Science.gov

Sample records for accurately predict drug

  1. How accurately can we predict the melting points of drug-like compounds?

    PubMed

    Tetko, Igor V; Sushko, Yurii; Novotarskyi, Sergii; Patiny, Luc; Kondratov, Ivan; Petrenko, Alexander E; Charochkina, Larisa; Asiri, Abdullah M

    2014-12-22

    This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638.

  2. How accurately can we predict the melting points of drug-like compounds?

    PubMed

    Tetko, Igor V; Sushko, Yurii; Novotarskyi, Sergii; Patiny, Luc; Kondratov, Ivan; Petrenko, Alexander E; Charochkina, Larisa; Asiri, Abdullah M

    2014-12-22

    This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638. PMID:25489863

  3. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  4. Hounsfield unit density accurately predicts ESWL success.

    PubMed

    Magnuson, William J; Tomera, Kevin M; Lance, Raymond S

    2005-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is a commonly used non-invasive treatment for urolithiasis. Helical CT scans provide much better and detailed imaging of the patient with urolithiasis including the ability to measure density of urinary stones. In this study we tested the hypothesis that density of urinary calculi as measured by CT can predict successful ESWL treatment. 198 patients were treated at Alaska Urological Associates with ESWL between January 2002 and April 2004. Of these 101 met study inclusion with accessible CT scans and stones ranging from 5-15 mm. Follow-up imaging demonstrated stone freedom in 74.2%. The overall mean Houndsfield density value for stone-free compared to residual stone groups were significantly different ( 93.61 vs 122.80 p < 0.0001). We determined by receiver operator curve (ROC) that HDV of 93 or less carries a 90% or better chance of stone freedom following ESWL for upper tract calculi between 5-15mm.

  5. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    PubMed Central

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229

  6. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  7. On the Accurate Prediction of CME Arrival At the Earth

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hess, Phillip

    2016-07-01

    We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.

  8. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  9. Plant diversity accurately predicts insect diversity in two tropical landscapes.

    PubMed

    Zhang, Kai; Lin, Siliang; Ji, Yinqiu; Yang, Chenxue; Wang, Xiaoyang; Yang, Chunyan; Wang, Hesheng; Jiang, Haisheng; Harrison, Rhett D; Yu, Douglas W

    2016-09-01

    Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (Science, 338, 2012 and 1481) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (i) test competing explanations for tropical arthropod megadiversity, (ii) improve estimates of global eukaryotic species diversity, and (iii) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise-trap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity. PMID:27474399

  10. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  11. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  12. Passive samplers accurately predict PAH levels in resident crayfish.

    PubMed

    Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A

    2016-02-15

    Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests

  13. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782

  14. Prediction of Drug Clearance and Drug-Drug Interactions in Microscale Cultures of Human Hepatocytes.

    PubMed

    Lin, Christine; Shi, Julianne; Moore, Amanda; Khetani, Salman R

    2016-01-01

    Accurate prediction of in vivo hepatic drug clearance using in vitro assays is important to properly estimate clinical dosing regimens. Clearance of low-turnover compounds is especially difficult to predict using short-lived suspensions of unpooled primary human hepatocytes (PHHs) and functionally declining PHH monolayers. Micropatterned cocultures (MPCCs) of PHHs and 3T3-J2 fibroblasts have been shown previously to display major liver functions for several weeks in vitro. In this study, we first characterized long-term activities of major cytochrome P450 enzymes in MPCCs created from unpooled cryopreserved PHH donors. MPCCs were then used to predict the clearance of 26 drugs that exhibit a wide range of turnover rates in vivo (0.05-19.5 ml/min per kilogram). MPCCs predicted 73, 92, and 96% of drug clearance values for all tested drugs within 2-fold, 3-fold, and 4-fold of in vivo values, respectively. There was good correlation (R(2) = 0.94, slope = 1.05) of predictions between the two PHH donors. On the other hand, suspension hepatocytes and conventional monolayers created from the same donor had significantly reduced predictive capacity (i.e., 30-50% clearance values within 4-fold of in vivo), and were not able to metabolize several drugs. Finally, we modulated drug clearance in MPCCs by inducing or inhibiting P450s. Rifampin-mediated CYP3A4 induction increased midazolam clearance by 73%, while CYP3A4 inhibition with ritonavir decreased midazolam clearance by 79%. Similarly, quinidine-mediated CYP2D6 inhibition reduced clearance of dextromethorphan and desipramine by 71 and 22%, respectively. In conclusion, MPCCs created using cryopreserved unpooled PHHs can be used for drug clearance predictions and to model drug-drug interactions. PMID:26452722

  15. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  16. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  17. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  18. Optimal Drug Prediction from Personal Genomics Profiles

    PubMed Central

    Sheng, Jianting; Li, Fuhai; Wong, Stephen T.C.

    2015-01-01

    Cancer patients often show heterogeneous drug responses such that only a small subset of patients is sensitive to a given anti-cancer drug. With the availability of large-scale genomic profiling via next generation sequencing (NGS), it is now economically feasible to profile the whole transcriptome and genome of individual patients in order to identify their unique genetic mutations and differentially expressed genes, which are believed to be responsible for heterogeneous drug responses. Although subtyping analysis has identified patient subgroups sharing common biomarkers, there is no effective method to predict the drug response of individual patients precisely and reliably. Herein, we propose a novel computational algorithm to predict the drug response of individual patients based on personal genomic profiles, as well as pharmacogenomic and drug sensitivity data. Specifically, more than 600 cancer cell lines (viewed as individual patients) across over 50 types of cancers and their responses to 75 drugs were obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The drug-specific sensitivity signatures were determined from the changes in genomic profiles of individual cell lines in response to a specific drug. The optimal drugs for individual cell lines were predicted by integrating the votes from other cell lines. The experimental results show that the proposed drug prediction algorithm can be used to improve greatly the reliability of finding optimal drugs for individual patients and will thus form a key component in the precision medicine infrastructure for oncology care. PMID:25781964

  19. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations.

    PubMed

    Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri

    2014-01-01

    Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp.

  20. Accurately Predicting Complex Reaction Kinetics from First Principles

    NASA Astrophysics Data System (ADS)

    Green, William

    Many important systems contain a multitude of reactive chemical species, some of which react on a timescale faster than collisional thermalization, i.e. they never achieve a Boltzmann energy distribution. Usually it is impossible to fully elucidate the processes by experiments alone. Here we report recent progress toward predicting the time-evolving composition of these systems a priori: how unexpected reactions can be discovered on the computer, how reaction rates are computed from first principles, and how the many individual reactions are efficiently combined into a predictive simulation for the whole system. Some experimental tests of the a priori predictions are also presented.

  1. Does more accurate exposure prediction necessarily improve health effect estimates?

    PubMed

    Szpiro, Adam A; Paciorek, Christopher J; Sheppard, Lianne

    2011-09-01

    A unique challenge in air pollution cohort studies and similar applications in environmental epidemiology is that exposure is not measured directly at subjects' locations. Instead, pollution data from monitoring stations at some distance from the study subjects are used to predict exposures, and these predicted exposures are used to estimate the health effect parameter of interest. It is usually assumed that minimizing the error in predicting the true exposure will improve health effect estimation. We show in a simulation study that this is not always the case. We interpret our results in light of recently developed statistical theory for measurement error, and we discuss implications for the design and analysis of epidemiologic research.

  2. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  3. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  4. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    PubMed Central

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  5. PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations

    PubMed Central

    Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri

    2014-01-01

    Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961

  6. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System.

    PubMed

    Benet, Leslie Z

    2010-03-01

    A Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters in determining drug bioavailability and disposition. BDDCS may be useful in predicting: routes of drug elimination; efflux and absorptive transporters effects on oral absorption; when transporter-enzyme interplay will yield clinically significant effects (e.g. low drug bioavailability and drug-drug interactions); and transporter effects on post-absorptive systemic drug levels following oral and i.v. dosing. For highly soluble, highly permeable Class 1 compounds, metabolism is the major route of elimination and transporter effects on drug bioavailability and hepatic disposition are negligible. In contrast for the poorly permeable Class 3 and 4 compounds, metabolism only plays a minor role in drug elimination. Uptake transporters are major determinants of drug bioavailability for these poorly permeable drugs and both uptake and efflux transporters could be important for drug elimination. Highly permeable, poorly soluble, extensively metabolized Class 2 compounds present the most complicated relationship in defining the impact of transporters due to a marked transporter-enzyme interplay. Uptake transporters are unimportant for Class 2 drug bioavailability, (ensure space after,) but can play a major role in hepatic and renal elimination. Efflux transporters have major effects on drug bioavailability, absorption, metabolism and elimination of Class 2 drugs. It is difficult to accurately characterize drugs in terms of the high permeability criteria, i.e. > or =90% absorbed. We suggest that extensive metabolism may substitute for the high permeability characteristic, and that BDDCS using elimination criteria may provide predictability in characterizing drug disposition profiles for all classes of compounds.

  7. Accurate contact predictions using covariation techniques and machine learning

    PubMed Central

    Kosciolek, Tomasz

    2015-01-01

    ABSTRACT Here we present the results of residue–residue contact predictions achieved in CASP11 by the CONSIP2 server, which is based around our MetaPSICOV contact prediction method. On a set of 40 target domains with a median family size of around 40 effective sequences, our server achieved an average top‐L/5 long‐range contact precision of 27%. MetaPSICOV method bases on a combination of classical contact prediction features, enhanced with three distinct covariation methods embedded in a two‐stage neural network predictor. Some unique features of our approach are (1) the tuning between the classical and covariation features depending on the depth of the input alignment and (2) a hybrid approach to generate deepest possible multiple‐sequence alignments by combining jackHMMer and HHblits. We discuss the CONSIP2 pipeline, our results and show that where the method underperformed, the major factor was relying on a fixed set of parameters for the initial sequence alignments and not attempting to perform domain splitting as a preprocessing step. Proteins 2016; 84(Suppl 1):145–151. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26205532

  8. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  9. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting

    PubMed Central

    Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.

    2016-01-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  10. QSAR Modeling and Prediction of Drug-Drug Interactions.

    PubMed

    Zakharov, Alexey V; Varlamova, Ekaterina V; Lagunin, Alexey A; Dmitriev, Alexander V; Muratov, Eugene N; Fourches, Denis; Kuz'min, Victor E; Poroikov, Vladimir V; Tropsha, Alexander; Nicklaus, Marc C

    2016-02-01

    Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year. As up to 30% of all ADRs are believed to be caused by drug-drug interactions (DDIs), typically mediated by cytochrome P450s, possibilities to predict DDIs from existing knowledge are important. We collected data from public sources on 1485, 2628, 4371, and 27,966 possible DDIs mediated by four cytochrome P450 isoforms 1A2, 2C9, 2D6, and 3A4 for 55, 73, 94, and 237 drugs, respectively. For each of these data sets, we developed and validated QSAR models for the prediction of DDIs. As a unique feature of our approach, the interacting drug pairs were represented as binary chemical mixtures in a 1:1 ratio. We used two types of chemical descriptors: quantitative neighborhoods of atoms (QNA) and simplex descriptors. Radial basis functions with self-consistent regression (RBF-SCR) and random forest (RF) were utilized to build QSAR models predicting the likelihood of DDIs for any pair of drug molecules. Our models showed balanced accuracy of 72-79% for the external test sets with a coverage of 81.36-100% when a conservative threshold for the model's applicability domain was applied. We generated virtually all possible binary combinations of marketed drugs and employed our models to identify drug pairs predicted to be instances of DDI. More than 4500 of these predicted DDIs that were not found in our training sets were confirmed by data from the DrugBank database. PMID:26669717

  11. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  12. Prediction of multidimensional drug dose responses based on measurements of drug pairs

    PubMed Central

    Zimmer, Anat; Katzir, Itay; Dekel, Erez; Alon, Uri

    2016-01-01

    Finding potent multidrug combinations against cancer and infections is a pressing therapeutic challenge; however, screening all combinations is difficult because the number of experiments grows exponentially with the number of drugs and doses. To address this, we present a mathematical model that predicts the effects of three or more antibiotics or anticancer drugs at all doses based only on measurements of drug pairs at a few doses, without need for mechanistic information. The model provides accurate predictions on available data for antibiotic combinations, and on experiments presented here on the response matrix of three cancer drugs at eight doses per drug. This approach offers a way to search for effective multidrug combinations using a small number of experiments. PMID:27562164

  13. Change in BMI accurately predicted by social exposure to acquaintances.

    PubMed

    Oloritun, Rahman O; Ouarda, Taha B M J; Moturu, Sai; Madan, Anmol; Pentland, Alex Sandy; Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R(2). This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends.

  14. Metabolic Network Prediction of Drug Side Effects.

    PubMed

    Shaked, Itay; Oberhardt, Matthew A; Atias, Nir; Sharan, Roded; Ruppin, Eytan

    2016-03-23

    Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially predictive (AUC > 0.7) for >70 drug side effects, including very serious ones such as interstitial nephritis and extrapyramidal disorders. We evaluate AMPP's predictive signal through cross-validation, comparison across multiple versions of a side effects database, and co-occurrence analysis of drug side effect associations in scientific abstracts (hypergeometric p value = 2.2e-40). AMPP outperforms a previous biochemical structure-based method in predicting metabolically based side effects (aggregate AUC = 0.65 versus 0.59). Importantly, AMPP enables the identification of key metabolic reactions and biomarkers that are predictive of specific side effects. Taken together, this work lays a foundation for future detection of metabolically grounded side effects during early stages of drug development. PMID:27135366

  15. Automatic construction of a large-scale and accurate drug-side-effect association knowledge base from biomedical literature.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2014-10-01

    Systems approaches to studying drug-side-effect (drug-SE) associations are emerging as an active research area for drug target discovery, drug repositioning, and drug toxicity prediction. However, currently available drug-SE association databases are far from being complete. Herein, in an effort to increase the data completeness of current drug-SE relationship resources, we present an automatic learning approach to accurately extract drug-SE pairs from the vast amount of published biomedical literature, a rich knowledge source of side effect information for commercial, experimental, and even failed drugs. For the text corpus, we used 119,085,682 MEDLINE sentences and their parse trees. We used known drug-SE associations derived from US Food and Drug Administration (FDA) drug labels as prior knowledge to find relevant sentences and parse trees. We extracted syntactic patterns associated with drug-SE pairs from the resulting set of parse trees. We developed pattern-ranking algorithms to prioritize drug-SE-specific patterns. We then selected a set of patterns with both high precisions and recalls in order to extract drug-SE pairs from the entire MEDLINE. In total, we extracted 38,871 drug-SE pairs from MEDLINE using the learned patterns, the majority of which have not been captured in FDA drug labels to date. On average, our knowledge-driven pattern-learning approach in extracting drug-SE pairs from MEDLINE has achieved a precision of 0.833, a recall of 0.407, and an F1 of 0.545. We compared our approach to a support vector machine (SVM)-based machine learning and a co-occurrence statistics-based approach. We show that the pattern-learning approach is largely complementary to the SVM- and co-occurrence-based approaches with significantly higher precision and F1 but lower recall. We demonstrated by correlation analysis that the extracted drug side effects correlate positively with both drug targets, metabolism, and indications.

  16. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. PMID:26199424

  17. Mind-set and close relationships: when bias leads to (In)accurate predictions.

    PubMed

    Gagné, F M; Lydon, J E

    2001-07-01

    The authors investigated whether mind-set influences the accuracy of relationship predictions. Because people are more biased in their information processing when thinking about implementing an important goal, relationship predictions made in an implemental mind-set were expected to be less accurate than those made in a more impartial deliberative mind-set. In Study 1, open-ended thoughts of students about to leave for university were coded for mind-set. In Study 2, mind-set about a major life goal was assessed using a self-report measure. In Study 3, mind-set was experimentally manipulated. Overall, mind-set interacted with forecasts to predict relationship survival. Forecasts were more accurate in a deliberative mind-set than in an implemental mind-set. This effect was more pronounced for long-term than for short-term relationship survival. Finally, deliberatives were not pessimistic; implementals were unduly optimistic.

  18. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  19. An Accurate Method for Prediction of Protein-Ligand Binding Site on Protein Surface Using SVM and Statistical Depth Function

    PubMed Central

    Wang, Kui; Gao, Jianzhao; Shen, Shiyi; Tuszynski, Jack A.; Ruan, Jishou

    2013-01-01

    Since proteins carry out their functions through interactions with other molecules, accurately identifying the protein-ligand binding site plays an important role in protein functional annotation and rational drug discovery. In the past two decades, a lot of algorithms were present to predict the protein-ligand binding site. In this paper, we introduce statistical depth function to define negative samples and propose an SVM-based method which integrates sequence and structural information to predict binding site. The results show that the present method performs better than the existent ones. The accuracy, sensitivity, and specificity on training set are 77.55%, 56.15%, and 87.96%, respectively; on the independent test set, the accuracy, sensitivity, and specificity are 80.36%, 53.53%, and 92.38%, respectively. PMID:24195070

  20. Prediction of Drug Penetration in Tuberculosis Lesions.

    PubMed

    Sarathy, Jansy P; Zuccotto, Fabio; Hsinpin, Ho; Sandberg, Lars; Via, Laura E; Marriner, Gwendolyn A; Masquelin, Thierry; Wyatt, Paul; Ray, Peter; Dartois, Véronique

    2016-08-12

    The penetration of antibiotics in necrotic tuberculosis lesions is heterogeneous and drug-specific, but the factors underlying such differential partitioning are unknown. We hypothesized that drug binding to macromolecules in necrotic foci (or caseum) prevents passive drug diffusion through avascular caseum, a critical site of infection. Using a caseum binding assay and MALDI mass spectrometry imaging of tuberculosis drugs, we showed that binding to caseum inversely correlates with passive diffusion into the necrotic core. We developed a high-throughput assay relying on rapid equilibrium dialysis and a caseum surrogate designed to mimic the composition of native caseum. A set of 279 compounds was profiled in this assay to generate a large data set and explore the physicochemical drivers of free diffusion into caseum. Principle component analysis and modeling of the data set delivered an in silico signature predictive of caseum binding, combining 69 molecular descriptors. Among the major positive drivers of binding were high lipophilicity and poor solubility. Determinants of molecular shape such as the number of rings, particularly aromatic rings, number of sp(2) carbon counts, and volume-to-surface ratio negatively correlated with the free fraction, indicating that low-molecular-weight nonflat compounds are more likely to exhibit low caseum binding properties and diffuse effectively through caseum. To provide simple guidance in the property-based design of new compounds, a rule of thumb was derived whereby the sum of the hydrophobicity (clogP) and aromatic ring count is proportional to caseum binding. These tools can be used to ensure desirable lesion partitioning and guide the selection of optimal regimens against tuberculosis. PMID:27626295

  1. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.

  2. Biophysical principles predict fitness landscapes of drug resistance.

    PubMed

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  3. A Single Linear Prediction Filter that Accurately Predicts the AL Index

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Chu, X.

    2015-12-01

    The AL index is a measure of the strength of the westward electrojet flowing along the auroral oval. It has two components: one from the global DP-2 current system and a second from the DP-1 current that is more localized near midnight. It is generally believed that the index a very poor measure of these currents because of its dependence on the distance of stations from the source of the two currents. In fact over season and solar cycle the coupling strength defined as the steady state ratio of the output AL to the input coupling function varies by a factor of four. There are four factors that lead to this variation. First is the equinoctial effect that modulates coupling strength with peaks (strongest coupling) at the equinoxes. Second is the saturation of the polar cap potential which decreases coupling strength as the strength of the driver increases. Since saturation occurs more frequently at solar maximum we obtain the result that maximum coupling strength occurs at equinox at solar minimum. A third factor is ionospheric conductivity with stronger coupling at summer solstice as compared to winter. The fourth factor is the definition of a solar wind coupling function appropriate to a given index. We have developed an optimum coupling function depending on solar wind speed, density, transverse magnetic field, and IMF clock angle which is better than previous functions. Using this we have determined the seasonal variation of coupling strength and developed an inverse function that modulates the optimum coupling function so that all seasonal variation is removed. In a similar manner we have determined the dependence of coupling strength on solar wind driver strength. The inverse of this function is used to scale a linear prediction filter thus eliminating the dependence on driver strength. Our result is a single linear filter that is adjusted in a nonlinear manner by driver strength and an optimum coupling function that is seasonal modulated. Together this

  4. A review of the kinetic detail required for accurate predictions of normal shock waves

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Erwin, Daniel A.; Pham-Van-diep, Gerald C.

    1991-01-01

    Several aspects of the kinetic models used in the collision phase of Monte Carlo direct simulations have been studied. Accurate molecular velocity distribution function predictions require a significantly increased number of computational cells in one maximum slope shock thickness, compared to predictions of macroscopic properties. The shape of the highly repulsive portion of the interatomic potential for argon is not well modeled by conventional interatomic potentials; this portion of the potential controls high Mach number shock thickness predictions, indicating that the specification of the energetic repulsive portion of interatomic or intermolecular potentials must be chosen with care for correct modeling of nonequilibrium flows at high temperatures. It has been shown for inverse power potentials that the assumption of variable hard sphere scattering provides accurate predictions of the macroscopic properties in shock waves, by comparison with simulations in which differential scattering is employed in the collision phase. On the other hand, velocity distribution functions are not well predicted by the variable hard sphere scattering model for softer potentials at higher Mach numbers.

  5. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  6. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707

  7. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.

  8. Accurate similarity index based on activity and connectivity of node for link prediction

    NASA Astrophysics Data System (ADS)

    Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun

    2015-05-01

    Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.

  9. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts.

    PubMed

    Stephanou, Pavlos S; Mavrantzas, Vlasis G

    2014-06-01

    We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data. PMID:24908037

  10. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2014-06-01

    We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data.

  11. Prediction of Accurate Thermochemistry of Medium and Large Sized Radicals Using Connectivity-Based Hierarchy (CBH).

    PubMed

    Sengupta, Arkajyoti; Raghavachari, Krishnan

    2014-10-14

    Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known. PMID:26588131

  12. Prediction of Drug Combinations by Integrating Molecular and Pharmacological Data

    PubMed Central

    Zhao, Xing-Ming; Iskar, Murat; Zeller, Georg; Kuhn, Michael; van Noort, Vera; Bork, Peer

    2011-01-01

    Combinatorial therapy is a promising strategy for combating complex disorders due to improved efficacy and reduced side effects. However, screening new drug combinations exhaustively is impractical considering all possible combinations between drugs. Here, we present a novel computational approach to predict drug combinations by integrating molecular and pharmacological data. Specifically, drugs are represented by a set of their properties, such as their targets or indications. By integrating several of these features, we show that feature patterns enriched in approved drug combinations are not only predictive for new drug combinations but also provide insights into mechanisms underlying combinatorial therapy. Further analysis confirmed that among our top ranked predictions of effective combinations, 69% are supported by literature, while the others represent novel potential drug combinations. We believe that our proposed approach can help to limit the search space of drug combinations and provide a new way to effectively utilize existing drugs for new purposes. PMID:22219721

  13. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  14. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.

    PubMed

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O Anatole; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-06-18

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  15. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  16. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  17. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  18. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  19. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGES

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  20. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  1. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  2. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  3. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  4. Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions.

    PubMed

    Arcus, Vickery L; Pudney, Christopher R

    2015-08-01

    The temperature dependence of kinetic isotope effects (KIEs) have been used to infer the vibrational coupling of the protein and or substrate to the reaction coordinate, particularly in enzyme-catalyzed hydrogen transfer reactions. We find that a new model for the temperature dependence of experimentally determined observed rate constants (macromolecular rate theory, MMRT) is able to accurately predict the occurrence of vibrational coupling, even where the temperature dependence of the KIE fails. This model, that incorporates the change in heat capacity for enzyme catalysis, demonstrates remarkable consistency with both experiment and theory and in many respects is more robust than models used at present.

  5. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  6. ARWAR: A network approach for predicting Adverse Drug Reactions.

    PubMed

    Rahmani, Hossein; Weiss, Gerhard; Méndez-Lucio, Oscar; Bender, Andreas

    2016-01-01

    Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.

  7. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction

    PubMed Central

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-01-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches. PMID:26872142

  8. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  9. Multitask learning improves prediction of cancer drug sensitivity.

    PubMed

    Yuan, Han; Paskov, Ivan; Paskov, Hristo; González, Alvaro J; Leslie, Christina S

    2016-01-01

    Precision oncology seeks to predict the best therapeutic option for individual patients based on the molecular characteristics of their tumors. To assess the preclinical feasibility of drug sensitivity prediction, several studies have measured drug responses for cytotoxic and targeted therapies across large collections of genomically and transcriptomically characterized cancer cell lines and trained predictive models using standard methods like elastic net regression. Here we use existing drug response data sets to demonstrate that multitask learning across drugs strongly improves the accuracy and interpretability of drug prediction models. Our method uses trace norm regularization with a highly efficient ADMM (alternating direction method of multipliers) optimization algorithm that readily scales to large data sets. We anticipate that our approach will enhance efforts to exploit growing drug response compendia in order to advance personalized therapy. PMID:27550087

  10. Multitask learning improves prediction of cancer drug sensitivity

    PubMed Central

    Yuan, Han; Paskov, Ivan; Paskov, Hristo; González, Alvaro J.; Leslie, Christina S.

    2016-01-01

    Precision oncology seeks to predict the best therapeutic option for individual patients based on the molecular characteristics of their tumors. To assess the preclinical feasibility of drug sensitivity prediction, several studies have measured drug responses for cytotoxic and targeted therapies across large collections of genomically and transcriptomically characterized cancer cell lines and trained predictive models using standard methods like elastic net regression. Here we use existing drug response data sets to demonstrate that multitask learning across drugs strongly improves the accuracy and interpretability of drug prediction models. Our method uses trace norm regularization with a highly efficient ADMM (alternating direction method of multipliers) optimization algorithm that readily scales to large data sets. We anticipate that our approach will enhance efforts to exploit growing drug response compendia in order to advance personalized therapy. PMID:27550087

  11. PhenoPredict: A disease phenome-wide drug repositioning approach towards schizophrenia drug discovery.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2015-08-01

    Schizophrenia (SCZ) is a common complex disorder with poorly understood mechanisms and no effective drug treatments. Despite the high prevalence and vast unmet medical need represented by the disease, many drug companies have moved away from the development of drugs for SCZ. Therefore, alternative strategies are needed for the discovery of truly innovative drug treatments for SCZ. Here, we present a disease phenome-driven computational drug repositioning approach for SCZ. We developed a novel drug repositioning system, PhenoPredict, by inferring drug treatments for SCZ from diseases that are phenotypically related to SCZ. The key to PhenoPredict is the availability of a comprehensive drug treatment knowledge base that we recently constructed. PhenoPredict retrieved all 18 FDA-approved SCZ drugs and ranked them highly (recall=1.0, and average ranking of 8.49%). When compared to PREDICT, one of the most comprehensive drug repositioning systems currently available, in novel predictions, PhenoPredict represented clear improvements over PREDICT in Precision-Recall (PR) curves, with a significant 98.8% improvement in the area under curve (AUC) of the PR curves. In addition, we discovered many drug candidates with mechanisms of action fundamentally different from traditional antipsychotics, some of which had published literature evidence indicating their treatment benefits in SCZ patients. In summary, although the fundamental pathophysiological mechanisms of SCZ remain unknown, integrated systems approaches to studying phenotypic connections among diseases may facilitate the discovery of innovative SCZ drugs.

  12. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.

    PubMed

    Kanji, Rakesh; Sharma, Abhinav; Bagler, Ganesh

    2015-11-01

    Despite technological progresses and improved understanding of biological systems, discovery of novel drugs is an inefficient, arduous and expensive process. Research and development cost of drugs is unreasonably high, largely attributed to the high attrition rate of candidate drugs due to adverse drug reactions. Computational methods for accurate prediction of drug side effects, rooted in empirical data of drugs, have the potential to enhance the efficacy of the drug discovery process. Identification of features critical for specifying side effects would facilitate efficient computational procedures for their prediction. We devised a generalized ordinary canonical correlation model for prediction of drug side effects based on their chemical properties as well as their target profiles. While the former is based on 2D and 3D chemical features, the latter enumerates a systems-level property of drugs. We find that the model incorporating chemical features outperforms that incorporating target profiles. Furthermore we identified the 2D and 3D chemical properties that yield best results, thereby implying their relevance in specifying adverse drug reactions. PMID:26252576

  13. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond.

    PubMed

    Ai, Ni; Fan, Xiaohui; Ekins, Sean

    2015-06-23

    Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.

  14. Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.

    2015-12-01

    Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.

  15. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

  16. Direct Pressure Monitoring Accurately Predicts Pulmonary Vein Occlusion During Cryoballoon Ablation

    PubMed Central

    Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan

    2013-01-01

    Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956

  17. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  18. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  19. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    PubMed

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  20. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    PubMed Central

    2014-01-01

    A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system. PMID:25097824

  1. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing

    PubMed Central

    Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei

    2016-01-01

    Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and

  2. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  3. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  4. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  5. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    PubMed Central

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  6. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics.

    PubMed

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  7. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics.

    PubMed

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research.

  8. Improving the prediction of the brain disposition for orally administered drugs using BDDCS

    PubMed Central

    Broccatelli, Fabio; Larregieu, Caroline A.; Cruciani, Gabriele; Oprea, Tudor I.; Benet, Leslie Z.

    2012-01-01

    In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists. PMID:22261306

  9. Scoring multiple features to predict drug disease associations using information fusion and aggregation.

    PubMed

    Moghadam, H; Rahgozar, M; Gharaghani, S

    2016-08-01

    Prediction of drug-disease associations is one of the current fields in drug repositioning that has turned into a challenging topic in pharmaceutical science. Several available computational methods use network-based and machine learning approaches to reposition old drugs for new indications. However, they often ignore features of drugs and diseases as well as the priority and importance of each feature, relation, or interactions between features and the degree of uncertainty. When predicting unknown drug-disease interactions there are diverse data sources and multiple features available that can provide more accurate and reliable results. This information can be collectively mined using data fusion methods and aggregation operators. Therefore, we can use the feature fusion method to make high-level features. We have proposed a computational method named scored mean kernel fusion (SMKF), which uses a new method to score the average aggregation operator called scored mean. To predict novel drug indications, this method systematically combines multiple features related to drugs or diseases at two levels: the drug-drug level and the drug-disease level. The purpose of this study was to investigate the effect of drug and disease features as well as data fusion to predict drug-disease interactions. The method was validated against a well-established drug-disease gold-standard dataset. When compared with the available methods, our proposed method outperformed them and competed well in performance with area under cover (AUC) of 0.91, F-measure of 84.9% and Matthews correlation coefficient of 70.31%. PMID:27455069

  10. Accurate prediction of solvent accessibility using neural networks-based regression.

    PubMed

    Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław

    2004-09-01

    Accurate prediction of relative solvent accessibilities (RSAs) of amino acid residues in proteins may be used to facilitate protein structure prediction and functional annotation. Toward that goal we developed a novel method for improved prediction of RSAs. Contrary to other machine learning-based methods from the literature, we do not impose a classification problem with arbitrary boundaries between the classes. Instead, we seek a continuous approximation of the real-value RSA using nonlinear regression, with several feed forward and recurrent neural networks, which are then combined into a consensus predictor. A set of 860 protein structures derived from the PFAM database was used for training, whereas validation of the results was carefully performed on several nonredundant control sets comprising a total of 603 structures derived from new Protein Data Bank structures and had no homology to proteins included in the training. Two classes of alternative predictors were developed for comparison with the regression-based approach: one based on the standard classification approach and the other based on a semicontinuous approximation with the so-called thermometer encoding. Furthermore, a weighted approximation, with errors being scaled by the observed levels of variability in RSA for equivalent residues in families of homologous structures, was applied in order to improve the results. The effects of including evolutionary profiles and the growth of sequence databases were assessed. In accord with the observed levels of variability in RSA for different ranges of RSA values, the regression accuracy is higher for buried than for exposed residues, with overall 15.3-15.8% mean absolute errors and correlation coefficients between the predicted and experimental values of 0.64-0.67 on different control sets. The new method outperforms classification-based algorithms when the real value predictions are projected onto two-class classification problems with several commonly

  11. Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity

    PubMed Central

    2015-01-01

    Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms. PMID:25026390

  12. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  13. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  14. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  15. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  16. Predictability of Prescription Drug Expenditures for Medicare Beneficiaries

    PubMed Central

    Wrobel, Marian V.; Doshi, Jalpa; Stuart, Bruce C.; Briesacher, Becky

    2003-01-01

    MCBS data are used to analyze the predictability of drug expenditures by Medicare beneficiaries. Predictors include demographic characteristics and measures of health status, the majority derived using CMS' diagnosis cost group/hierarchical condition category (DCG/HCC) risk-adjustment methodology. In prospective models, demographic variables explained 5 percent of the variation in drug expenditures. Adding health status measures raised this figure between 10 and 24 percent of the variation depending on the model configuration. Adding lagged drug expenditures more than doubled predictive power to 55 percent. These results are discussed in the context of forecasting, and risk adjustment for the proposed new Medicare drug benefit. PMID:15124376

  17. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    NASA Astrophysics Data System (ADS)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  18. Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation

    NASA Astrophysics Data System (ADS)

    Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.

    2006-12-01

    Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the

  19. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  20. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  1. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  2. Pharmacokinetic model-predicted anticancer drug concentrations in human tumors.

    PubMed

    Gallo, James M; Vicini, Paolo; Orlansky, Amy; Li, Shaolan; Zhou, Feng; Ma, Jianguo; Pulfer, Sharon; Bookman, Michel A; Guo, Ping

    2004-12-01

    In an era when molecular and targeted anticancer therapeutics is a major focus and when understanding drug dynamics in tumor is critical, it seems advantageous to be able to relate drug concentrations in tumors to corresponding biological end points. To that end, a novel method, based on physiologically based hybrid pharmacokinetic models, is presented to predict human tumor drug concentrations. Such models consist of a forcing function, describing the plasma drug concentration-time profile, which is linked to a model describing drug disposition in tumors. The hybrid models are originally derived from preclinical data and then scaled to humans. Integral to the scale-up procedure is the ability to derive human forcing functions directly from clinical pharmacokinetic data. Three examples of this approach are presented based on preclinical investigations with carboplatin, topotecan, and temozolomide. Translation of these preclinical hybrid models to humans used a Monte Carlo simulation technique that accounted for intrasubject and intersubject variability. Different pharmacokinetic end points, such as the AUC tumor, were extracted from the simulated human tumor drug concentrations to show how the predicted drug concentrations might be used to select drug-dosing regimens. It is believed that this modeling strategy can be used as an aid in the drug development process by providing key insights into drug disposition in tumors and by offering a foundation to optimize drug regimen design. PMID:15585640

  3. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    NASA Astrophysics Data System (ADS)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  4. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  5. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979

  6. A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures

    NASA Astrophysics Data System (ADS)

    Feller, David; Peterson, Kirk A.; Dixon, David A.

    2008-11-01

    High level electronic structure predictions of thermochemical properties and molecular structure are capable of accuracy rivaling the very best experimental measurements as a result of rapid advances in hardware, software, and methodology. Despite the progress, real world limitations require practical approaches designed for handling general chemical systems that rely on composite strategies in which a single, intractable calculation is replaced by a series of smaller calculations. As typically implemented, these approaches produce a final, or "best," estimate that is constructed from one major component, fine-tuned by multiple corrections that are assumed to be additive. Though individually much smaller than the original, unmanageable computational problem, these corrections are nonetheless extremely costly. This study presents a survey of the widely varying magnitude of the most important components contributing to the atomization energies and structures of 106 small molecules. It combines large Gaussian basis sets and coupled cluster theory up to quadruple excitations for all systems. In selected cases, the effects of quintuple excitations and/or full configuration interaction were also considered. The availability of reliable experimental data for most of the molecules permits an expanded statistical analysis of the accuracy of the approach. In cases where reliable experimental information is currently unavailable, the present results are expected to provide some of the most accurate benchmark values available.

  7. Accurate prediction of band gaps and optical properties of HfO2

    NASA Astrophysics Data System (ADS)

    Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka

    2016-10-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.

  8. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.

    PubMed

    Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert

    2015-01-01

    Drug-drug interaction (DDI) is an important topic for public health, and thus attracts attention from both academia and industry. Here we hypothesize that clinical side effects (SEs) provide a human phenotypic profile and can be translated into the development of computational models for predicting adverse DDIs. We propose an integrative label propagation framework to predict DDIs by integrating SEs extracted from package inserts of prescription drugs, SEs extracted from FDA Adverse Event Reporting System, and chemical structures from PubChem. Experimental results based on hold-out validation demonstrated the effectiveness of the proposed algorithm. In addition, the new algorithm also ranked drug information sources based on their contributions to the prediction, thus not only confirming that SEs are important features for DDI prediction but also paving the way for building more reliable DDI prediction models by prioritizing multiple data sources. By applying the proposed algorithm to 1,626 small-molecule drugs which have one or more SE profiles, we obtained 145,068 predicted DDIs. The predicted DDIs will help clinicians to avoid hazardous drug interactions in their prescriptions and will aid pharmaceutical companies to design large-scale clinical trial by assessing potentially hazardous drug combinations. All data sets and predicted DDIs are available at http://astro.temple.edu/~tua87106/ddi.html. PMID:26196247

  9. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.

    PubMed

    Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert

    2015-01-01

    Drug-drug interaction (DDI) is an important topic for public health, and thus attracts attention from both academia and industry. Here we hypothesize that clinical side effects (SEs) provide a human phenotypic profile and can be translated into the development of computational models for predicting adverse DDIs. We propose an integrative label propagation framework to predict DDIs by integrating SEs extracted from package inserts of prescription drugs, SEs extracted from FDA Adverse Event Reporting System, and chemical structures from PubChem. Experimental results based on hold-out validation demonstrated the effectiveness of the proposed algorithm. In addition, the new algorithm also ranked drug information sources based on their contributions to the prediction, thus not only confirming that SEs are important features for DDI prediction but also paving the way for building more reliable DDI prediction models by prioritizing multiple data sources. By applying the proposed algorithm to 1,626 small-molecule drugs which have one or more SE profiles, we obtained 145,068 predicted DDIs. The predicted DDIs will help clinicians to avoid hazardous drug interactions in their prescriptions and will aid pharmaceutical companies to design large-scale clinical trial by assessing potentially hazardous drug combinations. All data sets and predicted DDIs are available at http://astro.temple.edu/~tua87106/ddi.html.

  10. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  11. Phenome-driven disease genetics prediction toward drug discovery

    PubMed Central

    Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong

    2015-01-01

    Motivation: Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. Results: To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e−4) and 81.3% (P < e−12) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn’s disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn’s disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn’s disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. Availability and implementation: nlp

  12. Comparative modeling: the state of the art and protein drug target structure prediction.

    PubMed

    Liu, Tianyun; Tang, Grace W; Capriotti, Emidio

    2011-07-01

    The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In the last two decades, significant progress has been made on comparative modeling methods. Using the large number of protein structures deposited in the Protein Data Bank (~65,000), automatic prediction pipelines are generating a tremendous number of models (~1.9 million) for sequences whose structures have not been experimentally determined. Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families.

  13. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.

  14. Translating Clinical Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver Injury Prediction System (DILIps)

    PubMed Central

    Liu, Zhichao; Shi, Qiang; Ding, Don; Kelly, Reagan; Fang, Hong; Tong, Weida

    2011-01-01

    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the “Rule of Three” was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity. PMID:22194678

  15. Unilateral Prostate Cancer Cannot be Accurately Predicted in Low-Risk Patients

    SciTech Connect

    Isbarn, Hendrik; Karakiewicz, Pierre I.; Vogel, Susanne

    2010-07-01

    Purpose: Hemiablative therapy (HAT) is increasing in popularity for treatment of patients with low-risk prostate cancer (PCa). The validity of this therapeutic modality, which exclusively treats PCa within a single prostate lobe, rests on accurate staging. We tested the accuracy of unilaterally unremarkable biopsy findings in cases of low-risk PCa patients who are potential candidates for HAT. Methods and Materials: The study population consisted of 243 men with clinical stage {<=}T2a, a prostate-specific antigen (PSA) concentration of <10 ng/ml, a biopsy-proven Gleason sum of {<=}6, and a maximum of 2 ipsilateral positive biopsy results out of 10 or more cores. All men underwent a radical prostatectomy, and pathology stage was used as the gold standard. Univariable and multivariable logistic regression models were tested for significant predictors of unilateral, organ-confined PCa. These predictors consisted of PSA, %fPSA (defined as the quotient of free [uncomplexed] PSA divided by the total PSA), clinical stage (T2a vs. T1c), gland volume, and number of positive biopsy cores (2 vs. 1). Results: Despite unilateral stage at biopsy, bilateral or even non-organ-confined PCa was reported in 64% of all patients. In multivariable analyses, no variable could clearly and independently predict the presence of unilateral PCa. This was reflected in an overall accuracy of 58% (95% confidence interval, 50.6-65.8%). Conclusions: Two-thirds of patients with unilateral low-risk PCa, confirmed by clinical stage and biopsy findings, have bilateral or non-organ-confined PCa at radical prostatectomy. This alarming finding questions the safety and validity of HAT.

  16. Prediction of adverse drug reactions using decision tree modeling.

    PubMed

    Hammann, F; Gutmann, H; Vogt, N; Helma, C; Drewe, J

    2010-07-01

    Drug safety is of great importance to public health. The detrimental effects of drugs not only limit their application but also cause suffering in individual patients and evoke distrust of pharmacotherapy. For the purpose of identifying drugs that could be suspected of causing adverse reactions, we present a structure-activity relationship analysis of adverse drug reactions (ADRs) in the central nervous system (CNS), liver, and kidney, and also of allergic reactions, for a broad variety of drugs (n = 507) from the Swiss drug registry. Using decision tree induction, a machine learning method, we determined the chemical, physical, and structural properties of compounds that predispose them to causing ADRs. The models had high predictive accuracies (78.9-90.2%) for allergic, renal, CNS, and hepatic ADRs. We show the feasibility of predicting complex end-organ effects using simple models that involve no expensive computations and that can be used (i) in the selection of the compound during the drug discovery stage, (ii) to understand how drugs interact with the target organ systems, and (iii) for generating alerts in postmarketing drug surveillance and pharmacovigilance.

  17. Improving DOE-2's RESYS routine: User defined functions to provide more accurate part load energy use and humidity predictions

    SciTech Connect

    Henderson, Hugh I.; Parker, Danny; Huang, Yu J.

    2000-08-04

    In hourly energy simulations, it is important to properly predict the performance of air conditioning systems over a range of full and part load operating conditions. An important component of these calculations is to properly consider the performance of the cycling air conditioner and how it interacts with the building. This paper presents improved approaches to properly account for the part load performance of residential and light commercial air conditioning systems in DOE-2. First, more accurate correlations are given to predict the degradation of system efficiency at part load conditions. In addition, a user-defined function for RESYS is developed that provides improved predictions of air conditioner sensible and latent capacity at part load conditions. The user function also provides more accurate predictions of space humidity by adding ''lumped'' moisture capacitance into the calculations. The improved cooling coil model and the addition of moisture capacitance predicts humidity swings that are more representative of the performance observed in real buildings.

  18. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  19. Co-Prescription Trends in a Large Cohort of Subjects Predict Substantial Drug-Drug Interactions

    PubMed Central

    Sutherland, Jeffrey J.; Daly, Thomas M.; Liu, Xiong; Goldstein, Keith; Johnston, Joseph A.; Ryan, Timothy P.

    2015-01-01

    Pharmaceutical prescribing and drug-drug interaction data underlie recommendations on drug combinations that should be avoided or closely monitored by prescribers. Because the number of patients taking multiple medications is increasing, a comprehensive view of prescribing patterns in patients is important to better assess real world pharmaceutical response and evaluate the potential for multi-drug interactions. We obtained self-reported prescription data from NHANES surveys between 1999 and 2010, and confirm the previously reported finding of increasing drug use in the elderly. We studied co-prescription drug trends by focusing on the 2009-2010 survey, which contains prescription data on 690 drugs used by 10,537 subjects. We found that medication profiles were unique for individuals aged 65 years or more, with ≥98 unique drug regimens encountered per 100 subjects taking 3 or more medications. When drugs were viewed by therapeutic class, it was found that the most commonly prescribed drugs were not the most commonly co-prescribed drugs for any of the 16 drug classes investigated. We cross-referenced these medication lists with drug interaction data from Drugs.com to evaluate the potential for drug interactions. The number of drug alerts rose proportionally with the number of co-prescribed medications, rising from 3.3 alerts for individuals prescribed 5 medications to 11.7 alerts for individuals prescribed 10 medications. We found 22% of elderly subjects taking both a substrate and inhibitor of a given cytochrome P450 enzyme, and 4% taking multiple inhibitors of the same enzyme simultaneously. By examining drug pairs prescribed in 0.1% of the population or more, we found low agreement between co-prescription rate and co-discussion in the literature. These data show that prescribing trends in treatment could drive a large extent of individual variability in drug response, and that current pairwise approaches to assessing drug-drug interactions may be inadequate for

  20. [Pharmacogenetics and prediction of side effects of drugs].

    PubMed

    Harrak, Mohammed; Khabbal, Youssef; Amarti, Afaf; El Hassouni, Mohammed; Ouldim, Karim

    2014-01-01

    Drug response is often variable from one individual to another, which sometimes makes them difficult to use when the therapeutic range is narrow. This interindividual variability in response can be explained in part by genetic factors affecting the metabolism, transport and the mechanism of action of drugs. Pharmacogenetics studies the genetic mechanisms involved in the response to drugs in order to optimize drug therapy, both in terms of efficacy and job security. This article summarizes the most known present clinical applications that illustrate the benefit of pharmacogenetic tests available to the clinician and are feasible for routine therapeutic management of patients (prediction of efficacy and toxicity of drugs), but also to demonstrate the benefit of pharmacogenetic tests in terms of health economics (reducing the incidence of hospitalizations for adverse drug events).

  1. Computing with evidence part II: an evidential approach to predicting metabolic drug-drug interactions

    PubMed Central

    Boyce, Richard; Collins, Carol; Horn, John; Kalet, Ira

    2009-01-01

    We describe a novel experiment that we conducted with the Drug Interaction Knowledge-base (DIKB) to determine which combinations of evidence enable a rule-based theory of metabolic drug-drug interactions to make the most optimal set of predictions. The focus of the experiment was a group of 16 drugs including six members of the HMG-CoA-reductase inhibitor family (statins). The experiment helped identify evidence-use strategies that enabled the DIKB to predict significantly more interactions present in a validation set than the most rigorous strategy developed by drug experts with no loss of accuracy. The best-performing strategies included evidence types that would normally be of lesser predictive value but that are often more accessible than more rigorous types. Our experimental methods represent a new approach to leveraging the available scientific evidence within a domain where important evidence is often missing or of questionable value for supporting important assertions. PMID:19539050

  2. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  3. SuperPred: update on drug classification and target prediction.

    PubMed

    Nickel, Janette; Gohlke, Bjoern-Oliver; Erehman, Jevgeni; Banerjee, Priyanka; Rong, Wen Wei; Goede, Andrean; Dunkel, Mathias; Preissner, Robert

    2014-07-01

    The SuperPred web server connects chemical similarity of drug-like compounds with molecular targets and the therapeutic approach based on the similar property principle. Since the first release of this server, the number of known compound-target interactions has increased from 7000 to 665,000, which allows not only a better prediction quality but also the estimation of a confidence. Apart from the addition of quantitative binding data and the statistical consideration of the similarity distribution in all drug classes, new approaches were implemented to improve the target prediction. The 3D similarity as well as the occurrence of fragments and the concordance of physico-chemical properties is also taken into account. In addition, the effect of different fingerprints on the prediction was examined. The retrospective prediction of a drug class (ATC code of the WHO) allows the evaluation of methods and descriptors for a well-characterized set of approved drugs. The prediction is improved by 7.5% to a total accuracy of 75.1%. For query compounds with sufficient structural similarity, the web server allows prognoses about the medical indication area of novel compounds and to find new leads for known targets. SuperPred is publicly available without registration at: http://prediction.charite.de.

  4. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model

    PubMed Central

    Fang, Yun; Wang, Jun; Zheng, Xiaoqi; Liu, X. Shirley

    2015-01-01

    The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN) data and drug similarity network (DSN) data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE) and Cancer Genome Project (CGP) studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested. PMID:26418249

  5. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    PubMed Central

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. Conclusion The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. PMID:25081370

  6. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    PubMed Central

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  7. DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue

    PubMed Central

    Wang, QuanQiu; Xu, Rong

    2015-01-01

    Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue. PMID:26958268

  8. Prediction of risk for drug use in high school students.

    PubMed

    Climent, C E; de Aragon, L V; Plutchik, R

    1990-05-01

    On the basis of questionnaires administered to almost 2,000 high school students in Cali, Colombia, a subset of items was selected that deal primarily with parent--child relationships. This 53-item set, referred to as the Drug Risk Scale (DRS), was administered to two new cross-validation samples, one consisting of high school students and the other consisting of drug addicts attending drug rehabilitation centers. Significant differences in parent--child relations were found between these new groups. The DRS was also found to have reasonably high sensitivity and specificity. Its potential value as a risk-prediction instrument is discussed. PMID:2258260

  9. Prediction of risk for drug use in high school students.

    PubMed

    Climent, C E; de Aragón, L V; Plutchik, R

    1989-11-01

    On the basis of questionnaires administered to almost 2,000 high school students in Cali, Colombia, a subset of items was selected that deal primarily with parent-child relationships. This 53 item set, referred to as the Drug Risk Scale (DRS), was administered to two new cross-validation samples, one consisting of high school students and the other consisting of drug addicts attending drug rehabilitation centers. Significant differences in parent-child relations were found between these new groups. The DRS was also found to have reasonably high sensitivity and specificity. Its potential value as a risk-prediction instrument is discussed. PMID:2628355

  10. The use of in vitro methods to predict in vivo pharmacokinetics and drug interactions.

    PubMed

    Bachmann, K A; Ghosh, R

    2001-09-01

    errant scale-up factors. Additionally, in vitro methods may fail to account for complex hepatobiliary processing including transport phenomena and Phase II metabolism. Progress has been made in establishing humanized methodologies that accurately describe these processes, with a view toward reconstituting the contributions of each into a more complex and accurate depiction and prediction of in vivo PK and drug-interaction potential.

  11. Accurate prediction model of bead geometry in crimping butt of the laser brazing using generalized regression neural network

    NASA Astrophysics Data System (ADS)

    Rong, Y. M.; Chang, Y.; Huang, Y.; Zhang, G. J.; Shao, X. Y.

    2015-12-01

    There are few researches that concentrate on the prediction of the bead geometry for laser brazing with crimping butt. This paper addressed the accurate prediction of the bead profile by developing a generalized regression neural network (GRNN) algorithm. Firstly GRNN model was developed and trained to decrease the prediction error that may be influenced by the sample size. Then the prediction accuracy was demonstrated by comparing with other articles and back propagation artificial neural network (BPNN) algorithm. Eventually the reliability and stability of GRNN model were discussed from the points of average relative error (ARE), mean square error (MSE) and root mean square error (RMSE), while the maximum ARE and MSE were 6.94% and 0.0303 that were clearly less than those (14.28% and 0.0832) predicted by BPNN. Obviously, it was proved that the prediction accuracy was improved at least 2 times, and the stability was also increased much more.

  12. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    SciTech Connect

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-15

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  13. Predicting Heavy Drug Use. Results of a Longitudinal Study, Youth Characteristics Describing and Predicting Heavy Drug Use by Adults

    ERIC Educational Resources Information Center

    Schildhaus, Sam; Shaw-Taylor, Yoku; Pedlow, Steven; Pergamit, Michael R.

    2004-01-01

    The primary aim of this study was to describe the movement of adolescents and young adults into and out of drug use and to predict heavy drug use. The data source is the Department of Labor's National Longitudinal Survey of Youth, which began in 1979 with a sample of 12,686 adolescents aged 14-21. After 17 rounds and 19 years, the response rate in…

  14. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations

    PubMed Central

    Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  15. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  16. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  17. Implicit prejudice toward injecting drug users predicts intentions to change jobs among drug and alcohol nurses.

    PubMed

    von Hippel, William; Brener, Loren; von Hippel, Courtney

    2008-01-01

    The meaning and importance of implicit prejudice is a source of considerable debate. One way to advance this debate is to assess whether implicit prejudice can predict independent variance, beyond that predicted by explicit prejudice, in meaningful and unambiguous behaviors or behavioral intentions. In the current research, drug and alcohol nurses reported their level of stress working with injecting drug users, their job satisfaction, their explicit prejudice toward injecting drug users, and their intentions to leave drug and alcohol nursing. The nurses also completed the Single Category Implicit Association Test, which measured their implicit prejudice toward injecting drug users. Analyses revealed that implicit prejudice was a significant mediator, beyond explicit prejudice and job satisfaction, of the relation between job stress and intention to change jobs. PMID:18181783

  18. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking.

    PubMed

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-03-19

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called "iNR-Drug" was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  19. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    ERIC Educational Resources Information Center

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales Behavior/Externalizing…

  20. A simple accurate method to predict time of ponding under variable intensity rainfall

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Selker, J. S.; Parlange, J.-Y.

    2007-03-01

    The prediction of the time to ponding following commencement of rainfall is fundamental to hydrologic prediction of flood, erosion, and infiltration. Most of the studies to date have focused on prediction of ponding resulting from simple rainfall patterns. This approach was suitable to rainfall reported as average values over intervals of up to a day but does not take advantage of knowledge of the complex patterns of actual rainfall now commonly recorded electronically. A straightforward approach to include the instantaneous rainfall record in the prediction of ponding time and excess rainfall using only the infiltration capacity curve is presented. This method is tested against a numerical solution of the Richards equation on the basis of an actual rainfall record. The predicted time to ponding showed mean error ≤7% for a broad range of soils, with and without surface sealing. In contrast, the standard predictions had average errors of 87%, and worst-case errors exceeding a factor of 10. In addition to errors intrinsic in the modeling framework itself, errors that arise from averaging actual rainfall records over reporting intervals were evaluated. Averaging actual rainfall records observed in Israel over periods of as little as 5 min significantly reduced predicted runoff (75% for the sealed sandy loam and 46% for the silty clay loam), while hourly averaging gave complete lack of prediction of ponding in some of the cases.

  1. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction.

    PubMed

    Braun, Tatjana; Koehler Leman, Julia; Lange, Oliver F

    2015-12-01

    Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs.

  2. Application of Hansen Solubility Parameters to predict drug-nail interactions, which can assist the design of nail medicines.

    PubMed

    Hossin, B; Rizi, K; Murdan, S

    2016-05-01

    We hypothesised that Hansen Solubility Parameters (HSPs) can be used to predict drug-nail affinities. Our aims were to: (i) determine the HSPs (δD, δP, δH) of the nail plate, the hoof membrane (a model for the nail plate), and of the drugs terbinafine HCl, amorolfine HCl, ciclopirox olamine and efinaconazole, by measuring their swelling/solubility in organic liquids, (ii) predict nail-drug interactions by comparing drug and nail HSPs, and (iii) evaluate the accuracy of these predictions using literature reports of experimentally-determined affinities of these drugs for keratin, the main constituent of the nail plate and hoof. Many solvents caused no change in the mass of nail plates, a few solvents deswelled the nail, while others swelled the nail to varying extents. Fingernail and toenail HSPs were almost the same, while hoof HSPs were similar, except for a slightly lower δP. High nail-terbinafine HCl, nail-amorolfine HCl and nail-ciclopirox olamine affinities, and low nail-efinaconazole affinities were then predicted, and found to accurately match experimental reports of these drugs' affinities to keratin. We therefore propose that drug and nail Hansen Solubility Parameters may be used to predict drug-nail interactions, and that these results can assist in the design of drugs for the treatment of nail diseases, such as onychomycosis and psoriasis. To our knowledge, this is the first report of the application of HSPs in ungual research.

  3. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  4. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    PubMed

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect.

  5. Predictability of drug release from water-insoluble polymeric matrix tablets.

    PubMed

    Grund, Julia; Körber, Martin; Bodmeier, Roland

    2013-11-01

    The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development.

  6. Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions

    PubMed Central

    Brantley, Scott J.; Argikar, Aneesh A.; Lin, Yvonne S.; Nagar, Swati

    2014-01-01

    Supported by a usage history that predates written records and the perception that “natural” ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb–drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb–drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb–drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb–drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens. PMID:24335390

  7. iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking

    PubMed Central

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-01-01

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well. PMID:24651462

  8. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

    PubMed Central

    Kim, Minseung; Rai, Navneet; Zorraquino, Violeta; Tagkopoulos, Ilias

    2016-01-01

    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery. PMID:27713404

  9. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  10. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF

    PubMed Central

    Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.

    2016-01-01

    The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113

  11. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  12. Change in body mass accurately and reliably predicts change in body water after endurance exercise.

    PubMed

    Baker, Lindsay B; Lang, James A; Kenney, W Larry

    2009-04-01

    This study tested the hypothesis that the change in body mass (DeltaBM) accurately reflects the change in total body water (DeltaTBW) after prolonged exercise. Subjects (4 men, 4 women; 22-36 year; 66 +/- 10 kg) completed 2 h of interval running (70% VO(2max)) in the heat (30 degrees C), followed by a run to exhaustion (85% VO(2max)), and then sat for a 1 h recovery period. During exercise and recovery, subjects drank fluid or no fluid to maintain their BM, increase BM by 2%, or decrease BM by 2 or 4% in separate trials. Pre- and post-experiment TBW were determined using the deuterium oxide (D(2)O) dilution technique and corrected for D(2)O lost in urine, sweat, breath vapor, and nonaqueous hydrogen exchange. The average difference between DeltaBM and DeltaTBW was 0.07 +/- 1.07 kg (paired t test, P = 0.29). The slope and intercept of the relation between DeltaBM and DeltaTBW were not significantly different from 1 and 0, respectively. The intraclass correlation coefficient between DeltaBM and DeltaTBW was 0.76, which is indicative of excellent reliability between methods. Measuring pre- to post-exercise DeltaBM is an accurate and reliable method to assess the DeltaTBW.

  13. Towards Accurate Residue-Residue Hydrophobic Contact Prediction for Alpha Helical Proteins Via Integer Linear Optimization

    PubMed Central

    Rajgaria, R.; McAllister, S. R.; Floudas, C. A.

    2008-01-01

    A new optimization-based method is presented to predict the hydrophobic residue contacts in α-helical proteins. The proposed approach uses a high resolution distance dependent force field to calculate the interaction energy between different residues of a protein. The formulation predicts the hydrophobic contacts by minimizing the sum of these contact energies. These residue contacts are highly useful in narrowing down the conformational space searched by protein structure prediction algorithms. The proposed algorithm also offers the algorithmic advantage of producing a rank ordered list of the best contact sets. This model was tested on four independent α-helical protein test sets and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) obtained using the presented method was approximately 66% for single domain proteins. The average true positive and false positive distances were also calculated for each protein test set and they are 8.87 Å and 14.67 Å respectively. PMID:18767158

  14. PREDICTING DRUG DISPOSITION, ABSORPTION / ELIMINATION / TRANSPORTER INTERPLAY AND THE ROLE OF FOOD ON DRUG ABSORPTION

    PubMed Central

    Custodio, Joseph M.; Wu, Chi-Yuan; Benet, Leslie Z.

    2008-01-01

    The ability to predict drug disposition involves concurrent consideration of many chemical and physiological variables and the effect of food on the rate and extent of availability adds further complexity due to postprandial changes in the gastrointestinal (GI) tract. A system that allows for the assessment of the multivariate interplay occurring following administration of an oral dose, in the presence or absence of meal, would greatly benefit the early stages of drug development. This is particularly true in an era when the majority of new molecular entities are highly permeable, poorly soluble, extensively metabolized compounds (BDDCS Class 2), which present the most complicated relationship in defining the impact of transporters due to the marked effects of transporter-enzyme interplay. This review evaluates the GI luminal environment by taking into account the absorption / transport / elimination interplay and evaluates the physiochemical property issues by taking into account the importance of solubility, permeability and metabolism. We concentrate on the BDDCS and its utility in predicting drug disposition. Furthermore, we focus on the effect of food on the extent of drug availability (F), which appears to follow closely what might be expected if a significant effect of high fat meals is inhibition of transporters. That is, high fat meals and lipidic excipients would be expected to have little effect on F for Class 1 drugs; they would increase F of Class 2 drugs, while decreasing F for Class 3 drugs. PMID:18199522

  15. Accurate prediction of kidney allograft outcome based on creatinine course in the first 6 months posttransplant.

    PubMed

    Fritsche, L; Hoerstrup, J; Budde, K; Reinke, P; Neumayer, H-H; Frei, U; Schlaefer, A

    2005-03-01

    Most attempts to predict early kidney allograft loss are based on the patient and donor characteristics at baseline. We investigated how the early posttransplant creatinine course compares to baseline information in the prediction of kidney graft failure within the first 4 years after transplantation. Two approaches to create a prediction rule for early graft failure were evaluated. First, the whole data set was analysed using a decision-tree building software. The software, rpart, builds classification or regression models; the resulting models can be represented as binary trees. In the second approach, a Hill-Climbing algorithm was applied to define cut-off values for the median creatinine level and creatinine slope in the period between day 60 and 180 after transplantation. Of the 497 patients available for analysis, 52 (10.5%) experienced an early graft loss (graft loss within the first 4 years after transplantation). From the rpart algorithm, a single decision criterion emerged: Median creatinine value on days 60 to 180 higher than 3.1 mg/dL predicts early graft failure (accuracy 95.2% but sensitivity = 42.3%). In contrast, the Hill-Climbing algorithm delivered a cut-off of 1.8 mg/dL for the median creatinine level and a cut-off of 0.3 mg/dL per month for the creatinine slope (sensitivity = 69.5% and specificity 79.0%). Prediction rules based on median and slope of creatinine levels in the first half year after transplantation allow early identification of patients who are at risk of loosing their graft early after transplantation. These patients may benefit from therapeutic measures tailored for this high-risk setting. PMID:15848516

  16. Accurate Prediction of Transposon-Derived piRNAs by Integrating Various Sequential and Physicochemical Features

    PubMed Central

    Luo, Longqiang; Li, Dingfang; Zhang, Wen; Tu, Shikui; Zhu, Xiaopeng; Tian, Gang

    2016-01-01

    Background Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as well as help to further understand generation mechanism of gamete. Methods In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their sequential and physicochemical features by using machine learning methods. We explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-sequence triplet elements, and systematically evaluate their performances for transposon-derived piRNA prediction. Finally, we consider two approaches: direct combination and ensemble learning to integrate useful features and achieve high-accuracy prediction models. Results We construct three datasets, covering three species: Human, Mouse and Drosophila, and evaluate the performances of prediction models by 10-fold cross validation. In the computational experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on Human, Mouse and Drosophila, respectively; ensemble learning models achieve AUC of 0.922, 0.926 and 0.994 on the three datasets. Conclusions Compared with other state-of-the-art methods, our methods can lead to better performances. In conclusion, the proposed methods are promising for the transposon-derived piRNA prediction. The source codes and datasets are available in S1 File. PMID:27074043

  17. Expression genomics and drug development: towards predictive pharmacology.

    PubMed

    Liu, Edison T

    2005-02-01

    Expression genomics can be defined as the study of the dynamic transciptome and its regulatory elements. Technologies are available that can assess transcripts on a genome-wide scale over time and across many samples. This comprehensive and dynamic database is being used to decipher signalling pathways and to identify new biomarkers and targets. Biomarkers emerging from these studies have prognostic potential and can be used to predict therapeutic outcome. The multiplex nature of this approach not only telescopes the time to discovery, but also allows for detection of complex interactions. Taken together, these capabilities, if carefully used, can speed drug development, enhance the identification of potent drug combinations and identify patient populations that will benefit from these new drugs. PMID:15814022

  18. Predicting drug court treatment completion using the MMPI-2-RF.

    PubMed

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-12-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales Behavior/Externalizing Dysfunction, Antisocial Behavior, Aberrant Experiences, Juvenile Conduct Problems, Aggression, and Disconstraint-Revised were associated with increased risk for failure to complete treatment. These results are consistent with previous findings (O'Reilly, 2007; Sellbom, Ben-Porath, Baum, Erez, & Gregory, 2008) regarding treatment completion. Gender was also found to be associated with treatment completion, with females being more likely to complete the Drug Court program than males. Zero-order correlations and relative risk analyses indicated that the MMPI-2-RF can provide useful information regarding risk factors for failure to complete Drug Court treatment. Limitations and future directions are discussed.

  19. Positive urgency predicts illegal drug use and risky sexual behavior.

    PubMed

    Zapolski, Tamika C B; Cyders, Melissa A; Smith, Gregory T

    2009-06-01

    There are several different personality traits that dispose individuals to engage in rash action. One such trait is positive urgency: the tendency to act rashly when experiencing extremely positive affect. This trait may be relevant for college student risky behavior, because it appears that a great deal of college student risky behavior is undertaken during periods of intensely positive mood states. To test this possibility, the authors conducted a longitudinal study designed to predict increases in risky sexual behavior and illegal drug use over the course of the first year of college (n=407). In a well-fitting structural model, positive urgency predicted increases in illegal drug use and risky sexual behavior, even after controlling for time 1 (T1) involvement in both risky behaviors, biological sex, and T1 scores on four other personality dispositions to rash action. The authors discuss the theoretical and practical implications of this finding. PMID:19586152

  20. Accurate, conformation-dependent predictions of solvent effects on protein ionization constants

    PubMed Central

    Barth, P.; Alber, T.; Harbury, P. B.

    2007-01-01

    Predicting how aqueous solvent modulates the conformational transitions and influences the pKa values that regulate the biological functions of biomolecules remains an unsolved challenge. To address this problem, we developed FDPB_MF, a rotamer repacking method that exhaustively samples side chain conformational space and rigorously calculates multibody protein–solvent interactions. FDPB_MF predicts the effects on pKa values of various solvent exposures, large ionic strength variations, strong energetic couplings, structural reorganizations and sequence mutations. The method achieves high accuracy, with root mean square deviations within 0.3 pH unit of the experimental values measured for turkey ovomucoid third domain, hen lysozyme, Bacillus circulans xylanase, and human and Escherichia coli thioredoxins. FDPB_MF provides a faithful, quantitative assessment of electrostatic interactions in biological macromolecules. PMID:17360348

  1. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues

    PubMed Central

    EL-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  2. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  3. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  4. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-01

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  5. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  6. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  7. HAAD: A quick algorithm for accurate prediction of hydrogen atoms in protein structures.

    PubMed

    Li, Yunqi; Roy, Ambrish; Zhang, Yang

    2009-08-20

    Hydrogen constitutes nearly half of all atoms in proteins and their positions are essential for analyzing hydrogen-bonding interactions and refining atomic-level structures. However, most protein structures determined by experiments or computer prediction lack hydrogen coordinates. We present a new algorithm, HAAD, to predict the positions of hydrogen atoms based on the positions of heavy atoms. The algorithm is built on the basic rules of orbital hybridization followed by the optimization of steric repulsion and electrostatic interactions. We tested the algorithm using three independent data sets: ultra-high-resolution X-ray structures, structures determined by neutron diffraction, and NOE proton-proton distances. Compared with the widely used programs CHARMM and REDUCE, HAAD has a significantly higher accuracy, with the average RMSD of the predicted hydrogen atoms to the X-ray and neutron diffraction structures decreased by 26% and 11%, respectively. Furthermore, hydrogen atoms placed by HAAD have more matches with the NOE restraints and fewer clashes with heavy atoms. The average CPU cost by HAAD is 18 and 8 times lower than that of CHARMM and REDUCE, respectively. The significant advantage of HAAD in both the accuracy and the speed of the hydrogen additions should make HAAD a useful tool for the detailed study of protein structure and function. Both an executable and the source code of HAAD are freely available at http://zhang.bioinformatics.ku.edu/HAAD.

  8. Accurate single-sequence prediction of solvent accessible surface area using local and global features.

    PubMed

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-11-01

    We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636

  9. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.

    PubMed

    Emoto, Chie; Murayama, Norie; Rostami-Hodjegan, Amin; Yamazaki, Hiroshi

    2010-10-01

    The attrition rate in drug development is being reduced by continuous advances in science and technology introduced by various academic institutions and pharmaceutical companies. This has been certainly noticeable in reducing the frequency with which unfavorable absorption, distribution, metabolism, and elimination (ADME) characteristics of any candidate drug causes failure in clinical development. Nonetheless, it is important that the objectives in reducing attrition during later stages of development are matched by information generated in the earliest stage of discovery. In this review, we summarize the methodologies employed during the early stages of drug discovery and discuss new findings in the areas of (1) drug metabolism enzymes, (2) the contribution of cytochrome P450 enzymes (P450, CYP) to hepatic metabolism, (3) prediction of hepatic intrinsic clearance, (4) reaction phenotyping, and (5) the metabolic differences between highly homologous enzymes such as CYP3A4 and CYP3A5. The total contribution of P450 and UDP-glucuronosyltransferases to drug metabolism is reported to be more than 80%; therefore, glucuronidation is increasingly recognized as an important clearance pathway in addition to that of P450 enzymes. When estimating the contribution of P450, interpreting the results of inhibition studies using a single P450 inhibitor can lead to false conclusions. For instance, 1-aminobenzotriazole and SKF-525A have a varying range of IC(50) values for inhibition of drug exidation-reaction by different CYP450 enzymes. There are disparities between methodologies at early stage drug discovery and late stage development. For example, although the drug depletion approach for the prediction of hepatic intrinsic clearance may not be desirable at late stages of development, it is suitable at the early drug discovery stage since kinetic characterization and measurement of specific drug metabolites are not required. Data from protein binding assays in plasma and

  10. Predicting risk of adverse drug reactions in older adults

    PubMed Central

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-01-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  11. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics. PMID:17620347

  12. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.

  13. Similarity-based modeling in large-scale prediction of drug-drug interactions

    PubMed Central

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2015-01-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients’ quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. the method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. the method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. the time frame to implement this protocol is 5–7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented. PMID:25122524

  14. Similarity-based modeling in large-scale prediction of drug-drug interactions.

    PubMed

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2014-09-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients' quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. The method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. The method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. The time frame to implement this protocol is 5-7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented. PMID:25122524

  15. Use of the theory of reasoned action to predict drug and alcohol use.

    PubMed

    Laflin, M T; Moore-Hirschl, S; Weis, D L; Hayes, B E

    1994-05-01

    The present study examines the role of self-esteem (SE) in the prediction of drug and alcohol use. Consistent with research on the theory of reasoned action, we suggest that alcohol and drug attitudes and subjective norms are more useful in the prediction of self-reported drug and alcohol consumption than SE. In the present study, measures of SE, drug attitudes, subjective norms, and drug use behaviors were collected from 2,074 high school and college students. Results indicate that drug attitudes and subjective norms do predict drug and alcohol use, but that SE does not add significantly to the prediction of the drug and alcohol behaviors.

  16. Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions.

    PubMed

    Naval-Sánchez, Marina; Potier, Delphine; Haagen, Lotte; Sánchez, Máximo; Munck, Sebastian; Van de Sande, Bram; Casares, Fernando; Christiaens, Valerie; Aerts, Stein

    2013-01-01

    The identification of transcription factor binding sites, enhancers, and transcriptional target genes often relies on the integration of gene expression profiling and computational cis-regulatory sequence analysis. Methods for the prediction of cis-regulatory elements can take advantage of comparative genomics to increase signal-to-noise levels. However, gene expression data are usually derived from only one species. Here we investigate tissue-specific cross-species gene expression profiling by high-throughput sequencing, combined with cross-species motif discovery. First, we compared different methods for expression level quantification and cross-species integration using Tag-seq data. Using the optimal pipeline, we derived a set of genes with conserved expression during retinal determination across Drosophila melanogaster, Drosophila yakuba, and Drosophila virilis. These genes are enriched for binding sites of eye-related transcription factors including the zinc-finger Glass, a master regulator of photoreceptor differentiation. Validation of predicted Glass targets using RNA-seq in homozygous glass mutants confirms that the majority of our predictions are expressed downstream from Glass. Finally, we tested nine candidate enhancers by in vivo reporter assays and found eight of them to drive GFP in the eye disc, of which seven colocalize with the Glass protein, namely, scrt, chp, dpr10, CG6329, retn, Lim3, and dmrt99B. In conclusion, we show for the first time the combined use of cross-species expression profiling with cross-species motif discovery as a method to define a core developmental program, and we augment the candidate Glass targetome from a single known target gene, lozenge, to at least 62 conserved transcriptional targets. PMID:23070853

  17. Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan.

    PubMed

    Gapsys, Vytautas; Michielssens, Servaas; Seeliger, Daniel; de Groot, Bert L

    2016-06-20

    The prediction of mutation-induced free-energy changes in protein thermostability or protein-protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free-energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force-field inaccuracies, and experimental uncertainty. We propose a consensus force-field approach, which, together with an increased sampling time, leads to a free-energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free-energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1. PMID:27122231

  18. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  19. PSI: A Comprehensive and Integrative Approach for Accurate Plant Subcellular Localization Prediction

    PubMed Central

    Chen, Ming

    2013-01-01

    Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ∼10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/. PMID:24194827

  20. CRYSpred: accurate sequence-based protein crystallization propensity prediction using sequence-derived structural characteristics.

    PubMed

    Mizianty, Marcin J; Kurgan, Lukasz A

    2012-01-01

    Relatively low success rates of X-ray crystallography, which is the most popular method for solving proteins structures, motivate development of novel methods that support selection of tractable protein targets. This aspect is particularly important in the context of the current structural genomics efforts that allow for a certain degree of flexibility in the target selection. We propose CRYSpred, a novel in-silico crystallization propensity predictor that uses a set of 15 novel features which utilize a broad range of inputs including charge, hydrophobicity, and amino acid composition derived from the protein chain, and the solvent accessibility and disorder predicted from the protein sequence. Our method outperforms seven modern crystallization propensity predictors on three, independent from training dataset, benchmark test datasets. The strong predictive performance offered by the CRYSpred is attributed to the careful design of the features, utilization of the comprehensive set of inputs, and the usage of the Support Vector Machine classifier. The inputs utilized by CRYSpred are well-aligned with the existing rules-of-thumb that are used in the structural genomics studies. PMID:21919861

  1. CRYSpred: accurate sequence-based protein crystallization propensity prediction using sequence-derived structural characteristics.

    PubMed

    Mizianty, Marcin J; Kurgan, Lukasz A

    2012-01-01

    Relatively low success rates of X-ray crystallography, which is the most popular method for solving proteins structures, motivate development of novel methods that support selection of tractable protein targets. This aspect is particularly important in the context of the current structural genomics efforts that allow for a certain degree of flexibility in the target selection. We propose CRYSpred, a novel in-silico crystallization propensity predictor that uses a set of 15 novel features which utilize a broad range of inputs including charge, hydrophobicity, and amino acid composition derived from the protein chain, and the solvent accessibility and disorder predicted from the protein sequence. Our method outperforms seven modern crystallization propensity predictors on three, independent from training dataset, benchmark test datasets. The strong predictive performance offered by the CRYSpred is attributed to the careful design of the features, utilization of the comprehensive set of inputs, and the usage of the Support Vector Machine classifier. The inputs utilized by CRYSpred are well-aligned with the existing rules-of-thumb that are used in the structural genomics studies.

  2. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  3. Accurate predictions of dielectrophoretic force and torque on particles with strong mutual field, particle, and wall interactions

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Reifsnider, Kenneth

    2012-11-01

    The basis of dielectrophoresis (DEP) is the prediction of the force and torque on particles. The classical approach to the prediction is based on the effective moment method, which, however, is an approximate approach, assumes infinitesimal particles. Therefore, it is well-known that for finite-sized particles, the DEP approximation is inaccurate as the mutual field, particle, wall interactions become strong, a situation presently attracting extensive research for practical significant applications. In the present talk, we provide accurate calculations of the force and torque on the particles from first principles, by directly resolving the local geometry and properties and accurately accounting for the mutual interactions for finite-sized particles with both dielectric polarization and conduction in a sinusoidally steady-state electric field. Since the approach has a significant advantage, compared to other numerical methods, to efficiently simulate many closely packed particles, it provides an important, unique, and accurate technique to investigate complex DEP phenomena, for example heterogeneous mixtures containing particle chains, nanoparticle assembly, biological cells, non-spherical effects, etc. This study was supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.

  4. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  5. The Compensatory Reserve For Early and Accurate Prediction Of Hemodynamic Compromise: A Review of the Underlying Physiology.

    PubMed

    Convertino, Victor A; Wirt, Michael D; Glenn, John F; Lein, Brian C

    2016-06-01

    Shock is deadly and unpredictable if it is not recognized and treated in early stages of hemorrhage. Unfortunately, measurements of standard vital signs that are displayed on current medical monitors fail to provide accurate or early indicators of shock because of physiological mechanisms that effectively compensate for blood loss. As a result of new insights provided by the latest research on the physiology of shock using human experimental models of controlled hemorrhage, it is now recognized that measurement of the body's reserve to compensate for reduced circulating blood volume is the single most important indicator for early and accurate assessment of shock. We have called this function the "compensatory reserve," which can be accurately assessed by real-time measurements of changes in the features of the arterial waveform. In this paper, the physiology underlying the development and evaluation of a new noninvasive technology that allows for real-time measurement of the compensatory reserve will be reviewed, with its clinical implications for earlier and more accurate prediction of shock. PMID:26950588

  6. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

    PubMed Central

    Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  7. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

    PubMed

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  8. In Vitro Drug Sensitivity Tests to Predict Molecular Target Drug Responses in Surgically Resected Lung Cancer

    PubMed Central

    Miyazaki, Ryohei; Anayama, Takashi; Hirohashi, Kentaro; Okada, Hironobu; Kume, Motohiko; Orihashi, Kazumasa

    2016-01-01

    Background Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI) test and collagen gel droplet embedded culture drug sensitivity test (CD-DST) are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs. Methods The growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status. Results HCC827 (Exon19: E746-A750 del) and H3122 (EML4-ALK) cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M) cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003). The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026) in CD-DST. Conclusions In vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically. PMID:27070423

  9. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  10. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  11. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  12. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    SciTech Connect

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  13. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  14. Four-protein signature accurately predicts lymph node metastasis and survival in oral squamous cell carcinoma.

    PubMed

    Zanaruddin, Sharifah Nurain Syed; Saleh, Amyza; Yang, Yi-Hsin; Hamid, Sharifah; Mustafa, Wan Mahadzir Wan; Khairul Bariah, A A N; Zain, Rosnah Binti; Lau, Shin Hin; Cheong, Sok Ching

    2013-03-01

    The presence of lymph node (LN) metastasis significantly affects the survival of patients with oral squamous cell carcinoma (OSCC). Successful detection and removal of positive LNs are crucial in the treatment of this disease. Current evaluation methods still have their limitations in detecting the presence of tumor cells in the LNs, where up to a third of clinically diagnosed metastasis-negative (N0) patients actually have metastasis-positive LNs in the neck. We developed a molecular signature in the primary tumor that could predict LN metastasis in OSCC. A total of 211 cores from 55 individuals were included in the study. Eleven proteins were evaluated using immunohistochemical analysis in a tissue microarray. Of the 11 biomarkers evaluated using receiver operating curve analysis, epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2/neu), laminin, gamma 2 (LAMC2), and ras homolog family member C (RHOC) were found to be significantly associated with the presence of LN metastasis. Unsupervised hierarchical clustering-demonstrated expression patterns of these 4 proteins could be used to differentiate specimens that have positive LN metastasis from those that are negative for LN metastasis. Collectively, EGFR, HER-2/neu, LAMC2, and RHOC have a specificity of 87.5% and a sensitivity of 70%, with a prognostic accuracy of 83.4% for LN metastasis. We also demonstrated that the LN signature could independently predict disease-specific survival (P = .036). The 4-protein LN signature validated in an independent set of samples strongly suggests that it could reliably distinguish patients with LN metastasis from those who were metastasis-free and therefore could be a prognostic tool for the management of patients with OSCC.

  15. Four-protein signature accurately predicts lymph node metastasis and survival in oral squamous cell carcinoma.

    PubMed

    Zanaruddin, Sharifah Nurain Syed; Saleh, Amyza; Yang, Yi-Hsin; Hamid, Sharifah; Mustafa, Wan Mahadzir Wan; Khairul Bariah, A A N; Zain, Rosnah Binti; Lau, Shin Hin; Cheong, Sok Ching

    2013-03-01

    The presence of lymph node (LN) metastasis significantly affects the survival of patients with oral squamous cell carcinoma (OSCC). Successful detection and removal of positive LNs are crucial in the treatment of this disease. Current evaluation methods still have their limitations in detecting the presence of tumor cells in the LNs, where up to a third of clinically diagnosed metastasis-negative (N0) patients actually have metastasis-positive LNs in the neck. We developed a molecular signature in the primary tumor that could predict LN metastasis in OSCC. A total of 211 cores from 55 individuals were included in the study. Eleven proteins were evaluated using immunohistochemical analysis in a tissue microarray. Of the 11 biomarkers evaluated using receiver operating curve analysis, epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2/neu), laminin, gamma 2 (LAMC2), and ras homolog family member C (RHOC) were found to be significantly associated with the presence of LN metastasis. Unsupervised hierarchical clustering-demonstrated expression patterns of these 4 proteins could be used to differentiate specimens that have positive LN metastasis from those that are negative for LN metastasis. Collectively, EGFR, HER-2/neu, LAMC2, and RHOC have a specificity of 87.5% and a sensitivity of 70%, with a prognostic accuracy of 83.4% for LN metastasis. We also demonstrated that the LN signature could independently predict disease-specific survival (P = .036). The 4-protein LN signature validated in an independent set of samples strongly suggests that it could reliably distinguish patients with LN metastasis from those who were metastasis-free and therefore could be a prognostic tool for the management of patients with OSCC. PMID:23026198

  16. Nonempirically Tuned Range-Separated DFT Accurately Predicts Both Fundamental and Excitation Gaps in DNA and RNA Nucleobases

    PubMed Central

    2012-01-01

    Using a nonempirically tuned range-separated DFT approach, we study both the quasiparticle properties (HOMO–LUMO fundamental gaps) and excitation energies of DNA and RNA nucleobases (adenine, thymine, cytosine, guanine, and uracil). Our calculations demonstrate that a physically motivated, first-principles tuned DFT approach accurately reproduces results from both experimental benchmarks and more computationally intensive techniques such as many-body GW theory. Furthermore, in the same set of nucleobases, we show that the nonempirical range-separated procedure also leads to significantly improved results for excitation energies compared to conventional DFT methods. The present results emphasize the importance of a nonempirically tuned range-separation approach for accurately predicting both fundamental and excitation gaps in DNA and RNA nucleobases. PMID:22904693

  17. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    PubMed

    Kosakovsky Pond, Sergei L; Posada, David; Stawiski, Eric; Chappey, Colombe; Poon, Art F Y; Hughes, Gareth; Fearnhill, Esther; Gravenor, Mike B; Leigh Brown, Andrew J; Frost, Simon D W

    2009-11-01

    Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol) sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5%) fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate

  18. Lateral impact validation of a geometrically accurate full body finite element model for blunt injury prediction.

    PubMed

    Vavalle, Nicholas A; Moreno, Daniel P; Rhyne, Ashley C; Stitzel, Joel D; Gayzik, F Scott

    2013-03-01

    This study presents four validation cases of a mid-sized male (M50) full human body finite element model-two lateral sled tests at 6.7 m/s, one sled test at 8.9 m/s, and a lateral drop test. Model results were compared to transient force curves, peak force, chest compression, and number of fractures from the studies. For one of the 6.7 m/s impacts (flat wall impact), the peak thoracic, abdominal and pelvic loads were 8.7, 3.1 and 14.9 kN for the model and 5.2 ± 1.1 kN, 3.1 ± 1.1 kN, and 6.3 ± 2.3 kN for the tests. For the same test setup in the 8.9 m/s case, they were 12.6, 6, and 21.9 kN for the model and 9.1 ± 1.5 kN, 4.9 ± 1.1 kN, and 17.4 ± 6.8 kN for the experiments. The combined torso load and the pelvis load simulated in a second rigid wall impact at 6.7 m/s were 11.4 and 15.6 kN, respectively, compared to 8.5 ± 0.2 kN and 8.3 ± 1.8 kN experimentally. The peak thorax load in the drop test was 6.7 kN for the model, within the range in the cadavers, 5.8-7.4 kN. When analyzing rib fractures, the model predicted Abbreviated Injury Scale scores within the reported range in three of four cases. Objective comparison methods were used to quantitatively compare the model results to the literature studies. The results show a good match in the thorax and abdomen regions while the pelvis results over predicted the reaction loads from the literature studies. These results are an important milestone in the development and validation of this globally developed average male FEA model in lateral impact.

  19. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  20. Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods.

    PubMed

    Yu, Hai-Zhu; Fu, Fang; Zhang, Liang; Fu, Yao; Dang, Zhi-Min; Shi, Jing

    2014-10-14

    The dissociation of the C-SO2R bond is frequently involved in organic and bio-organic reactions, and the C-SO2R bond dissociation enthalpies (BDEs) are potentially important for understanding the related mechanisms. The primary goal of the present study is to provide a reliable calculation method to predict the different C-SO2R bond dissociation enthalpies (BDEs). Comparing the accuracies of 13 different density functional theory (DFT) methods (such as B3LYP, TPSS, and M05 etc.), and different basis sets (such as 6-31G(d) and 6-311++G(2df,2p)), we found that M06-2X/6-31G(d) gives the best performance in reproducing the various C-S BDEs (and especially the C-SO2R BDEs). As an example for understanding the mechanisms with the aid of C-SO2R BDEs, some primary mechanistic studies were carried out on the chemoselective coupling (in the presence of a Cu-catalyst) or desulfinative coupling reactions (in the presence of a Pd-catalyst) between sulfinic acid salts and boryl/sulfinic acid salts.

  1. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  2. An improved method for accurate prediction of mass flows through combustor liner holes

    SciTech Connect

    Adkins, R.C.; Gueroui, D.

    1986-01-01

    The objective of this paper is to present a simple approach to the solution of flow through combustor liner holes which can be used by practicing combustor engineers as well as providing the specialist modeler with a convenient boundary condition. For modeling, suppose that all relevant details of the incoming jets can be readily predicted, then the computational boundary can be limited to the inner wall of the liner and to the jets themselves. The scope of this paper is limited to the derivation of a simple analysis, the development of a reliable test technique, and to the correlation of data for plane holes having a diameter which is large when compared to the liner wall thickness. The effect of internal liner flow on the performance of the holes is neglected; this is considered to be justifiable because the analysis terminates at a short distance downstream of the hole and the significantly lower velocities inside the combustor have had little opportunity to have taken any effect. It is intended to extend the procedure to more complex hole forms and flow configurations in later papers.

  3. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  4. Line Shape Parameters for CO_2 Transitions: Accurate Predictions from Complex Robert-Bonamy Calculations

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Gamache, Robert R.

    2013-06-01

    A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.

  5. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed Central

    Tyson, G. H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J. P.; Whichard, J. M.; McDermott, P. F.

    2015-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2′)-If, aph(2″)-Ig, aph(2″)-Ih, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ie-aph(2″)-If, aac(6′)-Im, aadE, sat4, ant(6′), aad9, aph(3′)-Ic, and aph(3′)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  6. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions.

    PubMed

    Feng, Bo; Varma, Manthena V

    2016-07-01

    With numerous drugs cleared renally, inhibition of uptake transporters localized on the basolateral membrane of renal proximal tubule cells, eg, organic anion transporters (OATs) and organic cation transporters (OCTs), may lead to clinically meaningful drug-drug interactions (DDIs). Additionally, clinical evidence for the possible involvement of efflux transporters, such as P-glycoprotein (P-gp) and multidrug and toxin extrusion protein 1/2-K (MATE1/2-K), in the renal DDIs is emerging. Herein, we review recent progress regarding mechanistic understanding of transporter-mediated renal DDIs as well as the quantitative predictability of renal DDIs using static and physiologically based pharmacokinetic (PBPK) models. Generally, clinical DDI data suggest that the magnitude of plasma exposure changes attributable to renal DDIs is less than 2-fold, unlike the DDIs associated with inhibition of cytochrome P-450s and/or hepatic uptake transporters. It is concluded that although there is a need for risk assessment early in drug development, current available data imply that safety concerns related to the renal DDIs are generally low. Nevertheless, consideration must be given to the therapeutic index of the victim drug and potential risk in a specific patient population (eg, renal impairment). Finally, in vitro transporter data and clinical pharmacokinetic parameters obtained from the first-in-human studies have proven useful in support of quantitative prediction of DDIs associated with inhibition of renal secretory transporters, OATs or OCTs. PMID:27385169

  7. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    PubMed Central

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries. PMID:26520735

  8. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  9. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  10. Drug Predictive Cues Activate Aversion-Sensitive Striatal Neurons That Encode Drug Seeking

    PubMed Central

    Wheeler, Daniel S.; Robble, Mykel A.; Hebron, Emily M.; Dupont, Matthew J.; Ebben, Amanda L.

    2015-01-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking. PMID:25948270

  11. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking.

    PubMed

    Wheeler, Daniel S; Robble, Mykel A; Hebron, Emily M; Dupont, Matthew J; Ebben, Amanda L; Wheeler, Robert A

    2015-05-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking.

  12. Drug predictive cues activate aversion-sensitive striatal neurons that encode drug seeking.

    PubMed

    Wheeler, Daniel S; Robble, Mykel A; Hebron, Emily M; Dupont, Matthew J; Ebben, Amanda L; Wheeler, Robert A

    2015-05-01

    Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking. PMID:25948270

  13. Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs.

    PubMed

    Moon, H; Cong, M

    2016-06-01

    Predicting cytotoxicity is a challenging task because of the complex biological mechanisms behind it. Cytotoxicity due to toxin - biologically produced poison - is known to play a substantial role in a disease process. Two objectives in this research are to derive robust general predictive cytotoxicity models to minimize unnecessary toxicity. The first objective is to build accurate predictive statistical models for cytotoxicity data based on lymphoblastoid cell lines obtained from in vitro studies. This could be an important step for accomplishing a goal in biomedecial/biophamarceutical research, by obtaining the best medical outcomes by minimizing toxicity in regard to a person's genetic profile. The second objective is to build predictive models to predict population-level cytotoxicity for unknown compounds based on chemical structural features. These two objectives were accomplished by a proposed variable selection process, the random forests, and the least absolute shrinkage and selection operator method. We achieved an excellent prediction result with the random forests algorithm using SNP markers from the proposed approach, having the smallest root mean squared error among the teams which participated in the DREAM Toxicogenetics Challenge. Since chemical compounds for drugs have great influence on human health, the predictive statistical models for these objectives could be helpful to government agencies in relevant decision-making. PMID:27442234

  14. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  15. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  16. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    PubMed Central

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  17. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed

    Christmann-Franck, Serge; van Westen, Gerard J P; Papadatos, George; Beltran Escudie, Fanny; Roberts, Alexander; Overington, John P; Domine, Daniel

    2016-09-26

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile.

  18. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  19. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed

    Christmann-Franck, Serge; van Westen, Gerard J P; Papadatos, George; Beltran Escudie, Fanny; Roberts, Alexander; Overington, John P; Domine, Daniel

    2016-09-26

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  20. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race.

    PubMed

    Hourihan, Kathleen L; Benjamin, Aaron S; Liu, Xiping

    2012-09-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness's claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness.

  1. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  2. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  3. Why don't we learn to accurately forecast feelings? How misremembering our predictions blinds us to past forecasting errors.

    PubMed

    Meyvis, Tom; Ratner, Rebecca K; Levav, Jonathan

    2010-11-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent forecasts. In the context of a Super Bowl loss (Study 1), a presidential election (Studies 2 and 3), an important purchase (Study 4), and the consumption of candies (Study 5), individuals mispredicted their affective reactions to these experiences and subsequently misremembered their predictions as more accurate than they actually had been. The findings indicate that this recall error results from people's tendency to anchor on their current affective state when trying to recall their affective forecasts. Further, those who showed larger recall errors were less likely to learn to adjust their subsequent forecasts and reminding people of their actual forecasts enhanced learning. These results suggest that a failure to accurately recall one's past predictions contributes to the perpetuation of forecasting errors.

  4. Accurate calculation of the absolute free energy of binding for drug molecules† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02678d Click here for additional data file.

    PubMed Central

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J.; Knapp, Stefan

    2016-01-01

    Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol–1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol–1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets. PMID:26798447

  5. MinION: A Novel Tool for Predicting Drug Hypersensitivity?

    PubMed Central

    Chua, Eng Wee; Ng, Pei Yuen

    2016-01-01

    The launch of the MinION Access Program has caused much activity within the scientific community. MinION represents a keenly anticipated, novel addition to the current melange of commercial sequencers. Driven by the nanopore sequencing mechanism that requires minimal sample manipulation, the device is capable of generating long sequence reads in sizes (up to or exceeding 50 kb) that surpass those of all other platforms. One notable advantage of this feature is that long-range haplotypes can be more accurately resolved; such advantage is particularly pertinent to the genotyping of complex loci such as genes encoding the human leukocyte antigens, which are pivotal determinants of drug hypersensitivity. With this timely, albeit brief, review, we set out to examine the applications on which MinION has been tested thus far, the bioinformatics workflow tailored to the unique characteristics of its extended sequence reads, the device’s potential utility in the detection of genetic markers for drug hypersensitivity, and how it may eventually evolve to become fit for diagnostic purposes in the clinical setting. PMID:27378921

  6. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model.

    PubMed

    Almond, Lisa M; Mukadam, Sophie; Gardner, Iain; Okialda, Krystle; Wong, Susan; Hatley, Oliver; Tay, Suzanne; Rowland-Yeo, Karen; Jamei, Masoud; Rostami-Hodjegan, Amin; Kenny, Jane R

    2016-06-01

    Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach. PMID:27026679

  7. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model

    PubMed Central

    Mukadam, Sophie; Gardner, Iain; Okialda, Krystle; Wong, Susan; Hatley, Oliver; Tay, Suzanne; Rowland-Yeo, Karen; Jamei, Masoud; Rostami-Hodjegan, Amin; Kenny, Jane R.

    2016-01-01

    Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach. PMID:27026679

  8. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

    PubMed

    Gao, Hui; Korn, Joshua M; Ferretti, Stéphane; Monahan, John E; Wang, Youzhen; Singh, Mallika; Zhang, Chao; Schnell, Christian; Yang, Guizhi; Zhang, Yun; Balbin, O Alejandro; Barbe, Stéphanie; Cai, Hongbo; Casey, Fergal; Chatterjee, Susmita; Chiang, Derek Y; Chuai, Shannon; Cogan, Shawn M; Collins, Scott D; Dammassa, Ernesta; Ebel, Nicolas; Embry, Millicent; Green, John; Kauffmann, Audrey; Kowal, Colleen; Leary, Rebecca J; Lehar, Joseph; Liang, Ying; Loo, Alice; Lorenzana, Edward; Robert McDonald, E; McLaughlin, Margaret E; Merkin, Jason; Meyer, Ronald; Naylor, Tara L; Patawaran, Montesa; Reddy, Anupama; Röelli, Claudia; Ruddy, David A; Salangsang, Fernando; Santacroce, Francesca; Singh, Angad P; Tang, Yan; Tinetto, Walter; Tobler, Sonja; Velazquez, Roberto; Venkatesan, Kavitha; Von Arx, Fabian; Wang, Hui Qin; Wang, Zongyao; Wiesmann, Marion; Wyss, Daniel; Xu, Fiona; Bitter, Hans; Atadja, Peter; Lees, Emma; Hofmann, Francesco; Li, En; Keen, Nicholas; Cozens, Robert; Jensen, Michael Rugaard; Pryer, Nancy K; Williams, Juliet A; Sellers, William R

    2015-11-01

    Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

  9. Computerized techniques pave the way for drug-drug interaction prediction and interpretation

    PubMed Central

    Safdari, Reza; Ferdousi, Reza; Aziziheris, Kamal; Niakan-Kalhori, Sharareh R.; Omidi, Yadollah

    2016-01-01

    Introduction: Health care industry also patients penalized by medical errors that are inevitable but highly preventable. Vast majority of medical errors are related to adverse drug reactions, while drug-drug interactions (DDIs) are the main cause of adverse drug reactions (ADRs). DDIs and ADRs have mainly been reported by haphazard case studies. Experimental in vivo and in vitro researches also reveals DDI pairs. Laboratory and experimental researches are valuable but also expensive and in some cases researchers may suffer from limitations. Methods: In the current investigation, the latest published works were studied to analyze the trend and pattern of the DDI modelling and the impacts of machine learning methods. Applications of computerized techniques were also investigated for the prediction and interpretation of DDIs. Results: Computerized data-mining in pharmaceutical sciences and related databases provide new key transformative paradigms that can revolutionize the treatment of diseases and hence medical care. Given that various aspects of drug discovery and pharmacotherapy are closely related to the clinical and molecular/biological information, the scientifically sound databases (e.g., DDIs, ADRs) can be of importance for the success of pharmacotherapy modalities. Conclusion: A better understanding of DDIs not only provides a robust means for designing more effective medicines but also grantees patient safety. PMID:27525223

  10. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  11. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding.

    PubMed

    Nissley, Daniel A; Sharma, Ajeet K; Ahmed, Nabeel; Friedrich, Ulrike A; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  12. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning

    PubMed Central

    Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-01-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801

  13. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning.

    PubMed

    Chen, Xing; Ren, Biao; Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-07-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801

  14. NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning.

    PubMed

    Chen, Xing; Ren, Biao; Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying

    2016-07-01

    Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations.

  15. In Vivo Information-Guided Prediction Approach for Assessing the Risks of Drug-Drug Interactions Associated with Circulating Inhibitory Metabolites

    PubMed Central

    Parker, Robert B.; Laizure, S. Casey

    2012-01-01

    The in vivo drug-drug interaction (DDI) risks associated with cytochrome P450 inhibitors that have circulating inhibitory metabolites cannot be accurately predicted by conventional in vitro-based methods. A novel approach, in vivo information-guided prediction (IVIP), was recently introduced for CYP3A- and CYP2D6-mediated DDIs. This technique should be applicable to the prediction of DDIs involving other important cytochrome P450 metabolic pathways. Therefore, the aims of this study were to extend the IVIP approach to CYP2C9-mediated DDIs and evaluate the IVIP approach for predicting DDIs associated with inhibitory metabolites. The analysis was based on data from reported DDIs in the literature. The IVIP approach was modified and extended to CYP2C9-mediated DDIs. Thereafter, the IVIP approach was evaluated for predicting the DDI risks of various inhibitors with inhibitory metabolites. Although the data on CYP2C9-mediated DDIs were limited compared with those for CYP3A- and CYP2D6-mediated DDIs, the modified IVIP approach successfully predicted CYP2C9-mediated DDIs. For the external validation set, the prediction accuracy for area under the plasma concentration-time curve (AUC) ratios ranged from 70 to 125%. The accuracy (75–128%) of the IVIP approach in predicting DDI risks of inhibitors with circulating inhibitory metabolites was more accurate than in vitro-based methods (28–805%). The IVIP model accommodates important confounding factors in the prediction of DDIs, which are difficult to handle using in vitro-based methods. In conclusion, the IVIP approach could be used to predict CYP2C9-mediated DDIs and is easily modified to incorporate the additive effect of circulating inhibitory metabolites. PMID:22563046

  16. Improvement of the Prediction of Drugs Demand Using Spatial Data Mining Tools.

    PubMed

    Ramos, M Isabel; Cubillas, Juan José; Feito, Francisco R

    2016-01-01

    The continued availability of products at any store is the major issue in order to provide good customer service. If the store is a drugstore this matter reaches a greater importance, as out of stock of a drug when there is high demand causes problems and tensions in the healthcare system. There are numerous studies of the impact this issue has on patients. The lack of any drug in a pharmacy in certain seasons is very common, especially when some external factors proliferate favoring the occurrence of certain diseases. This study focuses on a particular drug consumed in the city of Jaen, southern Andalucia, Spain. Our goal is to determine in advance the Salbutamol demand. Advanced data mining techniques have been used with spatial variables. These last have a key role to generate an effective model. In this research we have used the attributes that are associated with Salbutamol demand and it has been generated a very accurate prediction model of 5.78% of mean absolute error. This is a very encouraging data considering that the consumption of this drug in Jaen varies 500% from one period to another.

  17. Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action

    PubMed Central

    Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano

    2014-01-01

    Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030

  18. A simple yet accurate correction for winner's curse can predict signals discovered in much larger genome scans

    PubMed Central

    Bigdeli, T. Bernard; Lee, Donghyung; Webb, Bradley Todd; Riley, Brien P.; Vladimirov, Vladimir I.; Fanous, Ayman H.; Kendler, Kenneth S.; Bacanu, Silviu-Alin

    2016-01-01

    Motivation: For genetic studies, statistically significant variants explain far less trait variance than ‘sub-threshold’ association signals. To dimension follow-up studies, researchers need to accurately estimate ‘true’ effect sizes at each SNP, e.g. the true mean of odds ratios (ORs)/regression coefficients (RRs) or Z-score noncentralities. Naïve estimates of effect sizes incur winner’s curse biases, which are reduced only by laborious winner’s curse adjustments (WCAs). Given that Z-scores estimates can be theoretically translated on other scales, we propose a simple method to compute WCA for Z-scores, i.e. their true means/noncentralities. Results:WCA of Z-scores shrinks these towards zero while, on P-value scale, multiple testing adjustment (MTA) shrinks P-values toward one, which corresponds to the zero Z-score value. Thus, WCA on Z-scores scale is a proxy for MTA on P-value scale. Therefore, to estimate Z-score noncentralities for all SNPs in genome scans, we propose FDR Inverse Quantile Transformation (FIQT). It (i) performs the simpler MTA of P-values using FDR and (ii) obtains noncentralities by back-transforming MTA P-values on Z-score scale. When compared to competitors, realistic simulations suggest that FIQT is more (i) accurate and (ii) computationally efficient by orders of magnitude. Practical application of FIQT to Psychiatric Genetic Consortium schizophrenia cohort predicts a non-trivial fraction of sub-threshold signals which become significant in much larger supersamples. Conclusions: FIQT is a simple, yet accurate, WCA method for Z-scores (and ORs/RRs, via simple transformations). Availability and Implementation: A 10 lines R function implementation is available at https://github.com/bacanusa/FIQT. Contact: sabacanu@vcu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27187203

  19. Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales.

    PubMed

    Steele, Mark A; Forrester, Graham E

    2005-09-20

    Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats.

  20. Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2015-05-01

    Hemodynamics altered by stent implantation is well-known to be closely related to in-stent restenosis. Computational fluid dynamics (CFD) method has been used to investigate the hemodynamics in stented arteries in detail and help to analyze the performances of stents. In this study, blood models with Newtonian or non-Newtonian properties were numerically investigated for the hemodynamics at steady or pulsatile inlet conditions respectively employing CFD based on the finite volume method. The results showed that the blood model with non-Newtonian property decreased the area of low wall shear stress (WSS) compared with the blood model with Newtonian property and the magnitude of WSS varied with the magnitude and waveform of the inlet velocity. The study indicates that the inlet conditions and blood models are all important for accurately predicting the hemodynamics. This will be beneficial to estimate the performances of stents and also help clinicians to select the proper stents for the patients.

  1. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients

    PubMed Central

    Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.

    2016-01-01

    BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218

  2. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    PubMed

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin; Brehm Christensen, Peer; Langeland, Nina; Buhl, Mads Rauning; Pedersen, Court; Mørch, Kristine; Wejstål, Rune; Norkrans, Gunnar; Lindh, Magnus; Färkkilä, Martti; Westin, Johan

    2014-01-01

    Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV) infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI) in the paper, was based on the model: Log-odds (predicting cirrhosis) = -12.17+ (age × 0.11) + (BMI (kg/m(2)) × 0.23) + (D7-lathosterol (μg/100 mg cholesterol)×(-0.013)) + (Platelet count (x10(9)/L) × (-0.018)) + (Prothrombin-INR × 3.69). The area under the ROC curve (AUROC) for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96). The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98). In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  3. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  4. Using PBPK guided “Body-on-a-Chip” Systems to Predict Mammalian Response to Drug and Chemical Exposure

    PubMed Central

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T.; Bernabini, Catia; Shuler, Michael L.; Hickman, James J.

    2014-01-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a “Body-on-a-Chip.”, and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  5. Accurate electrical prediction of memory array through SEM-based edge-contour extraction using SPICE simulation

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya

    2009-03-01

    The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.

  6. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  7. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    PubMed

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling.

  8. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  9. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  10. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.

  11. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.

    PubMed

    Grebner, Christoph; Iegre, Jessica; Ulander, Johan; Edman, Karl; Hogner, Anders; Tyrchan, Christian

    2016-04-25

    Computer-aided drug design plays an important role in medicinal chemistry to obtain insights into molecular mechanisms and to prioritize design strategies. Although significant improvement has been made in structure based design, it still remains a key challenge to accurately model and predict induced fit mechanisms. Most of the current available techniques either do not provide sufficient protein conformational sampling or are too computationally demanding to fit an industrial setting. The current study presents a systematic and exhaustive investigation of predicting binding modes for a range of systems using PELE (Protein Energy Landscape Exploration), an efficient and fast protein-ligand sampling algorithm. The systems analyzed (cytochrome P, kinase, protease, and nuclear hormone receptor) exhibit different complexities of ligand induced fit mechanisms and protein dynamics. The results are compared with results from classical molecular dynamics simulations and (induced fit) docking. This study shows that ligand induced side chain rearrangements and smaller to medium backbone movements are captured well in PELE. Large secondary structure rearrangements, however, remain challenging for all employed techniques. Relevant binding modes (ligand heavy atom RMSD < 1.0 Å) can be obtained by the PELE method within a few hours of simulation, positioning PELE as a tool applicable for rapid drug design cycles. PMID:26974351

  12. Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population.

    PubMed

    Mueller, Thomas L; Christen, David; Sandercott, Steve; Boyd, Steven K; van Rietbergen, Bert; Eckstein, Felix; Lochmüller, Eva-Maria; Müller, Ralph; van Lenthe, G Harry

    2011-06-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) is clinically available today and provides a non-invasive measure of 3D bone geometry and micro-architecture with unprecedented detail. In combination with microarchitectural finite element (μFE) models it can be used to determine bone strength using a strain-based failure criterion. Yet, images from only a relatively small part of the radius are acquired and it is not known whether the region recommended for clinical measurements does predict forearm fracture load best. Furthermore, it is questionable whether the currently used failure criterion is optimal because of improvements in image resolution, changes in the clinically measured volume of interest, and because the failure criterion depends on the amount of bone present. Hence, we hypothesized that bone strength estimates would improve by measuring a region closer to the subchondral plate, and by defining a failure criterion that would be independent of the measured volume of interest. To answer our hypotheses, 20% of the distal forearm length from 100 cadaveric but intact human forearms was measured using HR-pQCT. μFE bone strength was analyzed for different subvolumes, as well as for the entire 20% of the distal radius length. Specifically, failure criteria were developed that provided accurate estimates of bone strength as assessed experimentally. It was shown that distal volumes were better in predicting bone strength than more proximal ones. Clinically speaking, this would argue to move the volume of interest for the HR-pQCT measurements even more distally than currently recommended by the manufacturer. Furthermore, new parameter settings using the strain-based failure criterion are presented providing better accuracy for bone strength estimates.

  13. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition.

    PubMed

    Luu, Kenneth T; Bergqvist, Simon; Chen, Enhong; Hu-Lowe, Dana; Kraynov, Eugenia

    2012-06-01

    In the drug discovery and development setting, the ability to accurately predict the human pharmacokinetics (PK) of a candidate compound from preclinical data is critical for informing the effective design of the first-in-human trial. PK prediction is especially challenging for monoclonal antibodies exhibiting nonlinear PK attributed to target-mediated drug disposition (TMDD). Here, we present a model-based method for predicting the PK of PF-03446962, an IgG2 antibody directed against human ALK1 (activin receptor-like kinase 1) receptor. Systems parameters as determined experimentally or obtained from the literature, such as binding affinity (k(on) and k(off)), internalization of the drug-target complex (k(int)), target degradation rate (k(deg)), and target abundance (R(0)), were directly integrated into the modeling and prediction. NONMEM 7 was used to model monkey PK data and simulate human PK profiles based on the construct of a TMDD model using a population-based approach. As validated by actual patient data from a phase I study, the human PK of PF-03446962 were predicted within 1- to 2-fold of observations. Whereas traditional approaches fail, this approach successfully predicted the human PK of a monoclonal antibody exhibiting nonlinearity because of TMDD. PMID:22414855

  14. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition.

    PubMed

    Luu, Kenneth T; Bergqvist, Simon; Chen, Enhong; Hu-Lowe, Dana; Kraynov, Eugenia

    2012-06-01

    In the drug discovery and development setting, the ability to accurately predict the human pharmacokinetics (PK) of a candidate compound from preclinical data is critical for informing the effective design of the first-in-human trial. PK prediction is especially challenging for monoclonal antibodies exhibiting nonlinear PK attributed to target-mediated drug disposition (TMDD). Here, we present a model-based method for predicting the PK of PF-03446962, an IgG2 antibody directed against human ALK1 (activin receptor-like kinase 1) receptor. Systems parameters as determined experimentally or obtained from the literature, such as binding affinity (k(on) and k(off)), internalization of the drug-target complex (k(int)), target degradation rate (k(deg)), and target abundance (R(0)), were directly integrated into the modeling and prediction. NONMEM 7 was used to model monkey PK data and simulate human PK profiles based on the construct of a TMDD model using a population-based approach. As validated by actual patient data from a phase I study, the human PK of PF-03446962 were predicted within 1- to 2-fold of observations. Whereas traditional approaches fail, this approach successfully predicted the human PK of a monoclonal antibody exhibiting nonlinearity because of TMDD.

  15. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  16. Predictions of cytochrome P450-mediated drug-drug interactions using cryopreserved human hepatocytes: comparison of plasma and protein-free media incubation conditions.

    PubMed

    Mao, Jialin; Mohutsky, Michael A; Harrelson, John P; Wrighton, Steven A; Hall, Stephen D

    2012-04-01

    Cryopreserved human hepatocytes suspended in human plasma (HHSHP) have previously provided accurate CYP3A drug-drug interaction (DDI) predictions from a single IC(50) that captures both reversible and time-dependent inhibition. The goal of this study was to compare the accuracy of DDI predictions by a protein-free human hepatocyte system combined with the fraction unbound in plasma for inhibitor(s) with those obtained with protein-containing incubations. Seventeen CYP3A, CYP2C9, or CYP2D6 inhibitors were incubated with hepatocytes in human plasma or hepatocyte maintenance medium (HMM) for 20 min over a range of concentrations after which midazolam 1'-hydroxylation, diclofenac 4'-hydroxylation or (R)-bufuralol 1'-hydroxylation were used to quantify the corresponding cytochrome P450 (P450) catalytic activities. Two methods were used to predict the human exposure ratio of the victim drug in the presence and absence of inhibitor. The HMM K(i, app) values were combined with the free average systemic plasma concentration ("free [I] with HMM K(i, app)") and the plasma K(i, app) values were combined with the total average systemic plasma concentration ("total [I] with plasma K(i, app)"). Of 63 clinical DDI studies, the total [I] with plasma K(i, app) method predicted 89% of cases within 2-fold of the reported interaction whereas the free [I] with HMM K(i, app) method predicted only 59%. There was a general underprediction by the free [I] with HMM K(i, app) method, which is consistent with an underestimation of in vitro inhibition potency in this system. In conclusion, the HHSHP system proved to be a simple, accurate predictor of DDIs for three major P450s and superior to the protein-free approach. PMID:22228749

  17. High IFIT1 expression predicts improved clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma.

    PubMed

    Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong

    2016-06-01

    Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. PMID:26980050

  18. Comprehensive prediction of drug-protein interactions and side effects for the human proteome

    PubMed Central

    Zhou, Hongyi; Gao, Mu; Skolnick, Jeffrey

    2015-01-01

    Identifying unexpected drug-protein interactions is crucial for drug repurposing. We develop a comprehensive proteome scale approach that predicts human protein targets and side effects of drugs. For drug-protein interaction prediction, FINDSITEcomb, whose average precision is ~30% and recall ~27%, is employed. For side effect prediction, a new method is developed with a precision of ~57% and a recall of ~24%. Our predictions show that drugs are quite promiscuous, with the average (median) number of human targets per drug of 329 (38), while a given protein interacts with 57 drugs. The result implies that drug side effects are inevitable and existing drugs may be useful for repurposing, with only ~1,000 human proteins likely causing serious side effects. A killing index derived from serious side effects has a strong correlation with FDA approved drugs being withdrawn. Therefore, it provides a pre-filter for new drug development. The methodology is free to the academic community on the DR. PRODIS (DRugome, PROteome, and DISeasome) webserver at http://cssb.biology.gatech.edu/dr.prodis/. DR. PRODIS provides protein targets of drugs, drugs for a given protein target, associated diseases and side effects of drugs, as well as an interface for the virtual target screening of new compounds. PMID:26057345

  19. Can Humanized Mice Predict Drug "Behavior" in Humans?

    PubMed

    Xu, Dan; Peltz, Gary

    2016-01-01

    Most of what we know about a drug prior to human clinical studies is derived from animal testing. Because animals and humans have substantial differences in their physiology and in their drug metabolism pathways, we do not know very much about the pharmacokinetic and pharmacodynamic behavior of a drug in humans until after it is administered to many people. Hence, drug-induced liver injury has become a significant public health problem, and we have a very inefficient drug development process with a high failure rate. Because the human liver is at the heart of these problems, chimeric mice with humanized livers could be used to address these issues. We examine recent evidence indicating that drug testing in chimeric mice could provide better information about a drug's metabolism, disposition, and toxicity (i.e., its "behavior") in humans and could aid in developing personalized medicine strategies, which would improve drug efficacy and safety.

  20. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties

    PubMed Central

    Cheng, Feixiong; Zhao, Zhongming

    2014-01-01

    Objective Drug–drug interactions (DDIs) are an important consideration in both drug development and clinical application, especially for co-administered medications. While it is necessary to identify all possible DDIs during clinical trials, DDIs are frequently reported after the drugs are approved for clinical use, and they are a common cause of adverse drug reactions (ADR) and increasing healthcare costs. Computational prediction may assist in identifying potential DDIs during clinical trials. Methods Here we propose a heterogeneous network-assisted inference (HNAI) framework to assist with the prediction of DDIs. First, we constructed a comprehensive DDI network that contained 6946 unique DDI pairs connecting 721 approved drugs based on DrugBank data. Next, we calculated drug–drug pair similarities using four features: phenotypic similarity based on a comprehensive drug–ADR network, therapeutic similarity based on the drug Anatomical Therapeutic Chemical classification system, chemical structural similarity from SMILES data, and genomic similarity based on a large drug–target interaction network built using the DrugBank and Therapeutic Target Database. Finally, we applied five predictive models in the HNAI framework: naive Bayes, decision tree, k-nearest neighbor, logistic regression, and support vector machine, respectively. Results The area under the receiver operating characteristic curve of the HNAI models is 0.67 as evaluated using fivefold cross-validation. Using antipsychotic drugs as an example, several HNAI-predicted DDIs that involve weight gain and cytochrome P450 inhibition were supported by literature resources. Conclusions Through machine learning-based integration of drug phenotypic, therapeutic, structural, and genomic similarities, we demonstrated that HNAI is promising for uncovering DDIs in drug development and postmarketing surveillance. PMID:24644270

  1. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs. PMID:25869840

  2. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    PubMed Central

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P.; Tice, Raymond R.; Huang, Ruili

    2012-01-01

    The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs. PMID:23459712

  3. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models

    PubMed Central

    Stevenson, Jennifer M; Williams, Josceline L; Burnham, Thomas G; Prevost, A Toby; Schiff, Rebekah; Erskine, S David; Davies, J Graham

    2014-01-01

    Adverse drug reaction (ADR) risk-prediction models for use in older adults have been developed, but it is not clear if they are suitable for use in clinical practice. This systematic review aimed to identify and investigate the quality of validated ADR risk-prediction models for use in older adults. Standard computerized databases, the gray literature, bibliographies, and citations were searched (2012) to identify relevant peer-reviewed studies. Studies that developed and validated an ADR prediction model for use in patients over 65 years old, using a multivariable approach in the design and analysis, were included. Data were extracted and their quality assessed by independent reviewers using a standard approach. Of the 13,423 titles identified, only 549 were associated with adverse outcomes of medicines use. Four met the inclusion criteria. All were conducted in inpatient cohorts in Western Europe. None of the models satisfied the four key stages in the creation of a quality risk prediction model; development and validation were completed, but impact and implementation were not assessed. Model performance was modest; area under the receiver operator curve ranged from 0.623 to 0.73. Study quality was difficult to assess due to poor reporting, but inappropriate methods were apparent. Further work needs to be conducted concerning the existing models to enable the development of a robust ADR risk-prediction model that is externally validated, with practical design and good performance. Only then can implementation and impact be assessed with the aim of generating a model of high enough quality to be considered for use in clinical care to prioritize older people at high risk of suffering an ADR. PMID:25278750

  4. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models.

    PubMed

    Stevenson, Jennifer M; Williams, Josceline L; Burnham, Thomas G; Prevost, A Toby; Schiff, Rebekah; Erskine, S David; Davies, J Graham

    2014-01-01

    Adverse drug reaction (ADR) risk-prediction models for use in older adults have been developed, but it is not clear if they are suitable for use in clinical practice. This systematic review aimed to identify and investigate the quality of validated ADR risk-prediction models for use in older adults. Standard computerized databases, the gray literature, bibliographies, and citations were searched (2012) to identify relevant peer-reviewed studies. Studies that developed and validated an ADR prediction model for use in patients over 65 years old, using a multivariable approach in the design and analysis, were included. Data were extracted and their quality assessed by independent reviewers using a standard approach. Of the 13,423 titles identified, only 549 were associated with adverse outcomes of medicines use. Four met the inclusion criteria. All were conducted in inpatient cohorts in Western Europe. None of the models satisfied the four key stages in the creation of a quality risk prediction model; development and validation were completed, but impact and implementation were not assessed. Model performance was modest; area under the receiver operator curve ranged from 0.623 to 0.73. Study quality was difficult to assess due to poor reporting, but inappropriate methods were apparent. Further work needs to be conducted concerning the existing models to enable the development of a robust ADR risk-prediction model that is externally validated, with practical design and good performance. Only then can implementation and impact be assessed with the aim of generating a model of high enough quality to be considered for use in clinical care to prioritize older people at high risk of suffering an ADR.

  5. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models.

    PubMed

    Stevenson, Jennifer M; Williams, Josceline L; Burnham, Thomas G; Prevost, A Toby; Schiff, Rebekah; Erskine, S David; Davies, J Graham

    2014-01-01

    Adverse drug reaction (ADR) risk-prediction models for use in older adults have been developed, but it is not clear if they are suitable for use in clinical practice. This systematic review aimed to identify and investigate the quality of validated ADR risk-prediction models for use in older adults. Standard computerized databases, the gray literature, bibliographies, and citations were searched (2012) to identify relevant peer-reviewed studies. Studies that developed and validated an ADR prediction model for use in patients over 65 years old, using a multivariable approach in the design and analysis, were included. Data were extracted and their quality assessed by independent reviewers using a standard approach. Of the 13,423 titles identified, only 549 were associated with adverse outcomes of medicines use. Four met the inclusion criteria. All were conducted in inpatient cohorts in Western Europe. None of the models satisfied the four key stages in the creation of a quality risk prediction model; development and validation were completed, but impact and implementation were not assessed. Model performance was modest; area under the receiver operator curve ranged from 0.623 to 0.73. Study quality was difficult to assess due to poor reporting, but inappropriate methods were apparent. Further work needs to be conducted concerning the existing models to enable the development of a robust ADR risk-prediction model that is externally validated, with practical design and good performance. Only then can implementation and impact be assessed with the aim of generating a model of high enough quality to be considered for use in clinical care to prioritize older people at high risk of suffering an ADR. PMID:25278750

  6. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)

  7. Identifying predictive features in drug response using machine learning: opportunities and challenges.

    PubMed

    Vidyasagar, Mathukumalli

    2015-01-01

    This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.

  8. Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization.

    PubMed

    Yang, Jihong; Li, Zheng; Fan, Xiaohui; Cheng, Yiyu

    2014-09-22

    The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and

  9. Predictive in silico off-target profiling in drug discovery.

    PubMed

    Schmidt, Friedemann; Matter, Hans; Hessler, Gerhard; Czich, Andreas

    2014-03-01

    Drug action can be rationalized as interaction of a molecule with proteins in a regulatory network of targets from a specific biological system. Both drug and side effects are often governed by interaction of the drug molecule with many, often unrelated, targets. Accordingly, arrays of protein-ligand interaction data from numerous in vitro profiling assays today provide growing evidence of polypharmacological drug interactions, even for marketed drugs. In vitro off-target profiling has therefore become an important tool in early drug discovery to learn about potential off-target liabilities, which are sometimes beneficial, but more often safety relevant. The rapidly developing field of in silico profiling approaches is complementing in vitro profiling. These approaches capitalize from large amounts of biochemical data from multiple sources to be exploited for optimizing undesirable side effects in pharmaceutical research. Therefore, current in silico profiling models are nowadays perceived as valuable tools in drug discovery, and promise a platform to support optimally informed decisions.

  10. Drug-target interaction prediction by random walk on the heterogeneous network.

    PubMed

    Chen, Xing; Liu, Ming-Xi; Yan, Gui-Ying

    2012-07-01

    Predicting potential drug-target interactions from heterogeneous biological data is critical not only for better understanding of the various interactions and biological processes, but also for the development of novel drugs and the improvement of human medicines. In this paper, the method of Network-based Random Walk with Restart on the Heterogeneous network (NRWRH) is developed to predict potential drug-target interactions on a large scale under the hypothesis that similar drugs often target similar target proteins and the framework of Random Walk. Compared with traditional supervised or semi-supervised methods, NRWRH makes full use of the tool of the network for data integration to predict drug-target associations. It integrates three different networks (protein-protein similarity network, drug-drug similarity network, and known drug-target interaction networks) into a heterogeneous network by known drug-target interactions and implements the random walk on this heterogeneous network. When applied to four classes of important drug-target interactions including enzymes, ion channels, GPCRs and nuclear receptors, NRWRH significantly improves previous methods in terms of cross-validation and potential drug-target interaction prediction. Excellent performance enables us to suggest a number of new potential drug-target interactions for drug development.

  11. A Systematic Review of Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who Are the Experts?

    PubMed Central

    Harris, Adam; Harries, Priscilla

    2016-01-01

    overall accuracy being reported. Data were extracted using a standardised tool, by one reviewer, which could have introduced bias. Devising search terms for prognostic studies is challenging. Every attempt was made to devise search terms that were sufficiently sensitive to detect all prognostic studies; however, it remains possible that some studies were not identified. Conclusion Studies of prognostic accuracy in palliative care are heterogeneous, but the evidence suggests that clinicians’ predictions are frequently inaccurate. No sub-group of clinicians was consistently shown to be more accurate than any other. Implications of Key Findings Further research is needed to understand how clinical predictions are formulated and how their accuracy can be improved. PMID:27560380

  12. Predicting Adverse Drug Events from Personal Health Messages

    PubMed Central

    Chee, Brant W.; Berlin, Richard; Schatz, Bruce

    2011-01-01

    Adverse drug events (ADEs) remain a large problem in the United States, being the fourth leading cause of death, despite post market drug surveillance. Much post consumer drug surveillance relies on self-reported “spontaneous” patient data. Previous work has performed datamining over the FDA’s Adverse Event Reporting System (AERS) and other spontaneous reporting systems to identify drug interactions and drugs correlated with high rates of serious adverse events. However, safety problems have resulted from the lack of post marketing surveillance information about drugs, with underreporting rates of up to 98% within such systems1,2. We explore the use of online health forums as a source of data to identify drugs for further FDA scrutiny. In this work we aggregate individuals’ opinions and review of drugs similar to crowd intelligence3. We use natural language processing to group drugs discussed in similar ways and are able to successfully identify drugs withdrawn from the market based on messages discussing them before their removal. PMID:22195073

  13. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

    PubMed Central

    García-Donas, Jesús; Beuselinck, Benoit; Inglada-Pérez, Lucía; Graña, Osvaldo; Schöffski, Patrick; Wozniak, Agnieszka; Bechter, Oliver; Apellániz-Ruiz, Maria; Leandro-García, Luis Javier; Esteban, Emilio; Castellano, Daniel E.; González del Alba, Aranzazu; Climent, Miguel Angel; Hernando, Susana; Arranz, José Angel; Morente, Manuel; Pisano, David G.; Robledo, Mercedes

    2016-01-01

    The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10–9 to 3 × 10–3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10–3, 6.5 × 10–3, and 3.4 × 10–2, respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10–4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10–8 and 7.8 × 10–7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment. PMID:27699216

  14. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

    PubMed Central

    García-Donas, Jesús; Beuselinck, Benoit; Inglada-Pérez, Lucía; Graña, Osvaldo; Schöffski, Patrick; Wozniak, Agnieszka; Bechter, Oliver; Apellániz-Ruiz, Maria; Leandro-García, Luis Javier; Esteban, Emilio; Castellano, Daniel E.; González del Alba, Aranzazu; Climent, Miguel Angel; Hernando, Susana; Arranz, José Angel; Morente, Manuel; Pisano, David G.; Robledo, Mercedes

    2016-01-01

    The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10–9 to 3 × 10–3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10–3, 6.5 × 10–3, and 3.4 × 10–2, respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10–4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10–8 and 7.8 × 10–7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment.

  15. Modeling and predicting drug pharmacokinetics in patients with renal impairment.

    PubMed

    Rowland Yeo, Karen; Aarabi, Mohsen; Jamei, Masoud; Rostami-Hodjegan, Amin

    2011-03-01

    Current guidance issued by the US FDA to assess the impact of renal impairment on the pharmacokinetics of a drug under development has recently been updated to include evaluation of drugs with nonrenal elimination routes. Renal impairment not only affects elimination of the drug in the kidney, but also the nonrenal route of drugs that are extensively metabolized in the liver. Renal failure may influence hepatic drug metabolism either by inducing or suppressing hepatic enzymes, or by its effects on other variables such as protein binding, hepatic blood flow and accumulation of metabolites. Prior simulation of the potential exposure of individuals with renal impairment may help in the selection of a safe and effective dosage regimen. In this article, we discuss the application of a systems biology approach to simulate drug disposition in subjects with renal impairment.

  16. Drug target prediction using adverse event report systems: a pharmacogenomic approach

    PubMed Central

    Takarabe, Masataka; Kotera, Masaaki; Nishimura, Yosuke; Goto, Susumu; Yamanishi, Yoshihiro

    2012-01-01

    Motivation: Unexpected drug activities derived from off-targets are usually undesired and harmful; however, they can occasionally be beneficial for different therapeutic indications. There are many uncharacterized drugs whose target proteins (including the primary target and off-targets) remain unknown. The identification of all potential drug targets has become an important issue in drug repositioning to reuse known drugs for new therapeutic indications. Results: We defined pharmacological similarity for all possible drugs using the US Food and Drug Administration's (FDA's) adverse event reporting system (AERS) and developed a new method to predict unknown drug–target interactions on a large scale from the integration of pharmacological similarity of drugs and genomic sequence similarity of target proteins in the framework of a pharmacogenomic approach. The proposed method was applicable to a large number of drugs and it was useful especially for predicting unknown drug–target interactions that could not be expected from drug chemical structures. We made a comprehensive prediction for potential off-targets of 1874 drugs with known targets and potential target profiles of 2519 drugs without known targets, which suggests many potential drug–target interactions that were not predicted by previous chemogenomic or pharmacogenomic approaches. Availability: Softwares are available upon request. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/aers/. PMID:22962489

  17. Predicting Adolescent Drug Abuse: A Review of Issues, Methods and Correlates. Research Issues 11.

    ERIC Educational Resources Information Center

    Lettieri, Dan J., Ed.

    Presented are 18 papers on predicting adolescent drug abuse. The papers have the following titles: "Current Issues in the Epidemiology of Drug Abuse as Related to Psychosocial Studies of Adolescent Drug Use"; "The Quest for Interpersonal Predictors of Marihuana Abuse in Adolescents"; "Assessing the Interpersonal Determinants of Adolescent Drug…

  18. Prediction of Metabolism of Drugs using Artificial Intelligence: How far have we reached?

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2016-01-01

    Information about drug metabolism is an essential component of drug development. Modeling the drug metabolism requires identification of the involved enzymes, rate and extent of metabolism, the sites of metabolism etc. There has been continuous attempts in the prediction of metabolism of drugs using artificial intelligence in effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are number of predictive models available for metabolism using Support vector machines, Artificial neural networks, Bayesian classifiers etc. There is an urgent need to review their progress so far and address the existing challenges in prediction of metabolism. In this attempt, we are presenting the currently available literature models and some of the critical issues regarding prediction of drug metabolism.

  19. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions

    PubMed Central

    Luo, Heng; Du, Tingting; Zhou, Peng; Yang, Lun; Mei, Hu; Ng, Huiwen; Zhang, Wenqian; Shu, Mao; Tong, Weida; Shi, Leming; Mendrick, Donna L.; Hong, Huixiao

    2015-01-01

    Idiosyncratic drug reactions (IDRs) are rare, somewhat dose-independent, patient-specific and hard to predict. Human leukocyte antigens (HLAs) are the major histocompatibility complex (MHC) in humans, are highly polymorphic and are associated with specific IDRs. Therefore, it is important to identify potential drug-HLA associations so that individuals who would develop IDRs can be identified before drug exposure. We harvested the associations between drugs and class I HLAs from the literature. Molecular docking was used to explore the known associations. From the analysis of docking scores between the 17 drugs and 74 class I HLAs, it was observed that the significantly associated drug-HLA pairs had statistically lower docking scores than those not reported to be significantly associated (t-test p < 0.05). This indicates that molecular docking can be utilized for screening drug-HLA interactions and predicting potential IDRs. Examining the binding modes of drugs in the docked HLAs suggested several distinct binding sites inside class I HLAs, expanding our knowledge of the underlying interaction mechanisms between drugs and HLAs. PMID:25747444

  20. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.

    PubMed

    Chen, Minjun; Hong, Huixiao; Fang, Hong; Kelly, Reagan; Zhou, Guangxu; Borlak, Jürgen; Tong, Weida

    2013-11-01

    Drug-induced liver injury (DILI) is one of the leading causes of the termination of drug development programs. Consequently, identifying the risk of DILI in humans for drug candidates during the early stages of the development process would greatly reduce the drug attrition rate in the pharmaceutical industry but would require the implementation of new research and development strategies. In this regard, several in silico models have been proposed as alternative means in prioritizing drug candidates. Because the accuracy and utility of a predictive model rests largely on how to annotate the potential of a drug to cause DILI in a reliable and consistent way, the Food and Drug Administration-approved drug labeling was given prominence. Out of 387 drugs annotated, 197 drugs were used to develop a quantitative structure-activity relationship (QSAR) model and the model was subsequently challenged by the left of drugs serving as an external validation set with an overall prediction accuracy of 68.9%. The performance of the model was further assessed by the use of 2 additional independent validation sets, and the 3 validation data sets have a total of 483 unique drugs. We observed that the QSAR model's performance varied for drugs with different therapeutic uses; however, it achieved a better estimated accuracy (73.6%) as well as negative predictive value (77.0%) when focusing only on these therapeutic categories with high prediction confidence. Thus, the model's applicability domain was defined. Taken collectively, the developed QSAR model has the potential utility to prioritize compound's risk for DILI in humans, particularly for the high-confidence therapeutic subgroups like analgesics, antibacterial agents, and antihistamines.

  1. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  2. Pharmacogenetics and Predictive Testing of Drug Hypersensitivity Reactions

    PubMed Central

    Böhm, Ruwen; Cascorbi, Ingolf

    2016-01-01

    Adverse drug reactions adverse drug reaction (ADR) occur in approximately 17% of patients. Avoiding ADR is thus mandatory from both an ethical and an economic point of view. Whereas, pharmacogenetics changes of the pharmacokinetics may contribute to the explanation of some type A reactions, strong relationships of genetic markers has also been shown for drug hypersensitivity belonging to type B reactions. We present the classifications of ADR, discuss genetic influences and focus on delayed-onset hypersensitivity reactions, i.e., drug-induced liver injury, drug-induced agranulocytosis, and severe cutaneous ADR. A guidance how to read and interpret the contingency table is provided as well as an algorithm whether and how a test for a pharmacogenetic biomarker should be conducted.

  3. Drug-target interaction prediction: databases, web servers and computational models.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data.

  4. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel.

    PubMed

    Fernández-Colino, A; Bermudez, J M; Arias, F J; Quinteros, D; Gonzo, E

    2016-04-01

    Transversality between mathematical modeling, pharmacology, and materials science is essential in order to achieve controlled-release systems with advanced properties. In this regard, the area of biomaterials provides a platform for the development of depots that are able to achieve controlled release of a drug, whereas pharmacology strives to find new therapeutic molecules and mathematical models have a connecting function, providing a rational understanding by modeling the parameters that influence the release observed. Herein we present a mechanism which, based on reasonable assumptions, explains the experimental data obtained very well. In addition, we have developed a simple and accurate “lumped” kinetics model to correctly fit the experimentally observed drug-release behavior. This lumped model allows us to have simple analytic solutions for the mass and rate of drug release as a function of time without limitations of time or mass of drug released, which represents an important step-forward in the area of in vitro drug delivery when compared to the current state of the art in mathematical modeling. As an example, we applied the mechanism and model to the release data for acetazolamide from a recombinant polymer. Both materials were selected because of a need to develop a suitable ophthalmic formulation for the treatment of glaucoma. The in vitro release model proposed herein provides a valuable predictive tool for ensuring product performance and batch-to-batch reproducibility, thus paving the way for the development of further pharmaceutical devices.

  5. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel.

    PubMed

    Fernández-Colino, A; Bermudez, J M; Arias, F J; Quinteros, D; Gonzo, E

    2016-04-01

    Transversality between mathematical modeling, pharmacology, and materials science is essential in order to achieve controlled-release systems with advanced properties. In this regard, the area of biomaterials provides a platform for the development of depots that are able to achieve controlled release of a drug, whereas pharmacology strives to find new therapeutic molecules and mathematical models have a connecting function, providing a rational understanding by modeling the parameters that influence the release observed. Herein we present a mechanism which, based on reasonable assumptions, explains the experimental data obtained very well. In addition, we have developed a simple and accurate “lumped” kinetics model to correctly fit the experimentally observed drug-release behavior. This lumped model allows us to have simple analytic solutions for the mass and rate of drug release as a function of time without limitations of time or mass of drug released, which represents an important step-forward in the area of in vitro drug delivery when compared to the current state of the art in mathematical modeling. As an example, we applied the mechanism and model to the release data for acetazolamide from a recombinant polymer. Both materials were selected because of a need to develop a suitable ophthalmic formulation for the treatment of glaucoma. The in vitro release model proposed herein provides a valuable predictive tool for ensuring product performance and batch-to-batch reproducibility, thus paving the way for the development of further pharmaceutical devices. PMID:26838852

  6. Predicting drug metabolism--an evaluation of the expert system METEOR.

    PubMed

    Testa, Bernard; Balmat, Anne-Loyse; Long, Anthony; Judson, Philip

    2005-07-01

    The paper begins with a discussion of the goals of metabolic predictions in early drug research, and some difficulties toward this objective, mainly the various substrate and product selectivities characteristic of drug metabolism. The major in silico approaches to predict drug metabolism are then classified and summarized. A discrimination is, thus, made between 'local' and 'global' systems. In its second part, an evaluation of METEOR, a rule-based expert system used to predict the metabolism of drugs and other xenobiotics, is reported. The published metabolic data of ten substrates were used in this evaluation, the overall results being discussed in terms of correct vs. disputable (i.e., false-positive and false-negative) predictions. The predictions for four representative substrates are presented in detail (Figs. 1-4), illustrating the interest of such an evaluation in identifying where and how predictive rules can be improved.

  7. The Potential for Accurately Measuring Behavioral and Economic Dimensions of Consumption, Prices, and Markets for Illegal Drugs

    PubMed Central

    Johnson, Bruce D.; Golub, Andrew

    2007-01-01

    There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users’ interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis—by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed. PMID:16978801

  8. The potential for accurately measuring behavioral and economic dimensions of consumption, prices, and markets for illegal drugs.

    PubMed

    Johnson, Bruce D; Golub, Andrew

    2007-09-01

    There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users' interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis-by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed. PMID:16978801

  9. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome.

    PubMed

    Luo, Heng; Zhang, Ping; Huang, Hui; Huang, Jialiang; Kao, Emily; Shi, Leming; He, Lin; Yang, Lun

    2014-07-01

    Drug-drug interactions (DDIs) may cause serious side-effects that draw great attention from both academia and industry. Since some DDIs are mediated by unexpected drug-human protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles of the drugs to predict their DDIs. Here we introduce the DDI-CPI server, which can make real-time DDI predictions based only on molecular structure. When the user submits a molecule, the server will dock user's molecule across 611 human proteins, generating a CPI profile that can be used as a feature vector for the pre-constructed prediction model. It can suggest potential DDIs between the user's molecule and our library of 2515 drug molecules. In cross-validation and independent validation, the server achieved an AUC greater than 0.85. Additionally, by investigating the CPI profiles of predicted DDI, users can explore the PK/PD proteins that might be involved in a particular DDI. A 3D visualization of the drug-protein interaction will be provided as well. The DDI-CPI is freely accessible at http://cpi.bio-x.cn/ddi/. PMID:24875476

  10. Predicting chemotherapeutic drug combinations through gene network profiling

    PubMed Central

    Nguyen, Thi Thuy Trang; Chua, Jacqueline Kia Kee; Seah, Kwi Shan; Koo, Seok Hwee; Yee, Jie Yin; Yang, Eugene Guorong; Lim, Kim Kiat; Pang, Shermaine Yu Wen; Yuen, Audrey; Zhang, Louxin; Ang, Wee Han; Dymock, Brian; Lee, Edmund Jon Deoon; Chen, Ee Sin

    2016-01-01

    Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells. PMID:26791325

  11. Matrix Factorization-Based Prediction of Novel Drug Indications by Integrating Genomic Space.

    PubMed

    Dai, Wen; Liu, Xi; Gao, Yibo; Chen, Lin; Song, Jianglong; Chen, Di; Gao, Kuo; Jiang, Yongshi; Yang, Yiping; Chen, Jianxin; Lu, Peng

    2015-01-01

    There has been rising interest in the discovery of novel drug indications because of high costs in introducing new drugs. Many computational techniques have been proposed to detect potential drug-disease associations based on the creation of explicit profiles of drugs and diseases, while seldom research takes advantage of the immense accumulation of interaction data. In this work, we propose a matrix factorization model based on known drug-disease associations to predict novel drug indications. In addition, genomic space is also integrated into our framework. The introduction of genomic space, which includes drug-gene interactions, disease-gene interactions, and gene-gene interactions, is aimed at providing molecular biological information for prediction of drug-disease associations. The rationality lies in our belief that association between drug and disease has its evidence in the interactome network of genes. Experiments show that the integration of genomic space is indeed effective. Drugs, diseases, and genes are described with feature vectors of the same dimension, which are retrieved from the interaction data. Then a matrix factorization model is set up to quantify the association between drugs and diseases. Finally, we use the matrix factorization model to predict novel indications for drugs.

  12. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities

    PubMed Central

    Huang, Guohua; Lu, Yin; Lu, Changhong; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  13. Prediction of new drug indications based on clinical data and network modularity

    PubMed Central

    Yu, Liang; Ma, Xiaoke; Zhang, Long; Zhang, Jing; Gao, Lin

    2016-01-01

    Drug repositioning is commonly done within the drug discovery process in order to adjust or expand the application line of an active molecule. Previous computational methods in this domain mainly focused on shared genes or correlations between genes to construct new drug-disease associations. We propose a method that can not only handle drugs or diseases with or without related genes but consider the network modularity. Our method firstly constructs a drug network and a disease network based on side effects and symptoms respectively. Because similar drugs imply similar diseases, we then cluster the two networks to identify drug and disease modules, and connect all possible drug-disease module pairs. Further, based on known drug-disease associations in CTD and using local connectivity of modules, we predict potential drug-disease associations. Our predictions are validated by testing their overlaps with drug indications reported in published literatures and CTD, and KEGG enrichment analysis are also made on their related genes. The experimental results demonstrate that our approach can complement the current computational approaches and its predictions can provide new clues for the candidate discovery of drug repositioning. PMID:27678071

  14. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment. PMID:23889048

  15. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment.

  16. Predicting unintended effects of drugs based on off-target tissue effects.

    PubMed

    Kim, Docyong; Lee, Jaehyun; Lee, Sunjae; Park, Junseok; Lee, Doheon

    2016-01-15

    Unintended effects of drugs can be caused by various mechanisms. Conventional analysis of unintended effects has focused on the target proteins of drugs. However, an interaction with off-target tissues of a drug might be one of the unintended effect-related mechanisms. We propose two processes to predict a drug's unintended effects by off-target tissue effects: 1) identification of a drug's off-target tissue and; 2) tissue protein - symptom relation identification (tissue protein - symptom matrix). Using this method, we predicted that 1,177 (10.7%) side-effects were related to off-target tissue effects in 11,041 known side-effects. Off-target tissues and unintended effects of successful repositioning drugs were also predicted. The effectiveness of relations of the proposed tissue protein - symptom matrix were evaluated by using the literature mining method. We predicted unintended effects of drugs as well as those effect-related off-target tissues. By using our prediction, we are able to reduce drug side-effects on off-target tissues and provide a chance to identify new indications of drugs of interest.

  17. How to Choose In Vitro Systems to Predict In Vivo Drug Clearance: A System Pharmacology Perspective

    PubMed Central

    Wang, Lei; Chiang, ChienWei; Liang, Hong; Wu, Hengyi; Feng, Weixing; Quinney, Sara K.; Li, Jin; Li, Lang

    2015-01-01

    The use of in vitro metabolism data to predict human clearance has become more significant in the current prediction of large scale drug clearance for all the drugs. The relevant information (in vitro metabolism data and in vivo human clearance values) of thirty-five drugs that satisfied the entry criteria of probe drugs was collated from the literature. Then the performance of different in vitro systems including Escherichia coli system, yeast system, lymphoblastoid system and baculovirus system is compared after in vitro-in vivo extrapolation. Baculovirus system, which can provide most of the data, has almost equal accuracy as the other systems in predicting clearance. And in most cases, baculovirus system has the smaller CV in scaling factors. Therefore, the baculovirus system can be recognized as the suitable system for the large scale drug clearance prediction. PMID:26539530

  18. Systematic prediction of drug combinations based on clinical side-effects

    PubMed Central

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A.; Sanseau, Philippe; Yang, Lun

    2014-01-01

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures. PMID:25418113

  19. Systematic prediction of drug combinations based on clinical side-effects.

    PubMed

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A; Sanseau, Philippe; Yang, Lun

    2014-01-01

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures. PMID:25418113

  20. Systematic prediction of drug combinations based on clinical side-effects.

    PubMed

    Huang, Hui; Zhang, Ping; Qu, Xiaoyan A; Sanseau, Philippe; Yang, Lun

    2014-11-24

    Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillance and the drug label to predict 1,508 novel drug-drug combinations. It outperforms other prediction methods, achieving an AUC of 0.92 compared to an AUC of 0.69 in a previous method, on a much larger drug combination set (245 drug combinations in our dataset compared to 75 in previous work.). We further found from the feature selection that three FDA black-box warned serious SEs, namely pneumonia, haemorrhage rectum, and retinal bleeding, contributed mostly to the predictions and a model only using these three SEs can achieve an average area under curve (AUC) at 0.80 and accuracy at 0.91, potentially with its simplicity being recognized as a practical rule-of-three in drug co-prescription or making fixed-dose drug combination. We also demonstrate this performance is less likely to be influenced by confounding factors such as biased disease indications or chemical structures.

  1. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition) generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

  2. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.

    PubMed

    Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong

    2014-04-01

    In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs.

  3. The use of drug metabolism for prediction of intestinal permeability (dagger).

    PubMed

    Chen, Mei-Ling; Yu, Lawrence

    2009-01-01

    The Biopharmaceutics Classification System (BCS), based on the aqueous solubility and intestinal permeability of a drug substance, has been widely used to predict the extent of drug absorption during the course of pharmaceutical development. Combined with product dissolution data, this system has gained a prominent role in regulatory process to determine if a drug formulated in an immediate release solid oral dosage form qualifies for waiver of in vivo bioequivalence studies. In parallel, the Biopharmaceutics Drug Disposition Classification System (BDDCS), using aqueous solubility and drug metabolism, takes on another venue to predict overall drug disposition. It has been suggested that the matrix of drug metabolism in BDDCS can be used to substantiate the classification of permeability by BCS. A total of 51 drugs were compiled in this study to examine the use of drug metabolism for predicting permeability. All compounds were classified as high permeability based on BCS, but only 73% of the compounds were found to exhibit extensive metabolism. Lipophilicity accounts for significant metabolism of many highly permeable drugs. Fourteen (14) out of 51 drugs have poor metabolism, suggesting that high permeability as defined by BCS does not necessarily dictate extensive metabolism. The drugs that have high permeability but poor metabolism are generally hydrophilic molecules with low molecular weight and are likely to be absorbed by active transport mechanisms. Based on the present data and literature information, it seems logical to predict that the extent of absorption is mostly complete (or > or =90%) if the drug is subject to a high degree of metabolism (e.g., > or =90%). The extent of drug metabolism may be useful in supporting permeability classification under certain circumstances.

  4. A new approach for prediction of tumor sensitivity to targeted drugs based on functional data

    PubMed Central

    2013-01-01

    Background The success of targeted anti-cancer drugs are frequently hindered by the lack of knowledge of the individual pathway of the patient and the extreme data requirements on the estimation of the personalized genetic network of the patient’s tumor. The prediction of tumor sensitivity to targeted drugs remains a major challenge in the design of optimal therapeutic strategies. The current sensitivity prediction approaches are primarily based on genetic characterizations of the tumor sample. We propose a novel sensitivity prediction approach based on functional perturbation data that incorporates the drug protein interaction information and sensitivities to a training set of drugs with known targets. Results We illustrate the high prediction accuracy of our framework on synthetic data generated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and an experimental dataset of four canine osteosarcoma tumor cultures following application of 60 targeted small-molecule drugs. We achieve a low leave one out cross validation error of <10% for the canine osteosarcoma tumor cultures using a drug screen consisting of 60 targeted drugs. Conclusions The proposed framework provides a unique input-output based methodology to model a cancer pathway and predict the effectiveness of targeted anti-cancer drugs. This framework can be developed as a viable approach for personalized cancer therapy. PMID:23890326

  5. An Ensemble Based Top Performing Approach for NCI-DREAM Drug Sensitivity Prediction Challenge

    PubMed Central

    Wan, Qian; Pal, Ranadip

    2014-01-01

    We consider the problem of predicting sensitivity of cancer cell lines to new drugs based on supervised learning on genomic profiles. The genetic and epigenetic characterization of a cell line provides observations on various aspects of regulation including DNA copy number variations, gene expression, DNA methylation and protein abundance. To extract relevant information from the various data types, we applied a random forest based approach to generate sensitivity predictions from each type of data and combined the predictions in a linear regression model to generate the final drug sensitivity prediction. Our approach when applied to the NCI-DREAM drug sensitivity prediction challenge was a top performer among 47 teams and produced high accuracy predictions. Our results show that the incorporation of multiple genomic characterizations lowered the mean and variance of the estimated bootstrap prediction error. We also applied our approach to the Cancer Cell Line Encyclopedia database for sensitivity prediction and the ability to extract the top targets of an anti-cancer drug. The results illustrate the effectiveness of our approach in predicting drug sensitivity from heterogeneous genomic datasets. PMID:24978814

  6. Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach

    PubMed Central

    Emig, Dorothea; Ivliev, Alexander; Pustovalova, Olga; Lancashire, Lee; Bureeva, Svetlana; Nikolsky, Yuri; Bessarabova, Marina

    2013-01-01

    The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example. PMID:23593264

  7. Prediction of Candidate Drugs for Treating Pancreatic Cancer by Using a Combined Approach

    PubMed Central

    Dong, Xinran; Li, Ying; Yang, Bo; Tian, Weidong; Wang, Xiaoqin

    2016-01-01

    Pancreatic cancer is the leading cause of death from solid malignancies worldwide. Currently, gemcitabine is the only drug approved for treating pancreatic cancer. Developing new therapeutic drugs for this disease is, therefore, an urgent need. The C-Map project has provided a wealth of gene expression data that can be mined for repositioning drugs, a promising approach to new drug discovery. Typically, a drug is considered potentially useful for treating a disease if the drug-induced differential gene expression profile is negatively correlated with the differentially expressed genes in the target disease. However, many of the potentially useful drugs (PUDs) identified by gene expression profile correlation are likely false positives because, in C-Map, the cultured cell lines to which the drug is applied are not derived from diseased tissues. To solve this problem, we developed a combined approach for predicting candidate drugs for treating pancreatic cancer. We first identified PUDs for pancreatic cancer by using C-Map-based gene expression correlation analyses. We then applied an algorithm (Met-express) to predict key pancreatic cancer (KPC) enzymes involved in pancreatic cancer metabolism. Finally, we selected candidates from the PUDs by requiring that their targets be KPC enzymes or the substrates/products of KPC enzymes. Using this combined approach, we predicted seven candidate drugs for treating pancreatic cancer, three of which are supported by literature evidence, and three were experimentally validated to be inhibitory to pancreatic cancer celllines. PMID:26910401

  8. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types.

    PubMed

    Doherty, Kimberly R; Talbert, Dominique R; Trusk, Patricia B; Moran, Diarmuid M; Shell, Scott A; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability.

  9. Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model

    PubMed Central

    Cao, D-S; Xiao, N; Li, Y-J; Zeng, W-B; Liang, Y-Z; Lu, A-P; Xu, Q-S; Chen, AF

    2015-01-01

    Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity, substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for complementary hypothesis generation and rapid analysis of potential drug–ADR interactions. PMID:26451329

  10. PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations

    PubMed Central

    Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  11. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  12. Predictive Performance of Physiologically Based Pharmacokinetic and Population Pharmacokinetic Modeling of Renally Cleared Drugs in Children

    PubMed Central

    Zhou, W; Johnson, TN; Xu, H; Cheung, SYA; Bui, KH; Li, J; Al‐Huniti, N

    2016-01-01

    Predictive performance of physiologically based pharmacokinetic (PBPK) and population pharmacokinetic (PopPK) models of drugs predominantly eliminated through kidney in the pediatric population was evaluated. After optimization using adult clinical data, the verified PBPK models can predict 33 of 34 drug clearance within twofold of the observed values in children 1 month and older. More specifically, 10 of 11 of predicted clearance values were within 1.5‐fold of those observed in children between 1 month and 2 years old. The PopPK approach also predicted 19 of 21 drug clearance within twofold of the observed values in children. In summary, our analysis demonstrated both PBPK and PopPK adult models, after verification with additional adult pharmacokinetic (PK) studies and incorporation of known ontogeny of renal filtration, could be applied for dosing regimen recommendation in children 1 month and older for renally eliminated drugs in a first‐in‐pediatric study. PMID:27566992

  13. A framework for personalized medicine: prediction of drug sensitivity in cancer by proteomic profiling

    PubMed Central

    2012-01-01

    Background The goal of personalized medicine is to provide patients optimal drug screening and treatment based on individual genomic or proteomic profiles. Reverse-Phase Protein Array (RPPA) technology offers proteomic information of cancer patients which may be directly related to drug sensitivity. For cancer patients with different drug sensitivity, the proteomic profiling reveals important pathophysiologic information which can be used to predict chemotherapy responses. Results The goal of this paper is to present a framework for personalized medicine using both RPPA and drug sensitivity (drug resistance or intolerance). In the proposed personalized medicine system, the prediction of drug sensitivity is obtained by a proposed augmented naive Bayesian classifier (ANBC) whose edges between attributes are augmented in the network structure of naive Bayesian classifier. For discriminative structure learning of ANBC, local classification rate (LCR) is used to score augmented edges, and greedy search algorithm is used to find the discriminative structure that maximizes classification rate (CR). Once a classifier is trained by RPPA and drug sensitivity using cancer patient samples, the classifier is able to predict the drug sensitivity given RPPA information from a patient. Conclusion In this paper we proposed a framework for personalized medicine where a patient is profiled by RPPA and drug sensitivity is predicted by ANBC and LCR. Experimental results with lung cancer data demonstrate that RPPA can be used to profile patients for drug sensitivity prediction by Bayesian network classifier, and the proposed ANBC for personalized cancer medicine achieves better prediction accuracy than naive Bayes classifier in small sample size data on average and outperforms other the state-of-the-art classifier methods in terms of classification accuracy. PMID:22759571

  14. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models.

    PubMed

    Peters, Sheila Annie; Jones, Christopher R; Ungell, Anna-Lena; Hatley, Oliver J D

    2016-06-01

    Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.

  15. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    PubMed

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas; Zeitler, J Axel

    2015-08-01

    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.

  16. Diagnostic and predictive performance and standardized threshold of traditional biomarkers for drug-induced liver injury in rats.

    PubMed

    Tonomura, Yutaka; Kato, Yuki; Hanafusa, Hiroyuki; Morikawa, Yuji; Matsuyama, Keigo; Uehara, Takeki; Ueno, Motonobu; Torii, Mikinori

    2015-02-01

    Traditional biomarkers such as alanine and aspartate aminotransferase (ALT, AST) and total bilirubin (TBIL) have been widely used for detecting drug-induced liver injury (DILI). Although the Food and Drug Administration (FDA) proposed standardized thresholds for human as Hy's law, those for animals have not been determined, and predictability of these biomarkers for future onset of hepatic lesions remains unclear. In this study, we investigated these diagnostic and predictive performance of 10 traditional biomarkers for liver injury by receiver-operating characteristic (ROC) curve, using a free-access database where 142 hepatotoxic or non-hepatotoxic compounds were administrated to male rats (n=5253). Standardization of each biomarker value was achieved by calculating the ratio to control mean value, and the thresholds were determined under the condition of permitting 5% false positive. Of these 10 biomarkers, AST showed the best diagnostic performance. Furthermore, ALT and TBIL also showed high performance under the situation of hepatocellular necrosis and bile duct injury, respectively. Additionally, the availability of the diagnostic thresholds in difference testing facility was confirmed by the application of these thresholds to in-house prepared dataset. Meanwhile, incorrect diagnosis by the thresholds was also observed. Regarding prediction, all 10 biomarkers showed insufficient performance for future onset of hepatic lesions. In conclusion, the standardized diagnostic thresholds enable consistent evaluation of traditional biomarkers among different facilities, whereas it was suggested that novel biomarker is required for more accurate diagnosis and prediction of DILI.

  17. A community effort to assess and improve drug sensitivity prediction algorithms.

    PubMed

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2014-12-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

  18. A community effort to assess and improve drug sensitivity prediction algorithms

    PubMed Central

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2015-01-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods. PMID:24880487

  19. Conformations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane: are ab initio quantum chemistry predictions accurate?

    NASA Astrophysics Data System (ADS)

    Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.

    1998-06-01

    High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.

  20. A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2007-01-01

    The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…

  1. Survival outcomes scores (SOFT, BAR, and Pedi-SOFT) are accurate in predicting post-liver transplant survival in adolescents.

    PubMed

    Conjeevaram Selvakumar, Praveen Kumar; Maksimak, Brian; Hanouneh, Ibrahim; Youssef, Dalia H; Lopez, Rocio; Alkhouri, Naim

    2016-09-01

    SOFT and BAR scores utilize recipient, donor, and graft factors to predict the 3-month survival after LT in adults (≥18 years). Recently, Pedi-SOFT score was developed to predict 3-month survival after LT in young children (≤12 years). These scoring systems have not been studied in adolescent patients (13-17 years). We evaluated the accuracy of these scoring systems in predicting the 3-month post-LT survival in adolescents through a retrospective analysis of data from UNOS of patients aged 13-17 years who received LT between 03/01/2002 and 12/31/2012. Recipients of combined organ transplants, donation after cardiac death, or living donor graft were excluded. A total of 711 adolescent LT recipients were included with a mean age of 15.2±1.4 years. A total of 100 patients died post-LT including 33 within 3 months. SOFT, BAR, and Pedi-SOFT scores were all found to be good predictors of 3-month post-transplant survival outcome with areas under the ROC curve of 0.81, 0.80, and 0.81, respectively. All three scores provided good accuracy for predicting 3-month survival post-LT in adolescents and may help clinical decision making to optimize survival rate and organ utilization. PMID:27478012

  2. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    PubMed

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  3. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  4. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.

  5. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

    PubMed Central

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-01-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  6. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines.

    PubMed

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient's tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  7. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines

    PubMed Central

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient’s tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  8. Validation of Early Human Dose Prediction: A Key Metric for Compound Progression in Drug Discovery.

    PubMed

    Page, Ken M

    2016-02-01

    Human dose prediction is increasingly recognized as an important parameter in Drug Discovery. Validation of a method using only in vitro and predicted parameters incorporated into a PK model was undertaken by predicting human dose and free Cmax for a number of marketed drugs and AZ Development compounds. Doses were compared to those most relevant to marketed drugs or to clinically administered doses of AZ compounds normalized either to predicted Cmin or Cmax values. Average (AFE) and absolute average (AAFE) fold-error analysis showed that best predictions were obtained using a QSAR model as the source of Vss, with Fabs set to 1 for acids and 0.5 for all other ion classes; for clearance prediction no binding correction to the well stirred model (WSM) was used for bases, while it was set to Fup/Fup(0.5) for all other ion classes. Using this combination of methods, predicted doses for 45 to 68% of the Cmin- and Cmax-normalized and marketed drug data sets were within 3-fold of the observed values, while 82 to 92% of these data sets were within 10-fold. This method for early human dose prediction is able to rank, identify, and flag risks or optimization opportunities for future development compounds within 10 days of first synthesis. PMID:26696327

  9. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.

    PubMed

    Kawai, Kentaro; Fujishima, Satoshi; Takahashi, Yoshimasa

    2008-06-01

    Aiming at the prediction of pleiotropic effects of drugs, we have investigated the multilabel classification of drugs that have one or more of 100 different kinds of activity labels. Structural feature representation of each drug molecule was based on the topological fragment spectra method, which was proposed in our previous work. Support vector machine (SVM) was used for the classification and the prediction of their activity classes. Multilabel classification was carried out by a set of the SVM classifiers. The collective SVM classifiers were trained with a training set of 59,180 compounds and validated by another set (validation set) of 29,590 compounds. For a test set that consists of 9,864 compounds, the classifiers correctly classified 80.8% of the drugs into their own active classes. The SVM classifiers also successfully performed predictions of the activity spectra for multilabel compounds. PMID:18533712

  10. Length of sick leave – Why not ask the sick-listed? Sick-listed individuals predict their length of sick leave more accurately than professionals

    PubMed Central

    Fleten, Nils; Johnsen, Roar; Førde, Olav Helge

    2004-01-01

    Background The knowledge of factors accurately predicting the long lasting sick leaves is sparse, but information on medical condition is believed to be necessary to identify persons at risk. Based on the current practice, with identifying sick-listed individuals at risk of long-lasting sick leaves, the objectives of this study were to inquire the diagnostic accuracy of length of sick leaves predicted in the Norwegian National Insurance Offices, and to compare their predictions with the self-predictions of the sick-listed. Methods Based on medical certificates, two National Insurance medical consultants and two National Insurance officers predicted, at day 14, the length of sick leave in 993 consecutive cases of sick leave, resulting from musculoskeletal or mental disorders, in this 1-year follow-up study. Two months later they reassessed 322 cases based on extended medical certificates. Self-predictions were obtained in 152 sick-listed subjects when their sick leave passed 14 days. Diagnostic accuracy of the predictions was analysed by ROC area, sensitivity, specificity, likelihood ratio, and positive predictive value was included in the analyses of predictive validity. Results The sick-listed identified sick leave lasting 12 weeks or longer with an ROC area of 80.9% (95% CI 73.7–86.8), while the corresponding estimates for medical consultants and officers had ROC areas of 55.6% (95% CI 45.6–65.6%) and 56.0% (95% CI 46.6–65.4%), respectively. The predictions of sick-listed males were significantly better than those of female subjects, and older subjects predicted somewhat better than younger subjects. Neither formal medical competence, nor additional medical information, noticeably improved the diagnostic accuracy based on medical certificates. Conclusion This study demonstrates that the accuracy of a prognosis based on medical documentation in sickness absence forms, is lower than that of one based on direct communication with the sick-listed themselves

  11. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  12. Prognostic models and risk scores: can we accurately predict postoperative nausea and vomiting in children after craniotomy?

    PubMed

    Neufeld, Susan M; Newburn-Cook, Christine V; Drummond, Jane E

    2008-10-01

    Postoperative nausea and vomiting (PONV) is a problem for many children after craniotomy. Prognostic models and risk scores help identify who is at risk for an adverse event such as PONV to help guide clinical care. The purpose of this article is to assess whether an existing prognostic model or risk score can predict PONV in children after craniotomy. The concepts of transportability, calibration, and discrimination are presented to identify what is required to have a valid tool for clinical use. Although previous work may inform clinical practice and guide future research, existing prognostic models and risk scores do not appear to be options for predicting PONV in children undergoing craniotomy. However, until risk factors are further delineated, followed by the development and validation of prognostic models and risk scores that include children after craniotomy, clinical judgment in the context of current research may serve as a guide for clinical care in this population. PMID:18939320

  13. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687

  14. ITC commentary on the prediction of digoxin clinical drug-drug interactions from in vitro transporter assays.

    PubMed

    Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J

    2014-09-01

    The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.

  15. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing.

  16. Coronary Computed Tomographic Angiography Does Not Accurately Predict the Need of Coronary Revascularization in Patients with Stable Angina

    PubMed Central

    Hong, Sung-Jin; Her, Ae-Young; Suh, Yongsung; Won, Hoyoun; Cho, Deok-Kyu; Cho, Yun-Hyeong; Yoon, Young-Won; Lee, Kyounghoon; Kang, Woong Chol; Kim, Yong Hoon; Kim, Sang-Wook; Shin, Dong-Ho; Kim, Jung-Sun; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Byoung-Wook; Choi, Donghoon; Jang, Yangsoo

    2016-01-01

    Purpose To evaluate the ability of coronary computed tomographic angiography (CCTA) to predict the need of coronary revascularization in symptomatic patients with stable angina who were referred to a cardiac catheterization laboratory for coronary revascularization. Materials and Methods Pre-angiography CCTA findings were analyzed in 1846 consecutive symptomatic patients with stable angina, who were referred to a cardiac catheterization laboratory at six hospitals and were potential candidates for coronary revascularization between July 2011 and December 2013. The number of patients requiring revascularization was determined based on the severity of coronary stenosis as assessed by CCTA. This was compared to the actual number of revascularization procedures performed in the cardiac catheterization laboratory. Results Based on CCTA findings, coronary revascularization was indicated in 877 (48%) and not indicated in 969 (52%) patients. Of the 877 patients indicated for revascularization by CCTA, only 600 (68%) underwent the procedure, whereas 285 (29%) of the 969 patients not indicated for revascularization, as assessed by CCTA, underwent the procedure. When the coronary arteries were divided into 15 segments using the American Heart Association coronary tree model, the sensitivity, specificity, positive predictive value, and negative predictive value of CCTA for therapeutic decision making on a per-segment analysis were 42%, 96%, 40%, and 96%, respectively. Conclusion CCTA-based assessment of coronary stenosis severity does not sufficiently differentiate between coronary segments requiring revascularization versus those not requiring revascularization. Conventional coronary angiography should be considered to determine the need of revascularization in symptomatic patients with stable angina. PMID:27401637

  17. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing.

    PubMed

    Wang, Ting; He, Quanze; Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  18. An Optimized Method for Accurate Fetal Sex Prediction and Sex Chromosome Aneuploidy Detection in Non-Invasive Prenatal Testing

    PubMed Central

    Li, Haibo; Ding, Jie; Wen, Ping; Zhang, Qin; Xiang, Jingjing; Li, Qiong; Xuan, Liming; Kong, Lingyin; Mao, Yan; Zhu, Yijun; Shen, Jingjing; Liang, Bo; Li, Hong

    2016-01-01

    Massively parallel sequencing (MPS) combined with bioinformatic analysis has been widely applied to detect fetal chromosomal aneuploidies such as trisomy 21, 18, 13 and sex chromosome aneuploidies (SCAs) by sequencing cell-free fetal DNA (cffDNA) from maternal plasma, so-called non-invasive prenatal testing (NIPT). However, many technical challenges, such as dependency on correct fetal sex prediction, large variations of chromosome Y measurement and high sensitivity to random reads mapping, may result in higher false negative rate (FNR) and false positive rate (FPR) in fetal sex prediction as well as in SCAs detection. Here, we developed an optimized method to improve the accuracy of the current method by filtering out randomly mapped reads in six specific regions of the Y chromosome. The method reduces the FNR and FPR of fetal sex prediction from nearly 1% to 0.01% and 0.06%, respectively and works robustly under conditions of low fetal DNA concentration (1%) in testing and simulation of 92 samples. The optimized method was further confirmed by large scale testing (1590 samples), suggesting that it is reliable and robust enough for clinical testing. PMID:27441628

  19. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  20. Implicit identification with drug and alcohol use predicts retention in residential rehabilitation programs.

    PubMed

    Wolff, Nathan; von Hippel, Courtney; Brener, Loren; von Hippel, William

    2015-03-01

    Research has identified numerous factors associated with successful treatment in alcohol and drug rehabilitation programs, yet treatment completion rates are often low and subsequent relapse rates very high. We propose that people's implicit identification with drugs and alcohol may be an additional factor that impacts their ability to complete abstinence-based rehabilitation programs. In the current research, we measured implicit identification with drugs and alcohol using the Implicit Association Test (Greenwald, McGhee, & Schwartz, 1998) among 137 members of a residential rehabilitation program for drugs and alcohol (104 men; mean age = 35 years old, 47 of whom were court-ordered to attend). Implicit identification with drugs and alcohol was measured within 1 week of arrival and again 3 weeks later, prior to the onset of the treatment phase of the program. Duration in rehabilitation was assessed 1 year later. Consistent with predictions, implicit identification with drugs and alcohol predicted the duration that people remained in residential rehabilitation even though a self-report measure of identification with drugs and alcohol did not. These results suggest that implicit identification with drugs and alcohol might be an important predictor of treatment outcomes, even among those with serious problems with drug and alcohol use. (PsycINFO Database Record

  1. Prediction and Prevention of Prescription Drug Abuse: Role of Preclinical Assessment of Substance Abuse Liability.

    PubMed

    Marusich, Julie A; Lefever, Timothy W; Novak, Scott P; Blough, Bruce E; Wiley, Jenny L

    2013-07-01

    In 2011, the prevalence of prescription drug abuse exceeded that of any other illicit drug except marijuana. Consequently, efforts to curtail abuse of new medications should begin during the drug development process, where abuse liability can be identified and addressed before a candidate medication has widespread use. The first step in this process is scheduling with the Drug Enforcement Agency so that legal access is appropriately restricted, dependent upon levels of abuse risk and medical benefit. To facilitate scheduling, the Food and Drug Administration (FDA) has published guidance for industry that describes assessment of abuse liability. The purpose of this paper is to review methods that may be used to satisfy the FDA's regulatory requirements for animal behavioral and dependence pharmacology. Methods include psychomotor activity, self-administration (an animal model of the rewarding effects of a drug), drug discrimination (an animal model of the subjective effects of a drug), and evaluation of tolerance and dependence. Data from tests conducted at RTI with known drugs of abuse illustrate typical results, and demonstrate that RTI is capable of performing these tests. While using preclinical data to predict abuse liability is an imperfect process, it has substantial predictive validity. The ultimate goal is to increase consumer safety through appropriate scheduling of new medications.

  2. Physiologically Based In vitro Models to Predict the Oral Dissolution and Absorption of a Solid Drug Delivery System.

    PubMed

    Li, Ziqiang; He, Xin

    2015-01-01

    To understand the sophisticated dynamic behaviors of drug elution and permeation in the gastrointestinal tract (GIT), researchers have tried to reemerge it by employing various in vitro experimental models. However, official in vitro apparatuses routinely used for quality control purposes, employ simple, non-physiologic buffers, and hydrodynamics conditions, and can not accurately perform continuous, dynamic in vivo pharmacokinetics (PK) behaviors. Therefore, different angles of GI physiology information are incorporate into novel models to forecast the dissolution and permeation of drug solid dosage forms. This review, in general, discusses some related studies of physiologically-based mechanical models to predict human absorption following oral administration in four sections. First the GIT, taken out of a complex physiological environment, where the drug is absorbed, distributed, metabolized and excreted (ADME) in the human body, is considered as the physiological basis for active pharmaceutics ingredients (API) dissolved and permeated through the epithelial cell. The second part embodies the theoretical foundation of in vitro models to predict human absorption and the corresponding in vitro.in vivo correlations (IVIVC). The third section summarizes physiologically based dissolution models developed recently, ranging from dynamic compartmental dissolution models, to biorelevant dissolution models based on certain physiological factors, to biphasic dissolution models. The last part is devoted to combined dissolution and absorption models that can be employed to simulate the continuous, dynamic behavior of oral drug delivery being dissolved and subsequently permeated across the GIT. Along with physiologically-based mechanically models spring up, pharmaceutical researchers will harvest better level A IVIVC for oral drug delivery systems, especially for sustained and controlled release preparations. On the other way hand, it will successively promote more effective

  3. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

    PubMed

    Fahmi, Odette A; Shebley, Mohamad; Palamanda, Jairam; Sinz, Michael W; Ramsden, Diane; Einolf, Heidi J; Chen, Liangfu; Wang, Hongbing

    2016-10-01

    Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

  4. Theranostics meets traditional Chinese medicine: rational prediction of drug-herb interactions.

    PubMed

    Hu, Miao; Fan, Lan; Zhou, Hong-Hao; Tomlinson, Brian

    2012-11-01

    Herbal medicines including traditional Chinese medicine are becoming increasingly more popular worldwide. However, there is considerable potential for interaction between herbal components and drugs, as all herbal medicines contain a combination of potentially biologically active compounds possessing various inherent pharmacological activities, and the components of herbal products consumed are eliminated from the body by the same mechanisms that remove drugs. Indeed, many so-called conventional drugs are derived from plant sources. This article provides an update on the mechanisms and evidence of drug-herb interactions (DHIs) and genetic influences on DHIs. The rational prediction of clinically important DHIs is also discussed. Individualized and targeted drug therapy could be achieved by identifying the population most likely to be helped or harmed by drug-herb coadministration. PMID:23249200

  5. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events.

    PubMed

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The [Formula: see text] class contains tandem [Formula: see text]-type motif sequences, and the [Formula: see text] class contains alternating [Formula: see text], [Formula: see text] and [Formula: see text] type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a [Formula: see text]-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the [Formula: see text] class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for [Formula: see text]-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  6. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  7. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events

    PubMed Central

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  8. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling.

    PubMed

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-08-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.

  9. A hadoop-based method to predict potential effective drug combination.

    PubMed

    Sun, Yifan; Xiong, Yi; Xu, Qian; Wei, Dongqing

    2014-01-01

    Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request. PMID:25147789

  10. BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    PubMed Central

    2011-01-01

    Background The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have important clinical characteristics of interest. Results BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450 enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%). Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task. Conclusions BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation. PMID:21510898

  11. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.

    PubMed

    Walsh, Susan; Liu, Fan; Ballantyne, Kaye N; van Oven, Mannis; Lao, Oscar; Kayser, Manfred

    2011-06-01

    A new era of 'DNA intelligence' is arriving in forensic biology, due to the impending ability to predict externally visible characteristics (EVCs) from biological material such as those found at crime scenes. EVC prediction from forensic samples, or from body parts, is expected to help concentrate police investigations towards finding unknown individuals, at times when conventional DNA profiling fails to provide informative leads. Here we present a robust and sensitive tool, termed IrisPlex, for the accurate prediction of blue and brown eye colour from DNA in future forensic applications. We used the six currently most eye colour-informative single nucleotide polymorphisms (SNPs) that previously revealed prevalence-adjusted prediction accuracies of over 90% for blue and brown eye colour in 6168 Dutch Europeans. The single multiplex assay, based on SNaPshot chemistry and capillary electrophoresis, both widely used in forensic laboratories, displays high levels of genotyping sensitivity with complete profiles generated from as little as 31pg of DNA, approximately six human diploid cell equivalents. We also present a prediction model to correctly classify an individual's eye colour, via probability estimation solely based on DNA data, and illustrate the accuracy of the developed prediction test on 40 individuals from various geographic origins. Moreover, we obtained insights into the worldwide allele distribution of these six SNPs using the HGDP-CEPH samples of 51 populations. Eye colour prediction analyses from HGDP-CEPH samples provide evidence that the test and model presented here perform reliably without prior ancestry information, although future worldwide genotype and phenotype data shall confirm this notion. As our IrisPlex eye colour prediction test is capable of immediate implementation in forensic casework, it represents one of the first steps forward in the creation of a fully individualised EVC prediction system for future use in forensic DNA intelligence.

  12. Accurate ab initio prediction of propagation rate coefficients in free-radical polymerization: Acrylonitrile and vinyl chloride

    NASA Astrophysics Data System (ADS)

    Izgorodina, Ekaterina I.; Coote, Michelle L.

    2006-05-01

    A systematic methodology for calculating accurate propagation rate coefficients in free-radical polymerization was designed and tested for vinyl chloride and acrylonitrile polymerization. For small to medium-sized polymer systems, theoretical reaction barriers are calculated using G3(MP2)-RAD. For larger systems, G3(MP2)-RAD barriers can be approximated (to within 1 kJ mol -1) via an ONIOM-based approach in which the core is studied at G3(MP2)-RAD and the substituent effects are modeled with ROMP2/6-311+G(3df,2p). DFT methods (including BLYP, B3LYP, MPWB195, BB1K and MPWB1K) failed to reproduce the correct trends in the reaction barriers and enthalpies with molecular size, though KMLYP showed some promise as a low cost option for very large systems. Reaction rates are calculated via standard transition state theory in conjunction with the one-dimensional hindered rotor model. The harmonic oscillator approximation was shown to introduce an error of a factor of 2-3, and would be suitable for "order-of-magnitude" estimates. A systematic study of chain length effects indicated that rate coefficients had largely converged to their long chain limit at the dimer radical stage, and the inclusion of the primary substituent of the penultimate unit was sufficient for practical purposes. Solvent effects, as calculated using the COSMO model, were found to be relatively minor. The overall methodology reproduced the available experimental data for both of these monomers within a factor of 2.

  13. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  14. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks

    PubMed Central

    Morris, MK; Clarke, DC; Osimiri, LC

    2016-01-01

    A major challenge in developing anticancer therapies is determining the efficacies of drugs and their combinations in physiologically relevant microenvironments. We describe here our application of “constrained fuzzy logic” (CFL) ensemble modeling of the intracellular signaling network for predicting inhibitor treatments that reduce the phospho‐levels of key transcription factors downstream of growth factors and inflammatory cytokines representative of hepatocellular carcinoma (HCC) microenvironments. We observed that the CFL models successfully predicted the effects of several kinase inhibitor combinations. Furthermore, the ensemble predictions revealed ambiguous predictions that could be traced to a specific structural feature of these models, which we resolved with dedicated experiments, finding that IL‐1α activates downstream signals through TAK1 and not MEKK1 in HepG2 cells. We conclude that CFL‐Q2LM (Querying Quantitative Logic Models) is a promising approach for predicting effective anticancer drug combinations in cancer‐relevant microenvironments. PMID:27567007

  15. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    PubMed

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  16. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility.

    PubMed

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei; Olesen, Niels Erik; Jones, David S; Kozyra, Agnieszka; Löbmann, Korbinian; Paluch, Krzysztof; Brennan, Claire Marie; Holm, René; Healy, Anne Marie; Andrews, Gavin P; Rades, Thomas

    2015-09-01

    In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility. PMID:26214347

  17. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility.

    PubMed

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei; Olesen, Niels Erik; Jones, David S; Kozyra, Agnieszka; Löbmann, Korbinian; Paluch, Krzysztof; Brennan, Claire Marie; Holm, René; Healy, Anne Marie; Andrews, Gavin P; Rades, Thomas

    2015-09-01

    In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.

  18. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses.

  19. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  20. BDDCS Predictions, Self-Correcting Aspects of BDDCS Assignments, BDDCS Assignment Corrections, and Classification for more than 175 Additional Drugs.

    PubMed

    Hosey, Chelsea M; Chan, Rosa; Benet, Leslie Z

    2016-01-01

    The biopharmaceutics drug disposition classification system was developed in 2005 by Wu and Benet as a tool to predict metabolizing enzyme and drug transporter effects on drug disposition. The system was modified from the biopharmaceutics classification system and classifies drugs according to their extent of metabolism and their water solubility. By 2010, Benet et al. had classified over 900 drugs. In this paper, we incorporate more than 175 drugs into the system and amend the classification of 13 drugs. We discuss current and additional applications of BDDCS, which include predicting drug-drug and endogenous substrate interactions, pharmacogenomic effects, food effects, elimination routes, central nervous system exposure, toxicity, and environmental impacts of drugs. When predictions and classes are not aligned, the system detects an error and is able to self-correct, generally indicating a problem with initial class assignment and/or measurements determining such assignments.

  1. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  2. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations.

    PubMed

    Huskinson, Sally L; Naylor, Jennifer E; Rowlett, James K; Freeman, Kevin B

    2014-12-01

    Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'.

  3. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

    PubMed

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-10

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs.

  4. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    ERIC Educational Resources Information Center

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  5. Predicting Antimicrobial Resistance Prevalence and Incidence from Indicators of Antimicrobial Use: What Is the Most Accurate Indicator for Surveillance in Intensive Care Units?

    PubMed Central

    Fortin, Élise; Platt, Robert W.; Fontela, Patricia S.; Buckeridge, David L.; Quach, Caroline

    2015-01-01

    Objective The optimal way to measure antimicrobial use in hospital populations, as a complement to surveillance of resistance is still unclear. Using respiratory isolates and antimicrobial prescriptions of nine intensive care units (ICUs), this study aimed to identify the indicator of antimicrobial use that predicted prevalence and incidence rates of resistance with the best accuracy. Methods Retrospective cohort study including all patients admitted to three neonatal (NICU), two pediatric (PICU) and four adult ICUs between April 2006 and March 2010. Ten different resistance / antimicrobial use combinations were studied. After adjustment for ICU type, indicators of antimicrobial use were successively tested in regression models, to predict resistance prevalence and incidence rates, per 4-week time period, per ICU. Binomial regression and Poisson regression were used to model prevalence and incidence rates, respectively. Multiplicative and additive models were tested, as well as no time lag and a one 4-week-period time lag. For each model, the mean absolute error (MAE) in prediction of resistance was computed. The most accurate indicator was compared to other indicators using t-tests. Results Results for all indicators were equivalent, except for 1/20 scenarios studied. In this scenario, where prevalence of carbapenem-resistant Pseudomonas sp. was predicted with carbapenem use, recommended daily doses per 100 admissions were less accurate than courses per 100 patient-days (p = 0.0006). Conclusions A single best indicator to predict antimicrobial resistance might not exist. Feasibility considerations such as ease of computation or potential external comparisons could be decisive in the choice of an indicator for surveillance of healthcare antimicrobial use. PMID:26710322

  6. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  7. QSAR and QM/MM approaches applied to drug metabolism prediction.

    PubMed

    Braga, R C; Andrade, C H

    2012-06-01

    In modern drug discovery process, ADME/Tox properties should be determined as early as possible in the test cascade to allow a timely assessment of their property profiles. To help medicinal chemists in designing new compounds with improved pharmacokinetics, the knowledge of the soft spot position or the site of metabolism (SOM) is needed. In recent years, large number of in silico approaches for metabolism prediction have been developed and reported. Among these methods, QSAR models and combined quantum mechanics/molecular mechanics (QM/MM) methods for predicting drug metabolism have undergone significant advances. This review provides a perspective of the utility of QSAR and QM/MM approaches on drug metabolism prediction, highlighting the present challenges, limitations, and future perspectives in medicinal chemistry.

  8. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  9. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  10. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    PubMed

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    dissolution of BCS class IIb drugs, dasatinib as a model drug, including the different gastric condition. The maximum dissolution of dasatinib with USP dissolution apparatus II was less than 1% in pH 6.5 SIF, while the one with mGIS (pH 1.2 SGF/pH 6.5 SIF) reached almost 100%. The supersaturation and precipitation of dasatinib were observed in the in vitro dissolution studies with mGIS but not with USP apparatus II. Additionally, dasatinib dissolution with mGIS was reduced to less than 10% when the gastric pH was elevated, suggesting the co-administration of acid reducing agents will decrease the oral bioavailability of dasatinib. Accurate prediction of in vivo drug dissolution would be beneficial for assuring product safety and efficacy for patients. To this end, we have created a new in vitro dissolution system, mGIS, to predict the in vivo dissolution phenomena of a weak base drug, dasatinib. The experimental results when combined with in silico simulation suggest that the mGIS predicted the in vivo dissolution well due to the elevation of gastric pH. Thus, mGIS might be suitable to predict in vivo dissolution of weak basic drugs. This mGIS methodology is expected to significantly advance the prediction of in vivo drug dissolution. It is also expected to assist in optimizing product development and drug formulation design in support of Quality by Design (QbD) initiatives.

  11. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  12. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions. PMID:27584594

  13. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  14. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    SciTech Connect

    Delahaye, Thibault Rey, Michaël Tyuterev, Vladimir G.; Nikitin, Andrei; Szalay, Péter G.

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  15. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.

    PubMed

    Zhang, Chen; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2016-04-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure in the US and less severe liver injury worldwide. It is also one of the major reasons of drug withdrawal from the market. Thus, DILI has become one of the most important concerns of drugs, and should be predicted in very early stage of drug discovery process. In this study, a comprehensive data set containing 1317 diverse compounds was collected from publications. Then, high accuracy classification models were built using five machine learning methods based on MACCS and FP4 fingerprints after evaluating by substructure pattern recognition method. The best model was built using SVM method together with FP4 fingerprint at the IG value threshold of 0.0005. Its overall predictive accuracies were 79.7 % and 64.5 % for the training and test sets, separately, which yielded overall accuracy of 75.0 % for the external validation dataset, consisting of 88 compounds collected from a benchmark DILI database - the Liver Toxicity Knowledge Base. This model could be used for drug-induced liver toxicity prediction. Moreover, some key substructure patterns correlated with drug-induced liver toxicity were also identified as structural alerts. PMID:27491923

  16. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.

    PubMed

    Zhang, Chen; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2016-04-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure in the US and less severe liver injury worldwide. It is also one of the major reasons of drug withdrawal from the market. Thus, DILI has become one of the most important concerns of drugs, and should be predicted in very early stage of drug discovery process. In this study, a comprehensive data set containing 1317 diverse compounds was collected from publications. Then, high accuracy classification models were built using five machine learning methods based on MACCS and FP4 fingerprints after evaluating by substructure pattern recognition method. The best model was built using SVM method together with FP4 fingerprint at the IG value threshold of 0.0005. Its overall predictive accuracies were 79.7 % and 64.5 % for the training and test sets, separately, which yielded overall accuracy of 75.0 % for the external validation dataset, consisting of 88 compounds collected from a benchmark DILI database - the Liver Toxicity Knowledge Base. This model could be used for drug-induced liver toxicity prediction. Moreover, some key substructure patterns correlated with drug-induced liver toxicity were also identified as structural alerts.

  17. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.

    PubMed

    Jamali, Ali Akbar; Ferdousi, Reza; Razzaghi, Saeed; Li, Jiuyong; Safdari, Reza; Ebrahimie, Esmaeil

    2016-05-01

    Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org.

  18. Fusion of nonclinical and clinical data to predict human drug safety.

    PubMed

    Johnson, Dale E

    2013-03-01

    Adverse drug reactions continue to be a major cause of morbidity in both patients receiving therapeutics and in drug R&D programs. Predicting and possibly eliminating these adverse events remains a high priority in industry, government agencies and healthcare systems. With small molecule candidates, the fusion of nonclinical and clinical data is essential in establishing an overall system that creates a true translational science approach. Several new advances are taking place that attempt to create a 'patient context' mechanism early in drug research and development and ultimately into the marketplace. This 'life-cycle' approach has as its core the development of human-oriented, nonclinical end points and the incorporation of clinical knowledge at the drug design stage. The next 5 years should witness an explosion of what the author views as druggable and safe chemical space, pharmacosafety molecular targets and the most important aspect, an understanding of unique susceptibilities in patients developing adverse drug reactions. Our current knowledge of clinical safety relies completely on pharmacovigilance data from approved and marketed drugs, with a few exceptions of drugs failing in clinical trials. Massive data repositories now and soon to be available via cloud computing should stimulate a major effort in expanding our view of clinical drug safety and its incorporation into early drug research and development.

  19. Genome Sequence Variability Predicts Drug Precautions and Withdrawals from the Market

    PubMed Central

    Baik, Su Youn; Lee, Soo Youn; Park, Chan Hee; Park, Paul J.; Kim, Ju Han

    2016-01-01

    Despite substantial premarket efforts, a significant portion of approved drugs has been withdrawn from the market for safety reasons. The deleterious impact of nonsynonymous substitutions predicted by the SIFT algorithm on structure and function of drug-related proteins was evaluated for 2504 personal genomes. Both withdrawn (n = 154) and precautionary (Beers criteria (n = 90), and US FDA pharmacogenomic biomarkers (n = 96)) drugs showed significantly lower genomic deleteriousness scores (P < 0.001) compared to others (n = 752). Furthermore, the rates of drug withdrawals and precautions correlated significantly with the deleteriousness scores of the drugs (P < 0.01); this trend was confirmed for all drugs included in the withdrawal and precaution lists by the United Nations, European Medicines Agency, DrugBank, Beers criteria, and US FDA. Our findings suggest that the person-to-person genome sequence variability is a strong independent predictor of drug withdrawals and precautions. We propose novel measures of drug safety based on personal genome sequence analysis. PMID:27690231

  20. The application of in silico drug-likeness predictions in pharmaceutical research.

    PubMed

    Tian, Sheng; Wang, Junmei; Li, Youyong; Li, Dan; Xu, Lei; Hou, Tingjun

    2015-06-23

    The concept of drug-likeness, established from the analyses of the physiochemical properties or/and structural features of existing small organic drugs or/and drug candidates, has been widely used to filter out compounds with undesirable properties, especially poor ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles. Here, we summarize various approaches for drug-likeness evaluations, including simple rules/filters based on molecular properties/structures and quantitative prediction models based on sophisticated machine learning methods, and provide a comprehensive review of recent advances in this field. Moreover, the strengths and weaknesses of these approaches are briefly outlined. Finally, the drug-likeness analyses of natural products and traditional Chinese medicines (TCM) are discussed.

  1. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV. PMID:25450741

  2. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV.

  3. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    PubMed

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  4. Systems pharmacology to predict drug toxicity: integration across levels of biological organization.

    PubMed

    Bai, Jane P F; Abernethy, Darrell R

    2013-01-01

    To achieve sensitive and specific mechanism-based prediction of drug toxicity, the tools of systems pharmacology will be integrated using structured ontological approaches, analytics, mathematics, and statistics. Success of this effort is based on the assumption that a systems network that consists of drug-induced perturbations of physiological functions can be characterized. This network spans the hierarchy of biological organization, from gene to mRNA to protein to intracellular organelle to cell to organ to organism. It is populated with data from each of these levels of biological organization. These data, from disparate sources, include the published literature, drug development archives of all approved drugs and drug candidates that did not complete development, and various toxicity databases and adverse event reporting systems. The network contains interrelated genomics, transcriptomics, and metabolomics data, as well as organ and physiological functional data that are derived from the universe of information that describes and analyzes drug toxicity. Here we describe advances in bioinformatics, computer sciences, next-generation sequencing, and systems biology that create the opportunity for integrated systems pharmacology-based prediction of drug safety.

  5. Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

    PubMed Central

    2015-01-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼12, nanoparticles have good stability; with ∼2 < ACDLogP < ∼9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  6. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    PubMed

    Zhu, Zhengxi

    2014-03-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen.

  7. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    PubMed

    Zhu, Zhengxi

    2014-03-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  8. A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction

    PubMed Central

    Haider, Saad; Rahman, Raziur; Ghosh, Souparno; Pal, Ranadip

    2015-01-01

    Modeling sensitivity to drugs based on genetic characterizations is a significant challenge in the area of systems medicine. Ensemble based approaches such as Random Forests have been shown to perform well in both individual sensitivity prediction studies and team science based prediction challenges. However, Random Forests generate a deterministic predictive model for each drug based on the genetic characterization of the cell lines and ignores the relationship between different drug sensitivities during model generation. This application motivates the need for generation of multivariate ensemble learning techniques that can increase prediction accuracy and improve variable importance ranking by incorporating the relationships between different output responses. In this article, we propose a novel cost criterion that captures the dissimilarity in the output response structure between the training data and node samples as the difference in the two empirical copulas. We illustrate that copulas are suitable for capturing the multivariate structure of output responses independent of the marginal distributions and the copula based multivariate random forest framework can provide higher accuracy prediction and improved variable selection. The proposed framework has been validated on genomics of drug sensitivity for cancer and cancer cell line encyclopedia database. PMID:26658256

  9. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells

    SciTech Connect

    Noor, Fozia Niklas, Jens Mueller-Vieira, Ursula Heinzle, Elmar

    2009-06-01

    Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicty is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC{sub 50} values 100 {mu}M or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.

  10. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    PubMed

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  11. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    SciTech Connect

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan

    2010-12-15

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such a way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.

  12. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  13. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  14. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  15. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  16. Computer-aided design of liposomal drugs: in silico prediction and experimental validation of drug candidates for liposomal remote loading

    PubMed Central

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-01

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343

  17. Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in-vivo rat data?

    PubMed

    Caldwell, Gary W; Masucci, John A; Yan, Zhengyin; Hageman, William

    2004-01-01

    In a drug discovery environment, reasonable go/no-go human in-vivo pharmacokinetic (PK) decisions must be made in a timely manner with a minimum amount of animal in-vivo or in-vitro data. We have investigated the accuracy of the in-vivo correlation between rat and human for the prediction of the total systemic clearance (CL), the volume of distribution at steady state (Vss), and the half-life (t1/2) using simple allometric scaling techniques. We have shown, using a large diverse set of drugs, that a fixed exponent allometric scaling approach can be used to predict human in-vivo PK parameters CL, Vss and t(1/2) solely from rat in-vivo PK data with acceptable accuracy for making go/no-go decisions in drug discovery. Human in-vivo PK predictions can be obtained using the simple allometric scaling relationships CL(Human) approximately = 40 CL(Rat) (L/hr), Vss(Human) approximately = 200 Vss(Rat) (L), and t1/2(Human) approximately = 4 t1/2(Rat) (hr). The average fold error for human CL predictions for N = 176 drugs was 2.25 with 79% of the drugs having a fold error less than 3. The average fold error for human Vss predictions for N = 144 drugs was 1.85 with 84% of the drugs having a fold error less than 3. The average fold error for human t1/2 predictions for N = 145 drugs was 2.05 with 76% of the drugs having a fold error less than 3. Using these simple allometric relationships, the sorting of drug candidates into a low/medium/high/very high human classification scheme was also possible from rat data. Since these simple allometric relationships between rat and human CL, Vss, and t1/2 are reasonably accurate, easy to remember and simple to calculate, these equations should be useful for making early go/no-go in-vivo human PK decisions for drug discovery candidates.

  18. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    PubMed

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com . PMID:27167132

  19. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  20. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  1. Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib.

    PubMed

    Li, Bin; Shin, Hyunjin; Gulbekyan, Georgy; Pustovalova, Olga; Nikolsky, Yuri; Hope, Andrew; Bessarabova, Marina; Schu, Matthew; Kolpakova-Hart, Elona; Merberg, David; Dorner, Andrew; Trepicchio, William L

    2015-01-01

    Development of drug responsive biomarkers from pre-clinical data is a critical step in drug discovery, as it enables patient stratification in clinical trial design. Such translational biomarkers can be validated in early clinical trial phases and utilized as a patient inclusion parameter in later stage trials. Here we present a study on building accurate and selective drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by validation of individual models on corresponding treatment arms from patient data generated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based modeling framework was designed and implemented, using a special splitting strategy and canonical pathways to capture robust information for model building. Erlotinib and Sorafenib predictive models could be used to identify a sub-group of patients that respond better to the corresponding treatment, and these models are specific to the corresponding drugs. The model derived signature genes reflect each drug's known mechanism of action. Also, the models predict each drug's potential cancer indications consistent with clinical trial results from a selection of globally normalized GEO expression datasets.

  2. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling

    PubMed Central

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-01-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients. PMID:26317215

  3. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions

    PubMed Central

    Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  4. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database

    PubMed Central

    2013-01-01

    Background Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. Method Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. Result BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. Conclusions The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates. Website: The web based application is developed and can be access through the following link http://compgenomics.utsa.edu/BRCAMoNet/ PMID:24564956

  5. Physiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

    PubMed Central

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions. PMID:24670388

  6. Development and model testing of antemortem screening methodology to predict required drug withholds in heifers.

    PubMed

    Jones, Shuna A; Salter, Robert S; Goldsmith, Tim; Quintana, Julio; Rapnicki, Paul; Shuck, Karen; Wells, Jim E; Schneider, Marilyn J; Griffin, Dee

    2014-02-01

    A simple, cow-side test for the presence of drug residues in live animal fluids would provide useful information for tissue drug residue avoidance programs. This work describes adaptation and evaluation of rapid screening tests to detect drug residues in serum and urine. Medicated heifers had urine, serum, and tissue biopsy samples taken while on drug treatment. Samples were tested by rapid methods and high-performance liquid chromatography (HPLC). The adapted microbial inhibition method, kidney inhibition swab test, was useful in detecting sulfadimethoxine in serum, and its response correlated with the prescribed withdrawal time for the drug, 5 to 6 days posttreatment. The lateral flow screening method for flunixin and beta-lactams, adapted for urine, was useful in predicting flunixin in liver detected by HPLC, 96 h posttreatment. The same adapted methods were not useful to detect ceftiofur in serum or urine due to a lack of sensitivity at the levels of interest. These antemortem screening test studies demonstrated that the method selected, and the sampling matrix chosen (urine or serum), will depend on the drug used and should be based on animal treatment history if available. The live animal tests demonstrated the potential for verification that an individual animal is free of drug residues before sale for human consumption.

  7. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs.

    PubMed

    McGinnity, D F; Collington, J; Austin, R P; Riley, R J

    2007-06-01

    In this article approaches to predict human pharmacokinetics (PK) are discussed and the capability of the exemplified methodologies to estimate individual PK parameters and therapeutic dose for a set of marketed oral drugs has been assessed. For a set of 63 drugs where the minimum efficacious concentration (MEC) and human PK were known, the clinical dose was shown to be well predicted or in some cases over-estimated using a simple one-compartment oral PK model. For a subset of these drugs, in vitro potency against the primary human targets was gathered, and compared to the observed MEC. When corrected for plasma protein binding, the MEC of the majority of compounds was < or=3 fold over the respective in vitro target potency value. A series of in vitro and in vivo experiments were conducted to predict the human PK parameters. Metabolic clearance was generally predicted well from human hepatocytes. Interestingly, for this compound set, allometry or glomerular filtration rate (GFR) ratio methods appeared to be applicable for renal CL even where CL(renal) > GFR. For approximately 90% of compounds studied, the predicted CL using in vitro-in vivo (IVIV) extrapolation together with a CL(renal) estimate, where appropriate, was within 2-fold of that observed clinically. Encouragingly volume of distribution at steady state (V(ss)) estimated in preclinical species (rat and dog) when corrected for plasma protein binding, predicted human V(ss) successfully on the majority of occasions--73% of compounds within 2-fold. In this laboratory, absorption estimated from oral rat PK studies was lower than the observed human absorption for most drugs, even when solubility and permeability appeared not to be limiting. Preliminary data indicate absorption in the dog may be more representative of human for compounds absorbed via the transcellular pathway. Using predicted PK and MEC values estimated from in vitro potency assays there was a good correlation between predicted and observed dose

  8. In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia

    PubMed Central

    Yang, Pei‐Chi; Moreno, Jonathan D.; Miyake, Christina Y.; Vaughn‐Behrens, Steven B.; Jeng, Mao‐Tsuen; Grandi, Eleonora; Wehrens, Xander H. T.; Noskov, Sergei Y.

    2015-01-01

    Key points The mechanism of therapeutic efficacy of flecainide for catecholaminergic polymorphic ventricular tachycardia (CPVT) is unclear.Model predictions suggest that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT.This study represents a first step toward predicting therapeutic mechanisms of drug efficacy in the setting of CPVT and then using these mechanisms to guide modelling and simulation to predict alternative drug therapies. Abstract Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by fatal ventricular arrhythmias in structurally normal hearts during β‐adrenergic stimulation. Current treatment strategies include β‐blockade, flecainide and ICD implementation – none of which is fully effective and each comes with associated risk. Recently, flecainide has gained considerable interest in CPVT treatment, but its mechanism of action for therapeutic efficacy is unclear. In this study, we performed in silico mutagenesis to construct a CPVT model and then used a computational modelling and simulation approach to make predictions of drug mechanisms and efficacy in the setting of CPVT. Experiments were carried out to validate model results. Our simulations revealed that Na+ channel effects are insufficient to explain flecainide efficacy in CPVT. The pure Na+ channel blocker lidocaine and the antianginal ranolazine were additionally tested and also found to be ineffective. When we tested lower dose combination therapy with flecainide, β‐blockade and CaMKII inhibition, our model predicted superior therapeutic efficacy than with flecainide monotherapy. Simulations indicate a polytherapeutic approach may mitigate side‐effects and proarrhythmic potential plaguing CPVT pharmacological management today. Importantly, our prediction of a novel polytherapy for CPVT was confirmed experimentally. Our simulations suggest that flecainide therapeutic efficacy in CPVT is unlikely

  9. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept.

    PubMed

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  10. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    PubMed Central

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. Results We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery. PMID:26099491

  11. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.

    PubMed

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  12. From molecular signatures to predictive biomarkers: modeling disease pathophysiology and drug mechanism of action.

    PubMed

    Heinzel, Andreas; Perco, Paul; Mayer, Gert; Oberbauer, Rainer; Lukas, Arno; Mayer, Bernd

    2014-01-01

    Omics profiling significantly expanded the molecular landscape describing clinical phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker signatures entering clinical utility. However, utilizing Omics for deepening our understanding of disease pathophysiology, and further including specific interference with drug mechanism of action on a molecular process level still sees limited added value in the clinical setting. We exemplify a computational workflow for expanding from statistics-based association analysis toward deriving molecular pathway and process models for characterizing phenotypes and drug mechanism of action. Interference analysis on the molecular model level allows identification of predictive biomarker candidates for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a complex clinical phenotype triggered by diabetes and presenting with renal as well as cardiovascular endpoints. A molecular pathway map indicates involvement of multiple molecular mechanisms, and selected biomarker candidates reported as associated with disease progression are identified for specific molecular processes. Selective interference of drug mechanism of action and disease-associated processes is identified for drug classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive biomarkers.

  13. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer

    PubMed Central

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  14. Predicting and detecting adverse drug reactions in old age: challenges and opportunities.

    PubMed

    Mangoni, Arduino A

    2012-05-01

    Increased, often inappropriate, drug exposure, pharmacokinetic and pharmacodynamic changes, reduced homeostatic reserve and frailty increase the risk of adverse drug reactions (ADRs) in the older population, thereby imposing a significant public health burden. Predicting and diagnosing ADRs in old age presents significant challenges for the clinician, even when specific risk scoring systems are available. The picture is further compounded by the potential adverse impact of several drugs on more 'global' health indicators, for example, physical function and independence, and the fragmentation of care (e.g., increased number of treating doctors and care transitions) experienced by older patients during their clinical journey. The current knowledge of drug safety in old age is also curtailed by the lack of efficacy and safety data from pre-marketing studies. Moreover, little consideration is given to individual patients' experiences and reporting of specific ADRs, particularly in the presence of cognitive impairment. Pending additional data on these issues, the close review and monitoring of individual patients' drug prescribing, clinical status and biochemical parameters remain essential to predict and detect ADRs in old age. Recently developed strategies, for example, medication reconciliation and trigger tool methodology, have the potential for ADRs risk mitigation in this population. However, more information is required on their efficacy and applicability in different healthcare settings. PMID:22512705

  15. Physiologically based pharmacokinetic modeling to predict drug-drug interactions involving inhibitory metabolite: a case study of amiodarone.

    PubMed

    Chen, Yuan; Mao, Jialin; Hop, Cornelis E C A

    2015-02-01

    Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined "bottom-up" and "top-down" approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.

  16. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework

    PubMed Central

    Yamanishi, Yoshihiro; Kotera, Masaaki; Kanehisa, Minoru; Goto, Susumu

    2010-01-01

    Motivation: In silico prediction of drug–target interactions from heterogeneous biological data is critical in the search for drugs and therapeutic targets for known diseases such as cancers. There is therefore a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we investigate the relationship between the chemical space, the pharmacological space and the topology of drug–target interaction networks, and show that drug–target interactions are more correlated with pharmacological effect similarity than with chemical structure similarity. We then develop a new method to predict unknown drug–target interactions from chemical, genomic and pharmacological data on a large scale. The proposed method consists of two steps: (i) prediction of pharmacological effects from chemical structures of given compounds and (ii) inference of unknown drug–target interactions based on the pharmacological effect similarity in the framework of supervised bipartite graph inference. The originality of the proposed method lies in the prediction of potential pharmacological similarity for any drug candidate compounds and in the integration of chemical, genomic and pharmacological data in a unified framework. In the results, we make predictions for four classes of important drug–target interactions involving enzymes, ion channels, GPCRs and nuclear receptors. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery. Supplementary information: Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/pharmaco/. Availability: Softwares are available upon request. Contact: yoshihiro.yamanishi@ensmp.fr PMID:20529913

  17. Evaluation of the use of static and dynamic models to predict drug-drug interaction and its associated variability: impact on drug discovery and early development.

    PubMed

    Peters, Sheila Annie; Schroeder, Patricia E; Giri, Nagdeep; Dolgos, Hugues

    2012-08-01

    Simcyp, a population-based simulator, is widely used for evaluating drug-drug interaction (DDI) risks in healthy and disease populations. We compare the prediction performance of Simcyp with that of mechanistic static models using different types of inhibitor concentrations, with the aim of understanding their strengths/weaknesses and recommending the optimal use of tools in drug discovery/early development. The inclusion of an additional term in static equations to consider the contribution of hepatic first pass to DDIs (AUCR(hfp)) has also been examined. A second objective was to assess Simcyp's estimation of variability associated with DDIs. The data set used for the analysis comprises 19 clinical interactions from 11 proprietary compounds. Except for gut interaction parameters, all other input data were identical for Simcyp and static models. Static equations using an unbound average steady-state systemic inhibitor concentration (I(sys)) and a fixed fraction of gut extraction and neglecting gut extraction in the case of induction interactions performed better than Simcyp (84% compared with 58% of the interactions predicted within 2-fold). Differences in the prediction outcomes between the static and dynamic models are attributable to differences in first-pass contribution to DDI. The inclusion of AUCR(hfp) in static equations leads to systematic overprediction of interaction, suggesting a limited role for hepatic first pass in determining inhibition-based DDIs for our data set. Our analysis supports the use of static models when elimination routes of the victim compound and the role of gut extraction for the victim and/or inhibitor in humans are not well defined. A fixed variability of 40% of predicted mean area under the concentration-time curve ratio is recommended.

  18. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions.

    PubMed

    Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan

    2016-05-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To

  19. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions

    PubMed Central

    Brezovský, Jan

    2016-01-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools’ predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations

  20. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    PubMed

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  1. DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank

    PubMed Central

    Yuan, Qingjun; Gao, Junning; Wu, Dongliang; Zhang, Shihua; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Motivation: Identifying drug–target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug–target interactions of new candidate drugs or targets. Methods: Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning. Results: The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs. Availability: http://datamining-iip.fudan.edu.cn/service/DrugE-Rank Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307615

  2. Drug Side Effect Profiles as Molecular Descriptors for Predictive Modeling of Target Bioactivity.

    PubMed

    Baker, Nancy C; Fourches, Denis; Tropsha, Alexander

    2015-02-01

    We have explored the potential of using side effect profiles of drugs to predict their bioactivities at the receptor level. Serotonin 5-HT6 binding and dopamine antagonism were investigated in separate studies. A set of 5-HT6 binders and non-binders was retrieved from the PDSP Ki database, whereas dopamine antagonists were retrieved from the MeSH Pharmaceutical Action file. The side effect data was extracted from ChemoText, a data repository containing MeSH annotations pulled from MEDLINE records. These side effects profiles were treated as molecular descriptors enabling a QSAR-like approach to build models that could reliably discriminate different classes of molecules, e.g., binders versus non-binders, and dopamine antagonists versus non-antagonists. Selected models with the best external prediction performances were applied to a library of ca. 1000 chemicals with known side effects profiles in order to predict their potential 5-HT6 binding and/or dopamine antagonism. In each case the virtual screening process was able to identify putatively active compounds that through subsequent literature-based validation were found to be likely or known 5-HT6 binders or dopamine antagonists. These results demonstrate that side effect profiles can be utilized to predict a drug's unknown molecular activity, thus representing a valuable opportunity in repositioning the drug for a new indications.

  3. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China

    PubMed Central

    Cheng, Xian-feng; Jiang, Chao; Zhang, Min; Xia, Dan; Chu, Li-li; Wen, Yu-feng; Zhu, Ming; Jiang, Yue-gen

    2016-01-01

    Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration. PMID:27047485

  4. Novel in vitro systems for prediction of veterinary drug residues in ovine milk and dairy products.

    PubMed

    González-Lobato, L; Real, R; Herrero, D; de la Fuente, A; Prieto, J G; Marqués, M M; Alvarez, A I; Merino, G

    2014-01-01

    A new in vitro tool was developed for the identification of veterinary substrates of the main drug transporter in the mammary gland. These drugs have a much higher chance of being concentrated into ovine milk and thus should be detectable in dairy products. Complementarily, a cell model for the identification of compounds that can inhibit the secretion of drugs into ovine milk, and thus reduce milk residues, was also generated. The ATP-binding cassette transporter G2 (ABCG2) is responsible for the concentration of its substrates into milk. The need to predict potential drug residues in ruminant milk has prompted the development of in vitro cell models over-expressing ABCG2 for these species to detect veterinary drugs that interact with this transporter. Using these models, several substrates for bovine and caprine ABCG2 have been found, and differences in activity between species have been reported. However, despite being of great toxicological relevance, no suitable in vitro model to predict substrates of ovine ABCG2 was available. New MDCKII and MEF3.8 cell models over-expressing ovine ABCG2 were generated for the identification of substrates and inhibitors of ovine ABCG2. Five widely used veterinary antibiotics (marbofloxacin, orbifloxacin, sarafloxacin, danofloxacin and difloxacin) were discovered as new substrates of ovine ABCG2. These results were confirmed for the bovine transporter and its Y581S variant using previously generated cell models. In addition, the avermectin doramectin was described as a new inhibitor of ruminant ABCG2. This new rapid assay to identify veterinary drugs that can be concentrated into ovine milk will potentially improve detection and monitoring of veterinary drug residues in ovine milk and dairy products.

  5. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  6. The Application of Physiologically Based Pharmacokinetic Modeling to Predict the Role of Drug Transporters: Scientific and Regulatory Perspectives.

    PubMed

    Pan, Yuzhuo; Hsu, Vicky; Grimstein, Manuela; Zhang, Lei; Arya, Vikram; Sinha, Vikram; Grillo, Joseph A; Zhao, Ping

    2016-07-01

    Transporters play an important role in drug absorption, disposition, and drug action. The evaluation of drug transporters requires a comprehensive understanding of transporter biology and pharmacology. Physiologically based pharmacokinetic (PBPK) models may offer an integrative platform to quantitatively evaluate the role of drug transporters and its interplay with other drug disposition processes such as passive drug diffusion and elimination by metabolizing enzymes. To date, PBPK modeling and simulations integrating drug transporters lag behind that for drug-metabolizing enzymes. In addition, predictive performance of PBPK has not been well established for predicting the role of drug transporters in the pharmacokinetics of a drug. To enhance overall predictive performance of transporter-based PBPK models, it is necessary to have a detailed understanding of transporter biology for proper representation in the models and to have a quantitative understanding of the contribution of transporters in the absorption and metabolism of a drug. This article summarizes PBPK-based submissions evaluating the role of drug transporters to the Office of Clinical Pharmacology of the US Food and Drug Administration. PMID:27385170

  7. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.

    PubMed Central

    Nudds, Robert L.; Taylor, Graham K.; Thomas, Adrian L. R.

    2004-01-01

    The wing kinematics of birds vary systematically with body size, but we still, after several decades of research, lack a clear mechanistic understanding of the aerodynamic selection pressures that shape them. Swimming and flying animals have recently been shown to cruise at Strouhal numbers (St) corresponding to a regime of vortex growth and shedding in which the propulsive efficiency of flapping foils peaks (St approximately fA/U, where f is wingbeat frequency, U is cruising speed and A approximately bsin(theta/2) is stroke amplitude, in which b is wingspan and theta is stroke angle). We show that St is a simple and accurate predictor of wingbeat frequency in birds. The Strouhal numbers of cruising birds have converged on the lower end of the range 0.2 < St < 0.4 associated with high propulsive efficiency. Stroke angle scales as theta approximately 67b-0.24, so wingbeat frequency can be predicted as f approximately St.U/bsin(33.5b-0.24), with St0.21 and St0.25 for direct and intermittent fliers, respectively. This simple aerodynamic model predicts wingbeat frequency better than any other relationship proposed to date, explaining 90% of the observed variance in a sample of 60 bird species. Avian wing kinematics therefore appear to have been tuned by natural selection for high aerodynamic efficiency: physical and physiological constraints upon wing kinematics must be reconsidered in this light. PMID:15451698

  8. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  9. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    SciTech Connect

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  10. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    PubMed

    Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M; Novelli, Jacopo F; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K S

    2007-01-01

    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  11. Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network.

    PubMed

    Yan, Xiao-Ying; Zhang, Shao-Wu; Zhang, Song-Yao

    2016-02-01

    The identification of potential drug-target interaction pairs is very important, which is useful not only for providing greater understanding of protein function, but also for enhancing drug research, especially for drug function repositioning. Recently, numerous machine learning-based algorithms (e.g. kernel-based, matrix factorization-based and network-based inference methods) have been developed for predicting drug-target interactions. All these methods implicitly utilize the assumption that similar drugs tend to target similar proteins and yield better results for predicting interactions between drugs and target proteins. To further improve the accuracy of prediction, a new method of network-based label propagation with mutual interaction information derived from heterogeneous networks, namely LPMIHN, is proposed to infer the potential drug-target interactions. LPMIHN separately performs label propagation on drug and target similarity networks, but the initial label information of the target (or drug) network comes from the drug (or target) label network and the known drug-target interaction bipartite network. The independent label propagation on each similarity network explores the cluster structure in its network, and the label information from the other network is used to capture mutual interactions (bicluster structures) between the nodes in each pair of the similarity networks. As compared to other recent state-of-the-art methods on the four popular benchmark datasets of binary drug-target interactions and two quantitative kinase bioactivity datasets, LPMIHN achieves the best results in terms of AUC and AUPR. In addition, many of the promising drug-target pairs predicted from LPMIHN are also confirmed on the latest publicly available drug-target databases such as ChEMBL, KEGG, SuperTarget and Drugbank. These results demonstrate the effectiveness of our LPMIHN method, indicating that LPMIHN has a great potential for predicting drug-target interactions. PMID

  12. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach.

    PubMed

    Sawada, Ryusuke; Kotera, Masaaki; Yamanishi, Yoshihiro

    2014-12-01

    The identification of drug-target interactions, or interactions between drug candidate compounds and target candidate proteins, is a crucial process in genomic drug discovery. In silico chemogenomic methods are recently recognized as a promising approach for genome-wide scale prediction of drug-target interactions, but the prediction performance depends heavily on the descriptors and similarity measures of drugs and proteins. In this paper, we investigated the performance of various descriptors and similarity measures of drugs and proteins for the drug-target interaction prediction using a chemogenomic approach. We compared the prediction accuracy of 18 chemical descriptors of drugs (e.g., ECFP, FCFP,E-state, CDK, KlekotaRoth, MACCS, PubChem, Dragon, KCF-S, and graph kernels) and 4 descriptors of proteins (e.g., amino acid composition, domain profile, local sequence similarity, and string kernel) on about one hundred thousand drug-target interactions. We examined the combinatorial effects of drug descriptors and protein descriptors using the same benchmark data under several experimental conditions. Large-scale experiments showed that our proposed KCF-S descriptor worked the best in terms of prediction accuracy. The comparative results are expected to be useful for selecting chemical descriptors in various pharmaceutical applications.

  13. Prediction of multi-drug resistance transporters using a novel sequence analysis method

    PubMed Central

    McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; Gosink, Luke; Lindemann, Stephen R.

    2015-01-01

    There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequence similarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first show that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir. PMID:26913187

  14. Prediction of mechanical properties of compacted binary mixtures containing high-dose poorly compressible drug.

    PubMed

    Patel, Sarsvatkumar; Bansal, Arvind Kumar

    2011-01-17

    The aim of the study was to develop, compare and validate predictive model for mechanical property of binary systems. The mechanical properties of binary mixtures of ibuprofen (IBN) a poorly compressible high dose drug, were studied in presence of different excipients. The tensile strength of tablets of individual components viz. IBN, microcrystalline cellulose (MCC), and dicalcium phosphate dihydrate (DCP) and binary mixtures of IBN with excipients was measured at various relative densities. Prediction of the mechanical property of binary mixtures, from that of single components, was attempted using Ryshkewitch-Duckworth (R-D) and Percolation theory, by assuming a linear mixing rule or a power law mixing rule. The models were compared, and the best model was proposed based on the distribution of residuals and the Akaike's information criterion. Good predictions were obtained with the power law combined with linear mixing rule, using R-D and Percolation models. The results indicated that the proposed model can well predict the mechanical properties of binary system containing predominantly poorly compressible drug candidate. The predictions of these models and conclusions can be systematically generalized to other pharmaceutical powders.

  15. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays.

    PubMed

    Morton, M J; Armstrong, D; Abi Gerges, N; Bridgland-Taylor, M; Pollard, C E; Bowes, J; Valentin, J-P

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies - radioligand-binding or automated electrophysiology - was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost.

  16. Predictive Modeling of Drug Treatment in the Area of Personalized Medicine

    PubMed Central

    Ogilvie, Lesley A.; Wierling, Christoph; Kessler, Thomas; Lehrach, Hans; Lange, Bodo M. H.

    2015-01-01

    Despite a growing body of knowledge on the mechanisms underlying the onset and progression of cancer, treatment success rates in oncology are at best modest. Current approaches use statistical methods that fail to embrace the inherent and expansive complexity of the tumor/patient/drug interaction. Computational modeling, in particular mechanistic modeling, has the power to resolve this complexity. Using fundamental knowledge on the interactions occurring between the components of a complex biological system, large-scale in silico models with predictive capabilities can be generated. Here, we describe how mechanistic virtual patient models, based on systematic molecular characterization of patients and their diseases, have the potential to shift the theranostic paradigm for oncology, both in the fields of personalized medicine and targeted drug development. In particular, we highlight the mechanistic modeling platform ModCell™ for individualized prediction of patient responses to treatment, emphasizing modeling techniques and avenues of application. PMID:26692759

  17. Drug solubility in phospholipid carrier as a predictive parameter for drug recovery in microparticles produced by the aerosol solvent extraction system (ASES) process.

    PubMed

    Sarisuta, Narong; Kunastitchai, Sarinnate; Pichert, Lars; Müller, Bernd W

    2007-09-01

    The solubility of various drugs in a constant ratio of phosphatidylcholine-cholesterol carrier were studied to investigate their influence on drug recovery in drug-lipid microparticles produced by the aerosol solvent extraction system (ASES) process. Solubility of the drugs in such lipid carrier were determined by using differential scanning calorimetry and confirmed by X-ray powder diffraction study. The results showed that drug possessing relatively high solubility in the lipid carrier used could lead to a higher amount of drug recovered in the drug-lipid microparticles produced. However, too high amount of dissolved drug imposed an adverse effect on the solidification of the lipid carrier during ASES processing, which led to partial film formation in the production column and hence a lower yield of microparticles. Such adverse effect was not the case for the drugs with low solubility in the carrier but there was an incomplete recovery of drug in the produced microparticles due to the partial extraction by the supercritical gas instead. The maximum amount of drug recovered in the ASES-prepared microparticles was found to correlate to the solubility of drug in the lipid carrier so that it might be utilized as a predictive parameter for determining the amount of drug to be incorporated into the microparticles.

  18. The Model for End-stage Liver Disease accurately predicts 90-day liver transplant wait-list mortality in Atlantic Canada

    PubMed Central

    Renfrew, Paul Douglas; Quan, Hude; Doig, Christopher James; Dixon, Elijah; Molinari, Michele

    2011-01-01

    OBJECTIVE: To determine the generalizability of the predictions for 90-day mortality generated by Model for End-stage Liver Disease (MELD) and the serum sodium augmented MELD (MELDNa) to Atlantic Canadian adults with end-stage liver disease awaiting liver transplantation (LT). METHODS: The predictive accuracy of the MELD and the MELDNa was evaluated by measurement of the discrimination and calibration of the respective models’ estimates for the occurrence of 90-day mortality in a consecutive cohort of LT candidates accrued over a five-year period. Accuracy of discrimination was measured by the area under the ROC curves. Calibration accuracy was evaluated by comparing the observed and model-estimated incidences of 90-day wait-list failure for the total cohort and within quantiles of risk. RESULTS: The area under the ROC curve for the MELD was 0.887 (95% CI 0.705 to 0.978) – consistent with very good accuracy of discrimination. The area under the ROC curve for the MELDNa was 0.848 (95% CI 0.681 to 0.965). The observed incidence of 90-day wait-list mortality in the validation cohort was 7.9%, which was not significantly different from the MELD estimate of 6.6% (95% CI 4.9% to 8.4%; P=0.177) or the MELDNa estimate of 5.8% (95% CI 3.5% to 8.0%; P=0.065). Global goodness-of-fit testing found no evidence of significant lack of fit for either model (Hosmer-Lemeshow χ2 [df=3] for MELD 2.941, P=0.401; for MELDNa 2.895, P=0.414). CONCLUSION: Both the MELD and the MELDNa accurately predicted the occurrence of 90-day wait-list mortality in the study cohort and, therefore, are generalizable to Atlantic Canadians with end-stage liver disease awaiting LT. PMID:21876856

  19. Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization

    PubMed Central

    Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela

    Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250

  20. Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain).

    PubMed

    Franquet-Griell, Helena; Gómez-Canela, Cristian; Ventura, Francesc; Lacorte, Silvia

    2015-04-01

    Cytostatic drugs, used in chemotherapy, are excreted unchanged by urine and feces or modified as metabolites. Elimination of these drugs in wastewater treatment plants (WWTPs) is often incomplete and residues reach surface water. Their presence in the natural environment depends on consumption patterns, excretion fraction and the effectiveness of the wastewater treatment. This study compiled the total consumption of cytostatic drugs in Catalonia (NE Spain) and provides data on the occurrence and risk of anticancer drugs in the aquatic environment by calculating predicted environmental concentrations (PECs). PECs were estimated using publicly available consumption data in the period of 2010-2012, published or calculated excretion values and wastewater elimination rates for a suite of 132 compounds. This allows predicting the range of concentrations in effluent wastewaters and receiving waters. Out of the 132 cytostatics, mycophenolic acid and hydroxycarbamide had a PEC value higher than 10ngL(-1). PECs were compared with MECs (measured environmental concentrations) to evaluate the reliability of the estimation. A risk assessment was conducted to determine the potential adverse effects of cytostatics in the environment. All the risk quotients calculated using EC50 in Daphnia magna were below 1, showing no significant risk.

  1. Blinded prospective evaluation of computer-based mechanistic schizophrenia disease model for predicting drug response.

    PubMed

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick; Twyman, Roy; Alphs, Larry; Grace, Anthony A

    2012-01-01

    The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published 'Quantitative Systems Pharmacology' computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D(2) antagonist and ocaperidone, a very high affinity dopamine D(2) antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. PMID:23251349

  2. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety.

    PubMed

    Reichel, Andreas; Lienau, Philip

    2016-01-01

    The role of pharmacokinetics (PK) in drug discovery is to support the optimisation of the absorption, distribution, metabolism and excretion (ADME) properties of lead compounds with the ultimate goal to attain a clinical candidate which achieves a concentration-time profile in the body that is adequate for the desired efficacy and safety profile. A thorough characterisation of the lead compounds aiming at the identification of the inherent PK liabilities also includes an early generation of PK/PD relationships linking in vitro potency and target exposure/engagement with expression of