%. The performance of the model was further assessed by the use of 2 additional independent validation sets, and the 3 validation data sets have a total of 483 unique drugs. We observed that the QSAR model's performance varied for drugs with different therapeutic uses; however, it achieved a better estimated accuracy (73.6%) as well as negative predictive value (77.0%) when focusing only on these therapeutic categories with high prediction confidence. Thus, the model's applicability domain was defined. Taken collectively, the developed QSAR model has the potential utility to prioritize compound's risk for DILI in humans, particularly for the high-confidence therapeutic subgroups like analgesics, antibacterial agents, and antihistamines.

  9. Validity of Integrity Tests for Predicting Drug and Alcohol Abuse

    DTIC Science & Technology

    1993-08-31

    drug-testing programs. Personnel Psvcholo-a, , 745-763. Gough, H. G. (1948). A Sociological theory of psychopathy . American Journal of Sociology, 5a...Personal Outlook Inventory. Parkridge, IL: Author. Simpson, D. D., Curtis, B., & Butler, M. C. ý1975,. Description of drug users in treatment : 1971-1972

  10. Pharmacogenetics and Predictive Testing of Drug Hypersensitivity Reactions

    PubMed Central

    Böhm, Ruwen; Cascorbi, Ingolf

    2016-01-01

    Adverse drug reactions adverse drug reaction (ADR) occur in approximately 17% of patients. Avoiding ADR is thus mandatory from both an ethical and an economic point of view. Whereas, pharmacogenetics changes of the pharmacokinetics may contribute to the explanation of some type A reactions, strong relationships of genetic markers has also been shown for drug hypersensitivity belonging to type B reactions. We present the classifications of ADR, discuss genetic influences and focus on delayed-onset hypersensitivity reactions, i.e., drug-induced liver injury, drug-induced agranulocytosis, and severe cutaneous ADR. A guidance how to read and interpret the contingency table is provided as well as an algorithm whether and how a test for a pharmacogenetic biomarker should be conducted. PMID:27818635

  11. Predicting drug metabolism--an evaluation of the expert system METEOR.

    PubMed

    Testa, Bernard; Balmat, Anne-Loyse; Long, Anthony; Judson, Philip

    2005-07-01

    The paper begins with a discussion of the goals of metabolic predictions in early drug research, and some difficulties toward this objective, mainly the various substrate and product selectivities characteristic of drug metabolism. The major in silico approaches to predict drug metabolism are then classified and summarized. A discrimination is, thus, made between 'local' and 'global' systems. In its second part, an evaluation of METEOR, a rule-based expert system used to predict the metabolism of drugs and other xenobiotics, is reported. The published metabolic data of ten substrates were used in this evaluation, the overall results being discussed in terms of correct vs. disputable (i.e., false-positive and false-negative) predictions. The predictions for four representative substrates are presented in detail (Figs. 1-4), illustrating the interest of such an evaluation in identifying where and how predictive rules can be improved.

  12. Drug-target interaction prediction: databases, web servers and computational models.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data.

  13. A two-step similarity-based method for prediction of drug's target group.

    PubMed

    Chen, Lei; Zeng, Wei-Ming

    2013-03-01

    Determination of drug's target protein is very important for studying drug-target interaction network, while drug-target interaction network is a key area in the drug discovery pipeline. Thus correct prediction of drug's target protein is very helpful to promote the development of drug discovery. In this study, we developed a two-step similarity-based method to predict drug's target group. In each step, a similarity score (obtained by graph representation in the first step, and chemical functional group representation in the second step) was employed to make prediction. Since some drugs can target proteins distributing in more than one group of proteins, the method provided a series of candidate target groups for each drug. As a result, the first-order prediction accuracy on training set and test set were 79.01% and 76.43%, respectively, which were much higher than the success rate of a random guess. The results show that using graph representation to encode drug is a good choice in this area. We expect that this contribution will provide some help to understand drug-target interaction network.

  14. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome.

    PubMed

    Luo, Heng; Zhang, Ping; Huang, Hui; Huang, Jialiang; Kao, Emily; Shi, Leming; He, Lin; Yang, Lun

    2014-07-01

    Drug-drug interactions (DDIs) may cause serious side-effects that draw great attention from both academia and industry. Since some DDIs are mediated by unexpected drug-human protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles of the drugs to predict their DDIs. Here we introduce the DDI-CPI server, which can make real-time DDI predictions based only on molecular structure. When the user submits a molecule, the server will dock user's molecule across 611 human proteins, generating a CPI profile that can be used as a feature vector for the pre-constructed prediction model. It can suggest potential DDIs between the user's molecule and our library of 2515 drug molecules. In cross-validation and independent validation, the server achieved an AUC greater than 0.85. Additionally, by investigating the CPI profiles of predicted DDI, users can explore the PK/PD proteins that might be involved in a particular DDI. A 3D visualization of the drug-protein interaction will be provided as well. The DDI-CPI is freely accessible at http://cpi.bio-x.cn/ddi/.

  15. Prediction of new drug indications based on clinical data and network modularity

    PubMed Central

    Yu, Liang; Ma, Xiaoke; Zhang, Long; Zhang, Jing; Gao, Lin

    2016-01-01

    Drug repositioning is commonly done within the drug discovery process in order to adjust or expand the application line of an active molecule. Previous computational methods in this domain mainly focused on shared genes or correlations between genes to construct new drug-disease associations. We propose a method that can not only handle drugs or diseases with or without related genes but consider the network modularity. Our method firstly constructs a drug network and a disease network based on side effects and symptoms respectively. Because similar drugs imply similar diseases, we then cluster the two networks to identify drug and disease modules, and connect all possible drug-disease module pairs. Further, based on known drug-disease associations in CTD and using local connectivity of modules, we predict potential drug-disease associations. Our predictions are validated by testing their overlaps with drug indications reported in published literatures and CTD, and KEGG enrichment analysis are also made on their related genes. The experimental results demonstrate that our approach can complement the current computational approaches and its predictions can provide new clues for the candidate discovery of drug repositioning. PMID:27678071

  16. Prediction of new drug indications based on clinical data and network modularity.

    PubMed

    Yu, Liang; Ma, Xiaoke; Zhang, Long; Zhang, Jing; Gao, Lin

    2016-09-28

    Drug repositioning is commonly done within the drug discovery process in order to adjust or expand the application line of an active molecule. Previous computational methods in this domain mainly focused on shared genes or correlations between genes to construct new drug-disease associations. We propose a method that can not only handle drugs or diseases with or without related genes but consider the network modularity. Our method firstly constructs a drug network and a disease network based on side effects and symptoms respectively. Because similar drugs imply similar diseases, we then cluster the two networks to identify drug and disease modules, and connect all possible drug-disease module pairs. Further, based on known drug-disease associations in CTD and using local connectivity of modules, we predict potential drug-disease associations. Our predictions are validated by testing their overlaps with drug indications reported in published literatures and CTD, and KEGG enrichment analysis are also made on their related genes. The experimental results demonstrate that our approach can complement the current computational approaches and its predictions can provide new clues for the candidate discovery of drug repositioning.

  17. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities

    PubMed Central

    Huang, Guohua; Lu, Yin; Lu, Changhong; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  18. Predicting Non-Response to Juvenile Drug Court Interventions

    PubMed Central

    Halliday-Boykins, Colleen A.; Schaeffer, Cindy M.; Henggeler, Scott W.; Chapman, Jason E.; Cunningham, Phillippe B.; Randall, Jeff; Shapiro, Steven B.

    2010-01-01

    Using data from a recent randomized clinical trial involving juvenile drug court (JDC), youth marijuana use trajectories and the predictors of treatment non-response were examined. Participants were 118 juvenile offenders meeting diagnostic criteria for substance use disorders assigned to JDC and their families. Urine drug screen results were gathered from weekly court visits for 6 months, and youth reported their marijuana use over 12 months. Semiparametric mixture modeling jointly estimated and classified trajectories of both marijuana use indices. Youth were classified into responder versus non-responder trajectory groups based on both outcomes. Regression analyses examined pretreatment individual, family, and extrafamilial predictors of non-response. Results indicated that youth whose caregivers reported illegal drug use pretreatment were almost 10 times as likely to be classified into the non-responder trajectory group. No other variable significantly distinguished drug use trajectory groups. Findings have implications for the design of interventions to improve JDC outcomes. PMID:20826076

  19. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment.

  20. Solubility prediction of drugs in mixed solvents using partial solubility parameters.

    PubMed

    Jouyban, Abolghasem; Shayanfar, Ali; Panahi-Azar, Vahid; Soleymani, Jafar; Yousefi, Behrooz H; Acree, William E; York, Peter

    2011-10-01

    Solubility of drugs in binary and ternary solvent mixtures composed of water and pharmaceutical cosolvents at different temperatures were predicted using the Jouyban-Acree model and a combination of partial solubility parameters as interaction descriptors in the solution. The generally trained version of the model produced the overall mean percentage deviation values for the back-calculated solubility of drugs in binary solvents of 34.3% and the predicted solubilities in ternary solvent mixtures of 38.0%. In addition, the applicability of the trained model for predicting the solvent composition providing the maximum solubility of a drug was investigated. The results of collected solubility data of drugs in various mixed solvents and the newly measured solubility data of five drugs in ethanol + propylene glycol + water mixtures at 25°C showed that the model provided acceptable predictions and could be used in the pharmaceutical industry.

  1. Systematic prediction of drug combinations based on clinical side-effects.

    PubMed

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A; Sanseau, Philippe; Yang, Lun

    2014-11-24

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures.

  2. Systematic prediction of drug combinations based on clinical side-effects

    PubMed Central

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A.; Sanseau, Philippe; Yang, Lun

    2014-01-01

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures. PMID:25418113

  3. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  4. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    PubMed

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  5. Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

    PubMed

    Mitrofanova, Antonina; Aytes, Alvaro; Zou, Min; Shen, Michael M; Abate-Shen, Cory; Califano, Andrea

    2015-09-29

    Although genetically engineered mouse (GEM) models are often used to evaluate cancer therapies, extrapolation of such preclinical data to human cancer can be challenging. Here, we introduce an approach that uses drug perturbation data from GEM models to predict drug efficacy in human cancer. Network-based analysis of expression profiles from in vivo treatment of GEM models identified drugs and drug combinations that inhibit the activity of FOXM1 and CENPF, which are master regulators of prostate cancer malignancy. Validation of mouse and human prostate cancer models confirmed the specificity and synergy of a predicted drug combination to abrogate FOXM1/CENPF activity and inhibit tumorigenicity. Network-based analysis of treatment signatures from GEM models identified treatment-responsive genes in human prostate cancer that are potential biomarkers of patient response. More generally, this approach allows systematic identification of drugs that inhibit tumor dependencies, thereby improving the utility of GEM models for prioritizing drugs for clinical evaluation.

  6. Prediction of drug-induced liver injury using keratinocytes.

    PubMed

    Hirashima, Rika; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2017-01-31

    Drug-induced liver injury (DILI) is one of the most common adverse drug reactions. DILI is often accompanied by skin reactions, including rash and pruritus. However, it is still unknown whether DILI-associated genes such as S100 calcium-binding protein A and interleukin (IL)-1β are involved in drug-induced skin toxicity. In the present study, most of the tested hepatotoxic drugs such as pioglitazone and diclofenac induced DILI-associated genes in human and mouse keratinocytes. Keratinocytes of mice at higher risk for DILI exhibited an increased IL-1β basal expression. They also showed a higher inducibility of IL-1β when treated by pioglitazone. Mice at higher risk for DILI showed even higher sums of DILI-associated gene basal expression levels and induction rates in keratinocytes. Our data suggest that DILI-associated genes might be involved in the onset and progression of drug-induced skin toxicity. Furthermore, we might be able to identify individuals at higher risk of developing DILI less invasively by examining gene expression patterns in keratinocytes. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Can the conventional sextant prostate biopsy accurately predict unilateral prostate cancer in low-risk, localized, prostate cancer?

    PubMed

    Mayes, Janice M; Mouraviev, Vladimir; Sun, Leon; Tsivian, Matvey; Madden, John F; Polascik, Thomas J

    2011-01-01

    We evaluate the reliability of routine sextant prostate biopsy to detect unilateral lesions. A total of 365 men with complete records including all clinical and pathologic variables who underwent a preoperative sextant biopsy and subsequent radical prostatectomy (RP) for clinically localized prostate cancer at our medical center between January 1996 and December 2006 were identified. When the sextant biopsy detects unilateral disease, according to RP results, the NPV is high (91%) with a low false negative rate (9%). However, the sextant biopsy has a PPV of 28% with a high false positive rate (72%). Therefore, a routine sextant prostate biopsy cannot provide reliable, accurate information about the unilaterality of tumor lesion(s).

  8. Predicting Drug Use During Adolescence: A Structural Development Model.

    ERIC Educational Resources Information Center

    Scheier, Lawrence M.; Newcomb, Michael D.

    Many questions about the associations between risk factors and drug use remain unanswered. Data originally obtained from seventh graders participating in a school-based prevention program were examined in terms of a theoretical model. A series of multiple regression analyses were then conducted to select those risk factors which contributed unique…

  9. Predicting Retention of Drug Court Participants Using Event History Analysis

    ERIC Educational Resources Information Center

    Wolf, Elaine M.; Sowards, Kathryn A.; Wolf, Douglas A.

    2003-01-01

    This paper presents the results of a discrete-time event-history analysis of the relationships between client and program characteristics and the length and outcome of participation in a drug court program. We identify factors associated with both successful completion and premature termination. Having an African-American case manager, being…

  10. Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach

    PubMed Central

    Dong, Xinran; Li, Ying; Yang, Bo; Tian, Weidong; Wang, Xiaoqin

    2016-01-01

    Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines. PMID:26910401

  11. A Network Flow-Based Method to Predict Anticancer Drug Sensitivity

    PubMed Central

    Qin, Yufang; Chen, Ming; Wang, Haiyun; Zheng, Xiaoqi

    2015-01-01

    Predicting anticancer drug sensitivity can enhance the ability to individualize patient treatment, thus making development of cancer therapies more effective and safe. In this paper, we present a new network flow-based method, which utilizes the topological structure of pathways, for predicting anticancer drug sensitivities. Mutations and copy number alterations of cancer-related genes are assumed to change the pathway activity, and pathway activity difference before and after drug treatment is used as a measure of drug response. In our model, Contributions from different genetic alterations are considered as free parameters, which are optimized by the drug response data from the Cancer Genome Project (CGP). 10-fold cross validation on CGP data set showed that our model achieved comparable prediction results with existing elastic net model using much less input features. PMID:25992881

  12. Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model

    PubMed Central

    Cao, D-S; Xiao, N; Li, Y-J; Zeng, W-B; Liang, Y-Z; Lu, A-P; Xu, Q-S; Chen, AF

    2015-01-01

    Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity, substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for complementary hypothesis generation and rapid analysis of potential drug–ADR interactions. PMID:26451329

  13. Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset

    PubMed Central

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease. PMID:25938675

  14. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    PubMed

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  15. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  16. Accurate Prediction of Protein Functional Class From Sequence in the Mycobacterium Tuberculosis and Escherichia Coli Genomes Using Data Mining

    PubMed Central

    Karwath, Andreas; Clare, Amanda; Dehaspe, Luc

    2000-01-01

    The analysis of genomics data needs to become as automated as its generation. Here we present a novel data-mining approach to predicting protein functional class from sequence. This method is based on a combination of inductive logic programming clustering and rule learning. We demonstrate the effectiveness of this approach on the M. tuberculosis and E. coli genomes, and identify biologically interpretable rules which predict protein functional class from information only available from the sequence. These rules predict 65% of the ORFs with no assigned function in M. tuberculosis and 24% of those in E. coli, with an estimated accuracy of 60–80% (depending on the level of functional assignment). The rules are founded on a combination of detection of remote homology, convergent evolution and horizontal gene transfer. We identify rules that predict protein functional class even in the absence of detectable sequence or structural homology. These rules give insight into the evolutionary history of M. tuberculosis and E. coli. PMID:11119305

  17. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    PubMed

    Danner, Holger; Desurmont, Gaylord A; Cristescu, Simona M; van Dam, Nicole M

    2017-01-30

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.

  18. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks

    PubMed Central

    Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon

    2015-01-01

    As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw. PMID:26469276

  19. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  20. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy

    PubMed Central

    Montero, Joan; Sarosiek, Kristopher A.; DeAngelo, Joseph D.; Maertens, Ophélia; Ryan, Jeremy; Ercan, Dalia; Piao, Huiying; Horowitz, Neil S.; Berkowitz, Ross S.; Matulonis, Ursula; Jänne, Pasi A.; Amrein, Philip C.; Cichowski, Karen; Drapkin, Ronny; Letai, Anthony

    2015-01-01

    SUMMARY There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient’s living cancer cell with the drug(s) in question. To satisfy this unmet need we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion (‘priming’) induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo. PMID:25723171

  1. Using compound similarity and functional domain composition for prediction of drug-target interaction networks.

    PubMed

    Chen, Lei; He, Zhi-Song; Huang, Tao; Cai, Yu-Dong

    2010-11-01

    Study of interactions between drugs and target proteins is an essential step in genomic drug discovery. It is very hard to determine the compound-protein interactions or drug-target interactions by experiment alone. As supplementary, effective prediction model using machine learning or data mining methods can provide much help. In this study, a prediction method based on Nearest Neighbor Algorithm and a novel metric, which was obtained by combining compound similarity and functional domain composition, was proposed. The target proteins were divided into the following groups: enzymes, ion channels, G protein-coupled receptors, and nuclear receptors. As a result, four predictors with the optimal parameters were established. The overall prediction accuracies, evaluated by jackknife cross-validation test, for four groups of target proteins are 90.23%, 94.74%, 97.80%, and 97.51%, respectively, indicating that compound similarity and functional domain composition are very effective to predict drug-target interaction networks.

  2. Predictive Performance of Physiologically Based Pharmacokinetic and Population Pharmacokinetic Modeling of Renally Cleared Drugs in Children

    PubMed Central

    Zhou, W; Johnson, TN; Xu, H; Cheung, SYA; Bui, KH; Li, J; Al‐Huniti, N

    2016-01-01

    Predictive performance of physiologically based pharmacokinetic (PBPK) and population pharmacokinetic (PopPK) models of drugs predominantly eliminated through kidney in the pediatric population was evaluated. After optimization using adult clinical data, the verified PBPK models can predict 33 of 34 drug clearance within twofold of the observed values in children 1 month and older. More specifically, 10 of 11 of predicted clearance values were within 1.5‐fold of those observed in children between 1 month and 2 years old. The PopPK approach also predicted 19 of 21 drug clearance within twofold of the observed values in children. In summary, our analysis demonstrated both PBPK and PopPK adult models, after verification with additional adult pharmacokinetic (PK) studies and incorporation of known ontogeny of renal filtration, could be applied for dosing regimen recommendation in children 1 month and older for renally eliminated drugs in a first‐in‐pediatric study. PMID:27566992

  3. Drug-induced liver injury: Towards early prediction and risk stratification

    PubMed Central

    Raschi, Emanuel; De Ponti, Fabrizio

    2017-01-01

    Drug-induced liver injury (DILI) is a hot topic for clinicians, academia, drug companies and regulators, as shown by the steadily increasing number of publications and agents listed as causing liver damage (http://livertox.nih.gov/). As it was the case in the past decade with drug-induced QT prolongation/arrhythmia, there is an urgent unmet clinical need to develop tools for risk assessment and stratification in clinical practice and, in parallel, to improve prediction of pre-clinical models to support regulatory steps and facilitate early detection of liver-specific adverse drug events. Although drug discontinuation and therapy reconciliation still remain the mainstay in patient management to minimize occurrence of DILI, especially acute liver failure events, different multidisciplinary attempts have been proposed in 2016 to predict and assess drug-related risk in individual patients; these promising, albeit preliminary, results strongly support the need to pursue this innovative pathway. PMID:28105256

  4. A mathematical model to predict the release of water-soluble drugs from HPMC matrices.

    PubMed

    Fu, X C; Wang, G P; Fu, C Y; Liang, W Q

    2004-09-01

    A mathematical model to predict the fraction of water-soluble drug released as a function of release time (t, h), HPMC concentration (CH, w/w), and volume of drug molecule (V, nm3) was derived with ranitidine hydrochloride, diltiazem hydrochloride, and ribavirin as model drugs. The model is log (M(t)/M(infinity)) = 0.5 log t-0.3322CH-0.2222V-0.2988 (n = 140, r = 0.9848), where M(t) is the amount of drug released at time t, M(infinity) is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using isoniazid and satisfactory results were obtained. The model can be used to predict the release fraction of various soluble drugs from HPMC matrices having different polymer levels.

  5. Using Chemoinformatics, Bioinformatics, and Bioassay to Predict and Explain the Antibacterial Activity of Nonantibiotic Food and Drug Administration Drugs.

    PubMed

    Kahlous, Nour Aldin; Bawarish, Muhammad Al Mohdi; Sarhan, Muhammad Arabi; Küpper, Manfred; Hasaba, Ali; Rajab, Mazen

    2017-03-27

    Discovering of new and effective antibiotics is a major issue facing scientists today. Luckily, the development of computer science offers new methods to overcome this issue. In this study, a set of computer software was used to predict the antibacterial activity of nonantibiotic Food and Drug Administration (FDA)-approved drugs, and to explain their action by possible binding to well-known bacterial protein targets, along with testing their antibacterial activity against Gram-positive and Gram-negative bacteria. A three-dimensional virtual screening method that relies on chemical and shape similarity was applied using rapid overlay of chemical structures (ROCS) software to select candidate compounds from the FDA-approved drugs database that share similarity with 17 known antibiotics. Then, to check their antibacterial activity, disk diffusion test was applied on Staphylococcus aureus and Escherichia coli. Finally, a protein docking method was applied using HYBRID software to predict the binding of the active candidate to the target receptor of its similar antibiotic. Of the 1,991 drugs that were screened, 34 had been selected and among them 10 drugs showed antibacterial activity, whereby drotaverine and metoclopramide activities were without precedent reports. Furthermore, the docking process predicted that diclofenac, drotaverine, (S)-flurbiprofen, (S)-ibuprofen, and indomethacin could bind to the protein target of their similar antibiotics. Nevertheless, their antibacterial activities are weak compared with those of their similar antibiotics, which can be potentiated further by performing chemical modifications on their structure.

  6. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  7. Data-Driven Prediction of Beneficial Drug Combinations in Spontaneous Reporting Systems

    PubMed Central

    Li, Ying; Zhang, Ping; Sun, Zhaonan; Hu, Jianying

    2016-01-01

    Post-market withdrawal of medications because of adverse drug reactions (ADRs) could result in loss of effective compounds which are effective for treating a specific disease but have unfavorable benefit-to- harm ratio. Recent therapeutic successes have renewed interest in drug combinations, which could work synergistically to improve therapeutic efficacy or work antagonistically to alleviate the risk of the ADRs. However, experimental screening approaches are costly and often can identify only a small number of drug combinations. Spontaneous reporting systems (SRSs) routinely collect adverse drug events (ADEs) from patients on complex combinations of medications and provide an empirical and cost-effective source to detect unexpected beneficial drug combinations. In this paper, we proposed a novel data-driven method for the prediction of drug combinations where one drug could reduce the ADRs of the other, based on data from SRSs. The predictive model was shown to be effective using a commonly used evaluation approach in pharmacovigilance by constructing a known drug-drug interaction (DDI) reference standard. The method was applied to perform large-scale screening on SRS data for drug-ADR-drug triples where polypharmacy could potentially reduce the ADR. Analysis of the top ranking candidates showed high level of clinical validity. PMID:28269877

  8. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  9. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response.

  10. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  11. Predicting the Toxicity of Adjuvant Breast Cancer Drug Combination Therapy

    DTIC Science & Technology

    2013-03-01

    transport studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/ b constitutive knockout (KO) mice. For all tissues in both the FVB and KO...16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b ...the role of PGP in drug PK. Dose mdr1a/ b knockout mice with LAPATINIB, DOCETAXEL, DOXORUBICIN, combination LAPATINIB and DOCETAXEL, and combination

  12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

    PubMed

    Barone, Veronica; Hod, Oded; Peralta, Juan E; Scuseria, Gustavo E

    2011-04-19

    Over the last several years, low-dimensional graphene derivatives, such as carbon nanotubes and graphene nanoribbons, have played a central role in the pursuit of a plausible carbon-based nanotechnology. Their electronic properties can be either metallic or semiconducting depending purely on morphology, but predicting their electronic behavior has proven challenging. The combination of experimental efforts with modeling of these nanometer-scale structures has been instrumental in gaining insight into their physical and chemical properties and the processes involved at these scales. Particularly, approximations based on density functional theory have emerged as a successful computational tool for predicting the electronic structure of these materials. In this Account, we review our efforts in modeling graphitic nanostructures from first principles with hybrid density functionals, namely the Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid and the hybrid meta-generalized functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh). These functionals provide a powerful tool for quantitatively studying structure-property relations and the effects of external perturbations such as chemical substitutions, electric and magnetic fields, and mechanical deformations on the electronic and magnetic properties of these low-dimensional carbon materials. We show how HSE and TPSSh successfully predict the electronic properties of these materials, providing a good description of their band structure and density of states, their work function, and their magnetic ordering in the cases in which magnetism arises. Moreover, these approximations are capable of successfully predicting optical transitions (first and higher order) in both metallic and semiconducting single-walled carbon nanotubes of various chiralities and diameters with impressive accuracy. This versatility includes the correct prediction of the trigonal warping splitting in metallic nanotubes. The results predicted

  13. An Electroacoustic Hearing Protector Simulator That Accurately Predicts Pressure Levels in the Ear Based on Standard Performance Metrics

    DTIC Science & Technology

    2013-08-01

    24 Figure 20. ABQ experiment showing five volunteers located 1.0 m from source in upper-left panel wearing...study (Royster et al.,1996) in which users self-fit hearing protectors (ANSI S12.6- 2008 method B: user fit) with no experimenter instruction gives an...values provided by the experimenters and simulator fits for the intact and modified muffs. Figure 22 (upper panel) shows the simulator prediction

  14. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  15. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.

    PubMed

    Cleves, Ann E; Jain, Ajay N

    2015-06-01

    Prediction of the bound configuration of small-molecule ligands that differ substantially from the cognate ligand of a protein co-crystal structure is much more challenging than re-docking the cognate ligand. Success rates for cross-docking in the range of 20-30 % are common. We present an approach that uses structural information known prior to a particular cutoff-date to make predictions on ligands whose bounds structures were determined later. The knowledge-guided docking protocol was tested on a set of ten protein targets using a total of 949 ligands. The benchmark data set, called PINC ("PINC Is Not Cognate"), is publicly available. Protein pocket similarity was used to choose representative structures for ensemble-docking. The docking protocol made use of known ligand poses prior to the cutoff-date, both to help guide the configurational search and to adjust the rank of predicted poses. Overall, the top-scoring pose family was correct over 60 % of the time, with the top-two pose families approaching a 75 % success rate. Correct poses among all those predicted were identified nearly 90 % of the time. The largest improvements came from the use of molecular similarity to improve ligand pose rankings and the strategy for identifying representative protein structures. With the exception of a single outlier target, the knowledge-guided docking protocol produced results matching the quality of cognate-ligand re-docking, but it did so on a very challenging temporally-segregated cross-docking benchmark.

  16. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    PubMed Central

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems. PMID:28102344

  17. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  18. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway.

    PubMed

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-19

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  19. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  20. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.

    PubMed

    Baldassi, Carlo; Zamparo, Marco; Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.

  1. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  2. How many clinic BP readings are needed to predict cardiovascular events as accurately as ambulatory BP monitoring?

    PubMed

    Eguchi, K; Hoshide, S; Shimada, K; Kario, K

    2014-12-01

    We tested the hypothesis that multiple clinic blood pressure (BP) readings over an extended baseline period would be as predictive as ambulatory BP (ABP) for cardiovascular disease (CVD). Clinic and ABP monitoring were performed in 457 hypertensive patients at baseline. Clinic BP was measured monthly and the means of the first 3, 5 and 10 clinic BP readings were taken as the multiple clinic BP readings. The subjects were followed up, and stroke, HARD CVD, and ALL CVD events were determined as outcomes. In multivariate Cox regression analyses, ambulatory systolic BP (SBP) best predicted three outcomes independently of baseline and multiple clinic SBP readings. The mean of 10 clinic SBP readings predicted stroke (hazards ratio (HR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.04) and ALL CVD (HR=1.41, 95% CI=1.13-1.74, P=0.002) independently of baseline clinic SBP. Clinic SBPs by three and five readings were not associated with any CVD events, except that clinic SBP by three readings was associated with ALL CVD (P=0.015). Besides ABP values, the mean of the first 10 clinic SBP values was a significant predictor of stroke and ALL CVD events. It is important to take more than several clinic BP readings early after the baseline period for the risk stratification of future CVD events.

  3. A community effort to assess and improve drug sensitivity prediction algorithms.

    PubMed

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2014-12-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

  4. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.

    PubMed

    Pearce, K L; Ferguson, M; Gardner, G; Smith, N; Greef, J; Pethick, D W

    2009-01-01

    Fifty merino wethers (liveweight range from 44 to 81kg, average of 58.6kg) were lot fed for 42d and scanned through a dual X-ray absorptiometry (DXA) as both a live animal and whole carcass (carcass weight range from 15 to 32kg, average of 22.9kg) producing measures of total tissue, lean, fat and bone content. The carcasses were subsequently boned out into saleable cuts and the weights and yield of boned out muscle, fat and bone recorded. The relationship between chemical lean (protein+water) was highly correlated with DXA carcass lean (r(2)=0.90, RSD=0.674kg) and moderately with DXA live lean (r(2)=0.72, RSD=1.05kg). The relationship between the chemical fat was moderately correlated with DXA carcass fat (r(2)=0.86, RSD=0.42kg) and DXA live fat (r(2)=0.70, RSD=0.71kg). DXA carcass and live animal bone was not well correlated with chemical ash (both r(2)=0.38, RSD=0.3). DXA carcass lean was moderately well predicted from DXA live lean with the inclusion of bodyweight in the regression (r(2)=0.82, RSD=0.87kg). DXA carcass fat was well predicted from DXA live fat (r(2)=0.86, RSD=0.54kg). DXA carcass lean and DXA carcass fat with the inclusion of carcass weight in the regression significantly predicted boned out muscle (r(2)=0.97, RSD=0.32kg) and fat weight, respectively (r(2)=0.92, RSD=0.34kg). The use of DXA live lean and DXA live fat with the inclusion of bodyweight to predict boned out muscle (r(2)=0.83, RSD=0.75kg) and fat (r(2)=0.86, RSD=0.46kg) weight, respectively, was moderate. The use of DXA carcass and live lean and fat to predict boned out muscle and fat yield was not correlated as weight. The future for the DXA will exist in the determination of body composition in live animals and carcasses in research experiments but there is potential for the DXA to be used as an online carcass grading system.

  5. Prediction of drug disposition on the basis of its chemical structure.

    PubMed

    Stepensky, David

    2013-06-01

    The chemical structure of any drug determines its pharmacokinetics and pharmacodynamics. Detailed understanding of relationships between the drug chemical structure and individual disposition pathways (i.e., distribution and elimination) is required for efficient use of existing drugs and effective development of new drugs. Different approaches have been developed for this purpose, ranging from statistics-based quantitative structure-property (or structure-pharmacokinetic) relationships (QSPR) analysis to physiologically based pharmacokinetic (PBPK) models. This review critically analyzes currently available approaches for analysis and prediction of drug disposition on the basis of chemical structure. Models that can be used to predict different aspects of disposition are presented, including: (a) value of the individual pharmacokinetic parameter (e.g., clearance or volume of distribution), (b) efficiency of the specific disposition pathway (e.g., biliary drug excretion or cytochrome P450 3A4 metabolism), (c) accumulation in a specific organ or tissue (e.g., permeability of the placenta or accumulation in the brain), and (d) the whole-body disposition in the individual patients. Examples of presented pharmacological agents include "classical" low-molecular-weight compounds, biopharmaceuticals, and drugs encapsulated in specialized drug-delivery systems. The clinical efficiency of agents from all these groups can be suboptimal, because of inefficient permeability of the drug to the site of action and/or excessive accumulation in other organs and tissues. Therefore, robust and reliable approaches for chemical structure-based prediction of drug disposition are required to overcome these limitations. PBPK models are increasingly being used for prediction of drug disposition. These models can reflect the complex interplay of factors that determine drug disposition in a mechanistically correct fashion and can be combined with other approaches, for example QSPR

  6. Network Biomarkers Constructed from Gene Expression and Protein-Protein Interaction Data for Accurate Prediction of Leukemia

    PubMed Central

    Yuan, Xuye; Chen, Jiajia; Lin, Yuxin; Li, Yin; Xu, Lihua; Chen, Luonan; Hua, Haiying; Shen, Bairong

    2017-01-01

    Leukemia is a leading cause of cancer deaths in the developed countries. Great efforts have been undertaken in search of diagnostic biomarkers of leukemia. However, leukemia is highly complex and heterogeneous, involving interaction among multiple molecular components. Individual molecules are not necessarily sensitive diagnostic indicators. Network biomarkers are considered to outperform individual molecules in disease characterization. We applied an integrative approach that identifies active network modules as putative biomarkers for leukemia diagnosis. We first reconstructed the leukemia-specific PPI network using protein-protein interactions from the Protein Interaction Network Analysis (PINA) and protein annotations from GeneGo. The network was further integrated with gene expression profiles to identify active modules with leukemia relevance. Finally, the candidate network-based biomarker was evaluated for the diagnosing performance. A network of 97 genes and 400 interactions was identified for accurate diagnosis of leukemia. Functional enrichment analysis revealed that the network biomarkers were enriched in pathways in cancer. The network biomarkers could discriminate leukemia samples from the normal controls more effectively than the known biomarkers. The network biomarkers provide a useful tool to diagnose leukemia and also aids in further understanding the molecular basis of leukemia. PMID:28243332

  7. PREDICTING ABUSE POTENTIAL OF STIMULANTS AND OTHER DOPAMINERGIC DRUGS: OVERVIEW AND RECOMMENDATIONS

    PubMed Central

    Huskinson, Sally L.; Naylor, Jennifer E.; Rowlett, James K.; Freeman, Kevin B.

    2014-01-01

    Examination of a drug’s abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. PMID:24662599

  8. Cocrystal solubilization in biorelevant media and its prediction from drug solubilization

    PubMed Central

    Lipert, Maya P.; Roy, Lilly; Childs, Scott L.

    2015-01-01

    This work examines cocrystal solubility in biorelevant media, (FeSSIF, fed state simulated intestinal fluid), and develops a theoretical framework that allows for the simple and quantitative prediction of cocrystal solubilization from drug solubilization. The solubilities of four hydrophobic drugs and seven cocrystals containing these drugs were measured in FeSSIF and in acetate buffer at pH 5.00. In all cases, the cocrystal solubility (Scocrystal) was higher than the drug solubility (Sdrug) in both buffer and FeSSIF; however, the solubilization ratio of drug, SRdrug = (SFeSSIF/Sbuffer)drug, was not the same as the solubilization ratio of cocrystal, SRcocrystal = (SFeSSIF/Sbuffer)cocrystal, meaning drug and cocrystal were not solubilized to the same extent in FeSSIF. This highlights the potential risk of anticipating cocrystal behavior in biorelevant media based on solubility studies in water. Predictions of SRcocrystal from simple equations based only on SRdrug were in excellent agreement with measured values. For 1:1 cocrystals, the cocrystal solubilization ratio can be obtained from the square root of the drug solubilization ratio. For 2:1 cocrystals, SRcocrystal is found from (SRdrug)2/3. The findings in FeSSIF can be generalized to describe cocrystal behavior in other systems involving preferential solubilization of a drug such as surfactants, lipids, and other drug solubilizing media. PMID:26390213

  9. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  10. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.

    PubMed

    Walsh, Susan; Liu, Fan; Ballantyne, Kaye N; van Oven, Mannis; Lao, Oscar; Kayser, Manfred

    2011-06-01

    A new era of 'DNA intelligence' is arriving in forensic biology, due to the impending ability to predict externally visible characteristics (EVCs) from biological material such as those found at crime scenes. EVC prediction from forensic samples, or from body parts, is expected to help concentrate police investigations towards finding unknown individuals, at times when conventional DNA profiling fails to provide informative leads. Here we present a robust and sensitive tool, termed IrisPlex, for the accurate prediction of blue and brown eye colour from DNA in future forensic applications. We used the six currently most eye colour-informative single nucleotide polymorphisms (SNPs) that previously revealed prevalence-adjusted prediction accuracies of over 90% for blue and brown eye colour in 6168 Dutch Europeans. The single multiplex assay, based on SNaPshot chemistry and capillary electrophoresis, both widely used in forensic laboratories, displays high levels of genotyping sensitivity with complete profiles generated from as little as 31pg of DNA, approximately six human diploid cell equivalents. We also present a prediction model to correctly classify an individual's eye colour, via probability estimation solely based on DNA data, and illustrate the accuracy of the developed prediction test on 40 individuals from various geographic origins. Moreover, we obtained insights into the worldwide allele distribution of these six SNPs using the HGDP-CEPH samples of 51 populations. Eye colour prediction analyses from HGDP-CEPH samples provide evidence that the test and model presented here perform reliably without prior ancestry information, although future worldwide genotype and phenotype data shall confirm this notion. As our IrisPlex eye colour prediction test is capable of immediate implementation in forensic casework, it represents one of the first steps forward in the creation of a fully individualised EVC prediction system for future use in forensic DNA intelligence.

  11. Predicting Adolescent Drug Abuse Treatment Outcome with the Personal Experience Inventory (PEI)

    ERIC Educational Resources Information Center

    Stinchfield, Randy; Winters, Ken C.

    2004-01-01

    The purposes of this study were to examine the clinical utility of the Personal Experience Inventory (PEI) Psychosocial scales to predict adolescent drug abuse treatment outcome. The role of psychosocial risk factors in predicting treatment outcome also has theoretical interest given that such factors have been associated with the development of…

  12. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines

    PubMed Central

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient’s tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  13. Genomic inference accurately predicts the timing and severity of a recent bottleneck in a non-model insect population

    PubMed Central

    McCoy, Rajiv C.; Garud, Nandita R.; Kelley, Joanna L.; Boggs, Carol L.; Petrov, Dmitri A.

    2015-01-01

    The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here we present and evaluate a method of SNP discovery using RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all-in-one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other non-model systems. PMID:24237665

  14. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery.

    PubMed

    Murakami, Yoichi; Tripathi, Lokesh P; Prathipati, Philip; Mizuguchi, Kenji

    2017-03-29

    Protein-protein interactions (PPIs) are vital to maintaining cellular homeostasis. Several PPI dysregulations have been implicated in the etiology of various diseases and hence PPIs have emerged as promising targets for drug discovery. Surface residues and hotspot residues at the interface of PPIs form the core regions, which play a key role in modulating cellular processes such as signal transduction and are used as starting points for drug design. In this review, we briefly discuss how PPI networks (PPINs) inferred from experimentally characterized PPI data have been utilized for knowledge discovery and how in silico approaches to PPI characterization can contribute to PPIN-based biological research. Next, we describe the principles of in silico PPI prediction and survey the existing PPI and PPI site prediction servers that are useful for drug discovery. Finally, we discuss the potential of in silico PPI prediction in drug discovery.

  15. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

    PubMed Central

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-01-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  16. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-05

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.

  17. An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading

    NASA Astrophysics Data System (ADS)

    Russo, A.; Zuccarello, B.

    2007-07-01

    The paper presents a theoretical-numerical hybrid method for determining the stresses distribution in composite laminates containing a circular hole and subjected to uniaxial tensile loading. The method is based upon an appropriate corrective function allowing a simple and rapid evaluation of stress distributions in a generic plate of finite width with a hole based on the theoretical stresses distribution in an infinite plate with the same hole geometry and material. In order to verify the accuracy of the method proposed, various numerical and experimental tests have been performed by considering different laminate lay-ups; in particular, the experimental results have shown that a combined use of the method proposed and the well-know point-stress criterion leads to reliable strength predictions for GFRP or CFRP laminates with a circular hole.

  18. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  19. A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters.

    PubMed

    Deleebeeck, Nele M E; De Laender, Frederik; Chepurnov, Victor A; Vyverman, Wim; Janssen, Colin R; De Schamphelaere, Karel A C

    2009-04-01

    The major research questions addressed in this study were (i) whether green microalgae living in soft water (operationally defined water hardness<10mg CaCO(3)/L) are intrinsically more sensitive to Ni than green microalgae living in hard water (operationally defined water hardness >25mg CaCO(3)/L), and (ii) whether a single bioavailability model can be used to predict the effect of water hardness on the toxicity of Ni to green microalgae in both soft and hard water. Algal growth inhibition tests were conducted with clones of 10 different species collected in soft and hard water lakes in Sweden. Soft water algae were tested in a 'soft' and a 'moderately hard' test medium (nominal water hardness=6.25 and 16.3mg CaCO(3)/L, respectively), whereas hard water algae were tested in a 'moderately hard' and a 'hard' test medium (nominal water hardness=16.3 and 43.4 mg CaCO(3)/L, respectively). The results from the growth inhibition tests in the 'moderately hard' test medium revealed no significant sensitivity differences between the soft and the hard water algae used in this study. Increasing water hardness significantly reduced Ni toxicity to both soft and hard water algae. Because it has previously been demonstrated that Ca does not significantly protect the unicellular green alga Pseudokirchneriella subcapitata against Ni toxicity, it was assumed that the protective effect of water hardness can be ascribed to Mg alone. The logK(MgBL) (=5.5) was calculated to be identical for the soft and the hard water algae used in this study. A single bioavailability model can therefore be used to predict Ni toxicity to green microalgae in soft and hard surface waters as a function of water hardness.

  20. Reactive metabolites in early drug development: predictive in vitro tools.

    PubMed

    Pelkonen, Olavi; Pasanen, Markku; Tolonen, Ari; Koskinen, Mikko; Hakkola, Jukka; Abass, Khaled; Laine, Jaana; Hakkinen, Merja; Juvonen, Risto; Auriola, Seppo; Storvik, Markus; Huuskonen, Pasi; Rousu, Timo; Rahikkala, Maiju

    2015-01-01

    Drug metabolism can result in the formation of highly reactive metabolites that are known to play a role in toxicity resulting in a significant proportion of attrition during drug development and clinical use. Thus, the earlier such reactivity was detected, the better. This review summarizes our multi-year project, together with pertinent literature, to examine a battery of in vitro tests capable of detecting the formation of reactive metabolites. Principal prerequisites for such tests were delineated: chemicals known/not known to cause tissue injury and produce reactive metabolites, activation system (mainly human-derived), small- and large-molecular targets (small-molecular trappers, peptides, proteins), analytical techniques (mass spectrometry), and cellular toxicity biomarkers. The current status of in vitro tools to detect reactive intermediates is the following: 1. Small-molecular trapping agents such glutathione or cyanide detect the production of reactive species with high sensitivity by proper MS technique. However, it seems that also putative "negatives" give rise to corresponding adducts. 2. Results from peptide and dG (DNA targeting) trapper studies are generally in line with those of small-molecular trappers, although also important differences exist. These two trapping platforms do not overlap. 3. It is anticipated that the in vitro adduct studies could be fully interpreted only in conjunction with toxicity biomarker (such as the Nrf2 pathway) information from whole cells or tissues. However, while there are tools to characterize the chemical liability and there are correlation between individual/integrated endpoints and toxicity, there are still severe gaps in understanding the mechanisms behind the link between reactive metabolites and adverse effects.

  1. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

    PubMed

    Fahmi, Odette A; Shebley, Mohamad; Palamanda, Jairam; Sinz, Michael W; Ramsden, Diane; Einolf, Heidi J; Chen, Liangfu; Wang, Hongbing

    2016-10-01

    Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

  2. ITC commentary on the prediction of digoxin clinical drug-drug interactions from in vitro transporter assays.

    PubMed

    Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J

    2014-09-01

    The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.

  3. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species

    NASA Astrophysics Data System (ADS)

    Tan, Samuel; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I.

    2017-02-01

    The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current "gold standard" method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller-Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ɛΔ s=E/INT O SEIN T S S , calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3-4 usually observed for the ratio of absolute correlation energy, ɛs=E/OSES S , in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups: (1) complexes with ɛΔ s< 1 and (2) complexes with ɛΔ s≥ 1 . A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning's basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol-1 and maximum errors below 6.2 kJ mol-1. The new modification, spin-ratio scaled second-order Møller-Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic

  4. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  5. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  6. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    ERIC Educational Resources Information Center

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  7. Women's age and embryo developmental speed accurately predict clinical pregnancy after single vitrified-warmed blastocyst transfer.

    PubMed

    Kato, Keiichi; Ueno, Satoshi; Yabuuchi, Akiko; Uchiyama, Kazuo; Okuno, Takashi; Kobayashi, Tamotsu; Segawa, Tomoya; Teramoto, Shokichi

    2014-10-01

    The aim of this study was to establish a simple, objective blastocyst grading system using women's age and embryo developmental speed to predict clinical pregnancy after single vitrified-warmed blastocyst transfer. A 6-year retrospective cohort study was conducted in a private infertility centre. A total of 7341 single vitrified-armed blastocyst transfer cycles were included, divided into those carried out between 2006 and 2011 (6046 cycles) and 2012 (1295 cycles). Clinical pregnancy rate, ongoing pregnancy rate and delivery rates were stratified by women's age (<35, 35-37, 38-39, 40-41, 42-45 years) and time to blastocyst expansion (<120, 120-129, 130-139, 140-149, >149 h) as embryo developmental speed. In all the age groups, clinical pregnancy rate, ongoing pregnancy rate and delivery rates decreased as the embryo developmental speed decreased (P < 0.0001). A simple five-grade score based on women's age and embryo developmental speed was determined by actual clinical pregnancy rates observed in the 2006-2011 cohort. Subsequently, the novel grading score was validated in the 2012 cohort (1295 cycles), finding an excellent association. In conclusion, we established a novel blastocyst grading system using women's age and embryo developmental speed as objective parameters.

  8. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  9. New in vitro system to predict chemotherapeutic efficacy of drug combinations in fresh tumor samples

    PubMed Central

    Weidemüller, Paula; Krapfl, Jens; Yassin-Kelepir, Rauaa; Job, Laura; Fraefel, Marius; Braicu, Ioana; Kopp-Schneider, Annette; Sehouli, Jalid; De Wilde, Rudy Leon

    2017-01-01

    Background To find the best individual chemotherapy for cancer patients, the efficacy of different chemotherapeutic drugs can be predicted by pretesting tumor samples in vitro via the chemotherapy-resistance (CTR)-Test®. Although drug combinations are widely used among cancer therapy, so far only single drugs are tested by this and other tests. However, several first line chemotherapies are combining two or more chemotherapeutics, leading to the necessity of drug combination testing methods. Methods We established a system to measure and predict the efficacy of chemotherapeutic drug combinations with the help of the Loewe additivity concept in combination with the CTR-test. A combination is measured by using half of the monotherapy’s concentration of both drugs simultaneously. With this method, the efficacy of a combination can also be calculated based on single drug measurements. Results The established system was tested on a data set of ovarian carcinoma samples using the combination carboplatin and paclitaxel and confirmed by using other tumor species and chemotherapeutics. Comparing the measured and the calculated values of the combination testings revealed a high correlation. Additionally, in 70% of the cases the measured and the calculated values lead to the same chemotherapeutic resistance category of the tumor. Conclusion Our data suggest that the best drug combination consists of the most efficient single drugs and the worst drug combination of the least efficient single drugs. Our results showed that single measurements are sufficient to predict combinations in specific cases but there are exceptions in which it is necessary to measure combinations, which is possible with the presented system. PMID:28265509

  10. A New Drug Combinatory Effect Prediction Algorithm on the Cancer Cell Based on Gene Expression and Dose-Response Curve.

    PubMed

    Goswami, C Pankaj; Cheng, L; Alexander, P S; Singal, A; Li, L

    2015-02-01

    Gene expression data before and after treatment with an individual drug and the IC20 of dose-response data were utilized to predict two drugs' interaction effects on a diffuse large B-cell lymphoma (DLBCL) cancer cell. A novel drug interaction scoring algorithm was developed to account for either synergistic or antagonistic effects between drug combinations. Different core gene selection schemes were investigated, which included the whole gene set, the drug-sensitive gene set, the drug-sensitive minus drug-resistant gene set, and the known drug target gene set. The prediction scores were compared with the observed drug interaction data at 6, 12, and 24 hours with a probability concordance (PC) index. The test result shows the concordance between observed and predicted drug interaction ranking reaches a PC index of 0.605. The scoring reliability and efficiency was further confirmed in five drug interaction studies published in the GEO database.

  11. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  12. [Biopharmaceutical classification system--experimental model of the prediction of drug bioavailability].

    PubMed

    Golovenko, N Ia; Borisiuk, I Iu

    2008-01-01

    Biopharmaceutical classification system (BCS) is based on solubility tests; for various drugs they correlate with their bioavailability in human body. It is widely used in design and development of innovation drugs, new dosage forms (permeability amplifiers), in clinical pharmacology (drug-drug, drug-food interaction) and also by regulation agencies of several countries as the scientific approach, for testing of waiver on bioavailability. Review considers modern concepts and theoretical bases for prediction of bioavailability according to BCS. It gives characteristics of fundamental parameters of the system: absorption number, solubility number and the ratio of dose to the soluble part of the drug. Possible versions of BCS modification for its subsequent optimization are discussed.

  13. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses.

    PubMed

    Ghanem, Ashraf; Aboul-Enein, Mohammed Nabil; El-Azzouny, Aida; El-Behairy, Mohammed F

    2010-02-12

    The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.

  14. A hadoop-based method to predict potential effective drug combination.

    PubMed

    Sun, Yifan; Xiong, Yi; Xu, Qian; Wei, Dongqing

    2014-01-01

    Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request.

  15. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling.

    PubMed

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-08-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.

  16. BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    PubMed Central

    2011-01-01

    Background The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have important clinical characteristics of interest. Results BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450 enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%). Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task. Conclusions BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation. PMID:21510898

  17. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    PubMed

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  18. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  19. Impact of computational structure-based predictive toxicology in drug discovery.

    PubMed

    Mohan, Chethampadi Gopi

    2011-06-01

    Computational tools for predicting toxicity have been envisioned to have the potential to broadly impact up on the attrition rate of compounds in pre-clinical drug discovery and development. An integrated approach of computer-assisted, predictive, and physico-chemical properties of a compound, along with its in vitro and in vivo analysis, needs to be routinely exercised in the lead identification and lead optimization processes. Starting with a good lead can save a lot of money and it can significantly reduce the entire drug discovery process. The journey towards triple R's- reduce, replace and refine, further proves to be successful in predicting adverse drug reactions in patients (or animals) enrolled in clinical trials. However, the impact of predictive toxicity analysis was modest and relatively narrow in scope, due to the limited domain knowledge in this field. It is important to note that advances within medical science and newer approaches in drug development will require predictive toxicology applications to be viable. The field of computational toxicology has been heading in a direction more relevant to human diseases by reducing the adverse drug reactions. Therefore, efforts must be directed to integrating these tools relevant to the goal of preventing undesired toxicity in pre-clinical trials followed by different phases of clinical trials.

  20. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    PubMed Central

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research. PMID:28079135

  1. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    PubMed

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  2. Predicting human drug toxicity and safety via animal tests: can any one species predict drug toxicity in any other, and do monkeys help?

    PubMed

    Bailey, Jarrod; Thew, Michelle; Balls, Michael

    2015-12-01

    Animals are still widely used in drug development and safety tests, despite evidence for their lack of predictive value. In this regard, we recently showed, by producing Likelihood Ratios (LRs) for an extensive data set of over 3,000 drugs with both animal and human data, that the absence of toxicity in animals provides little or virtually no evidential weight that adverse drug reactions will also be absent in humans. While our analyses suggest that the presence of toxicity in one species may sometimes add evidential weight for risk of toxicity in another, the LRs are extremely inconsistent, varying substantially for different classes of drugs. Here, we present further data from analyses of other species pairs, including non-human primates (NHPs), which support our previous conclusions, and also show in particular that test results inferring an absence of toxicity in one species provide no evidential weight with regard to toxicity in any other species, even when data from NHPs and humans are compared. Our results for species including humans, NHPs, dogs, mice, rabbits, and rats, have major implications for the value of animal tests in predicting human toxicity, and demand that human-focused alternative methods are adopted in their place as a matter of urgency.

  3. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses.

  4. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis.

    PubMed

    Liu, Chunye; Zhang, Xuejiao; Jing, Hui; Miao, Yanqing; Zhao, Lingzhi; Han, Yan; Cui, Cuixia

    2015-10-01

    Oriented covalent immobilized β2 -adrenergic receptor (β2 -AR) CE (OIRCE) was developed to determine the interactions between a set of natural extracts of Radix Paeoniae Rubra (NERPR) and β2 -AR, and to predict the activity of NERPR. The inner capillary surface is chemically bonded with stable β2 -AR coating via microwave-assisted technical synthesis. The modified capillaries were characterized via infrared spectroscopy and fluorescence microscopy. Furthermore, the bonding amounts of β2 -AR were first obtained via fluorescence spectroscopy method. In determining the amount of bonded β2 -AR, the regression equation A  =  576 707C + 35.449 and the correlation coefficient 0.9995 were obtained. This result revealed an excellent linear relationship in the range of 2 × 10(-4)  mg/mL to 1 × 10(-3)  mg/mL. The normalized capacity factor (KRCE ) was obtained using OIRCE in evaluating drug-receptor interactions. Related theories and equations were used to calculate KRCE values from apparent migration times of a solute and EOF. The order of KRCE and the binding constant (Kb ) values between drugs and β2 -AR was well consistent. The results confirmed that the OIRCE and KRCE values can be effectually used to investigate drug-receptor interactions, and OIRCE has the potential to predict drug activity and to select leading compounds from natural chemicals.

  5. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility.

    PubMed

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei; Olesen, Niels Erik; Jones, David S; Kozyra, Agnieszka; Löbmann, Korbinian; Paluch, Krzysztof; Brennan, Claire Marie; Holm, René; Healy, Anne Marie; Andrews, Gavin P; Rades, Thomas

    2015-09-08

    In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.

  6. Development of a hybrid physiologically based pharmacokinetic model with drug-specific scaling factors in rat to improve prediction of human pharmacokinetics.

    PubMed

    Sayama, Hiroyuki; Komura, Hiroshi; Kogayu, Motohiro; Iwaki, Masahiro

    2013-11-01

    Accurate prediction of pharmacokinetics (PK) in humans has been a vital part of drug discovery. The aims of this study are to verify the usefulness of scaling factors for clearance (CL) and apparent volume of distribution at the steady state (Vss ) estimated from the difference between observed and predicted PK profiles in rats for human PK prediction, and to develop a novel hybrid physiologically based pharmacokinetic (PBPK) model with the two scaling factors. The human prediction accuracies for CL with in vitro-in vivo extrapolation and Vss with a tissue composition model were improved by using rat-scaling factors. This improvement was explainable by data that the scaling factors for CL and Vss in rats were correlated with those in humans. The predictability of plasma concentration-time profiles by the hybrid PBPK model incorporating two scaling factors was compared mainly with that by the conventional PBPK model. The hybrid PBPK model yielded higher prediction accuracy for plasma concentrations than the conventional method. Furthermore, we proposed a tiered approach using the three prediction methods, including the hybrid Dedrick approach, that were previously reported (Sayama H, Komura H, Kogayu M. 2013. Drug Metab Dispos 41:498-507), taking the available information in the individual stages of drug discovery and development into consideration.

  7. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  8. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  9. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  10. Large-Scale Predictive Drug Safety: From Structural Alerts to Biological Mechanisms.

    PubMed

    Garcia-Serna, Ricard; Vidal, David; Remez, Nikita; Mestres, Jordi

    2015-10-19

    The recent explosion of data linking drugs, proteins, and pathways with safety events has promoted the development of integrative systems approaches to large-scale predictive drug safety. The added value of such approaches is that, beyond the traditional identification of potentially labile chemical fragments for selected toxicity end points, they have the potential to provide mechanistic insights for a much larger and diverse set of safety events in a statistically sound nonsupervised manner, based on the similarity to drug classes, the interaction with secondary targets, and the interference with biological pathways. The combined identification of chemical and biological hazards enhances our ability to assess the safety risk of bioactive small molecules with higher confidence than that using structural alerts only. We are still a very long way from reliably predicting drug safety, but advances toward gaining a better understanding of the mechanisms leading to adverse outcomes represent a step forward in this direction.

  11. Optimization of human dose prediction by using quantitative and translational pharmacology in drug discovery.

    PubMed

    Bueters, Tjerk; Gibson, Christopher; Visser, Sandra A G

    2015-01-01

    In this perspective article, we explain how quantitative and translational pharmacology, when well-implemented, is believed to lead to improved clinical candidates and drug targets that are differentiated from current treatment options. Quantitative and translational pharmacology aims to build and continuously improve the quantitative relationship between drug exposure, target engagement, efficacy, safety and its interspecies relationship at every phase of drug discovery. Drug hunters should consider and apply these concepts to develop compounds with a higher probability of interrogating the clinical biological hypothesis. We offer different approaches to set an initial effective concentration or pharmacokinetic-pharmacodynamic target in man and to predict human pharmacokinetics that determine together the predicted human dose and dose schedule. All concepts are illustrated with ample literature examples.

  12. Multireference correlation consistent composite approach [MR-ccCA]: toward accurate prediction of the energetics of excited and transition state chemistry.

    PubMed

    Oyedepo, Gbenga A; Wilson, Angela K

    2010-08-26

    The correlation consistent Composite Approach, ccCA [ Deyonker , N. J. ; Cundari , T. R. ; Wilson , A. K. J. Chem. Phys. 2006 , 124 , 114104 ] has been demonstrated to predict accurate thermochemical properties of chemical species that can be described by a single configurational reference state, and at reduced computational cost, as compared with ab initio methods such as CCSD(T) used in combination with large basis sets. We have developed three variants of a multireference equivalent of this successful theoretical model. The method, called the multireference correlation consistent composite approach (MR-ccCA), is designed to predict the thermochemical properties of reactive intermediates, excited state species, and transition states to within chemical accuracy (e.g., 1 kcal/mol for enthalpies of formation) of reliable experimental values. In this study, we have demonstrated the utility of MR-ccCA: (1) in the determination of the adiabatic singlet-triplet energy separations and enthalpies of formation for the ground states for a set of diradicals and unsaturated compounds, and (2) in the prediction of energetic barriers to internal rotation, in ethylene and its heavier congener, disilene. Additionally, we have utilized MR-ccCA to predict the enthalpies of formation of the low-lying excited states of all the species considered. MR-ccCA is shown to give quantitative results without reliance upon empirically derived parameters, making it suitable for application to study novel chemical systems with significant nondynamical correlation effects.

  13. Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model.

    PubMed

    Reichen, J; Widmer, T; Cotting, J

    1991-09-01

    We retrospectively analyzed the predictive accuracy of serial determinations of galactose elimination capacity in 61 patients with primary biliary cirrhosis. Death was predicted from the time that the regression line describing the decline in galactose elimination capacity vs. time intersected a value of 4 mg.min-1.kg-1. Thirty-one patients exhibited decreasing galactose elimination capacity; in 11 patients it remained stable and in 19 patients only one value was available. Among those patients with decreasing galactose elimination capacity, 10 died and three underwent liver transplantation; prediction of death was accurate to 7 +/- 19 mo. This criterion incorrectly predicted death in two patients with portal-vein thrombosis; otherwise, it did better than or as well as the Mayo clinic score. The latter was also tested on our patients and was found to adequately describe risk in yet another independent population of patients with primary biliary cirrhosis. Cox regression analysis selected only bilirubin and galactose elimination capacity, however, as independent predictors of death. We submit that serial determination of galactose elimination capacity in patients with primary biliary cirrhosis may be a useful adjunct to optimize the timing of liver transplantation and to evaluate new pharmacological treatment modalities of this disease.

  14. BDDCS Predictions, Self-Correcting Aspects of BDDCS Assignments, BDDCS Assignment Corrections, and Classification for more than 175 Additional Drugs.

    PubMed

    Hosey, Chelsea M; Chan, Rosa; Benet, Leslie Z

    2016-01-01

    The biopharmaceutics drug disposition classification system was developed in 2005 by Wu and Benet as a tool to predict metabolizing enzyme and drug transporter effects on drug disposition. The system was modified from the biopharmaceutics classification system and classifies drugs according to their extent of metabolism and their water solubility. By 2010, Benet et al. had classified over 900 drugs. In this paper, we incorporate more than 175 drugs into the system and amend the classification of 13 drugs. We discuss current and additional applications of BDDCS, which include predicting drug-drug and endogenous substrate interactions, pharmacogenomic effects, food effects, elimination routes, central nervous system exposure, toxicity, and environmental impacts of drugs. When predictions and classes are not aligned, the system detects an error and is able to self-correct, generally indicating a problem with initial class assignment and/or measurements determining such assignments.

  15. Lost in translation: preclinical studies on 3,4-methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans

    PubMed Central

    Green, AR; King, MV; Shortall, SE; Fone, KCF

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) induces both acute adverse effects and long-term neurotoxic loss of brain 5-HT neurones in laboratory animals. However, when choosing doses, most preclinical studies have paid little attention to the pharmacokinetics of the drug in humans or animals. The recreational use of MDMA and current clinical investigations of the drug for therapeutic purposes demand better translational pharmacology to allow accurate risk assessment of its ability to induce adverse events. Recent pharmacokinetic studies on MDMA in animals and humans are reviewed and indicate that the risks following MDMA ingestion should be re-evaluated. Acute behavioural and body temperature changes result from rapid MDMA-induced monoamine release, whereas long-term neurotoxicity is primarily caused by metabolites of the drug. Therefore acute physiological changes in humans are fairly accurately mimicked in animals by appropriate dosing, although allometric dosing calculations have little value. Long-term changes require MDMA to be metabolized in a similar manner in experimental animals and humans. However, the rate of metabolism of MDMA and its major metabolites is slower in humans than rats or monkeys, potentially allowing endogenous neuroprotective mechanisms to function in a species specific manner. Furthermore acute hyperthermia in humans probably limits the chance of recreational users ingesting sufficient MDMA to produce neurotoxicity, unlike in the rat. MDMA also inhibits the major enzyme responsible for its metabolism in humans thereby also assisting in preventing neurotoxicity. These observations question whether MDMA alone produces long-term 5-HT neurotoxicity in human brain, although when taken in combination with other recreational drugs it may induce neurotoxicity. LINKED ARTICLES This article is commented on by Parrott, pp. 1518–1520 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01941.x and to view the the

  16. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations.

    PubMed

    Huskinson, Sally L; Naylor, Jennifer E; Rowlett, James K; Freeman, Kevin B

    2014-12-01

    Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'.

  17. Ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry for accurate analysis of glycerophospholipids and sphingolipids in drug resistance tumor cells.

    PubMed

    Li, Lin; Wang, Linlin; Shangguan, Dihua; Wei, Yanbo; Han, Juanjuan; Xiong, Shaoxiang; Zhao, Zhenwen

    2015-02-13

    Glycerophospholipids and sphingolipids are important signaling molecules which are involved in many physiological and pathological processes. Here we reported an effective method for accurate analysis of these lipids by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The methanol method was adopted for extraction of lipids due to its simplicity and high efficiency. It was found that two subclasses of sphingolipids, sulfatide (ST) and cerebroside (CB), were heat labile, so a decreased temperature in the ion source of MS might be necessary for these compounds analysis. In addition, it was found that the isobaric interferences were commonly existent, for example, the m/z of 16:0/18:1 PC containing two (13)C isotope being identical to that of 16:0/18:0 PC determined by a unit mass resolution mass spectrometer; therefore, a baseline separation of interferential species was required to maintain selectivity and accuracy of analysis. In this work, an ultra-high-performance liquid chromatography (UHPLC)-based method was developed for separation of interferential species. Moreover, in order to deal with the characteristics of different polarity and wide dynamic range of glycerophospholipids and sphingolipids in biological systems, three detecting conditions were combined together for comprehensive and rational analysis of glycerophospholipids and sphingolipids. The method was utilized to profile glycerophospholipids and sphingolipids in drug resistant tumor cells. Our results showed that many lipids were significantly changed in drug resistant tumor cells compared to paired drug sensitive tumor cells. This is a systematic report about the isobaric interferences and heat labile compounds interferences when analyzing glycerophospholipids and sphingolipids by ESI-MS/MS, which aids in ruling out one potential source of systematic error to ensure the accuracy of analysis.

  18. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

    PubMed

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-10

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs.

  19. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors

    PubMed Central

    Fu, Chien-wei; Lin, Thy-Hou

    2017-01-01

    As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA− representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes. PMID:28072829

  20. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors.

    PubMed

    Fu, Chien-Wei; Lin, Thy-Hou

    2017-01-01

    As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.

  1. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  2. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    PubMed

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    dissolution of BCS class IIb drugs, dasatinib as a model drug, including the different gastric condition. The maximum dissolution of dasatinib with USP dissolution apparatus II was less than 1% in pH 6.5 SIF, while the one with mGIS (pH 1.2 SGF/pH 6.5 SIF) reached almost 100%. The supersaturation and precipitation of dasatinib were observed in the in vitro dissolution studies with mGIS but not with USP apparatus II. Additionally, dasatinib dissolution with mGIS was reduced to less than 10% when the gastric pH was elevated, suggesting the co-administration of acid reducing agents will decrease the oral bioavailability of dasatinib. Accurate prediction of in vivo drug dissolution would be beneficial for assuring product safety and efficacy for patients. To this end, we have created a new in vitro dissolution system, mGIS, to predict the in vivo dissolution phenomena of a weak base drug, dasatinib. The experimental results when combined with in silico simulation suggest that the mGIS predicted the in vivo dissolution well due to the elevation of gastric pH. Thus, mGIS might be suitable to predict in vivo dissolution of weak basic drugs. This mGIS methodology is expected to significantly advance the prediction of in vivo drug dissolution. It is also expected to assist in optimizing product development and drug formulation design in support of Quality by Design (QbD) initiatives.

  3. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.

    PubMed

    Zhang, Chen; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2016-04-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure in the US and less severe liver injury worldwide. It is also one of the major reasons of drug withdrawal from the market. Thus, DILI has become one of the most important concerns of drugs, and should be predicted in very early stage of drug discovery process. In this study, a comprehensive data set containing 1317 diverse compounds was collected from publications. Then, high accuracy classification models were built using five machine learning methods based on MACCS and FP4 fingerprints after evaluating by substructure pattern recognition method. The best model was built using SVM method together with FP4 fingerprint at the IG value threshold of 0.0005. Its overall predictive accuracies were 79.7 % and 64.5 % for the training and test sets, separately, which yielded overall accuracy of 75.0 % for the external validation dataset, consisting of 88 compounds collected from a benchmark DILI database - the Liver Toxicity Knowledge Base. This model could be used for drug-induced liver toxicity prediction. Moreover, some key substructure patterns correlated with drug-induced liver toxicity were also identified as structural alerts.

  4. A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

    PubMed Central

    Xu, Xue; Li, Yan; Zhao, Huihui; Fang, Yupeng; Li, Xiuxiu; Zhou, Wei; Wang, Wei; Wang, Yonghua

    2012-01-01

    In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respe